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Abstract. Nonmonetary mechanisms for repeated allocation and decision making are
gaining widespread use in many real-world settings. Our aim in this work is to study the
performance and incentive properties of simple mechanisms based on artificial currencies
in such settings. To this end, we make the following contributions: For a general allocation
setting, we provide two black-box approaches to convert any one-shot monetary mech-
anism to a dynamic nonmonetary mechanism using an artificial currency that simulta-
neously guarantees vanishing gains from nontruthful reporting over time and vanishing
losses in performance. The two mechanisms trade off between their applicability and their
computational and informational requirements. Furthermore, for settings with two agents,
we show that a particular artificial currency mechanism also results in a vanishing price
of anarchy.
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1. Introduction
Today, many real-world settings require nonmonetary mechanisms for allocating scarce resources or making
collective decisions over a period of time, among agents with time-varying preferences. As an example,
consider the problem of allocating computing resources in a university cluster: over time, the limited pro-
cessors must be divided between different users with diverse memory/processing/software requirements,
different urgency levels, etc. Other examples include distributing food among food banks, course seats among
students, parking spots and vacation days among employees, collective decision making within organizations,
sharing cooperatives, etc. All these settings share two characteristics: (1) resources are allocated among a set of
agents repeatedly over time, and (2) the use of money as a means to elicit the agents’ preferences is undesirable
and/or even prohibited.

The lack of monetary payments as a means to incentivize agents makes mechanism design in such settings
more challenging. For instance, in the absence of payments, agents naturally seek to inflate their reported
value for resources. In repeated settings, however, future allocations provide a means to incentivize agent
behavior. For the case of single-item allocation, this idea has been explored theoretically in a set of recent
works (Balseiro et al. [5], Guo et al. [25]). However, the resulting mechanisms are complex and are hard to
extend to more general settings.

In contrast, a class of simple nonmonetary mechanisms, namely, mechanisms based on artificial currencies,
has gained recent attention because of their successful use in practice (e.g., in food banks; Prendergast [37]).
Such mechanisms involve endowing each agent with a budget of an artificial currency and organizing a static
monetary mechanism in each period with payments in the artificial currency. Despite their success in practice,
not much is known about the incentive properties of such mechanisms. The main contribution of our work is to
provide the theoretical foundations for the use of such simple mechanisms in practice.

Specifically, our goal in this work is twofold: first, we seek to connect the incentive and utility properties of
nonmonetary mechanisms for repeated allocation settings to those of monetary mechanisms in static settings.
Given the large body of literature on static monetary mechanism design, this connection provides a valuable
benchmark for the performance of nonmonetary mechanisms. Second, we seek to exploit this connection to
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design simple mechanisms that can be employed in practice. In particular, our results give operational insights
into implementing simple mechanisms based on artificial currencies.

1.1. Main Results and Road Map of This Paper

We consider a general repeated allocation setting over T periods and with n agents. In each period, each agent
s has a private type drawn from some underlying distribution. Agent types can be multidimensional—for
example, in the setting of combinatorial auctions, the type specifies an agent’s value for any bundle of items.
For most of the work, we assume that the type of agent s in each period is drawn independently (across time
and agents) and identically (across time) from a distribution Fs (we relax this in Section 6).

We focus on direct-revelation mechanisms, which ask each agent to report her type at each period, and then
choose an allocation from among a feasible set of allocations. This allocation decision can be based on the
agents’ current and past reports. Crucially, the mechanism cannot make monetary transfers to the agents or
receive transfers from them.

Our objective is to construct a nonmonetary mechanism M that mirrors the properties of a given monetary
mechanism Mmoney for the static setting (i.e., when the allocation is to be done once). In particular, we want M
to provide the same incentives and ensure the same utility to the agents as Mmoney. However, doing this
perfectly is in general impossible: for T � 1 and general type distributions Fs, no nonmonetary mechanism for
single-item allocation can achieve the efficiency as guaranteed by the second-price auction (as a concrete
example, consider a single-item setting and two agents with independent and identically distributed (i.i.d.)
Uniform[0, 1] values).

Faced with this difficulty, we relax our objective and instead seek a nonmonetary mechanism that ap-
proximately preserves the incentive and utility guarantees of a monetary mechanism. Formally, we say a
nonmonetary mechanism M is an (α, β)-approximation of a given Bayesian incentive compatible (BIC) mechanism
Mmoney if it simultaneously guarantees the following two properties (see Definition 1):

1. For any agent, the gains from unilaterally deviating from truthful reporting under M is at most αT.
Because Mmoney is BIC, this ensures that M approximately matches the incentive properties of Mmoney.

2. Assuming truthful reporting, the mechanism M guarantees the same expected utility for every agent as
Mmoney (excluding payments), up to an additive loss βT.

With this definition in place and given the general impossibility of a (0, 0)-approximate mechanism, one
question is whether there exists a mechanism that is (α, β)-approximate, where both α and β are vanishing, that
is, o(1), with respect to T. This question is interesting from two perspectives. First, it suggests that as the time
horizon T increases, such a mechanism becomes a better approximation of Mmoney. Second, and more im-
portantly, under such a guarantee (specifically α � o(1)), there are strong behavioral justifications for why an
agent would not unilaterally deviate from truthful reporting despite the associated (small) gain (see Section 2.4
for more details).

Our work answers this question in the affirmative. In particular, we construct two black-box approaches
(NonMonetary Black-box Reduction (NMBER) and Repeated Endowed All-Pay (REAP)) that each take any
monetary mechanism Mmoney and return a nonmonetary mechanism M that is (α, β)-approximate for α �

O(
̅̅̅̅̅̅̅̅̅̅̅
logT/T

√
) and β � O(1/T). The two approaches differ in the assumptions on the settings, as well as their

informational and computational requirements.
In more detail, our main results are as follows:
1. Under the assumption of excludability (see Assumption 1), where the mechanism is able to exclude an

agent without affecting other agents, we provide a simple nonmonetary black-box reduction (which we refer
to as the NMBR mechanism; see Section 3). Informally, our recipe comprises replacing money with an artificial
currency for payments in the monetary mechanism, coupled with tractable procedures for setting initial
endowments of the artificial currency and simulating bids of budget-depleted agents. More specifically, we
provide a black-box reduction that, given a monetary mechanism, produces a nonmonetary mechanism, for
which we prove the desired (α, β)-approximation guarantee (Theorems 1 and 2). Furthermore, we show that
this guarantee persists even when the principal has access only to a finite number of type reports from the
agent, and that the computational burden of running the NMBR mechanism is comparable with that of
running Mmoney T times.

