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Abstract. We develop a new framework for designing online policies given access to an
oracle providing statistical information about an off-line benchmark. Having access to such
prediction oracles enables simple and natural Bayesian selection policies and raises the
question as to how these policies perform in different settings. Our work makes two
important contributions toward this question: First, we develop a general technique we
call compensated coupling, which can be used to derive bounds on the expected regret
(i.e., additive loss with respect to a benchmark) for any online policy and off-line
benchmark. Second, using this technique, we show that a natural greedy policy, which we
call the Bayes selector, has constant expected regret (i.e., independent of the number of
arrivals and resource levels) for a large class of problems we refer to as “online allocation
with finite types,” which includes widely studied online packing and online matching
problems. Our results generalize and simplify several existing results for online packing
and online matching and suggest a promising pathway for obtaining oracle-driven policies
for other online decision-making settings.
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Life is the sum of all your choices.—Albert Camus

1. Introduction
Everyday life is repletewith settings inwhichwehave
to make decisions while facing uncertainty over fu-
ture outcomes. Some examples include allocating
cloud resources,matching an empty car to a ride-sharing
passenger, displaying online ads, selling airline seats, etc.
In many of these instances, the underlying arrivals arise
from some known generative process. Even when the
underlying model is unknown, companies can turn to
ever-improving machine learning tools to build pre-
dictive models based on past data. This raises a funda-
mental question in online decision-making: how can we
use predictive models to make good decisions?

Broadly speaking, an online decision-making problem
is defined by a current state and a set of actions, which
together determine the next state as well as generate
rewards. In Markov decision processes (MDPs), the re-
wards and state transitions are also affected by some
random shock. Optimal policies for such problems are
known only in some special cases when the underlying
problem is sufficiently simple and knowledge of the gen-
erative model sufficiently detailed. For many problems

of interest, an MDP approach is infeasible for two rea-
sons: (1) insufficiently detailed models of the generative
process of the randomness and (2) the complexity
of computing the optimal policy (the so-called “curse
of dimensionality”). These shortcomings have in-
spired a long line of work on approximate dynamic pro-
gramming (ADP).
We focus on a general class of online resource al-

location problems, which we refer to as online allo-
cation (cf. Section 2.1) and which generalize two
important classes of online decision-making prob-
lems: online packing and online matching. In brief,
online allocation problems involve a set of d distinct
resources and a principal with some initial budget
vector B ∈ N

d of these resources, which have to be
allocated among T incoming agents. Each agent has
a type comprising some specific requirements for
resources and associated rewards. The exact type
becomes known only when the agent arrives. The
principal must make irrevocable accept/reject deci-
sions to try and maximize rewards while obeying the
budget constraints.
Online packing and online matching problems are

fundamental in MDP theory; they have a rich existing
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literature andwidespread applications inmany domains.
Nevertheless, our work develops new policies for both
these problems that admit performance guarantees
that are order-wise better than existing approaches.
These policies can be stated in classical ADP terms
(for example, see Algorithms 2 and 3) but draw in-
spiration from ideas in Bayesian learning. In partic-
ular, our policies can be derived from ameta-algorithm,
the Bayes selector (Algorithm 1), which makes use of a
black-box prediction oracle to obtain statistical infor-
mation about a chosen off-line benchmark and then
acts on this information to make decisions. Such pol-
icies are simple to define and implement in practice,
and our work provides new tools for bounding their
regret vis-à-vis the off-line benchmark. Thus, we be-
lieve that, though our theoretical guarantees focus
on a particular class of online allocation problems, our
approach provides a new way for designing and ana-
lyzing much more general online decision-making
policies using predictive models.

1.1. Our Contributions

We believe our contributions in this work are threefold:
1. Technical: We present a new stochastic coupling

technique, which we call compensated coupling, for
evaluating the regret of online decision-making pol-
icies vis-à-vis off-line benchmarks.

2. Methodological: Inspired by ideas from Bayes-
ian learning, we propose a class of policies, expressed
as the Bayes selector, for general online decision-
making problems.

3. Algorithmic: For a wide class of problems that
we refer to as online allocation (which includes online
packing and online matching problems), we prove
that the Bayes selector gives expected regret guar-
antees that are independent of the size of the state-space,
that is, constant with respect to the horizon length
and budgets.

1.1.1. Organization of the Paper. The rest of the paper
is organized as follows: In Section 2, we introduce a
general problem, called online allocation, which in-
cludes as special cases the multisecretary, online
packing, and online matching problems and also
more general settings involving agents with complex
valuations over bundles. We also define the prophet
benchmark and discuss shortcomings of prevailing
approaches. In Section 3, we present our main tech-
nical tool, compensated coupling, in the general context
of finite-state, finite-horizon MDPs; we illustrate its use
by applying it to the ski-rental problem. In Section 3.3,
we introduce the Bayes selector policy and discuss
how compensated coupling provides a generic recipe
for obtaining regret bounds for such a policy. In
Sections 4 and 5, we use these techniques for the
online packing and online matching problems; we

analyze them separately to exploit their structure and
obtain stronger results. Finally, in Section 6, we an-
alyze the most general problem (online allocation).
In particular, in Section 4, we propose a Bayes se-

lector policy for online packing and demonstrate the
following performance guarantee:

Theorem 1 (Informal). For any online packing problem
with a finite number of resource types and arrival types,
under mild conditions on the arrival process, the regret of the
Bayes selector is independent of the horizon T and budgets B
(in expectation and with high probability).

In more detail, our regret bounds depend on the
“resource matrix” A and the distribution of arriving
types but are independent of T and B. Moreover, the
results hold under weak assumptions on the arrival
process, including multinomial and Poisson arrivals,
time-dependent processes, and Markovian arrivals.
This result generalizes prior and contemporaneous
results (Reiman and Wang 2008, Jasin and Kumar
2012, Wu et al. 2015, Arlotto and Gurvich 2019,
Bumpensanti and Wang 2019). We show similar re-
sults for online matching problems in Section 5.

1.2. Related Work

Our work is related to several active areas of research
in MDPs and online algorithms.

1.2.1. Approximate Dynamic Programming. The com-
plexity of computing optimalMDP solutions can scale
with the state space, which often makes it impractical
(the so-called curse of dimensionality; Powell 2011).
This has inspired a long line of work on ADP (Tsitsiklis
and Van Roy 2001, Powell 2011) to develop lower
complexity heuristics. Although these methods often
work well in practice, they require careful choice of
basis functions, and any bounds are usually in terms
of quantities that are difficult to interpret. Our work
provides an alternate framework, which is simpler
and has interpretable guarantees.

1.2.2. Model Predictive Control. A popular heuristic
for ADP and control that is closer to our paradigm is
that of model predictive control (MPC; Morari et al.
1993, Borrelli 2003, Ciocan and Farias 2012). MPC
techniques have also been connected with online
convex optimization (OCO; Chen et al. 2015, 2016;
Huang 2015) to show how prediction oracles can be
used forOCOand applying these policies to problems
in power systems and network control. These tech-
niques, however, require continuous controls and do
not handle combinatorial constraints.

1.2.3. Information Relaxation. Parallel to the ADP fo-
cus on developing better heuristics, there is a line of
work on deriving upper bounds viamartingale duality,
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sometimes referred to as information relaxations (Desai
et al. 2012; Brown and Smith 2013, 2014). The main
idea in these works is to obtain performance bounds
for heuristic policies work by defining more refined
outer bounds; in particular, this can be done by
adding a suitable martingale term to the current re-
ward in order to penalize “future information.” Our
off-line benchmarks serve a similar purpose; how-
ever, a critical difference is that, instead of using these
to analyze a given heuristic, we use the benchmarks
directly to derive control policies.

1.2.4. Online Packing and Prophet Inequalities. The
majority of work focuses on competitive ratio bounds
under worst-case distributions. In particular, there is
an extensive literature on the so-called prophet in-
equalities, starting with the pioneering work of Hill
and Kertz (1982) and including more recent extensions
and applications to algorithmic economics (Kleinberg
and Weinberg 2012, Alaei 2014, Correa et al. 2017,
Düetting et al. 2017). We note that any competitive
ratio guarantee implies a O(T) expected regret in
comparisonwith ourO(1) expected regret guarantees;
the cost for this, however, is that our results hold under
more restrictive assumptions on the inputs. For ex-
ample, the policy suggested by Düetting et al. (2017)
is static and Arlotto and Gurvich (2019, theorem 1)
shows that any static policy has Ω(

̅̅

T
√

) expected re-
gret; hence, it cannot yield a strong guarantee like ours.

1.2.5. Distribution-Agnostic and Adversarial Models.

Though we focus only on the case in which the in-
put is drawn from a stochastic process, we note that
there is a long line of work on online packing with
adversarial inputs (Buchbinder and Naor 2009a, b;
Kesselheim et al. 2018) and also distribution-agnostic
approaches (Badanidiyuru et al. 2013, Nikhil et al.
2019).More generally, there is a large body ofwork on
using sublinear expected regret algorithms for solv-
ing online linear and convex programs (Agrawal and
Devanur 2014, Gupta and Molinaro 2014). The algo-
rithms in these works are incomparable to ours in that,
although they cannot get constant expected regret in our
setting (stochastic input, finite type space), they provide
guarantees under much weaker assumptions.

1.2.6. Regret Bounds in Stochastic Online Packing. For
these problems, regret is the most meaningful metric
to study, see Zhang et al. (2016) for a discussion, in
which approximations to the regret are studied. The
first work to prove constant expected regret in a
context similar to ours is Arlotto and Gurvich (2019),
who prove a similar result for the multisecretary
setting withmultinomial arrivals; we strengthen their
result in Theorem 2. This result is relevant to a long
line of work in applied probability. Some influential

works are Reiman and Wang (2008), which provides
an asymptotically optimal policy under the diffusion
scaling, and Jasin and Kumar (2012), who provide a
resolving policy with constant expected regret under
a certain nondegeneracy condition. In contrast, de-
generacy plays no role in the performance of our
algorithms. More recently, Bumpensanti and Wang
(2019) partially extended the result of Arlotto and
Gurvich (2019) for more general packing problems;
their guarantee is only valid for independent and
identically distributed (i.i.d.) Poisson arrival pro-
cesses and when the system is scaled linearly, that is,
when B is proportional to T (our results and Arlotto
and Gurvich (2019) make no such assumption). In
Section 7, we demonstrate with a numerical study
that the Bayes selector far outperforms all these
previous policies.

2. ProblemSettingandOverviewofResults
Aswementioned in the introduction, our contributions
in this work are twofold: (i) we give a technique to
analyze the regret of any MDP, and (ii) we apply it to
specific problems to obtain constant regret. Our focus in
this work is on the subclass of online packing problems
with stochastic inputs. This is a subclass of the wider
class of finite-horizon online decision-making problems:
given a time horizon T ∈ N with discrete time slots
t � T,T − 1, . . . , 1, we need to make a decision at each
time leading to some cumulative reward. Note that,
throughout our time, index t indicates the time to go.
We present the details of our technical approach in
this more general context whenever possible, indi-
cating additional assumptions when required.
In what follows, we use [k] to indicate the set

1, 2, . . . , k{ } and denote the (i, j)th entry of any given
matrix A interchangeably by Ai,j or A(i, j). We work in
an underlying probability space (Ω,^,P), and the
complement of any eventQ ⊆ Ω is denoted Q̄. For any
optimization problem (P), we use v(P) to indicate its
objective value. If S is a finite set, S| | denotes cardi-
nality. The set N of naturals includes zero.

2.1. The Online Allocation Problem

We now present a generic problem, which we refer to
as online allocation, that encompasses both online
matching and online packing. The setup is as fol-
lows: There are d distinct resource types denoted
by the set [d], and at time t � T, we have an initial
availability (budget) vector B � (B1,B2, . . . ,Bd) ∈ N

d.
At every time t � T,T − 1, . . . , 1, an arrival with type
θt is drawn from a finite set of n distinct types Θ � [n]
via some distribution, which is known to the al-
gorithm designer (henceforth referred to as the
principal). We denote Z(t) � (Z1(t),Z2(t), . . . ,Zn(t)) ∈Nn

as the cumulative vector of the last t arrivals, where
Zj(t) :�

∑

τ≤t 1{θτ�j}.
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Each arriving agent is associated with a choice over
bundles. Formally, an arriving agent of type j desires
any one among a collection of multisets Sj ⊆ 2[d]; the
principal can allocate any s ∈ Sj (referred to as a
bundle) to the agent, thereby obtaining a reward rsj
and consuming one unit of each resource i ∈ s. Ob-
serve that we do not assume additive valuations, for
example, we do not require r 1,2{ }j � r 1{ }j + r 2{ }j. The
model can naturally be extended to allow bundles to
consume multiple units of any resource.

At each time, the principal must decide whether to
allocate a bundle to the request θt (thereby generating
the associated reward while consuming the required
resources) or reject it (no reward and no resource
consumption). Allocating a bundle requires that there
is sufficient budget of each resource to cover the re-
quest. The principal’s aim is to make irrevocable
decisions so as to maximize overall rewards.

In Section 6, we present results for this general
problem. We next describe three particular cases of
the general problem, which are each of independent
interest. We analyze these three cases separately
because they admit improved results over the gen-
eral case.

2.1.1. Multisecretary. This is a fundamental one-
dimensional instance. In this problem, we have B ∈ N

available positions and want to hire employees with
the highest abilities (rewards). There is one resource
type (d � 1) with budget B; each employee occupies
one unit of budget (one position). This is an instance
of online allocation with Sj � 1{ }{ } for all j (all can-
didateswant the same resource) and rewards r 1{ }j � rj.