2. In Section 4, we drop the assumption of excludability and construct an alternative black-box mechanism,
the repeated endowed all-pay, or REAP, mechanism. The idea in REAP is again endowing agents with
artificial currency, but instead of directly running Mmoney for allocations and payments, we make payments of
agents depend only on their reports and not the outcome of the allocation. We show that REAP recovers the

Gorokh, Banerjee, and Iyer: Nonmonetary Mechanisms Via Artificial Currencies
2 Mathematics of Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



incentive and performance guarantees of NMBR (Theorem 3); however, the mechanism requires exact
knowledge or agents’ type distributions and may be computationally intractable.

3. In addition, we show that the incentive guarantees we provide for the REAP mechanism can be
strengthened for the case when there are two agents and the Vickrey-Clarke-Groves (VCG) mechanism is
employed as Mmoney. More precisely, in this setting, we show that utility profile at any equilibrium is close to
that of Mmoney for the case of two agents (Theorem 4). We also leverage this result to show the existence of a
(potentially complex) (0, o(1))-approximate mechanism (Corollary 3).

1.1.1. Technical Contributions. We prove our results by showing a connection between incentives of an agent
in the monetary setting and those of an agent constrained by a budget of artificial currency. We do this via
three steps: (i) We consider the perspective of agent s playing against truthful opponents, and for this agent
construct an auxiliary problem that can be viewed as allowing the agent to violate the budget constraint on
some sample paths, but still satisfy it in expectation. (ii) Via concentration arguments, we show that the
performance of any strategy in the original mechanism is close to that in the auxiliary problem, and thus
whenever truthful reporting is approximately optimal in the auxiliary problem, it is approximately optimal in
the mechanism as well. (iii) Finally, we connect incentives in the auxiliary problem to those in the monetary
setting; in particular, we show that incentive compatibility (IC) of Mmoney in the monetary setting implies
approximate optimality of truthful reporting in the auxiliary problem.

The auxiliary problem also proves useful for proving our price of anarchy bounds, in combination with
standard arguments that are reminiscent of the smooth games framework (Roughgarden [39]). Moreover, the
modular nature of our proof allows us to discuss applicability of our technique to settings more general than
the one considered in this paper. We discuss several such potential extensions in Section 6.

1.2. Related Work

Our setting sits at the intersection of work on mechanisms without money and dynamic mechanism design;
both topics have attracted significant interest in recent years. We briefly summarize work that is closest to
our setting.

1.2.1. Dynamic Mechanism Design. Dynamic mechanism design focuses on extending the theory of mecha-
nisms for single-period settings (Milgrom [33], Myerson [34]) to repeated allocation settings. The difficulty in
doing so arises because of factors that couple auctions across time, for example, incomplete information and
learning over time (Devanur et al. [15], Iyer et al. [28], Kanoria and Nazerzadeh [30], Nekipelov et al. [36]),
cross-period combinatorial constraints including limits imposed by budgets (Balseiro et al. [4], Gummadi et al. [23],
Leme et al. [32], Nazerzadeh et al. [35]), stochastic fluctuations in the underlying setting (Bergemann and
Said [6], Bergemann and Välimäki [7], Gershkov and Moldovanu [19]), etc. In our setting, the cross-period
coupling arises essentially because of budget constraints. Similar repeated auctions with budget constraints
have been considered by Gummadi et al. [23] and Balseiro et al. [4], wherein the authors use mean-field
approaches to circumvent the difficulty in deriving equilibrium behavior of agents. Our results are similar in
spirit in that we eschew exact IC for approximate IC; however, our technique of approximating the dynamic
setting via an auxiliary static game and then proving closeness between the two as T scales is novel compared
with existing approaches.

1.2.2. Mechanism Design Without Money. This is a broad area of study, encompassing diverse topics ranging
from matching theory to social choice, that broadly considers strategic allocation in settings where money is
not permitted for various reasons. Most of this literature deals primarily with single-period settings and
typically involves working with alternate notions of equilibria. An approximation-based approach to such
settings was proposed by Procaccia and Tennenholtz [38], who used the specific example of a facility location
game; this approach was subsequently explored by many others (Dughmi and Ghosh [17], Guo and Conitzer [24]).
Several alternate approaches have also been proposed, including ones based on verifiability (Brânzei and
Procaccia [8]), proof-of-work (“money burning”; Hartline and Roughgarden [26]), and two-tiered resource
redistribution (Cavallo [11]).

In the case of repeated allocation without money, a notable line of work is that by Guo et al. [25] and its
subsequent refinement by Balseiro et al. [5]. These works consider a model identical to ours but with a single
item and symmetric agents, and under discounted infinite-horizon settings. The former uses variations of the
AGV mechanism (d’Aspremont and Gérard-Varet [14]) to achieve perfect IC at the cost of efficiency. The latter
work builds on this model to develop a novel BIC mechanism that achieves vanishing welfare loss as discount

Gorokh, Banerjee, and Iyer: Nonmonetary Mechanisms Via Artificial Currencies
Mathematics of Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 3



factor goes to one. In contrast, we consider much more general allocation settings under the finite horizon and
focus on using simple mechanisms that utilize existing monetary mechanisms with artificial currency. In this
context, we obtain welfare and incentive guarantees that vanish with the horizon length.

1.2.3. Artificial Currency Mechanisms. These are a particular subset of nonmonetary mechanisms that have
attracted a lot of recent interest, in part because of recent successful implementations in real-world settings
(Budish et al. [10], Prendergast [37], Walsh [40]). Our work follows in the line of several recent papers in
attempting to establish a theoretical foundation for such mechanisms. Among these, the closest to ours are the
works of Budish [9] and Jackson and Sonnenschein [29]; we describe these now in more detail.

Budish [9] studies the use of artificial currency mechanisms in the context of static combinatorial assignment
problems under (arbitrary) ordinal preferences. As in our work, the incentive compatibility constraint is
relaxed to satisfy other design objectives, namely, Pareto optimality, approximate market clearing, and envy-
freeness; this is analogous to our use of approximate efficiency guarantees under approximate IC constraints,
as in Definition 1. Similar guarantees are also established in static settings for additive valuations via
maximizing Nash welfare by Cole and Gkatzelis [13]. In contrast to these static mechanisms, our approach
applies primarily for dynamic settings by exploiting future allocations to ensure approximate incentive
compatibility.

Jackson and Sonnenschein [29] (henceforth, JS) are also concerned with one-shot allocation problems, but
unlike Budish [9], they consider settings where agents simultaneously participate in multiple resource al-
location problems, with i.i.d. types in each instance. For this setting, JS provide a mechanism that guarantees
near-optimal welfare at any equilibrium in the mechanism; this is done by essentially endowing agents with
separate budgets for reporting each possible type across instances. Our approach also shares this technique of
linking separate problem instances to enforce incentives; however, our work differs from JS’s in three sig-
nificant dimensions: dynamics, scalability, and incentive guarantees. The primary difference is that we
consider repeated allocation settings, rather than simultaneous allocations as in the work of JS. This temporal
aspect makes the analysis of incentives more challenging in our setting. Next, because JS make use of a
separate budget for every possible report, the number of linked instances required for nontrivial efficiency
guarantees is prohibitively large for multidimensional type spaces (e.g., combinatorial auctions). In contrast,
our mechanisms endow every agent with just a single artificial currency budget, and, as a consequence, the
number of periods needed to guarantee near-optimal efficiency is independent of size of the type space. In
particular, our mechanism performs well even if there are not enough periods for an agent to sample all of her
types. Such an advantage comes at the cost of admitting weaker incentive guarantees—the approximate
efficiency is achieved under the particular ε-equilibrium of truthful reporting (with the per-round gains from
nontruthful bidding going to zero for large T), whereas the guarantees given by JS hold under any
Bayes–Nash equilibrium (BNE). We note though that in the case of two agents, we are able to match the
incentive guarantees of JS using our simpler single-currency mechanism.

1.2.4. Ex Ante Relaxation. A technique we use extensively throughout our paper is to first solve a relaxed
version of the problem, in which agents are to satisfy their budget constraints in expectation, and then use this
result to establish guarantees for the original problem with ex post constraints. A similar approach was used
by Alaei [1] in a monetary setting to establish a black-box reduction from a single-agent to a multiagent
mechanism with an item supply constraint. The same technique was later adopted by Chawla and Miller [12]
in the context approximating revenue for selling multiple items to several heterogeneous buyers. Another
related technique used in revenue maximization problems is that of a correlation gap; see Yan [41].

1.2.5. Dynamic Bidding Under Budget Constraints. Finally, another related line of literature analyzes bidding in
repeated auctions with budget constraints, in the context of advertising markets. In this setting, Balseiro and
Gur [3] consider the problem of regret minimization from the bidders’ perspective and demonstrate strategies
that constitute approximate equilibrium. Karande et al. [31] design a system to optimize bids in large, repeated
ad auctions with budgets. Finally, Goel et al. [20] model various mechanisms to throttle the bids of budgeted
agents across time to maximize revenue.

2. Model
2.1. Setting

We consider a repeated allocation setting with n agents. In each period1 t ∈ [T], each agent s has a type θt
s ∈ Θs,

drawn from a distribution Fs. These draws are i.i.d. across periods and independent across agents. We let
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θt � (θt
s : s ∈ [n]) denote the type profile at time t, and let θt

−s � (θt
q : q ∈ [n], q �� s). Let Θ � ×s∈[n]Θs denote the

set of type profiles.
At each time t ∈ [T], a principal chooses an allocation Xt ∈ X , where X denote the set of feasible allocations.

(We describe the principal’s choice of allocation below.) Let vs(θ
t
s,X

t) denote the utility that the agent s receives
from allocation Xt when having type θt

s. We allow for vs to take negative values, but assume that under any
allocation and any type, the absolute value of utility of agents is uniformly bounded by vmax.

For our results in Section 3, we require that the allocation setting satisfy the following excludabil-
ity assumption.

Assumption 1 (Excludability). For any feasible allocation X and any S ⊆ [n], there exists a feasible allocation X|S such that for
all θ, we have vs(θs,X|S) � vs(θs,X) for s ∈ S and vs(θs,X|S) � 0 for s /∈ S.

The excludability assumption holds in many centralized allocation problems, in particular, combinatorial
assignment settings (where it is sometimes referred to as the downward-closure property). Nevertheless, this is a
restrictive assumption that many settings of interest do not satisfy: for example, excludability need not hold in
bilateral trade settings, or in the case of provision of public nonrival goods. (See Appendix B for a more
detailed description of settings that do or do not satisfy excludability.)

2.2. Nonmonetary Mechanisms and Agents’ Strategies and Utilities

We focus on settings where the principal employs a nonmonetary, direct-revelation mechanism to select the
allocation Xt at each time t. Formally, a nonmonetary direct-revelation mechanism M requires each agent s to
submit a report θ̂t

s ∈ Θs at each time t. Let Ht � {(Xτ, θ̂τ
1, . . . , θ̂

τ
n)}τ<t denote the public history, that is, the set of

past allocations and reports. Subsequent to obtaining the reports θ̂t � (θ̂t
s : s ∈ [n]), the mechanism M selects an

allocation Xt � Xt(θ̂t,Ht;M) at each time t. (Note that there are no monetary payments from the agents.)

A strategy As of an agent s specifies in each period t a (possibly random) report θ̂t
s based on her current

type θt
s, her types {θτ

s }τ<t in periods τ < t, and the public history Ht. We denote the strategy of truthful
reporting by Tr; that is, when agent s follows the strategy Tr, her reports are θ̂t

s � θt
s for all t ∈ [T]. Let Tr−s

denote the case where all agents other than agent s are reporting their types truthfully.
For a strategy profile A � {As : s ∈ [n]}, let Us(A;M) denote the total utility obtained by agent s over

T periods:

Us A;M( ) �
∑T

t�1

vs θ
t
s,X

t
( )

,

where Xt � Xt(θ̂t,Ht;M). Observe that Us(A;M) is a random variable that depends on the specific realization of
the agents’ types (we omit θ from arguments to simplify our notation), their reports, and the (possibly
random) allocation. We let us(A;M) � E[Us(A;M)] denote the expected utility of agent s under strategy profile
A and mechanism M, where the expectation is over all the aforementioned randomness. Abusing notation, we
write Us(As;M) and us(As;M) for Us(As,Tr−s;M) and us(As,Tr−s;M), respectively.

2.3. Static Setting and Monetary Mechanisms

To design and benchmark nonmonetary mechanisms for the setting described above, we consider monetary
mechanisms for a related one-shot allocation setting. We briefly describe this setting below.

Formally, consider a one-shot allocation setting with n agents, where each agent s has a private type θs

drawn independently from the distribution Fs. A direct-revelation mechanism Mmoney is defined in terms of its
allocation rule X(θ̂1, . . . , θ̂n;Mmoney) ∈ X and payment rules {Cs(θ̂1, . . . , θ̂n;Mmoney) : s ∈ [n]}. Specifically, given
the agents’ report θ̂ � (θ̂1, . . . , θ̂n), the mechanism chooses an allocation X(θ̂;Mmoney) and charges each agent
s a monetary payment of Cs(θ̂;Mmoney). We assume that the agents have quasi-linear utilities, that is, the utility
of the agent s is given by vs(θs,X(θ̂;Mmoney)) − Cs(θ̂;Mmoney). We also assume that all monetary mechanisms
employed in this paper have nonnegative payments Cs(θ̂;Mmoney) ≥ 0 for all θ̂.