2.1.2. Online Packing. In thismultidimensional problem,
each request j is associated to one bundle and one
reward if allocated.Specifically,wearegivenaconsumption
matrixA ∈ N

d×n, where aij denotes the units of resource
i required to serve the request j and, for each j, there is a
reward rj if served. This is an instance of online allo-
cation, wherein agents of each type j desire a single
bundle: Sj � {{aij units of i for each resource i ∈ [d]}}.

2.1.3. Online Matching. There are d resources, but now
each type j wants at most one resource from among a
given set of resources. Formally, a type j agent wants
any from Aj instead of all from Aj. The types can be
represented by a reward matrix r ∈ R

d×n
≥0 and adja-

cencymatrixA ∈ 0, 1{ }d×n; if the arrival is f type j ∈ [n],
we can allocate at most one resource i such that aij � 1,
leading to a reward of rij. This problem can be thought
as online bipartite matching, see Section 5 for de-
tails. It corresponds to an instance of online allocation
with bundles Sj�{ i{ } for each resource i∈ [d] s.t. aij�1}
and rewards r i{ }j � rij.

2.2. Arrival Processes

To specify the generative model for the type sequence
θT, θT−1, . . . , θ1, an important subclass is that of sta-
tionary independent arrivals, which further admits two
widely studied cases:
1. The multinomial process is defined by a

known distribution p ∈ R
n
≥0 over [n]; at each time,

the arrival is of type j with probability pj, thus
Z(t) ∼ Multinomial(t,p1, . . . ,pn).
2. The Poisson arrival process is characterized

by a known rate vector λ ∈ R
n
≥0. Arrivals of each

class are assumed to be independent such that
Zj(t) ∼ Poisson(λjt). Note that, although this is a
continuous-time process, it can be accommodated in a
discrete-time formulation by defining as many pe-
riods as arrivals (see Appendix B.1 for details).
We assumewithout loss of generality (w.l.o.g.) that

pj > 0 and λj > 0 for all j ∈ [n] (if this is not the case for
some j, that type never arrives and can be removed
from the instance description). More general models
allow for nonstationary and/or correlated arrival
processes, for example, nonhomogeneous Poisson
processes, Markovian models (see Example 6), etc.
An important feature of our framework is that it is
capable of handling a wide variety of such processes
in a unified manner without requiring extensive in-
formation regarding the generative model. We discuss
the most general assumptions we make on the arrival
process in Section 4.4.

2.3. The Off-line Benchmark

Suppose a given problem is simultaneously solved by
two “agents,” ONLINE and OFF-LINE, who are primarily
differentiated based on their access to information.
ONLINE can only take nonanticipatory actions, that is,
use available information only, whereas OFF-LINE is
allowed to make decisions with full knowledge of
future arrivals. This is known in the literature as a
prophet or full-information benchmark. Denoting the
total collected rewards of OFF-LINE and ONLINE as Voff

and Von, respectively, we define the regret to be the
additive loss Reg :� Voff − Von. Observe that Von de-
pends on the policy used by ONLINE, the underlying
policy is always clear from context. Our aim is to
design policies with low E[Reg].
For online packing, the solution toOFF-LINE’s problem

corresponds to solving an integer programming prob-
lem. A looser but more tractable benchmark is given by
an LP relaxation of this policy: given arrivals vectorZ(T),
we assume OFF-LINE solves the following:

P Z T( ),B[ ] : max r′x

s.t. Ax ≤ B

x ≤ Z T( )
x ≥ 0. (1)

Vera and Banerjee: The Bayesian Prophet
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2.3.1. TheUnavoidableRegretof theFluidBenchmark. The
most common technique for obtaining policies for online
packing is based on the so-called fluid (a.k.a. determin-
istic or ex ante) LP benchmark (P[E[Z(T)],B]), where
(P) is defined inEquation (1). It is easy to see via Jensen’s
inequality that v(P[E[Z(T)],B]) ≥ E[v(P[Z(T),B])], and
hence, the fluid LP is an upper bound for any online
policy. Although the use of this fluid benchmark is the
prevalent tool to bound the regret in online packing
problems (Talluri and Van Ryzin 2006, Reiman and
Wang 2008, Jasin and Kumar 2012, Wu et al. 2015),
the following result shows that the approach of us-
ing v(P[E[Z(T)],B]) as a benchmark can never lead
to a constant expected regret policy as the fluid
benchmark can be far off from the optimal solution
in hindsight.

Proposition 1. For any online packing problem, if the arrival
process satisfies the central limit theorem and the fluid LP is dual
degenerate, that is, the optimal dual variables are not unique,
then v(P[E[Z(T)],B]) − E[v(P[Z(T),B])] � Ω(

̅̅

T
√

).
This gap has been reported in literature, both in-

formally and formally (see Arlotto and Guvich 2019
and Bumpensanti andWang 2019). For completeness,
we provide a proof in Appendix A. Note though that
this gap does not pose a barrier to showing constant-
factor competitive ratio guarantees, that is, O(T) ex-
pected regret; the fluid LP benchmark is widely used
for prophet inequalities. In contrast, the gap presents a
barrier for obtaining O(1) expected regret bounds.
Breaking this barrier, thus, requires a fundamentally
new approach.

2.4. Overview of Our Approach and Results

Our approach can be viewed as ameta-algorithm that
uses black-box prediction oracles to make decisions.
The quantities estimated by the oracles are related to
our off-line benchmark and can be interpreted as
probabilities of regretting each action in hindsight. A
natural Bayesian selection strategygiven suchestimators
is to adopt the action that is least likely to cause regret in
hindsight. This is precisely what we do in Algorithm 1,
and hence, we refer to it as the Bayes selector.

Bayesian selection techniques are often used as
heuristics in practice. Our work, however, shows that
such policies, in fact, have excellent performance for
online allocation; in particular, we show that for
matching and packing problems,

1. There are easy-to-compute estimators (in par-
ticular, ones that are based on simple adaptive LP
relaxations) that, when used for Algorithm 1, give
constant expected regret for a wide range of distri-
butions (see Theorems 2–4).

2. Using other types of estimators (for example,Monte
Carlo estimates) in Algorithm 1 yields comparable
performance guarantees (see Corollaries 4 and 5).

At the core of our analysis is a novel stochastic
coupling technique for analyzing online policies based
on off-line (or prophet) benchmarks. Unlike traditional
approaches for regret analysis that try to show that an
online policy tracks a fixed off-line policy, our ap-
proach is instead based on forcing OFF-LINE to follow
ONLINE’s actions. We describe this in more detail in the
next section.

3. Compensated Coupling and the
Bayes Selector

We introduce our two main technical ideas: (1) the
compensated coupling technique and (2) the Bayes
selector heuristic for online decision making. The
techniques introduced here are valid for any generic
MDP; in subsequent sections, we specialize them to
online allocation.

3.1. MDPs and Off-line Benchmarks

The basic MDP setup is as follows: at each time t � T,
T − 1, . . . , 1 (where t represents the time to go), based
on previous decisions, the system state is one of a
set of possible states 6. Next, nature generates an
arrival θt ∈ Θ, following which we need to choose
from a set of available actions !. The state updates
and rewards are determined via a transition func-
tion 7 :! × 6 × Θ→6 and a reward function 5 :!×
6×Θ→ R: for current state s ∈ 6, arrival j ∈ Θ, and
action a ∈ !, we transition to the state 7(a, s, j) and
collect a reward 5(a, s, j). Infeasible actions a for
a given state s correspond to 5(a, s, j) � −∞. The sets
!,6,Θ as well as the measure over arrival process
{θt

: t ∈ [T]} are known in advance. Finally, though
we focus mainly on maximizing rewards, the formal-
ism naturally ports over to cost minimization.
Recall that we adopt the view that the problem is

simultaneously solved by two agents: ONLINE and
OFF-LINE. ONLINE can only take nonanticipatory ac-
tions, and OFF-LINE makes decisions with knowledge
of future arrivals. To keep the notation simple, we
restrict ourselves to deterministic policies for OFF-LINE

and ONLINE, thereby implying that the only source of
randomness is due to the arrival process (our results
can be extended to randomized policies).
A sample path ω ∈ Ω encodes the arrival sequence

{θt : t ∈ [T]}. In other words, there exists a unique
sequence of types that is consistent with ω; when-
ever we fix ω, the type θt is uniquely identified, but
for notational ease, we do not write θt[ω]. For a
given sample path ω ∈ Ω and time t to go, OFF-LINE’s
value function is specified via the deterministic Bell-
man equations

Voff t, s( ) ω[ ] :� max
a∈!

5 a, s, θt
( ){

+ Voff t − 1,7 a, s, θt
( )( )

ω[ ]
}

, (2)

Vera and Banerjee: The Bayesian Prophet
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with boundary condition Voff(0, s)[ω] � 0 for all s ∈ 6.
The notation Voff(t, s)[ω] is used to emphasize that,
given sample path ω, OFF-LINE’s value function is a
deterministic function of t and s.

We require that the DP formulation in Equation (2)
is well defined. For simplicity, we enforce this with
the following assumption: there are some constants
c1, c2 ≥ 0 such that −c1 ≤ maxa∈! 5(a, s, j) ≤ c2 for all
s ∈ 6, j ∈ Θ. In other words, every state has a feasible
action, and the maximum reward is uniformly bounded
and attained. The spaces6,Θ,! and functions7,5 are
otherwise arbitrary. We enforce this assumption for
clarity of exposition, but we observe that it can be
further generalized (c.f. Bertsekas 1995, volume II,
appendix A).

On the other hand, ONLINE chooses actions based on
policy πon defined as follows:

Definition 1 (ONLINE Policy). An online policy πon is any
collection of functions {πon(t, s, j) : t ∈ [T], s ∈ 6, j ∈ Θ}
such that, if at time t the current state is s and a type j
arrives, then ONLINE chooses the action πon(t, s, j) ∈ !.
The function πon(t, ·, ·) can depend only on {θT, · · · , θt},
that is, on the randomness observed at periods τ ≥ t
(the history).

Let us denote {St : t ∈ [T]} as ONLINE’s state over
time, that is, the stochastic process St ∈ 6 that results
from following a given policy πon. We can write
ONLINE’s accrued value for a given policy πon as

Von t,St
( )

ω[ ] :�
∑

τ≤t
5 πon τ,Sτ, θτ( ),Sτ, θτ( ) ω[ ].

For notational ease, we omit explicit indexing of Von

on policy πon.
On any sample pathω, we can define the regret of an

online policy to be the additive loss incurred by ONLINE

using πon with respect to (w.r.t.) OFF-LINE, that is,

Reg ω[ ] :� Voff T,ST
( )

ω[ ] − Von T,ST
( )

ω[ ].

Remark 1 (Regret Is Agnostic of OFF-LINE Algorithm). Our
previous definition of Reg depends only on the online
policy πon, but it does not depend on the policy (or
algorithm) used by OFF-LINE as long as it is optimal.
For example, in the case in which there are multiple
maximizers in the Bellman Equation (2), different tie-
breaking rules for OFF-LINE yield different algorithms,
but all of them are optimal and have the same optimal
value Voff.

3.2. The Compensated Coupling

At a high level, compensated coupling is a sample
path-wise charging scheme, wherein we try to couple
the trajectory of a given policy to a sequence of off-line

policies. Given any nonanticipatory policy (played
by ONLINE), the technique works by making OFF-LINE

follow ONLINE. Formally, we couple the actions of
OFF-LINE to those of ONLINE while compensating
OFF-LINE to preserve its collected value along every
sample path.

Example 1. Consider the multisecretary problem with
budget B � 1 and three arriving typesΘ � 1, 2, 3{ }with
r1 > r2 > r3. The state space in this problem is 6 � N,
and the action space is ! � {accept, reject}. Suppose
for T � 4 the arrivals on a given sample path are
(θ4, θ3, θ2, θ1) � (1, 2, 1, 3). Note that OFF-LINE accepts
exactly one arrival of type 1 but is indifferent to which
arrival. While analyzing ONLINE, we have the freedom
to choose a benchmark by specifying the tie-breaking
rule for OFF-LINE; for example, we can compare ONLINE

to an OFF-LINE agent who chooses to front-load the de-
cision by accepting the arrival at t � 4 (i.e., as early in
the sequence as possible) or back-load it by accepting the
arrival at t � 2. In conclusion, for this sample path, the
following two sequences of actions are optimal for
OFF-LINE: (accept, reject, reject, reject) and (reject, reject,
accept, reject).

Suppose instead that we choose to reject the first
arrival (t � 4) and then want OFF-LINE to accept the
type 2 arrival at t � 3; this would lead to a decrease in
OFF-LINE’s final reward. The crucial observation is that
we can still incentivizeOFF-LINE to accept arrival type 2
by offering a compensation (i.e., additional reward) of
r1 − r2 for doing so. The basic idea behind the com-
pensated coupling is to generalize this argument.
We want OFF-LINE to take ONLINE’s action; hence, we
couple the states of OFF-LINE and ONLINE with the use
of compensations.
We start with a general problem: given sample path

ω ∈ Ω with arrivals {θt[ω] : t ∈ [T]}, recall Voff(t, s)[ω]
denotes OFF-LINE’s value starting from state s with t
periods to go.Voff(t,s)[ω] obeys the BellmanEquation (2).
The following definition is about the actions satis-
fying said Bellman equations.

Definition 2 (Satisfying Action). Fixω ∈ Ω. For any given
state s and time t, we say OFF-LINE is satisfied with an
action a at (s, t) if a is a maximizer in the Bellman
equation, that is,

a ∈ argmax
â∈!

5 â, s, θt
( )

+ Voff t − 1,7 â, s, θt
( )( )

ω[ ]
{ }

.

Observe that a may be satisfying for a sample path ω
and not for some other ω′; once the sample path is
fixed, satisfying actions are unequivocally identified.

Example 2. Consider the multisecretary problem
with T � 5, initial budget B � 2, types Θ � {1, 2, 3}
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with r1 > r2 > r3, and a particular sequence of ar-
rivals (θ5, θ4, θ3, θ2, θ1) � (2, 3, 1, 2, 3). The optimal
value of Off-line is r1 + r2, and this is achieved by
accepting the sole type 1 arrival as well as any one out
of the two type 2 arrivals. At time t � 5, OFF-LINE is
satisfied either accepting or rejecting θ5. Further, at
t � 3, for any budget b > 0, the only satisfying action
is to accept.

With the notion of satisfying actions, we can create a
coupling as illustrated in Figure 1. Although OFF-LINE

may be satisfied with multiple actions (see preceding
example and Remark 1), its value remains unchanged
under any satisfying action, that is, any tie-breaking
rule. We define a valid policy πoff for OFF-LINE to be any
anticipatory functional such that, for every ω ∈ Ω, we
have a different mapping to actions. Formally, for
every ω ∈ Ω, πoff[ω] : [T] × 6 ×Θ → ! is a function
satisfying the optimality principle:

Voff t, s( ) ω[ ] � Voff t − 1,7 πoff t, s, θt
( )

ω[ ], s, θt
( )( )

ω[ ]
+5 πoff t, s, θt

( )

ω[ ], s, θt
( )

,

∀t ∈ T[ ], s ∈ 6.

Next, we quantify by how much we need to com-
pensate OFF-LINE when ONLINE’s action is not satisfy-
ing, as follows.

Definition 3 (Marginal Compensation). For action a ∈ !,
time t ∈ [T], and state s ∈ 6, we denote the random
variable ∂R and scalar ∂r:

∂R t, a, s( ) :� Voff t, s( ) − Voff t − 1,7 a, s, θt
( )( )[

+5 a, s, θt
( )]

∂r a, j
( )

:� max ∂R t, a, s( ) ω[ ] : t ∈ T[ ], s ∈ 6, ω ∈ Ω{
s.t. θt ω[ ] � j

}

.

The random variable ∂R captures exactly how much
weneed to compensateOFF-LINE, and ∂r(a, j)provides a
uniform (over s, t) bound on the compensation re-
quired when ONLINE errs on an arrival of type j by
choosing an action a. Though there are severalways of
bounding ∂R(t, a, s), we choose ∂r(a, j) as it is clean and
expressive and admits good bounds in many prob-
lems as the next example shows.

Example 3. For online packing problems, define rmax :�
maxj∈[n] rj as the maximum reward over all classes.
The state space in this problem is 6 � N

d, and the
actions space is ! � {accept, reject}. Also, for sim-
plicity, we assume that all resource requirements are
binary, that is, aij ∈ {0, 1} ∀ i ∈ [d], j ∈ [n]. For a given
sample path ω ∈ Ω and any given budget b ∈ N

d, if
OFF-LINE decides to accept the arrival at t, we can instead

Figure 1. (Color online)

Notes. The top left image shows the traditional approach to regret analysis, wherein one considers a fixed off-line policy (which here corresponds
to a fixed trajectory characterized by accept decisions at t1, t2, t3, . . .) and tries to bound the loss resulting from Online (dashed line) oscillating
around Off-line (solid line). In contrast, the compensated coupling approach compares Online to an Off-line policy that changes over time. This
leads to a sequence of off-line trajectories (top right, bottom left, and bottom right), each “agreeing” more with Online. In particular, Off-line is
not satisfied with Online’s action at t1 (leading to divergent trajectories in the top left figure) but is made to follow Online by paying a
compensation (top right), resulting in a newOff-line trajectory and a new disagreement at t′1 ∈ (t1, t2). This coupling process is repeated at time t′1
(bottom left) and then at t2 (bottom right), each time leading to a new future trajectory for Off-line. Coupling the two processes helps simplify the
analysis as we now need to study a single trajectory (that of Online) as opposed to all potential Off-line trajectories.
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make it reject the arrival while still earning a greater or
equal reward by paying a compensation of rmax. On the
other hand, note that OFF-LINE can at most extract rmax in
the future for every resource θt uses; hence, on sample
paths onwhichOFF-LINE wants to reject θt, it can bemade
to accept θt insteadwith a compensation of Aθt| || |1rmax ≤
drmax. In conclusion, we have rj ≤ ∂r(a, j) ≤ drmax.

Recall that St denotes the random process of
ONLINE’s state. Additionally, we denoteRon(t,St)[ω] :�
5(πon(t, St, θt),St, θt) as the reward collected by ONLINE

at time t, and hence, Von(T,ST)[ω] �∑

t∈[T]R
on(t,St)[ω].

The final step is to fix OFF-LINE’s policy to be one that
followsONLINE as closely as possible. For this, given a pol-
icy πon, on any sample path ω, we set πoff(t, s, θt)[ω] �
πon(t, s, θt)[ω] if πon(t, s, θt)[ω] is satisfying and oth-
erwise set πoff(t, s, θt)[ω] to an arbitrary satisfying
action. In other words, we start with any valid policy
πoff and, for every ω ∈ Ω, we modify it as described to
obtain another valid policy. Abusing notation, we still
call πoff this modified policy. Recall that this modi-
fication does not change the regret guarantees (see
Remark 1).

Definition 4 (Disagreement Set). For any state s and
time t and any action a ∈ !, we define the disagreement
set Q(t, a, s) to be the set of sample paths in which a is
not satisfying for OFFLINE, that is,

Q t, a, s( ) :� ω ∈ Ω : Voff t, s( ) ω[ ] > 5 a, s, θt
( ){

+ Voff t − 1,7 a, s, θt
( )( )

ω[ ]
}

.

Finally, letQ(t, s) ⊆ Ω be the eventwhenOFF-LINE cannot
follow ONLINE, that is, Q(t, s) :� Q(t, πon(t, s, θt), s).
Note that Q(t, s) depends on πon, but we omit the
indexing because πon is clear from context.Only under
Q(t, s) do we need to compensate OFF-LINE; hence, we
obtain the following.

Lemma 1 (Compensated Coupling). For any online decision-
making problem, fix any ONLINE policy πon with resulting state
process St. Then, we have

Reg ω[ ] �
∑

t∈ T[ ]
∂R t, πon t,St, θt

( )

,St
( )

ω[ ] · 1Q t,St( ) ω[ ],

and thus, E[Reg] ≤ maxa∈!,j∈� {∂r(a, j)} ·
∑

t∈[T] E[P[Q ×
(t, St)|St]].

Proof. We stress that, throughout, St denotes ONLINE’s
state. We claim that, for every time t,

Voff t,St
( )

ω[ ] − Voff t − 1,St−1
( )

ω[ ]
� Ron t,St

( )

ω[ ] + ∂R t, πon t,St, θt
( )

, St
( )

ω[ ]
· 1Q t,St( ) ω[ ]. (3)

To see this, let a � πon(t,St, θt). If OFF-LINE is satis-
fied taking action a in state St, then Voff(t,St)[ω] −
Voff(t − 1,St−1)[ω] � Ron(t, St)[ω]. On the other hand, if
OFF-LINE is not satisfied taking action a, then, by the
definitionofmarginal compensation (Definition3), wehave
Voff(t,St)[ω]−Voff(t−1,7(a,St,θt))[ω] �∂R(t,a,St)[ω]+
5(a,St,θt). Because, by definition,7(a,St,θt) � St−1 and
5(a,St,θt) �Ron(t,St), we obtain Equation (3). Finally,
our first result follows by telescoping the summands
and the second by linearity of expectation. □

We list a series of remarks.
• Lemma1 is a sample path property thatmakes no

reference to the arrival process. Though we use it
primarily for analyzing MDPs, it can also be used for
adversarial settings. We do not further explore this
but believe it is a promising avenue.
• For stochastic arrivals, the regret depends on

E[∑t∈[T] P[Q(t,St)]]; it follows that, if the disagreement
probabilities are summable over all t, then the ex-
pected regret is constant. In Sections 4 and 5, we show
how to bound P[Q(t, St)] for different problems.
• The first part of Lemma 1 provides a distribu-

tional characterization of the regret in terms of a
weighted sum of Bernoulli variables. This allows us to
get high-probability bounds in Section 4.5.
• Lemma 1 gives a tractable way of bounding the

regret that does not require either reasoning about the
past decisions of ONLINE or the complicated process
OFF-LINE may follow. In particular, it suffices to bound
P[Q(t, St)], that is, the probability that, given state St

at time t, OFF-LINE loses optimality in trying to fol-
low ONLINE.
• Asmentioned before, Lemma 1 extends to the full

generality of MDPs. Indeed, from Van Hentenryck
and Bent (2009, chapter 11), it follows that any MDP
with random transitions and random rewards can
be simulated by the family of MDPs we study here;
because the inputs θt are allowed to be random, we
can define random transitions and rewards based
on θt, see Van Hentenryck and Bent (2009) for fur-
ther details.
Lemma 1, thus, gives a generic tool for obtaining

regret bounds against the off-line optimum for any
online policy. Note also that the compensated cou-
pling argument generalizes to settings in which the
transition and reward functions are time dependent,
the policies are random, etc. Compensated coupling
also suggests a natural greedy policy, which we de-
fine next.

3.2.1. Comparison with Traditional Approaches. As
discussed in related work (Section 1.2), there are
two main approaches. First is the fluid (or ex ante)
benchmark, which can be understood as competing
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against a fixed value. This is the prevailing technique
in competitive analysis (Alaei 2014) and the online
packing literature (Reiman and Wang 2008, Jasin
and Kumar 2012, Wu et al. 2015). We showed in
Proposition 1 that such an approach cannot yield
better than O(

̅̅

T
√

) regret bounds, and we prove O(1).
Second, the traditional sample path approach, which
competes against the random trajectory of OFF-LINE

(as illustrated in Figure 1), is based on showing
that ONLINE is “close” to a fixed trajectory. This ap-
proach is capable of obtaining strong O(1) guarantees
(Arlotto and Gurvich 2019), but it is highly involved
because it necessitates a complete characterization of
OFF-LINE’s trajectory. The benefit of our approach is
abstracting away from the characterization of OFF-
LINE’s trajectory and focusing only on ONLINE’s (which
is the one that the algorithm controls) while yielding
strong O(1) guarantees.

The next example illustrates compensated cou-
pling in a different setting. We consider the ski rental
problem, which is a well-studied minimum cost cov-
ering (not packing) problem.

Example 4 (Ski Rental). Given T days for skiing, each
day, we decide whether to buy skis for b dollars or to
rent them for one dollar. The snow may melt any day,
and we have a distribution over the period we may be
able to ski; that is, there is snow during the first X ∈ [T]
periods, and we know the distribution of X. Our aim is
to explicitly write the regret of a particular policy
(stated later) using compensated coupling.

The optimal off-line solution is trivial: if X < b, OFF-
LINE rents every day; otherwise, (X ≥ b) OFF-LINE buys
the first day. In other words, OFF-LINE either buys the
first day (which has cost b) or rents every day with
cost X. Because OFF-LINE knows X, OFF-LINE picks
the minimum.

We map this problem to our framework as follows.
The state space is 6 � skis,no-skis{ }, where “skis”
meanswe own the skis. Arrivals are signals θt ∈ 0, 1{ },
where one means there is snow and zero that the
season is over. The arrival sequence is always of the
form (θT, . . . ,θ1) � (1, . . . ,1,0, . . . ,0), where X � ∑

t∈[T] θ
t

by definition. Finally, rewards are −1 per day if we
rent and −b when we buy.

The compensations are as follows. If the state is skis
or if θt � 0 (season is over), then no compensation is
needed because we know that OFF-LINE does nothing
with probability one (either OFF-LINE owns the skis or
the problem ended). The only case in which ONLINE

and OFF-LINE may disagree is when θt � 1 (can ski
today) and the state is no skis.

Let us denote Xt as the number of remaining skiing
days (including t), and say we observe θt � 1 at time t.
OFF-LINE is not satisfied renting if Xt > b; forcing
Off-line to rent in this event requires a compensation

of one. On the other hand, OFF-LINE is not satisfied
buying if Xt < b; forcing Off-line needs a compensa-
tion of b − Xt. Consider the following policy πon: for
fixed τ ≥ 0, rent the first τ days and buy on day τ + 1
contingent on seeing snow all these days, that is,
contingent on θt � 1 for all t � T, . . . ,T − τ. Com-
pensated coupling (Lemma 1) allows us to write

Reg �
∑

t∈ T[ ]
∂R t, πon t,St, θt

( )

,St
( )

ω[ ] · 1Q t,St( ) ω[ ]

�
∑

T

t�T−τ+1
1 Xt>b{ } + b − XT−τ( )

1 1≤XT−τ< b{ }.

The first term corresponds to the disagreement of the
first τdays (pay one dollar each day t such thatXt > b),
whereas the second is the disagreement of day τ + 1.
This is an example in which compensated coupling
yields an intuitive way of writing the regret. Fur-
thermore, because the expression is exact, we can take
expectations and optimize over τ to get the optimal
policy (for example, see Augustine et al. 2004).