We say a direct-revelation mechanism Mmoney is BIC if reporting truthfully is a Bayes–Nash equilibrium; that
is, for each agent s and for all θs, we have

θs ∈ argmax
θ̂s

E vs θs,X θ̂s, θ−s;Mmoney

( )( )
− Cs θ̂s, θ−s;Mmoney

( )
|θs

[ ]
.
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Here, the expectation is over the types θ−s of all agents other than s. For a BIC mechanism Mmoney, we let
us(Tr;M) denote the expected ex ante utility (excluding payment) obtained by an agent s in the truthful
equilibrium, that is, us(Tr;Mmoney) � E[vs(θs,X(θ;Mmoney))], where the expectation is over θ � (θs : s ∈ [n]).

Throughout, we focus on mechanisms Mmoney that satisfy the following opt-out condition, meant to capture
voluntary participation.

Assumption 2 (Opt-Out Report). Under mechanism Mmoney, every agent s has a report ∅ that guarantees zero payment
Cs(∅, θ̂−s;Mmoney) � 0 and an allocation X(∅, θ̂−s;Mmoney) such that vs(θs,X(∅, θ̂−s;Mmoney)) � 0 for any type θs and

reports θ̂−s.

Finally, for a given monetary BIC mechanism Mmoney, we define cs � Eθ∼F[Cs(θ,Mmoney)] to be the expected
payment charged to s in Mmoney in truthful equilibrium, and cmax

s � max {Cs(θ;Mmoney) : θ ∈ Θ} to be the
maximum possible payment for s. We also define Rs � cs/c

max
s .

2.4. Design Requirements

Returning to the repeated allocation setting, we seek to design nonmonetary mechanisms that approximate the
utility and incentive characteristics of a given monetary BIC mechanism Mmoney. Formally, we consider the
following definition for how well a nonmonetary mechanism M captures the incentives and utility profile of a
given monetary mechanism Mmoney.

Definition 1. AmechanismM is an (α, β)-approximation of a monetary BIC mechanismMmoney if it simultaneously
guarantees the following:

1. Truthful reporting Tr is an α-equilibrium for M: For any agent s, assuming all other agents play truthfully,
we have

us Tr;M( )

T
≥ sup

As

us As;M( )

T

( )
− α.

2. M guarantees the same utility profile as Mmoney up to an additive loss of βT under truthful reporting:

us Tr;M( )

T
≥ us Tr;Mmoney

( )
− β.

Note that under the above definition, a (0, 0)-approximate mechanism guarantees exact incentive compatibility
and attains the same utility profile (and, consequently, welfare) as Mmoney; however, as we mention above, this
is too stringent, especially for small values of T. Instead, we seek to find an (α, β)-approximate mechanism
where both α and β are vanishing (i.e., o(1) with respect to T).

Such a guarantee captures a natural desideratum for a behavior model—that an agent is willing to deviate
from truthful reporting only if the gains from doing so are significant when compared with the total utility the
agent obtains. One reason for this could be that there is a cognitive burden of having to figure out a good
deviation. More formally, suppose that to deviate from truth-telling in a profitable way (and/or to find out
what the gains of such deviation would be), an agent needs to expend some computational effort c per turn. In
this case, for large enough T, the computational overhead of deviating from truthful reporting would
overwhelm the benefit that it could yield. A similar argument has been used in other works (see, e.g., Azevedo
and Budish [2], Nekipelov et al. [36]).

3. Black-Box Reduction from Monetary Mechanisms
In this section, we present our black-box reduction that takes a monetary mechanism as an input and
produces a nonmonetary mechanism that approximately matches its efficiency and incentive compatibil-
ity guarantees.

3.1. The NMBR Mechanism

We now describe our black-box reduction technique, which converts any chosen monetary BIC mechanism
Mmoney to a nonmonetary mechanism with the desired approximation guarantees.

Formally, our mechanism is described in Algorithm 1. Informally, the mechanism proceeds as follows: it
takes a monetary one-shot mechanism Mmoney as an input and endows each agent s with a budget of artificial
currency. This endowment includes a small mutiplicative surplus δs over the agent’s expected spending under the
truthful equilibrium of Mmoney (i.e., c̄sT). We also initialize the set of active agents, ACT � [n]. In each period,
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agents participate in the original mechanism Mmoney using the artificial currency instead of actual money
for payments.

We then use the following procedure for handling bankrupt agents: when an agent s runs out of currency,
we declare her inactive, ACT ← ACT \ s. From then on, we disregard reports of this agent and use inde-
pendent samples for the agent’s type when running Mmoney. Furthermore, we exclude inactive agents from the
allocations produced by Mmoney (note that without the excludability assumption (Assumption 1), we would
not be able to carry out this step).

The intuition behind introducing the budget surplus δs is that this ensures that, with high probability,
truthful agents do not run out of credits before the final round T. Furthermore, the procedure of simulating the
bankrupt agent removes the incentive agents might have to deplete their opponents, as upon depletion, an
agent gets replaced with a replica; from the strategic perspectives of other agents, this replica is equivalent to
the original agent.

Algorithm 1 (NMBR Mechanism)

Require: Static, monetary BIC mechanism Mmoney, expected agent payments under truthful reporting cs,
sample access to agent type distributions Fs, surplus parameter δs
1: Allocate endowment of Bs � (1 + δs)csT credits to each agent s. Let B1

s � Bs and initialize the set of active
agents ACT � [n].

2: for all t � 1 to T do
3: For each agent s ∈ ACT, get her report θ̂t

s.
4: For each agent s /∈ ACT, sample a report θ̂t

s ∼ Fs from her type distribution.
5: For each agent s∈ACT, if Bt

s ≥ Cs(θ̂
t;Mmoney), charge her the payment Cs(θ̂

t;Mmoney), and set
Bt+1
s � Bt

s − Cs(θ̂
t;Mmoney). If B

t
s < Cs(θ̂

t;Mmoney), update ACT ← ACT \ {s} and Bt+1
s � 0.

6: Let Xt � X(θ̂t;Mmoney). Implement Xt|ACT (refer Assumption 1)
7: end for

Our main result states that the above mechanism is approximately incentive compatible and guarantees a
utility profile close to that under the Mmoney mechanism. Formally, we have the following theorem.