3.3. The Bayes Selector Policy

Using the formalism defined in the previous sections,
let q(t, a, s) :� P[Q(t, a, s)] be the disagreement probability
of action a at time t in state s (i.e., the probability that a
is not a satisfying action).
For any t, s, θt, suppose we have an oracle that gives

us q(t, a, s) for every feasible action a. Given oracle
access to q(t, a, s) (or, more generally, overestimates q̂
of q), a natural greedy policy suggested by Lemma 1 is
that of choosing action a that minimizes the proba-
bility of disagreement. This is similar in spirit to the
Bayes selector (i.e., hard thresholding) in statistical
learning. Algorithm 1 formalizes the use of this idea in
online decision making. The results are essentially
agnostic of how we obtain this oracle.

Algorithm 1 (Bayes Selector)

Input: Access to overestimates q̂(t, a, s) of the dis-
agreement probabilities, that is, q̂(t, a, s) ≥ q(t, a, s).
Output: Sequence of decisions for ONLINE.

1: Set ST as the given initial state.
2: for t � T, . . . , 1, do
3: Observe the arriving type θt.
4: Take an action minimizing disagreement,

that is, At ∈ argmin{q̂(t, a,St) : a ∈ !}.
5: Update state St−1 ← 7(At,St, θt).

From Lemma 1, we immediately have the following:

Corollary 1 (Regret of Bayes Selector). Consider Algo-
rithm 1 with overestimates q̂(t, a, s) ≥ P[Q(t, a, s)] ∀ (t, a, s).
If At denotes the policy’s action at time t, then

E Reg[ ] ≤ max
a∈!,j∈Θ

∂r a, j
( )

·
∑

t∈ T[ ]
E q̂ t,At,St

( )[ ]

.
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The next result states that, if we can bound the esti-
mation error uniformly over states and actions, then
the guarantee of the algorithm increases additively on
the error (not multiplicatively as one may suspect). In
more detail, our next result is agnostic of the oracle
used to obtain the estimators q̂. Examples of esti-
mation procedures to obtain q̂ include simulation,
function approximation, neural networks, etc. Re-
gardless of how q̂ is obtained, we can give a regret
guarantee based only on the accuracy of the estima-
tors. The following result follows as a special case of
Corollary 1; we state it to emphasize that q̂ can be
estimated with some error.

Corollary 2 (Bayes Selector with Imperfect Estimators).

Assume we have estimators q̂(t, a, s) of the probabilities
q(t, a, s) such that |q(t, a, s) − q̂(t, a, s)| ≤ ∆

t for all t, a, s. If
we run Algorithm 1 with overestimates q̂(t, a, s) + ∆

t and At

denotes the policy’s action at time t, then

E Reg[ ] ≤ max
a∈!,j∈Θ

∂r a, j
( )

·
∑

t∈ T[ ]
E q̂ t,At, St

( )[ ]

+ ∆
t

( )

.

Observe that the total error induced as a result of
estimation is a constant if, for example, we can
guarantee ∆

t � 1/t2 or ∆t � 1/(T − t)2.
It is natural to consider a more sophisticated ver-

sion of Algorithm 1, wherein we make decisions not
only based on disagreement probabilities, but also
take into accountmarginal compensations, that is, the
marginal loss of each decision. Although Algorithm 1
is enough to obtain constant regret bounds in the
problemswe consider, we note that such an extension
is possible and can be found in Appendix B.2.

Remark 2. We discussed in Section 3 that compensated
coupling extends to the case in which transitions and
rewards can be random. By the same argument, the
Bayes selector (Algorithm 1) and its guarantees (Cor-
ollaries 1 and 2) extend too. Notice that OFF-LINE here
is a prophet who has full knowledge of all the ran-
domness (arrivals, transitions, and rewards).

4. Regret Guarantees for Online Packing
We now show that, for the online packing problem,
the Bayes selector achieves an expected regret that is
independent of the number of arrivals T and the initial
budgets B; in Section 5, we extend this to online
matching problems.

In more detail, we prove that the dynamic fluid re-
laxation (Pt) in Equation (4) provides a good estima-
tor for the disagreement probabilities q(t, a, s) and,
moreover, that the Bayes selector based on these statis-
tics reduces to a simple resolve and threshold policy.

In this setting, the state space corresponds to re-
source availability; hence, 6 � N

d. There are two
possible actions, accept or reject; hence, !| | � 2. Finally,

transitions correspond to the natural budget reduc-
tions given by the matrix A.
Recall thatZ(t) ∈ N

n denotes the cumulative arrivals
in the last t periods, and Bt ∈ N

d denotes ONLINE’s
budget at time t. Given knowledge ofZ(t) and state Bt,
we define the ex post relaxation (P∗

t) and fluid re-
laxation (Pt) as follows.

P∗
t

( )

max r′x

s.t. Ax ≤ Bt

x ≤ Z t( )
x ≥ 0.

Pt( ) max r′x

s.t. Ax ≤ Bt

x ≤ E[Z(t)]
x ≥ 0.

(4)

Remark 3. OFF-LINE solves (P∗
t) in Equation (4), and

ONLINE solves (Pt). Both problems depend on ONLINE’s
budget at t; this is a crucial technical point and can
only be accomplished because of the coupling we
have developed.

Let Xt be a solution of (Pt) and X�t a solution of (P∗
t).

Uniqueness of solutions is not required—see Propo-
sition 2—andX�t is for the analysis only. Our policy is
detailed in Algorithms 2.

Algorithm 2 (Fluid Bayes Selector)

Input: Access to solutions Xt of (Pt) and resource
matrix A.
Output: Sequence of decisions for ONLINE.

1: Set BT as the given initial budget levels.
2: for t � T, . . . , 1, do
3: Observe arrival θt � j and accept iff Xt

j ≥
E[Zj(t)]/2 and it is feasible, that is, Aj ≤ Bt.

4: UpdateBt−1 ←Bt−Aj if accept andBt−1 ←Bt

if reject.

Intuitively, we front-load (accept as early as pos-
sible) classes j such that Xt

j ≥ E[Zj(t)]/2 and back-load
the rest (delay as much as possible). If OFF-LINE is
satisfied accepting a front-loaded class (respectively,
rejecting a back-loaded class), Off-line does so. Ac-
cepting class j is, therefore, an error if OFF-LINE, given
the same budget as Online, picks no future arrivals
of that class (i.e.,X�t

j < 1). On the other hand, rejecting

j is an error if X�t
j > Zj(t) − 1. We summarize this

as follows:
1. Incorrect rejection: ifXt

j <
E[Zj(t)]

2 and X�t
j >Zj(t) −1.

2. Incorrect acceptance: if Xt
j ≥

E[Zj(t)]
2 and X�t

j < 1.

Observe that compensation is paid only when the
fluid solution is far off from the correct stochastic
solution. In the proofs of Theorems 2 and 3, we for-
malize the fact that, because Xt estimates X�t, such an
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event is highly unlikely; this, alongwith compensated
coupling, provides our desired regret guarantees.

Disagreement Probabilities and the Fluid Bayes Selector:

The Bayes selector (Algorithm 1) runs with overesti-
mates q̂(t, a, b) and, at each time, picks the minimum.
On the other hand, Algorithms 2 is presented as the
“simplified version” in the sense that the decision rule
is the one that minimizes suitable overestimates q̂.
More importantly, we prove the following properties:

argmin q̂j t, accept, b
( )

, q̂j t, reject, b
( ){ }

�
accept if Xt

j ≥ E Zj t( )
[ ]

/2

reject if Xt
j < E Zj t( )

[ ]

/2
,

{

(5)

min q̂j t, accept, b
( )

, q̂j t, reject, b
( ){ }

≤ c1e
−c2t. (6)

In other words, the property in Equation (5) shows
that Algorithms 2 is a Bayes selector, and the property
in Equation (6) yields the desired constant regret
bound in virtue of compensated coupling and Cor-
ollary 1. We give explicit expressions for the values q̂
and constants c1, c2; see, for example, Equation (B.2).

The Robustness of the Bayes Selector: The proba-
bility minimizing disagreement can be uniformly boun-
ded over all budgets b ∈ N

d; that is, the exponential
bound in Equation (6) does not depend on b. This
property has the following consequence: because the
fluid Bayes selector has strong performance, many
other Bayes selector algorithms (using different q̂) do
too. In other words, the design of algorithms based on
the Bayes selector is robust and does not depend on
fine-tuning of the parameters q̂. We make this precise
in Corollaries 3 and 4 and uncover the same phe-
nomenon for matching problems; see Corollary 5.

We need some additional notation before pre-
senting our results. Let Ej[·] (Pj[·]) be the expecta-
tion (probability) conditioned on the arrival at time t
being of type j, that is, Pj[·] � P[·|θt � j]. We denote
rmax :� maxj∈[n] rj and pmin :� minj∈[n] pj.

4.1. Special Case: Multisecretary with

Multinomial Arrivals

Before we proceed to the general case, we state the
result for the multisecretary problem.We present this
result separately because, in this one-dimensional
problem, we can obtain a better and explicit con-
stant. The proofs of Theorem 2 and Corollary 3 can be
found in Appendix B.3.

Theorem 2. The expected regret of the fluid Bayes selector
(Algorithm 2) for the multisecretary problem with multi-
nomial arrivals is atmost rmax

∑

j>1 2/pj ≤ 2(n − 1)rmax/pmin.

This recovers the best-known expected regret bound
for this problem shown in a recent work (Arlotto and
Gurvich 2019). However, although the result in Arlotto
and Gurvich (2019) depends on a complex martingale
argument, our proof is much more succinct and
provides explicit and stronger guarantees; in partic-
ular, in Section 4.5, we provide concentration bounds
for the regret.
Moreover, Theorem 2, along with Corollary 2,

provides a critical intermediate step for characteriz-
ing the performance of Algorithm 1 for the multi-
secretary problem.

Corollary 3. For the multisecretary problem with multi-
nomial arrivals, the expected regret of the Bayes selector
(Algorithm 1) with any imperfect estimators q̂ is at most
2rmax(

∑

j>1 1/pj +
∑

t∈[T] ∆
t), where∆t is the accuracy defined

by |q(t, a, b) − q̂(t, a, b)| ≤ ∆
t for all t ∈ [T], a ∈ !, b ∈ N.

Observe that, if ∆t is summable, for example, ∆t �
1/t2 or ∆

t � 1/(T − t)2, then Corollary 3 implies con-
stant expected regret for all these types of estimators
we can use in Algorithm 1.

4.2. Online Packing with General Arrivals

We consider now the case d > 1 and arrival processes
other than multinomial. We assume the following
condition on the process Z(t), which we refer to as
all-time deviation.

Definition 5 (All-Time Deviation). Let μ be a given norm
inR

n and κ ∈Rn
≥0 a constant parameter. An n-dimensional

process Z(t) satisfies the all-time deviation bound w.r.t.
μ and κ if, for all j ∈ [n], there are constants cj ≥ 0 and
naturals τj such that

P Z t( ) − E Z t( )( )| || |μ≥
E Zj t( )
[ ]

2κj

[ ]

≤ cj

t2
∀t > τj. (7)

We remark that we do not need exponential tails as it
is common to assume, but rather a simple quadratic
tail. Additionally, some common tail bounds are valid
only for large enough samples; the parameters τj
capture this technical aspect. In this section, we use
the definition with κj the same entry for all j, thus
denoted simply by κ > 0. In Section 5, we require the
definition with the more general form.

Example 5 (Multinomial and Poisson Tails). In these
examples, we actually have the stronger exponential
tails, so we do not elaborate on the constant cj.

For multinomial arrivals, Devroye (1983, lemma 3)
guarantees

P Z t( ) − E Z t( )( )| || |1> tε
[ ]

≤ e−tε
2/25, ∀0 < ε < 1, t ≥ ε2n

20
. (8)

Vera and Banerjee: The Bayesian Prophet

1378 Management Science, 2021, vol. 67, no. 3, pp. 1368–1391, © 2020 INFORMS



By setting ε � pj/2κ, we conclude that Definition 5 is
satisfied with constants τj � (pj/2κ)2n/20.

For Poisson arrivals, from the proof of Devroye
(1983, lemma 3), P(X−λ| | ≥ ελ) ≤ 2e−λε

2/4 is valid for
X ∼ Poisson(λ) and any ε > 0. Using this, we can
simply take τj � 0.

In the remainder of this section, we generalize our
ideas to prove the following.

Theorem 3. Assume the arrival process (Z(t) : t ∈ [T])
satisfies the conditions in Equation (7). The expected regret
of the fluid Bayes selector (Algorithm 2) for online packing is
at most drmaxM, where M is independent of T and B.
Specifically, for κ � κ(A), we have

1. For multinomial arrivals: M ≤ 103κ2 ∑
j∈[n] 1/pj.

2. For general distributions satisfying Equation (7):
M≤∑

j∈[n] pj(2cj+max{τj, τ̃j}), where pj is an upper bound
on P[θt � j] and τ̃j is such that E[Zj(τ̃j)] ≥ 2, that is, it is
large enough.

The constant κ(A) is given by Proposition 2. Just as
before, Theorem 3, along with Corollary 2, provides a
performance guarantee for Algorithm 1. We state the
corollary without proof because it is identical to that
of Corollary 3.

Corollary 4. For the online packing problem, if the arrival
process satisfies the conditions in Equation (7), the expected
regret of the Bayes selector (Algorithm 1) with any imper-
fect estimators q̂ is at most drmax(M + 2

∑

t∈[T] ∆
t), where M

is as in Theorem 3 and ∆
t is the accuracy defined by

|q(t, a, b) − q̂(t, a, b)| ≤ ∆t for all t ∈ [T], a ∈ !, b ∈ N
d.

To prove Theorem 3, we need to quantify how the
change in the right-hand side of an LP impacts op-
timal solutions. Indeed, as stated in Equation (4), the
solutions Xt and X�t correspond to perturbed right-
hand sides (E[Z(t)] and Z(t), respectively). The fol-
lowing proposition implies that small changes in
the arrivals vector do not change the solution by
much, and it is based on a more general result from
Mangasarian and Shiau (1987, theorem 2.4).