Theorem 1. For a given BIC monetary mechanism Mmoney, consider the corresponding NMBR mechanism with

δs �
̅̅̅̅̅̅̅
3 logT
RsT

√
. Then, for any strategy As, assuming all other agents play truthfully, we have

us Tr;NMBR( )

T
≥
us As;NMBR( )

T
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3cscmax logT

T

√
− 2vmaxT

−1. (1)

Additionally, the utility of each agent s satisfies

us Tr;NMBR( )

T
≥ us Tr;Mmoney

( )
− 2vmaxT

−1. (2)

In other words, the NMBR mechanism is (α, β)-approximate, with α � O(
̅̅̅̅̅̅̅̅̅̅̅̅̅
cs logT/T

√
) and β � O(T−1).

Note that although the number of agents n does not explicitly enter the expression for the bounds, there is
an implicit dependency associated with the constant cs: as the number of the agents n increases, the average
payment cs decreases. In particular, this implies that, as n increases, the incentive guarantee α of the NMBR
mechanism improves in the absolute (additive) sense. However, we note that as n increases, an agent’s
expected utility itself decreases, and the resulting bound on α may not be strong in a relative (multiplica-
tive) sense.

We also note that although Theorem 1 establishes truthful reporting to be only approximately optimal ex
ante, it is possible to demonstrate that similar guarantees hold in later rounds and degrade toward the end of
the game. For more detail on this, see Appendix C.

To illustrate the mechanism and the main result, we provide a simple example, in which an item is allocated
between n symmetric agents.

Example 1 (Single-Item Allocation Among n Agents). Suppose there are n agents with uniformly distributed values
vit ∼ Unif[0, 1]. Let Mmoney be the second-price auction. The expected payment of an agent s in Mmoney is given
by c̄s �

(n−1)
n(n+1), with cmax

s � 1, and Rs �
c̄s

cmax
s

� (n−1)
n(n+1).

The corresponding NMBR mechanism then proceeds as follows. Both agents are endowed with (1+
̅̅̅̅̅̅̅
18logT

T

√
) (n−1)
n(n+1)T

credits, and they participate in a second-price auction (with payments in credits) in each time period. If an
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agent s runs out of sufficient credits, then the mechanism excludes that agent, but in each subsequent time
period includes an independent sample from Unif[0, 1] as the agent’s report. If at any time the winning report
is from an agent with insufficient credits, then the mechanism does not allocate the item. With this, Theorem 1
guarantees the following:

us Tr;NMBR( )

T
≥
us As;NMBR( )

T
−

̅̅̅̅̅̅̅̅̅
3 logT

nT

√
−
2

T
,

us Tr;NMBR( )

T
≥ us Tr;Mmoney

( )
−
2

T
.

Although gains from deviations decrease with n, because the agent’s utility decreases with n as O(1/n), the
ratio of possible gains to total utility actually grows with n. Thus, for the asymptotical guarantees to stay
meaningful, we need T � O(n log n).

Algorithm 1 along with Theorem 1 thus gives a general recipe for converting any one-shot monetary
mechanism into a nonmonetary mechanism for repeated allocation with desired guarantees. From a com-
putational viewpoint, the NMBR mechanism is equivalent to executing the original mechanism Mmoney with
the caveat that we also need cs as an input for each agent s; computing this, however, involves taking ex-
pectation over payments of Mmoney and may be costly. In Section 3.3, we circumvent this by showing that the
incentive and welfare guarantees are preserved even if we instead use a sample average c̄ms over m simulated
instances of the mechanism as input to NMBR (in particular, we show that m � T samples are sufficient).

3.2. Proof of Theorem 1

In this section, we outline the overall strategy for proving Theorem 1 and establish some key lemmas for our
proof. For brevity, we highlight the main ideas of our argument and defer some of the proof details to
Appendix A.

The proof of Theorem 1 involves two parts: (1) proving the approximate incentive compatibility and
(2) proving that NMBR achieves sublinear loss in welfare assuming agents report truthfully. The main
challenge is in showing the former; the latter then follows from a simple concentration argument. We begin with
the first part next.

To establish the approximate incentive compatibility of the NMBR mechanism for an agent s, we must
compare the agent’s utility under truthful reporting against her utility under the optimal strategy (assuming
all other agents report truthfully). In the NMBR mechanism, an agent stops receiving any utility once she runs
out of budget. Thus, in reasoning about her optimal strategy, an agent effectively has to satisfy a budget
constraint on every sample path. This is a challenging decision problem to analyze. To circumvent this
challenge, we first consider an auxiliary problem in which agent s is playing against truthful opponents with her
budget constraint relaxed to be met only in expectation. We then show that (a) in the auxiliary problem,
truthful reporting is approximately optimal, and that (b) expected utilities of truthful reporting in original
game and the auxiliary problem are close.

Formally, suppose agent s participates repeatedly in the Mmoney mechanism for T rounds, with the other
agents reporting their types truthfully. Given a strategy As, the expected utility of agent s in auxiliary problem
is defined as

ûs As( ) �
Δ
E

∑T

t�1

vs θ
t
s,X θ̂t

s, θ
t
−s;Mmoney

( )( )
[ ]

, (3)

Where, on the right-hand side, the reports {θ̂t
s : t ∈ [T]} are determined according to the strategy As based on

past history. Here, the expectation is taken over truthful reports of other agents, types of agent s, and any
randomness in the strategy As. Similarly, under the strategy As, the expected spending of agent s is defined as

ĉs As( ) �
Δ
E

∑T

t�1

Cs θ̂
t
s, θ

t
−s;Mmoney

( )
[ ]

. (4)

Given these definitions, the auxiliary problem for agent s is defined as

max
As

ûs As( )

s.t. ĉs As( ) ≤ Bs. (5)
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Note that the budget constraint in the preceding problem is required to hold only in expectation, and not
sample-path-wise, unlike in the NMBR mechanism.

Next, we argue that (5) is indeed a relaxation of agent s’s decision problem in the NMBR mechanism. To see
this, first, for any strategy As in the NMBR mechanism, define A∅

s as the strategy that mimics As until the
agent’s budget runs out and reports θ̂t

s � ∅ thereafter. It is immediate that us(As;NMBR) � us(A
∅
s ;NMBR) and

cs(As;NMBR) � cs(A
∅
s ;NMBR). Second, Assumption 2 implies that us(A

∅
s ;NMBR) � ûs(A

∅
s ) and cs(A

∅
s ;NMBR) �

ĉs(A
∅
s ). Finally, because the budget constraint holds sample-path-wise in the NMBR mechanism, the expected

budget constraint in (5) is satisfied by A∅
s . Taken together, we obtain that for any strategy As in the NMBR

mechanism, the strategy A∅
s is feasible for the auxiliary problem and achieves the same expected utility.

We next compare the performance of a feasible strategy As for (5) to that of the truthful report Tr. First, note
that by definition of c̄s, because Bs > c̄sT, truthful reporting Tr is feasible for (5). The next lemma establishes a
sensitivity result, which states that the gain in expected utility for the agent upon deviating from truthful
reporting is bounded above by her budget surplus.

Lemma 1 (Sensitivity). Suppose the budget of agent s is Bs � csT + Δ, for some Δ > 0. Then, for any feasible As for (5),
we have

û As( ) ≤ û Tr( ) + Δ.

Proof. First, note that in the monetary setting, running a BIC mechanism Mmoney repeatedly in each round is
overall a BICmechanism for all T rounds taken together. This follows from the fact that decisions of agents in some
round t do not affect their quasi-linear utility in another round t′. This implies that for any strategyAs feasible in the
auxiliary game, we have

ûs As( ) − ĉs As( ) ≤ ûs Tr( ) − ĉs Tr( ).

Indeed, if this inequality did not hold for some strategy Ãs, we could use this strategy to invalidate the
assumption that Mmoney is a BIC mechanism.

Now, the budget constraint (4) implies ĉs(As) ≤ Bs � csT + Δ, whereas, by definition, we have ĉs(Tr) � csT.
Combining these inequalities yields the needed bound. □

Note that the above sensitivity result is unidirectional, in that it holds in the above form only for Δ ≥ 0.
Next, coming back to the NMBR mechanism, to show its approximate incentive compatibility, we seek to

bound us(As;NMBR) − us(Tr;NMBR) for any strategy As. We begin by writing this difference as follows:

us As;NMBR( ) − us Tr;NMBR( )

� us A
∅
s ;NMBR

( )
− us Tr;NMBR( )

� us A
∅
s ;NMBR

( )
− ûs A

∅
s

( )
+ ûs A

∅
s

( )
− ûs Tr( ) + ûs Tr( ) − us Tr;NMBR( )

� ûs A
∅
s

( )
− ûs Tr( )⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
†

+ ûs Tr( ) − us Tr;NMBR( )⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
�

, (6)

where the first equality follows from the fact that us(As;NMBR) � us(A
∅
s ;NMBR), and the last equality follows

from the fact that us(A
∅
s ;NMBR) � ûs(A

∅
s ). Now, Lemma 1 gives a bound on the term (†), because A∅

s is feasible
for (5). Thus, to complete our proof, we seek to bound the term (�), that is, compare the utility under truthful
reporting in the auxiliary problem and the NMBR mechanism.

To do this, we begin by defining the following budget depletion event εs:

εs �
Δ ∑T

1

Cs θ
t
s, θ

t
−s;Mmoney

( )
≥ Bs

{ }
. (7)

The event εs captures all the sample paths under which agent s’s spending exceeds her budget Bs in the
auxiliary problem, under truthful reporting. Alternatively, one can envisage εs as the event under which the
agent s becomes inactive before the end of the NMBR mechanism under truthful reporting. We have
the following lemma.
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Lemma 2.

ûs Tr( ) ≤ us Tr;NMBR( ) + 2P εs( )Tvmax.

Proof. Define the utility received by the agent s in the auxiliary problem under truthful reporting as

Ûs Tr( ) �
∑T

t�1

vs θ
t
s,X θt

s, θ
t
−s;Mmoney

( )( )
.

We can write the expected utility in the NMBR mechanism and the auxiliary problem respectively as

us Tr;NMBR( ) � P ¬εs( )E Us Tr;NMBR( )|¬εs

[ ]
+ P εs( )E Us Tr;NMBR( )|εs

[ ]
,

ûs Tr( ) � P ¬εs( )E Ûs Tr( )|¬εs

[ ]
+ P εs( )E Ûs Tr( )|εs

[ ]
.

Note that we have Us(Tr;NMBR) � Ûs(Tr) on the event ¬εs. This is because, on this event, in the NMBR
mechanism, the agent remains active until time T and receives the same sequence of values as in the Mmoney

mechanism. On the event εs, we have the trivial bound |Us(Tr;NMBR) − Ûs(Tr)| ≤ 2Tvmax. Substituting this into
the decomposition above yields the needed bound. □

Putting Lemma 1 and Lemma 2 together, along with the fact that Δ � δsc̄sT for the NMBR mechanism, we
obtain from (6) that

us As;NMBR( ) − us Tr;NMBR( ) ≤ δsc̄sT + 2TvmaxP εs( ). (8)

As a final step, we bound the probability of the budget depletion event εs. In particular, we show that with
high probability, an agent s remains active until the end of the NMBR mechanism under truthful reporting. We
establish this by showing that the expected payment of the agent in the auxiliary problem concentrates around
its mean. We have the following lemma.

Lemma 3 (Concentration of Spending). For every agent s, we have

P εs[ ] ≤ exp −
δ2sRsT

3

( )
.

Proof. Recall from the NMBR mechanism that BS � csT(1 + δs). The bound follows from direct application of the
following standard Chernoff bounds (for more details, see Dubhashi and Panconesi [16, chapter 1]): For Xi in-
dependent random variables with 0 ≤ Xi ≤ 1 and X �

∑
i Xi, we have

P X ≥ E X[ ] 1 + ε( )
[ ]

≤ exp −
ε2E X[ ]

3

( )
. □

Thus, we obtain from Lemma 3 and (8) that

us As;NMBR( ) − us Tr;NMBR( ) ≤ δsc̄sT + 2Tvmax exp −
δ2sRsT

3

( )
. (9)

As we increase δs, the gains from potential deviations in the auxiliary game increase (as in Lemma 1), but the
gap in the performance of truthful reporting between the original and auxiliary games decreases (via Lemmas 2

and 3). Choosing δs �
̅̅̅̅̅̅̅
3 logT
RsT

√
balances this trade-off, thereby establishing approximate incentive compatibility

guarantee (1). Similarly, from Lemma 2 and (8), after substituting the aforementioned value of δs, we have

us Tr;NMBR( ) ≥ ûs Tr( ) − 2vmaxT
−1. (10)

Observe that ûs(Tr) � Tus(Tr;Mmoney), because the auxiliary problem involves repeating Mmoney for T time
periods. Upon dividing by T, we obtain the utility guarantee (2).
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3.3. Tractable Black-Box Reduction via Sample-Averaged Budgets

Note that the NMBR mechanism requires the expected payment cs of each agent s under Mmoney as an input to
compute the initial budgets. However, for general Mmoney and Θs, computing cs exactly may be computa-
tionally hard. One way to resolve this is to compute cs approximately using a finite number of type samples. In
this section, we show how one can preserve our approximation guarantees while using such sample-averaged
budget estimates.