Proposition 2 (LP Lipschitz Property). Given b ∈ R
d and

any norm ·| || |μ in R
n, consider the following LP:

P y
( )

max r′x : Ax ≤ b, 0 ≤ x ≤ y, y ∈ R
n
≥0

{ }

.

Then, ∃ constant κ � κμ(A) such that, for any y, ŷ ∈ R
n
≥0

and any solution x to P(y), there exists a solution x̂ solving
P(ŷ) such that x − x̂| || |∞≤ κ||y − ŷ||μ.

Proof of Theorem 3. Recall the two conditions derived
from our decision rule: (1) Incorrect rejection of jmeans
Xt

j < E[Zj(t)]/2 and X�t
j > Zj(t) − 1. (2) Incorrect ac-

ceptance of j means Xt
j ≥ E[Zj(t)]/2 and X�t

j < 1. We
have to additionally account for feasibility; that is, we
can only accept a request j if Bt

i ≥ aij for all i ∈ [d]. In case
there are not enough resources, our decision rule is

feasible if either Xt
j < E[Zj(t)]/2 (reject) or Xt

j ≥ 1 (be-

cause Xt is feasible for (Pt)). Only in the case Xt
j ≥

E[Zj(t)]/2 and Xt
j < 1 do we need to disregard our

decision rule and are forced to reject; under such a
condition, we must pay a compensation of rj. Observe
that this condition is never met if E[Zj(t)] ≥ 2; that is,
it is vacuous for t ≥ τ̃j.

The disagreement sets (Definition 4) are, thus,
Q(t,b)�{ω∈Ω:either (1),(2)or t<τ̃j}, where (1) and (2)
are the previous conditions. Now, we can upper bound
the probability of paying a compensation as follows.
CallEj the event {ω ∈Ω : Z(t) −E(Z(t))| || |1≤E[Zj(t)]/2κ}.
In this event,Proposition2 implies |Xt

j −X�t
j | ≤E[Zj(t)]/2;

hence, conditions (1) and (2) do not happen when
Ej occurs, that is, Pj[Q(t, b)|Ej] ≤{t<τ̃j}. Observe that

P[Ēj] ≤ fj(t)+{t<τj}, where fj(t) � cj/t2 for general pro-

cesses satisfying Equation (7) and fj(t) � e−t(pj/2κ)
2/25 for

the multinomial process (see Equation (8)). Finally,

qj t,B
t

( )

≤ P Ēj

[ ]

+ Pj Q t,Bt
( )

|Ej

[ ]

≤ P Ēj

[ ]

+ 1 t<τ̃j{ } ≤ fj t( ) + 1 t<τj or t<τ̃j{ }. (9)

Summing up over time, we get

∑

t∈ T[ ]
q t,Bt
( )

≤
∑

j∈ n[ ]
pj

∑

t∈ T[ ]
fj t( ) +max τj, τ̃j

{ }

( )

.

Because
∑

t∈[T] 1/t
2 ≤ π2/6 ≤ 2, this finishes the proof

for general processes. For the case of multinomial
arrivals, we can be more refined. Indeed, τ̃j is defined
by E[Zj(τ̃j)] ≥ 2, that is, τ̃j ≥ 2/pj and τj � (pj/2κ)2n/20
(see Equation (8)). From the previous equation, with

the stronger exponential bound fj(t) � e−t(pj/2κ)
2/25, we get

∑

t∈ T[ ]
q t,Bt
( )

≤
∑

j∈ n[ ]
pj

25

pj/2κ
( )2

+max pj/2κ
( )2n/20, 2/pj
{ }

( )

≤ 100κ2
∑

j∈ n[ ]

1

pj
+ 3n.

Because n ≤ ∑

j∈[n]
1
pj
, we arrive at the desired bound.

The result follows via compensated coupling (Lemma 1)
and Corollary 1.

Remark 4. In the multisecretary problem, it is easy to
conclude κ(A) � 1; thus, this analysis recovers the same
bound up to absolute constants (namely 103 versus 2).
The larger constant comes exclusively from the larger
constants in the tail bounds of multinomial compared
with binomial random variables (r.v.).

Remark 5. More refined bounds onM can be obtained by
not bounding P[θt � j]≤ pj, but rather by P[θt � j] ≤ pj(t).
For example, a time-varying version of a multinomial
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process easily fits in our framework, and the proof
does not change.

Remark 6. The theorem holds even under Markovian
correlations (see Example 6), in which the distribution
of Z(t − 1) depends on θt. It is interesting that, in this
case, it is impossible to run the optimal policy for even
moderate instance sizes because the state space is huge
although the Bayes selector still offers bounded ex-
pected regret.

We now give two examples of other arrival pro-
cesses that satisfy the all-time deviation (Definition 5).
The proofs of the bounds are short, but we relegate
them to Appendix B.4. We emphasize that Example 7
has quadratic tails (instead of exponential); hence, we
term it heavy tailed.

Example 6 (Markovian Arrival Processes). We consider
the case in which θt is drawn from an ergodic Markov
chain. Let P ∈ R

n×n
≥0 be the corresponding matrix of

transition probabilities. The process unfolds as follows:
at time t � T, an arrival θT ∈ [n] is drawn according to
an arbitrary distribution; then, for t � T, . . . , 2, we have
P[θt−1 � j|θt] � Pθtj. Let ν ∈ R

n
≥0 be the stationary dis-

tribution. We do not require long-run or other usual sta-
tionary assumptions; the process is still over a finite horizon T.
This process satisfies all-time deviation with expo-
nential tails. Specifically, with the norm μ � ·| || |∞, for
some constants cj, c′ that depend on P only, we have

P Z t( ) − νt| || |∞≥ νjt/2κj

[ ]

≤ nc′e−cjt,

∀t ∈ T[ ], j ∈ n[ ]. (10)

Example 7 (Heavy Tailed Poisson Arrivals). We consider
the case in which the arrival process is governed by
independent time-varying Poisson processes with ar-
rival rates λj(t) > 0, which we assume for simplicity
have finitely many discontinuity points (so that all the
expectations are well defined). Under the following
conditions, the process satisfies the all-time deviation
with quadratic tails and norm μ � ·| || |∞.

max
j,k∈ n[ ]

max
s∈ 0,t[ ]

λj s( )
λk s( )

≤ g t( ) ∀t ≥ 0, (11)

min
j∈ n[ ]

min
s∈ 0,t[ ]

λj s( ) ≥ g t( )f t( ) log t( )
t

, where

lim
t→∞

f t( ) � ∞.
(12)

In other words, we require f (t) � ω(1), and g(t) is any
function. Intuitively, Equation (11) guarantees that no
type j “overwhelms” all other types; observe that,
when the rates are constant, this is trivially satisfied
with g(t) constant. On the other hand, Equation (12)
controls the minimum arrival rate, which can be as
small asω(log(t)/t). Observe that our conditions allow
for the intensity to increase closer to the end (t � 0);

that is, we incorporate the case in which agents are
more likely to arrive closer to the deadline.

4.3. High-Probability Regret Bounds

We have proved that E[Reg] is constant for packing
problems. One may worry that this is not enough
because, as it is a random variable, REG may still re-
alize to a large value. We present a bound for the
distribution of REG showing that it has light tails.

Proposition 3. For packing problems, there are constants τ
and cj for j ∈ [n], depending on A, p and the distribution
of Z only such that
1. For multinomial or Poisson arrivals: ∀x > τ, P[Reg >

x] ≤ ∑

j pje
−cjx/rmax/cj.

2. For general distributions satisfying Equation (7):
∀x > τ, P[Reg > x] ≤ rmax

x

∑

j pjcj.

The proof is based on the following simple lemma.
The idea is to first bound the disagreements of our
algorithm as defined in Section 3.3. The total number
of disagreements is a sum of dependent Bernoulli
variables, which we bound next.

Lemma 2. Let {Xt
: t ∈ [T]} be a sequence of dependent r.v.

such that Xt ∼ Bernoulli(pt), and let {qt : t∈ [T]} be num-
bers such that qt ≥ pt. If we define D :� ∑T

t�1 X
t, then

P D ≥ d[ ] ≤
∑

T

t�d
qt.

Proof. Fix d ∈ [T] and observe that

ω ∈ Ω : D ≥ d{ } ⊆ ω ∈ Ω : ∃t ≥ d,Xt � 1
{ }

.

Indeed, if the condition (∃t ≥ d,Xt � 1) fails, then at
most d − 1 variables Xt can be one.
Finally, a union bound shows P[D ≥ d] ≤ ∑

t≥d ×
P[Xt � 1]. Because qt ≥ pt, the proof is complete. □

Proof of Proposition 3. As described in the previous
sections, we can write Reg ≤ rmaxD with D as the
number of disagreements. Additionally,D is a sum of T
Bernoulli r.v. Xt, each with a parameter bounded by qt.
In the case of multinomial and Poisson r.v., as de-

scribed in Section 4.4, we have exponential bounds qt ≤
∑

j∈[n] pje
−cjt for t ≥ τ � maxj∈[n] τj. We conclude invok-

ing Lemma 2 and upper bounding
∑T

t�x+1 e
−cjt ≤ e−cjx/cj.

For general distributions, as described in Section 4,
we have the bounds qt ≤

∑

j∈[n] pj
cj
t2 for t ≥ τ. Using

Lemma 2 and bounding
∑T

t�x+1 t
−2 ≤ 1/x finishes the

proof. □

5. Regret Guarantees for Online Matching
We turn to an alternate setting, in which each in-
coming arrival corresponds to a unit-demand buyer.
In other words, each arrival wants a unit of a single
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resource but has different valuations for different
resources. This is essentially equivalent to the online
bipartite matching problem with edge weights (weights
correspond to rewards) in which there can be multiple
copies of each node.

As before, we are given a matrix A ∈ 0, 1{ }d×n char-
acterizing the demand for resources, which can be
interpreted as the adjacency matrix in the online
matching problem. Define Sj :� {i ∈ [d] : aij � 1}. If we
allocate any resource i ∈ Sj to an agent type j, we
obtain a reward of rij, whereas allocating i /∈ Sj has no
reward. We can allocate at most one item to each agent.

Given resource availability B ∈ N
d and total arrivals

Z ∈ N
n, we can formulate OFF-LINE’s problem as fol-

lows, in which the variable xij denotes the number of
items i allocated to agents of type j.

P Z,B[ ]( ) max
∑

i,j

xijrijaij

s.t.
∑

j

xij ≤ Bi ∀i ∈ d[ ]
∑

i∈ d[ ]
xij ≤ Zj ∀j ∈ n[ ]

x ≥ 0. (13)
We assume that the process Z(t) satisfies the all-time
deviation bound (see Definition 5) w.r.t. the one norm
and parameters κj � (|Sj| + 1)/2. This condition can be
restated as follows. For every j ∈ [n], there are con-
stants cj ≥ 0 and naturals τj such that

P Z t( ) − E Z t( )( )| || |1≥
E Zj t( )
[ ]

Sj
⃒

⃒

⃒

⃒ + 1

[ ]

≤ cj

t2
∀t > τj. (14)

We now state the main result of this section, which is
based on an instantiation of the Bayes selector. As
before, the theorem readily implies performance guar-
antees for Algorithm 1, which we state without proof
because it is identical to that of Corollary 3.

Theorem 4. For the online matching problem, if the arrival
process satisfies the conditions in Equation (14), then the
expected regret of the fluid Bayes selector (Algorithm 3) is at
most rmax

∑

j∈[n] pj(cj + τj), where pj is an upper bound
on P[θt � j].

Corollary 5. For the online matching problem, if the arrival
process satisfies the conditions in Equation (14), then the
expected regret of the Bayes selector (Algorithm 1) with any
imperfect estimators q̂ is at most rmax(M + 2

∑

t∈[T] ∆
t). The

constant M � ∑

j∈[n] pj(cj + τj) is as in Theorem 4, and ∆t is
the accuracy defined by |q(t, a, s) − q̂(t, a, s)| ≤ ∆

t.

5.1. Algorithm and Analysis

We start from the LP in Equation (13) and then add a
fictitious item d + 1 that no agent wants with initial
budget BT

d+1 � T; now, all agents are matched, but if

we match an agent to d + 1, there is no reward. Using
compensated coupling, we can write two coupled
optimization problems: (P∗

t) for OFF-LINE and (Pt) for
ONLINE as follows.

P∗
t

( )

max
∑

i∈ d[ ],j∈ n[ ]
xijrijaij

s.t.
∑

j∈ n[ ]
xij ≤ Bt

i ∀i ∈ d + 1[ ]
∑

i∈ d+1[ ]
xij � Zj t( ) ∀j ∈ n[ ]

x ≥ 0.

Pt( )max
∑

i∈ d[ ],j∈ n[ ]
xijrijaij

s.t.
∑

j∈ n[ ]
xij ≤ Bt

i ∀i ∈ d + 1[ ]
∑

i∈ d+1[ ]
xij � E Zj t( )

[ ]

∀j ∈ n[ ]

x ≥ 0.

(15)

Recall that Bt represents ONLINE’s budget with t pe-
riods to go. We solve (Pt) in Equation (15) and ob-
tain an optimizer Xt. If θt � j, let K ∈ argmax ×
{Xt

i,j : i ∈ [d + 1]} be themaximal entry, breaking ties
arbitrarily and then match j to K. The resulting policy
is presented in Algorithm 3. Observe that matching
an agent to K � d + 1 (fictitious resource) is equivalent
to rejecting it.