Before stating and proving our main results in this section, we need to introduce some additional notation.
For each agent s, suppose we have m independent samples {θ(1)

s , θ(2)
s , . . . , θ(m)

s } from the agent’s type distribution
Fs. Let cs

m be the sample-average cost over m rounds of the mechanism Mmoney for agent s, where simulated
round k uses sampled types {θ(k)

s : s ∈ [n]}. We define B̃s � cs
m(1 + δs)T to be the sample-average budget for agent s.

The main result of this section states that when the budgets of agents are set using sample averages B̃s with
m � T, the (α, β)-approximation guarantee of the NMBR mechanism is preserved with high probability.

Theorem2. Consider theNMBRmechanismwith budgets set to B̃s �Tcs
m(1+δs) (with the same choice of δs as in Theorem 1)

via sampling the type of every agent m � T times. Then, with probability at least 1 − 2nT−1, the following bound holds for any
agent s and any strategy As:

us Tr;NMBR( )

T
≥
us As;NMBR( )

T
− 3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
27csmcmax logT

T

√
− 4vmaxT

−1,

us Tr;NMBR( )

T
≥ us Tr;Mmoney

( )
− 2vmaxT

−1.

The proof of this theorem relies on showing a concentration bound for B̃s and then repeating the argument
employed for proving Theorem 1. For brevity, we defer the proof to Appendix A.

The bounds provided in this theorem are asymptotically equivalent to those in Theorem 1; however, the
constants are larger, as we need to account for the errors imposed by the sampling procedure. The proof of this
theorem can be found in Appendix A. Using this, we get the following corollary that establishes that the
computational complexity of running the NMBR mechanism is similar to that of running the monetary
mechanism Mmoney over T rounds.

Corollary 1 (Computational Cost of the NMBR Mechanism). Let C be the computational cost of running monetary
mechanism Mmoney over one period. Then, implementing the NMBR mechanism corresponding to Mmoney over T periods
requires 2T samples for every type distribution Fs and has a computational cost of 2TCmoney +O(Tn).

Proof. Given a mechanism Mmoney, we first run it T times with sampled types θt
s as input and use this to compute

the average costs c̄ms for every agent; this requires O(nT) operations. Moreover, during the actual execution of the
mechanism,we run themechanismMmoney for T times (once per period) with the actual reports of the agents, and in
the worst case, the NMBR mechanism simulates every agent’s bid T times. Thus, the NMBR mechanism needs at
most 2T sampled types per agent and 2T executions of the mechanism Mmoney. □

4. Beyond Excludability: The REAP Mechanism
Though the NMBR mechanism in the previous section provides a tractable black-box mechanism for a wide
range of repeated allocation settings, it is crucially dependent on the excludability assumption (Assumption 1).
This assumption may not hold in certain allocation settings, such as in exchange economies and social choice
settings. In this section, we propose an alternate mechanism, which we call REAP (for repeated endowed all-
pay), which satisfies guarantees similar to those of Theorem 1 without requiring the excludability assumption.
This extension, however, comes at a cost, namely, that we lose the tractability of the NMBR mechanism in
settings with rich type spaces.

Before presenting the algorithm, we define some notation. Given a monetary mechanism Mmoney, for any
agent s, we define a personalized pricing rule {cs(·) : θ ∈ Θ}, where cs(θ) is a price agent s pays to report type θ
and is defined as follows:

cs θs( ) �
Δ
E Cs θs, θ−s;Mmoney

( )[ ]
. (11)

Here, the expectation is over θ−s (drawn from the product measure F−s �
∏

q��s Fq).
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Example 2 (Single-Item Allocation). Recall the setting we used to illustrate the NMBR mechanism in the previous
section: there are n agents with values vit ∼ Unif[0, 1], and Mmoney is the second-price auction. In this case, the
personalized price (11) for reporting some value v̂s in the REAP mechanism is given by

cs v̂s( ) � E 1 max
r ��s

vr ≤ v̂s

{ }
·max

r ��s
vr

[ ]
�
n − 1

n
v̂ns .

Similarly to the previous section, we define cs � Eθ∼Fs[cs(θ)] to be the expected price charged to s under cs(·)
in a single period under truthful reporting and cmax

s � max {cs(θs) : θs ∈ Θs} to be the maximum price charged
to agent s, and finally, Rs � cs/c

max
s .

We can now define the REAP mechanism. Formally, it is described in Algorithm 2. Informally, the REAP
mechanism proceeds as follows: similarly to NMBR, it takes a monetary mechanism Mmoney as an input and
initializes by endowing each agent with a budget of credits. Then, in each period, agents report their types,
and the resulting allocation is computed via Mmoney. In contrast with NMBR, the payment of a given agent
depends only on the report of that agent and is computed as the expected payment for the agent’s report in
Mmoney when other agents report truthfully.

Algorithm 2 (Repeated Endowed All-Pay Mechanism)

Require: Static monetary BIC mechanism Mmoney, type distributions {Fs}, surplus parameter δs

1: Compute {cs(·) : θs ∈ Θs}, the pricing rule, for each agent s as described in (11); also compute cs, the
expected per-period payment under truthful reporting.

2: Allocate endowment of Bs � (1 + δs)csT credits to each agent s. Let B1
s � Bs.

3: for all t � 1 to T do
4: Get report θ̂t

s from each agent s. If Bt
s − cs(θ̂

t
s) < 0, update θ̂t

s � ∅. Charge each agent s a price of cs(θ̂
t
s)

credits, and let Bt+1
s � Bt

s − cs(θ̂
t
s).

5: Implement the allocation X(θ̂t;Mmoney)
6: end for

For this mechanism, we establish a vanishing (α, β)-approximation guarantee resembling that of Theorem 1.
Formally, we have the following theorem.

Theorem 3. Consider the REAP mechanism (Algorithm 2) with δs �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6(log n + logT)/RsT

√
. Then, for each agent s and for

any strategy As, assuming all other agents report truthfully, we have

us Tr;REAP( )

T
≥
us As;REAP( )

T
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6cscmax log n + logT

( )

T

√

− 4nvmaxT
−1.

Moreover, assuming all agents play truthfully, we have

us Tr;REAP( )

T
≥ us Tr;Mmoney

( )
− 2nvmaxT

−1.

Comparing this result to that of Theorem 1, we notice that the number of agents n now enters the incentive
guarantee explicitly (in addition to entering it implicitly through cs). This comes from the fact that in the
absence of the simulation step of the NMBR mechanism (Algorithm 1, Step 4), meaningful guarantees hold
only on the sample paths on which not a single truthful agent runs out of credits. This can be viewed as a
relatively low cost for disposing of this step in the REAP mechanism.