Algorithm 3 (Fluid Bayes Selector for Online Matching)

Input:Access to solutionsXt of (Pt) in Equation (15)
Output: Sequence of decisions for ONLINE.

1: Set BT as the given initial budget levels.
2: for t � T, . . . , 1, do
3: Observe arrival θt � j and let

K← argmax{Xt
ij : i∈ [d+1]}, breaking

ties arbitrarily.
4: Match θt to K.
5: Update Bt−1

i ← Bt
i for i �� K

and Bt−1
K ← Bt

K − 1.

5.1.1. Disagreement Sets. At each time t, matching
θt � j to K requires a compensation only if OFF-LINE

never matches a type j to K, that is, X�t
K,j < 1. On the

other hand, Algorithm 3 picks K to be the largest
component; hence, we should have Xt

K,j >> 1 (pre-

cisely, Xt
K,j ≥

E[Zj(t)]
d+1 ). More formally, the constraint

∑

i∈[d+1] xij � E[Zj(t)] in Equation (15) and the defini-
tion of Sj imply Xt

K,j ≥ E[Zj(t)]/(|Sj| + 1). We conclude
that, if matching to K is not satisfying (see Defini-
tion 2), it must be that ||Xt − X�t||∞ > E[Zj(t)]/(|Sj| + 1).
Proposition 4 characterizes exactly this deviation.
Observe that, in Equations (13) and (15), the matrix

A appears only on the objective function; this is not
the usual LP formulation for this problem, but it
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allows us to obtain the following result. We remark
that not only do we have a Lipschitz property, but
the Lipschitz constant is exactly one. We present
the proof of Proposition 4 in Appendix B.5.

Proposition 4 (Lipschitz Property for Matching). Take any z1,
z2 ∈ R

d
≥0 and b ∈ R

d
≥0. If x

1 is a solution of P[z1, b], then there

exists x2 solving P[z2, b] such that ‖x1− x2‖∞ ≤ ‖z1 − z2‖1.
From here, the proof of Theorem 4 is applying

compensated coupling (Lemma 1) and Corollary 1 in
the sameway aswe did in Section 4; hence, we omit it.

5.2. Online Stochastic Matching

A classical problem that fits naturally into this frame-
work is the online bipartite matching problem with
stochastic inputs (Manshadi et al. 2012). The reader
unfamiliar with the problem can find the details of the
setup in Appendix B.6. For this setting, the bound
obtained via compensated coupling surprisingly holds
with equality:

Lemma 3. For stochastic online bipartite matching, given
an online policy, if Ut denotes the node matched at time t by
ONLINE and St the available nodes, then

Voff − Von �
∑

t∈ T[ ]
1Q t,Ut,St( ).

Based on this, it is tempting to conjecture that the
Bayes selector does, in fact, lead to an optimal policy
for this setting. This, however, is not the case although
showing this is surprisingly subtle; in Appendix B.6,
we discuss this in more detail. Moreover, it is known
that this problem cannot admit an expected regret
that has better than linear scaling with T (in partic-
ular, Manshadi et al. (2012) proves a constant upper
bound on the competitive ratio for this setting). That
said, the strength of the above bound suggests that
the Bayes selector may have strong approximation
guarantees; showing this remains an open problem.

6. Regret Guarantees for Online Allocation
We now give the algorithm and analysis for the
general online allocation problemdefined in Section 2.1.
As before, let us introduce a fictitious resource i �
d + 1 with initial capacity Bd+1 � T, zero rewards
(r d+1{ }j � 0 for all j ∈ [n]), and such that d + 1{ } ∈ Sj for
all j ∈ [n]. Nowwe can assumew.l.o.g. that each agent
gets assigned a bundle. Finally, for a bundle s, we
denote ais ∈ N the number of times the resource i
appears in s (recall that bundles are multisets).

Given resource availability B ∈ N
d+1 and total ar-

rivals Z ∈ N
n, we can formulate the coupled problems

for OFF-LINE and ONLINE as follows, where the variable

xsj denotes the number of times a bundle s ∈ Sj is al-
located to a type j.

P∗
t

( )

max
∑

j∈ n[ ],s∈Sj
xsjrsj

s.t.
∑

j∈ n[ ],s∈Sj
aisxsj ≤ Bt

i ∀i ∈ d + 1[ ]
∑

s∈Sj
xsj � Zj t( ) ∀j ∈ n[ ]

x ≥ 0.

Pt( )max
∑

j∈ n[ ],s∈Sj
xsjrsj

s.t.
∑

j∈ n[ ],s∈Sj
aisxsj ≤ Bt

i ∀i ∈ d + 1[ ]
∑

s∈Sj
xsj � E Zj t( )

[ ]

∀j ∈ n[ ]

x ≥ 0.

(16)

We assume that the process Z(t) satisfies the all-time
deviation bound (see Definition 5) w.r.t. some norm μ
and parameters κj � (d + 1)κ, where κ � κμ(A) de-
pends only on A and μ. This condition can be restated
as follows. For every j ∈ [n], there are constants cj ≥ 0
and naturals τj such that

P Z t( ) − E Z t( )( )| || |μ≥
E Zj t( )
[ ]

κ Sj
⃒

⃒

⃒

⃒ + 1
( )

[ ]

≤ cj

t2
∀t > τj. (17)

Wepresent the resulting policy inAlgorithm4with its
guarantee inTheorem 5.We remark that the constant κ
depends only on the constraint matrix defining the
LP in Equation (16); that is, it does depend on the
choices of bundles Sj, but it is independent of T and B.

Algorithm 4 (Fluid Bayes Selector for Online Allocation)

Input:Access to solutionsXt of (Pt) in Equation (16).
Output: Sequence of decisions for ONLINE.

1: Set BT as the given initial budget levels.
2: for t � T, . . . , 1, do
3: Observe arrival θt � j and let

K ← argmax{Xt
sj : s ∈ Sj}, breaking ties

arbitrarily.
4: If it is not feasible to assign bundle K, then

reject. Otherwise assign K to θt.
5: Update Bt−1

i ← Bt
i for i /∈ K and Bt−1

i ← Bt
i −

aiK for i ∈ K.

Theorem 5. For the online allocation problem, there exists a
constant κ that depends on (Sj : j ∈ [n]) only such that, if the
arrival process satisfies the conditions in Equation (17), then
the expected regret of the fluid Bayes selector (Algorithm 4) is
at most rmax

∑

j∈[n] pj(cj + τj), where pj is an upper bound
on P[θt � j].
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The proof of Theorem 5 is analogous to that of
Theorem 3; hence, we omit it and provide here only
the key steps. Recall that, for request j, because we
include the fictitious item, there are |Sj| + 1 possible
bundles. Crucially, incorrect allocation of s to j ne-
cessitatesXt

sj ≥ E[Zj(t)]/(|Sj| + 1) (because Algorithm 4
takes the maximum entry) andX�t

j < 1 (OFF-LINE never
allocates s to j). By the Lipschitz property of LPs (see
Proposition 2), this event requires a large deviation of
Z(t) w.r.t. its mean, which has low probability. More
formally, the disagreement sets (Definition 4) are
Q(t, b) � {ω ∈ Ω : Xt

sj ≥ E[Zj(t)]/(|Sj| + 1) and X�t
j < 1}.

By the Lipschitz property, Q(t, b) ⊆ {ω ∈ Ω : ‖Z(t) −
E(Z(t))μ‖ ≥

E[Zj(t)]
κ( Sj| |+1)}. The probability of this last event

is bounded by Equation (17); hence, compensated
coupling concludes the proof.

7. Numerical Experiments
The theoretical results we have presented, together
with known lower bounds for previous algorithms,
show that our approach outperforms existing heu-
ristics for online packing and online matching prob-
lems. We now reemphasize these results via simu-
lation with synthetic data, which demonstrates both
the suboptimality of existing heuristics (in terms of ex-
pected regret, which scales with T) as well as the fact
that the Bayes selector has constant expected regret.

We run experiments for both online packing and
online matching with multinomial arrivals. For each
problem, we consider two instances, that is, two sets
of parameters (r,A, p), and thenwe scale each instance
to obtain a family of ever larger systems. For each
scaling, we run 100 simulations. In conclusion, we run
four sets of parameters (two for packing and two for
matching), each scaled to generatemany systems. The
code for all the algorithms can be found at https://
github.com/albvera/bayes_selector.

7.1. Online Packing

We compare the Bayes selector against three policies:
(i) Static randomized is the first known policy with
regret guarantees; it is based on solving the fluid LP
once and using the solution as a randomized accep-
tance rule (Talluri and Van Ryzin 2006). (ii) Resolve
and randomize is based on resolving the fluid LP at
each time and using the solution as a randomized
acceptance rule (Jasin and Kumar 2012). (iii) Infre-
quent resolve with thresholding is based on resolv-
ing the fluid LP at carefully chosen times, specifically
at times {T(5/6)u

: u � 0, 1, . . . , log log(T)/ log(6/5)}, and
then either randomize or threshold depending on the
value of the solution (Bumpensanti and Wang 2019).

Our first instance has d � 2 resources and n � 6
agent types. Types j ∈ 1, 2{ } require one unit of re-
source i � 1, types j ∈ 3, 4{ } require one unit of i � 2,

and types j ∈ 5, 6{ } require one unit of each resource.
All the parameters are presented in Table 1. We
consider a base system with capacities B1 � B2 � 40
and horizon T � 200. The base system is chosen such
that the problem is near dual degenerate (which is the
regime in which heuristics based on the fluid bench-
mark are known to have poor performance; see Prop-
osition 1). Finally, for a scaling k ∈ N, the kth system
has capacities kB and horizon (k + k0.7)T. We remark
that, traditionally, the horizon is scaled as kT, but we
chose this slightly different scaling to emphasize that
our result does not depend on the specific way the
system is scaled.
The results for the first instance are summarized in

Figure 2, in which we also present a log-log plot that
allows better appreciation of how the regret grows.
Static randomized has the worst performance in our
study; indeed, we do not include it in the plot because
it is orders ofmagnitude higher.We note that not only
does the Bayes selector outperform previous methods,
but the regret is very small (both in average and sample
path-wise), especially in comparison with the overall
reward, which grows linearly with k, that is, Voff �
Ω(k) (in expectation and with high probability).
Thesecond instancehasn � 15 agent types and d � 20

resources, the specific parameters are presented in
Table C.1 and were generated randomly. We take a
base systemwith horizon T � 50 and capacities Bi � 10
for all i ∈ [20], and then, the kth system has horizon kT
and capacities kB. The performance of different al-
gorithms is presented in Figure 3. We notice that this
instance is not degenerate, and we are scaling line-
arly; hence, all the algorithms except static randomize
(which we again omit from the plots) are known to
achieve constant regret. Nevertheless, we observe
that the Bayes selector has the best performance by a
large margin.

7.2. Online Matching

As we mentioned in Section 5, our problem corre-
sponds to stochastic matching with edge weights.
There has been previous work studying constant
factor approximations for worst-case distributions. In
particular, the state of the art is a 0.705 competitive
ratio (Brubach et al. 2016), and a previous algorithm

Table 1. Parameters for the First Online Packing Instance

Type j

1 2 3 4 5 6
Resource i � 1 1 1 0 0 1 1
Resource i � 2 0 0 1 1 1 1
pj 0.2 0.2 0.2 0.2 0.1 0.1
rj 10 6 10 5 9 8

Note. Coordinates (i, j) represent the consumption Aij.
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achieved a 0.667 competitive ratio (Haeupler et al.
2011). Both algorithms are impractical because they
require a sampling procedure over poly(T·maxi∈[d] Bi)
many matchings. To the best of our knowledge, the
best guarantee of a practical algorithm is a 1 − 1/ e ≈
0.63 competitive ratio and is achieved by the base
algorithm in Haeupler et al. (2011) (that, when built
upon, achieves the 0.667 guarantee). We, therefore,
benchmark against this algorithm, which we call
“competitive.”

Competitive is based on solving a big LP once (it has
Ω(T ·maxi∈[d] Bi) variables) and using the solution as a
probabilistic allocation rule. We also compare against
a contemporaneous algorithm, called marginal allo-
cation, that is based on bid prices (Wang et al. 2018). Mar-
ginal allocation uses approximate dynamic programming
to obtain the marginal benefit of a matching and then

uses this marginal value as a bid price so that, if the
reward exceeds it, then we match the request. We give
further details for both marginal allocation and com-
petitive in Appendix C.
The first instance we consider has d � 2 resources

and n � 6 agent types. The specific parameters are
presented in C.1, in which reward rij � 0 implies that
type j cannot be matched to that resource i, that is,
Aij � 0. We consider a base system with horizon T � 20
and capacities B � (4, 5)′ and then scale it linearly so
that the kth system has horizon kT and capacities kB.
Our second instance has d � 6 resources and n � 10
agent types; the specific parameters are presented in
Table C.2. We consider a base system with horizon
T � 200 and capacities B � (40, 50, 40, 30, 20, 40)′ and
then scale it linearly so that the kth systemhas horizon kT
and capacities kB.

Figure 2. (Color online) Average Regret of Different Policies for Online Packing in the First Instance

Notes. We present a plot on the left and a log-log plot on the right. We run the Bayes selector, infrequent resolve with thresholding (IRT)
(Bumpensanti and Wang 2019), resolve and randomize (RR) (Jasin and Kumar 2012), and static randomized (Talluri and Van Ryzin 2006) (this
last one is not reported because its high regret distorts the figures). The plot shows the regret incurred by the policies versus the off-line optimum
for different scalings. Dotted lines represent 90% confidence intervals.

Figure 3. (Color online) Average Regret of Different Policies for Online Packing in the Second Instance.

Notes. We run the Bayes selector, infrequent resolve with thresholding (IRT) (Bumpensanti and Wang 2019), resolve and randomize (RR)
(Jasin and Kumar 2012), and static randomized (Talluri and Van Ryzin 2006) (this last one is not reported because its high regret distorts
the figures). The plot shows the regret incurred by the policies versus the off-line optimum for different scalings. Dotted lines represent 90%
confidence intervals.
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The results are presented in Figure 4. We do not
include the regret of competitive because it is so high
that it distorts the plots (it starts at 80 times the regret
of the other algorithms and then grows linearly with k).
We can confirm that the Bayes selector has constant
regret and, additionally, offers the best performance.
Marginal allocation offers a much better performance
than competitive, but its regret still grows and seems
to scale as Ω(

̅̅

T
√

).

8. Conclusions
We reiterate that our contributions in this paper
are to develop both new online policies that achieve
constant regret for a large class of online resource
allocation problems and, also, a new technique for
analyzing online decision-making heuristics.

Our work herein has developed a new technical
tool—compensated coupling—for analyzing online
decision-making policies with respect to off-line bench-
marks. In short, themain insight is that, through the use
of compensations, we can coupleOFF-LINE’s state to that
of ONLINE on every sample path. This simplifies the
analysis of online policies because, in contrast to
existing approaches, we do not need to track the
complicated off-line process.

Next, we presented a general class of problems,
which we referred to as online allocation, wherein

different agents request different bundles of resources.
This problem captures, among others, online packing
and online matching. For all of these problems, we
present a tractable policy, the Bayes selector, based on
resolving an LP, that achieves constant regret.
Our analysis is based on compensated coupling,

and thanks to its versatility, we can accommodate a
large class of arrival processes, including correlated
processes, heavy tailed, and the classical Poisson and
multinomial (i.i.d.).
Although we instantiate the Bayes selector for

online allocation, we defined it for general MDPs; we
hope this policy is useful for other types of problems
too. We remark two properties of the Bayes selector:
(i) it works on interpretable quantities, namely the
estimation of disagreement probabilities q̂, and (ii) it
is amenable to simulation because q̂ can be estimated
by running off-line trajectories. We, therefore, think
that a promising avenue for further research is to
apply this policy to other problems using modern
estimation techniques.
The assumption of finite types of agents is well

founded in revenue management problems, but there
are settings in which the number of types could be
very large or even continuous. Based on reported
numerical results (Arlotto and Gurvich 2019), the
Bayes selector appears to have good performance
even in this setting. An interesting problem is to
obtain parametric guarantees (not worst case) in the
case in which the number of types is very large
or continuous.
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Table 2. Parameters Used for the First Online
Matching Instance

Type j

1 2 3 4 5 6
Resource 1 10 6 0 0 9 8
Resource 2 0 0 5 10 20 20
pj 0.2 0.2 0.2 0.2 0.1 0.1

Note. Coordinates (i, j) represent the reward rij, and rij � 0 implies
that it is not possible to match i to j.

Figure 4. (Color online) Average Regret of Different Policies for Online Matching

Notes. First instance on the left and second on the right. We run the Bayes selector, marginal allocation (Wang et al. 2015), and competitive
(Haeupler et al. 2011) (this last one is not reported because its high regret distorts the figures). The plot shows the regret incurred by the policies
versus the off-line optimum for different scalings.
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Appendix A. The Fluid Benchmark

Proof of Proposition 1. To build intuition, we start with a
description of dual degeneracy for the online knapsack prob-
lem with budget B ≤ T. We assume w.l.o.g. r1 ≥ r2 ≥ . . . ≥ rn
and denote Z � Z(T). The primal and dual are given by

P Z[ ]( ) max r′x

s.t.
∑

j∈ n[ ]
xj ≤ B

x ≤ Z

x ≥ 0,

D Z[ ]( ) min αB + β′Z

s.t. α + βj ≥ rj ∀j
α ≥ 0

β ≥ 0.

Let us denote μ :� E[Z]. If the fluid (P[μ]) is degenerate,
then we have n + 1 active constraints. It is straightfor-
ward to conclude that there must be an index j� such that
∑

j≤j� E[Zj] � B. The fluid solution is, thus, xj � E[Zj] for j ≤ j�

and xj � 0 for j > j�. We can construct two dual solutions as
follows. Let α1 � rj� and α2 � rj�+1; these correspond to the
shadow prices for alternative budgets B − ε and B + ε, re-
spectively. The corresponding variables β1, β2 are given by

βkj � (rj − αk)+ for k � 1, 2. Intuitively, the fluid is indifferent
between these two dual bases, but given a realization of Z,
OFF-LINE prefers one over the other; this causes a discrepancy
between the expectations.

Now, we turn to the case of any packing problem. The
assumption is that we are given two optimal dual solutions
(αk, βk)with β1 �� β2. The dual is a minimization problem, and
(αk, βk) are always dual feasible, thus defining β :� β1 − β2

and α :� α1 − α2,

v D Z[ ]( ) ≤ min
k�1,2

B′αk + Z′βk
{ }

� B′α1 + Z′β1
( )

× 1 B′α+Z′β<0{ } + B′α2 + Z′β2
( )

1 B′α+Z′β≥0{ }.

The rest of the proof is reasoning that interchanging ex-
pectationsE[mink�1,2{B′αk+Z′βk}] formink�1,2{B′αk+E[Z]′βk}
induces a Ω(

̅̅

T
√

) error.
Because the two dual solutions have the same dual value,

B′α1 + μ′β1 � B′α2 + μ′β2, we conclude B′α � −μ′β. We can
use this condition to rewrite our bound as

v P Z[ ]( ) ≤ v D Z[ ]( ) ≤ B′α1 + Z′β1
( )

1 μ−Z( )′β>0{ }
+ B′α2 + Z′β2
( )

1 μ−Z( )′β≤0{ }.

Because v(P[μ]) � B′αk + μ′βk for k � 1, 2, we take a random
convex combination to obtain

v P μ
[ ]( )

� B′α1 + μ′β1
( )

1 μ−Z( )′β>0{ } + B′α2 + μ′β2
( )

× 1 μ−Z( )′β≤0{ }.

Now combine the last with our upper bound for v(P[Z]) and
take expectations to obtain

v P μ
[ ]( )

− E v P Z[ ]( )[ ]
≥ E μ − Z

( )′β11 μ−Z( )′β>0{ }
[ ]

+ E μ − Z
( )′β21 μ−Z( )′β≤0{ }
[ ]

� E μ − Z
( )′β11 μ−Z( )′β>0{ }
[ ]

+ E μ − Z
( )′β2 1 − 1 μ−Z( )′β>0{ }

( )[ ]

� E μ − Z
( )′β1 μ−Z( )′β>0{ }
[ ]

.

Let us define ξ as the normalized vector Z, that is, ξ :�
1̅
̅

T
√ (μ − Z). We conclude that

v P μ
[ ]( )

− E v P Z[ ]( )[ ] ≥
̅̅

T
√

E ξ′β1 ξ′β>0{ }
[ ]

.

Reducing by the standard deviation and applying the central
limit theorem, we arrive at a half normal (also known as
folded normal), which has constant expectation. This con-
cludes the desired result. □

Appendix B. Additional Details and Proofs
B.1. Poisson Process in Discrete Periods

We explain how a continuous-time Poisson process can
be reduced to our setting. We are given a time horizon T,
where time t ∈ [0,T] still denotes time to go and, according
to an exponential clock, arrivals occur at some times
t1 > t2 > . . . > tN ∈ [0,T], where N is random and corre-
sponds to the total number of arrivals, that is, N � ∑

j∈[n] Zj(T).
Treating times tk as periods, there is one arrival per pe-

riod. Observe that OFF-LINE knows N; therefore, Off-line’s
Bellman equation is well defined. ONLINE acts on these
discrete periods; that is, ONLINE is event-driven, thus mak-
ing at most N decisions. Finally, we note that, at some
time tk, E[Zj(tk)] � λjtk if the process is homogeneous or

E[Zj(tk)] �
∫ tk
0
λj(t)dt if the process is nonhomogeneous In

conclusion, Online can compute all the required expecta-

tions without knowing N, but rather the knowledge of tk
and λ(·) is enough.

B.2. Bayes Selector Based on Marginal Compensations

A somewhat more powerful oracle is one that, for every
time t, state s, and action a, returns estimates of themarginal
compensation ∂R(t, a, s) · 1Q(t,a,s). This suggests a stronger
form of the Bayes selector based on marginal compensa-
tions as summarized in Algorithm B.1.

The following result follows directly from Lemma 1 and
gives a performance guarantee for this algorithm.
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Algorithm B.1 (Marginal Compensation Bayes Selector)

Input: Access to overestimates l̂(t, a, s) of the expected
compensation, that is, l̂(t, a, s) ≥ E[∂R(t, a, s)1Q(t,a,s)].

Output: Sequence of decisions for ONLINE.
1: Set ST as the given initial state.
2: for t � T, . . . , 1, do
3: Observe arrival θt and take any action that minimizes

marginal compensation, that is, a ∈ argmin{l̂(t,
a, St) : a ∈ !}.

4: Update state St−1 ← 7(a, St, θt).

Corollary B.1 (Regret of Marginal Compensation Bayes

Selector). Consider Algorithm B.1 with overestimates l̂(t, a, s), that
is, l̂(t, a, s) ≥ E[∂R(t, a, s)1Q(t,a,s)]. If At denotes the policy’s action at
time t, then

E Reg[ ] ≤
∑

t

E l̂ t,At,St
( )

[ ]

.

B.3. Multisecretary Problem

Proof of Theorem 2. Assume w.l.o.g. that r1 ≥ r2 ≥ . . . ≥ rn.
This one-dimensional version can be written as follows.

P∗
t

( )

max r′x

s.t.
∑

j∈ n[ ]
xj ≤ Bt

xj ≤ Zj t( ) ∀j
x ≥ 0.

Pt( ) max r′x

s.t.
∑

j∈ n[ ]
xj ≤ Bt

xj ≤ tpj ∀j
x ≥ 0.

The optimal solution to (P∗
t) is to sort all the arrivals by reward

and pick the top ones. The solution to (Pt) is similar except
that it can be fractional; we saturate the variable x1 to tp1, then
x2 to tp2, and continue as long as

∑

i≤j tpi ≤ Bt for some j.
Define the probability of arrival j or better by p̄j :�

∑

i≤j pi.
Observe that we can saturate all variables 1, . . . , j iff tp̄j ≤ Bt.
The solution to (Pt) is, therefore, to pick the largest j such that
tp̄j ≤ Bt and then make Xt

i � tpi for i ≤ j and Xt
j+1 � Bt − tp̄j.

When we round this solution according to Algorithm 2, we
arrive at the following policy: First, if Bt � 0, end the process.
Second (assuming Bt ≥ 1), always accept class j � 1. Third
(assuming Bt ≥ 1), if class j > 1 arrives, accept if Bt/t ≥ p̄j −
pj/2 and reject if Bt/t < p̄j − pj/2.

Recall that q(t, b) is the probability that OFF-LINE is not
satisfied with ONLINE’s action at time t if the budget is b. We
denote qj(t, b) as the probability conditioned on θt � j. Our
aim in the rest of the section is to show that qj(t, b) is sum-
mable over t.

As we observed before: (1) OFF-LINE is not satisfied re-
jecting a class j iff Off-line accepts all the future arrivals of type j,
that is, X�t

j > Zj(t) − 1. (2) OFF-LINE is not satisfied accepting

class j iff Off-line rejects all future type j arrivals, that is,
X�t

j < 1. We use the following standard Chernoff bound in
Dubhashi and Panconesi (2009, theorem 1.1). For any α ∈ [0, 1],
if X ∼ Bin(t, α),

P X − E X[ ] ≤ −tε[ ] ≤ e−2ε
2t ,

P X − E X[ ] ≥ tε[ ] ≤ e−2ε
2t. (B.1)

We now bound the disagreement probabilities qj(t,Bt).
Take j rejected by ONLINE; that is, it must be that j > 1 and
Bt/t < p̄j − pj/2. Because we are rejecting, a compensation is
paid only when condition (1) applies; thus,X�t

j � Zj(t). By the
structure of OFF-LINE’s solution, all classes j′ ≤ j are accepted
in the last t rounds; that is, it must be that X�t

j′ � Z(t)j′ for all
j′ ≤ j. We must be in the event

∑

j′≤j Z(t)j′ ≤ Bt. We know that
∑

j′≤j Z(t)j′ ∼ Bin(t, p̄j). Because Bt/t < p̄j − pj/2, the probability

of error is

qj t,B
t

( )

≤ P
∑

j′≤j
Z t( )j′≤ Bt

[ ]

� P Bin t, p̄j
( )

≤ Bt
[ ]

≤ P Bin t, p̄j
( )

≤ tp̄j − tpj/2
[ ]

.

Using Equation (B.1), it follows that qj(t,Bt) ≤ e−p
2
j t/2.

Now let us consider when j is accepted by ONLINE. A
compensation is paid only when j > 1 and condition (2)
applies; thus, X�t

j � 0. Again, by the structure of X�t, nec-
essarily X�t

j′ � 0 for j′ ≥ j. Therefore, we must be in the event
∑

j′<j Z(t)j′ ≥ Bt. Recall that j is accepted iff Bt/t ≥ p̄j − pj/2 �
p̄j−1 + pj/2; thus,

qj t,B
t

( )

≤ P
∑

j′<j

Z t( )j′≥ Bt

[ ]

� P Bin t, p̄j−1
( )

≥ Bt
[ ]

≤ P Bin t, p̄j−1
( )

≥ tp̄j−1 + tpj/2
[ ]

.

This event is also exponentially unlikely. Using Equa-

tion (B.1), we conclude qj(t,Bt) ≤ e−p
2
j t/2. Overall, we can

bound the total compensation as

∑

t≤T
q t,Bt
( )

≤
∑

j>1

pj
∑

t≤T
e−p

2
j t/2 ≤

∑

j>1

pj
2

p2j
.

Using compensated coupling (Lemma 1), we get our re-
sult. □

Proof of Corollary 3. By Corollary 2, if At is the action using
overestimates q̂, then E[Reg] ≤ rmax

∑

t∈[T](E[q̂(t,At,Bt)] + ∆
t).

Recall that At is chosen to minimize disagreement; hence,
given the condition |q(t,a,b)− q̂(t,a,b)|≤∆

t, we have q̂(t,At,Bt)≤
mina∈! q(t,a,Bt)+∆

t. In conclusion,

E Reg[ ] ≤ rmax

∑

t∈ T[ ]
E min

a∈!
q t, a,Bt
( )

[ ]

+ 2∆t

( )

.

We prove that mina∈! qj(t, a, b) ≤ e−p
2
j t/2 for all t ∈ [T],

j ∈ [n], b ∈ N; hence, the corollary follows by summing all
the terms.
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Let us denote a � 1 as the action accept and a � 0 reject. In
the proof of Theorem 2, we concluded that the following are
overestimates of the disagreement probabilities q:

q̂j t, 1, b( ) � e−p
2
j t/2 if

Xt
j

tpj
≥ 1/2

1 otherwise.

{

and

q̂j t, 0, b( ) � e−p
2
j t/2 if

Xt
j

tpj
< 1/2

1 otherwise.

{

(B.2)

Crucially, observe that the term e−p
2
j t/2 is independent of

the state b. This proves that supb∈N min{qj(t, 0, b), qj(t, 1, b)} ≤
e−p

2
j t/2 ∀ t ∈ [T], ∀ j ∈ Θ. The proof is completed. □

B.4. Other Arrival Processes

Proof of Example 6. This follows from an application of
Chung et al. (2012, theorem 3.1), which guarantees that, for
some constants c′,m that depend on P only,

P Zk t( ) − νkt| | ≥ δνkt[ ] ≤ c′e−
δ2νk t

72m ,

∀t ∈ T[ ], δ ∈ 0, 1[ ], k ∈ n[ ]. (B.3)

To obtain Equation (10), we fix j ∈ [n] and use a union bound
taking theworst case in Equation (B.3); we let νmin :� mink∈[n] νk
and νmax :� maxk∈[n] νk and set δ � νj/2κjνmax in Equation (B.3)
to obtain the result. The constants are, thus, cj �
(νj/2κjνmax)2νmin/72m. Finally, we mention that the constants
c′ and m are related to the spectral gap and mixing time of P;
for details see Chung et al (2012). □

Proof of Example 7. To prove the all-time deviation, we use
that, from the proof of Devroye (1983, lemma 3), P( X −| |
E[X] ≥ εE[X]) ≤ 2e−E[X]ε

2/4 is valid for any Poisson r.v. X and
any ε > 0. Nowwe proceed as in Example 6: takingXk � Zk(t)
and ε � E[Zj(t)]

2κjE[Zk(t)], we obtain

P Z t( ) − E Z t( )[ ]| || |∞≥
E Zj t( )
[ ]

2κj

[ ]

≤ 2
∑

k∈ n[ ]
e
−

E Zj t( )[ ]2
8κ2

j
E Zk t( )[ ].

Finally, from Equation (11), we have E[Zk(t)] ≤ g(t)E[Zj(t)],
and from Equation (12), we have E[Zj(t)] ≥ g(t)f (t) log(t).
From these bounds, we conclude P[ Z(t)−E[Z(t)]| || |∞]≥

E[Zj(t)]
2κj

≤
2ne−f (t) log(t)/8κ

2
j and the existence of constants τj, cj satisfying the

all-time deviation follows. □

B.5. Proof of Proposition 4

We denote x ∈ R
nd the vector of the form x � (x11, x21 . . . ,

xd1, x12, . . .)′; that is, we concatenate the components xij by j
first. We can write the feasible region of P[z, b] as {x : Cx ≤
b,Dx ≤ z, x ≥ 0, where C ∈ R

d×nd and D ∈ R
n×nd. It follows

from a slight strengthening of Mangasarian and Shiau
(1987, theorem 2.4) that ‖x1 − x2‖∞ ≤ κ‖z1 − z2‖1, where

κ � sup v| || |∞: C′u +D′v| || |1� 1, support
u

v

( ){

corresponds to linearly independent rows

of
C

D

( )}

.

If we study Equation (13), denoting Id the d-dimensional
identity and 1d, 0d d-dimensional row vectors of ones and
zeros, we can write the matrices C,D as follows. We
sketched the multipliers ui, vj next to the rows,

C � Id|Id| . . . |Id[ ] �

1 0 · · · 0 1 · · ·
0 1 · · · 0 0 · · ·
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.
· · ·

0 0 · · · 1 0 · · ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

← u1
← u2

.

.

.

← ud,

and similarly,

D �

1d 0d · · · 0d
0d 1d · · · 0d
.
.
.

.

.

.
.
.

.
.
.
.

0d 0d · · · 1d

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

← v1
← v2
.
.
.

← vn.

We have two cases: either ui � 0 for some i ∈ [d] or ui �� 0 for
all i ∈ [d]. On the first case, say w.l.o.g. u1 � 0 and take any
j ∈ [n]. Observe that the constraint C′u +D′v| || |1� 1 implies
(studying all the components involving j)

∑

i∈[d] |ui + vj| ≤ 1.
Because u1 � 0, this reads as |vj| +

∑

i>1 |ui + vj| ≤ 1; thus,
|vj| ≤ 1 as desired.

For the other case, we assume ui �� 0 for all i; hence, vj � 0
for some j because, otherwise, we would violate the l.i.
restriction on the support. Assume w.l.o.g. v1 � 0 and let
us study some vj. The constraint C′u +D′v| || |1� 1 implies
(looking at the first n components and the components in-
volving j)

∑

i∈[d] |ui| +
∑

i∈[d] |vj + ui| ≤ 1. By triangle inequality,

d vj
⃒

⃒

⃒

⃒ �
∑

i∈ d[ ]
ui + vj
( )

−
∑

i∈ d[ ]
ui

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

≤
∑

i∈ d[ ]
vj + ui
⃒

⃒

⃒

⃒ +
∑

i∈ d[ ]
ui| | ≤ 1.

This shows |vj| ≤ 1, and the proof is complete. □

B.6. Additional Details for Online Stochastic Matching

The stochastic bipartite matching is defined by a set of static
nodes U, U| | � d, and a random set of nodes arriving se-
quentially. At each time, a node θt is chosen from a set V,
V| | � n, and we are given its set of neighbors in U. We
identify the online bipartite matching problem in our
framework as follows. The state St encodes the available
nodes fromU; an action corresponds tomatching the arrival
θt ∈ V to a neighbor u ∈ U of θt or to discard the arrival. In
the latter case, we say that it is matched to u � Ø.

For a graph G, we denote the size of its maximum
matching as M(G) ∈ N ∪ 0{ } and G − (u, v) as the usual re-
moval of nodes; in the case u � Ø, G − (u, v) � G − v. Recall
that Q(t, a, s) is the event when OFF-LINE is not satisfied with
action a and q(t, a, s) � P[Q(t, a, s)]. Let us fix an ONLINE policy
and define Gt � (L,R) as the bipartite graph with nodes L � St

and R � Z(t), that is, the realization of future arrivals
and current state. With the convention 1Ø � 0 and 1u � 1
for u ∈ U,

Q̄ t, u, s( ) � ω ∈ Ω : M Gt( ) � 1u +M Gt − u, θt
( )( ){ }

.

In words, OFF-LINE is satisfied matching θt to u if the size of
the maximum matching with and without that edge differs
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by exactly one. With this observation, a straightforward
application of the compensated coupling Lemma 1 yields
Lemma 3.

Finally, we provide an example for a negative result.
Despite the fact that the regret is exactly the number of
disagreements and the Bayes selector minimizes each term,
it is not an optimal policy.

Proposition B.1. The Bayes selector is suboptimal for stochastic
online bipartite matching.

Proof. Consider an instance with static nodes U � a, b, c{ }
and four types of online nodes V � [4]. Type 1 matches to a
only, 2 to a and b, 3 to c only, and 4 to b and c. Observe that the
only types inducing error are 2 and 4.

Assume the arrival at t � 3 is θ3 � 2. Matching it to a is an
error if arrivals are 1, 1{ }, 1, 3{ }, 1, 4{ }, so the disagreement is
p21 + 2p1p3 + 2p1p4. Matching it to b is an error if arrivals are
4, 4{ }, 3, 4{ } with disagreement p24 + 2p4p3. Now assume p24 +
2p4p3 � p21 + 2p1p3 + 2p1p4, so the Bayes selector is indifferent
and, thus, say it matches to a.

At t � 2, there is only an error if θ2 � 4, in which case
matching it to b has disagreement p2 and matching it to c
disagreement p3. In conclusion, the Bayes selector pays p21 +
2p1p3 + 2p1p4 in the first stage plus min{p2, p3} in the second
with probability p4.

The strategy that matches at t � 3 type 2 to b has dis-
agreement p24 + 2p4p3 � p21 + 2p1p3 + 2p1p4, thus lower than
the Bayes selector. To see this, note that, if wematch to b, there
is no error at t � 2.

Finally, the equation p24 + 2p4p3 � p21 + 2p1p3 + 2p1p4 is sat-
isfied, for example, with p1 � p4/2 and p3 � p4/4. □

Appendix C. Additional Details from

Numerical Experiments
Competitive is described as follows. For a given horizon T,
let Kj :� �pjT�. We create a bipartite graph G � (U,V,E),
where U is the static side and V the online side. The static
side contains Bi copies of each resource i; hence, U| | �
∑

i∈[d] Bi. The online side contains Kj copies of each type j;
hence, V| | �∑

j∈[n]Kj. TheedgesetE is the natural construction

Table C.1. Parameters Used for the Second Online Packing Instance

Type j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Resource i 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0

2 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1
3 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0
4 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0
5 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1
6 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0
7 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1
8 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0
9 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0
10 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0
11 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1
12 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1
13 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1
14 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0
15 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
16 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1
17 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1
18 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1
19 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0
20 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1
pj 0.075 0.075 0.125 0.025 0.05 0.062 0.062 0.1 0.1 0.05 0.125 0.012 0.075 0.062 0.002
rj 7 5 16 1 1 20 10 18 7 14 17 19 14 1 2

Note. Coordinates (i, j) represent the consumption Aij.

Table C.2. Parameters Used for the Second Online Matching Instance

Type j

1 2 3 4 5 6 7 8 9 10
Resource i 1 10 6 0 0 9 8 2 0 0 1

2 1 0 0 0 0 0 2 0 0 8
3 0 0 0 0 0 0 2 0 0 6
4 0 26 0 0 1 0 3 0 0 11
5 1 4 0 0 0 0 0 0 0 13
6 7 4 12 11 10 12 18 2 0 0
pj 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Note. Coordinates (i, j) represent the reward rij, and rij � 0 implies that it is not possible to match i to j.
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in which each copy of j ∈ [n] has edges to all copies of i ∈ [d]
according to the adjacency matrixA. The weight we on edge
e � (u, v) is rij if u is a copy of i and v is a copy of j. Finally,
define the followingmatching LP on the graphG, whereλiljk

stands for the lth copy of i and kth copy of j.

P( ) max
∑

i∈ d[ ]

∑

l∈ Bi[ ]

∑

j∈ n[ ]:Aij�1

∑

k∈ Kj[ ]
rijλiljk

s.t.
∑

j∈ n[ ]

∑

k∈ Kj[ ]
λiljk ≤ 1 ∀i ∈ d[ ], l ∈ Bi[ ]

∑

i∈ d[ ]

∑

l∈ Bi[ ]
λiljk ≤ 1 ∀j ∈ n[ ], k ∈ Kj

[ ]

λ ≥ 0,

and let λ∗ be a solution to this LP.Whenever a type j arrives,
competitive draws k ∈ [Kj] uniformly at random and then
takes a vertex u � il incident to v � jk with probability λ∗

iljk,
and if u � il is not taken, it matches v to u. We note that
the process of copying nodes is not superfluous because the
analysis of competitive heavily relies on the fact that the LP
is in this form.

Marginal allocation is described as follows. Let x be a
solution of (PT) in Equation (15), that is, of the fluid LP, and
let fi : [T] × 0, . . . ,Bi{ } → R≥0 be some functions specified
later. When a type j arrives at t and the current budgets are
Bt ∈ N

d, marginal allocation uses fi(t,Bt
i) − fi(t,Bt

i − 1) as the
bid price for each resource i ∈ [d]: the type is rejected if rij <
fi(t,Bt

i) − fi(t,Bt
i − 1) for all i ∈ [d] such that Bt

i > 0, and oth-
erwise, it is matched to argmax{rij − fi(t,Bt

i) + fi(t,Bt
i − 1) :

i ∈ [d],Bt
i > 0. Finally, the functions f are obtained with the

following recursion

fi t + 1, b( ) � fi t, b( ) + 1

T

∑

j∈ n[ ]
xij rij − fi t, b( )
(

+ fi(t, b − 1)
)+, fi(1, ·) � 0, fi(·, 0) � 0.
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