Finally, we make a note that running the REAP mechanism might not be computationally tractable. The
reason is that to execute REAP, we need to compute cs(θs) according to (11), and doing so exactly might be
intractable for large type domains. An interesting direction for future research is whether it is possible to
overcome this intractability in the general allocation setting.

4.1. Proof of Theorem 3

To prove Theorem 3, we adopt an approach analogous to the one we used in Section 3. Specifically, we
establish three lemmas that are analogous to Lemmas 1, 2, and 3. The main difference is that instead of
defining a separate auxiliary problem for each agent, here we define a single auxiliary game played by all
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agents simultaneously and show that the agents’ utility profiles under the REAP mechanism and the auxiliary
game are close. In addition to its use in this proof, the auxiliary game also plays a role in proving the price of
anarchy bound in the next section.

Formally, in the auxiliary game, a strategy As for an agent s maps the history at any time t ∈ [T] and her type
θt
s to her report θ̂t

s. Given a strategy profile (As,A−s), the expected utility of agent s in the auxiliary game is
defined as

ûs As,A−s( ) � E

∑T

t�1

vs θ
t
i ,X θ̂t

s, θ̂
t
−s;Mmoney

( )( )
[ ]

, (12)

where in the right-hand side, for each agent q ∈ [n], the reports {θ̂t
q : t ∈ [T]} are determined according to the

strategy Aq. Similarly, under a strategy As, the expected spending of agent s is defined as

ĉs As( ) � E

∑T

t�1

cs θ̂
t
s

( )
[ ]

. (13)

Note that, in contrast to analysis of the NMBR mechanism as in Section 3, here the expected spending of agent
s is independent of the strategies of the other agents, as an agent’s payment depends only on her own reports.
We say a strategy As is feasible for an agent s if it satisfies the expected budget constraint, cs(As) ≤ Bs.

Because Bs > csT, it follows that the strategy Tr is feasible for each agent s. As in the previous section, for an
agent s and for any strategy As in the REAP mechanism, define the strategy A∅

s as one that mimics As until the
first time t for which

∑t
τ�1 cs(θ̂

τ
s ) > Bs holds and reports θ̂t

s � ∅ thereafter. It is straightforward to verify that A∅
s

is a feasible strategy in the auxiliary game, satisfying us(As,A−s;REAP) � ûs(A
∅
s ,A

∅
−s) and cs(As;REAP) � ĉs(A

∅
s )

for all s.
Having defined the auxiliary game, we start with the following lemma, an analog of Lemma 1. The proof is

also analogous and is omitted for the sake of brevity.

Lemma 4 (Sensitivity). In the auxiliary game, suppose the budget of agent s is Bs � csT + Δ for some Δ > 0. Then, for any
feasible strategy As of agent s, we have

ûs As,Tr−s( ) ≤ ûs Trs,Tr−s( ) + Δ.

The next lemma, analogous to Lemma 2, establishes that an agent’s utility in the REAP mechanism is close to
that in the auxiliary game, when other agents report truthfully. Here, we prove this closeness holds for
arbitrary strategies of the agent, not just when she herself makes truthful reports. To prove this lemma, we
consider the budget depletion event ε � ∪s∈[n]εs, where εs is defined as

εs �
∑T

t�1

cs θ
t
s

( )
≥ Bs

{ }
. (14)

We have the following lemma, whose proof is similar to that of Lemma 2 and is deferred to Appendix A.

Lemma 5 (Closeness of Auxiliary and Original Games). For any strategy As employed by agent s under the REAP
mechanism, assuming all other agents are playing truthfully, the following inequality holds:

us As,Tr−s;REAP( ) ≤ ûs A
∅
s ,Tr−s

( )
+ 2P ε[ ]Tvmax.

Furthermore, we also have

ûs Trs,Tr−s( ) ≤ us Trs,Tr−s;REAP( ) + 2P ε( )Tvmax.

Finally, we have the third lemma, analogous to Lemma 3, which bounds the probability of the budget
depletion event ε. Once again, the proof is analogous and is omitted. Recall that Rs � cs/c

max
s , where

cmax
s � max {cs(θs) : θs ∈ Θs}, and cs � E[cs(θs)].
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Lemma 6.

P ε[ ] ≤ n exp −
Tmins δ

2
sRs

3

( )
. (15)

Using these three lemmas, we obtain

us As,Tr−s;REAP( ) − us Trs,Tr−s;REAP( )

� us
(
As,Tr−s;REAP

)
− ûs A

∅
s ,Tr−s

( )( )
+ ûs A

∅
s ,Tr−s

( )
− ûs

(
Trs,Tr−s

)( )

+
(̂
us
(
Trs,Tr−s

)
− us

(
Trs,Tr−s;REAP

))

≤ csTδs + 4P ε[ ]Tvmax,

where we have used the fact that Bs � csT(1 + δs) in the inequality. As in the previous section, the appropriate
choice of δs yields the theorem statement. For more details, see Appendix A.

5. Stronger Equilibrium Guarantees for Two Agents
Theorem 1 and Theorem 3 establish utility guarantees under truthful reporting while simultaneously ensuring
that truthful reporting is an ε-equilibrium. In particular, as the number of time periods T increases, the
expected per-round gain of an agent from a unilateral deviation goes to zero. This raises two related questions:

1. Do NMBR and REAP mechanisms have a vanishing price of anarchy; that is, does the per-round welfare2

under any equilibrium (if one exists) approach the welfare achieved by Mmoney as T increases?
2. Is there a nonmonetary BIC mechanism that achieves vanishing welfare loss (i.e., guarantees α � 0, β �

o(1) in the formalism of Definition 1)?
Given the generality of our setting, answering these two questions is challenging. Nevertheless, in this section,
we show that we can address these questions in a restricted setting, namely, when there are exactly two agents
and the REAP mechanism is employed with the VCG mechanism as Mmoney. We refer to this setting as the
REAP-VCG mechanism, or RVCG for short.

The rest of this section proceeds as follows. We first establish a price of anarchy for the RVCG mechanism
using the auxiliary game approach developed in previous section. We then leverage this result to prove the
existence of a BIC mechanism via a revelation principle argument.

5.1. REAP-VCG Mechanism

For the case of two agents, we prove price of anarchy bounds for the REAP mechanism when VCG mechanism
is used as input Mmoney (we refer to this setting as the REAP-VCG mechanism, and RVCG for short,
throughout). Specifically, we have the following allocation and payment rules:

X∗ θ( ) ∈ argmax
X∈X

∑

s∈ n[ ]

vs θs,X( ),

and

cs θs( ) � Ls − EF−s

∑

q��s

vq θq,X
∗ θ( )

( )
[ ]

, (16)

where Ls is defined as

Ls � sup
θs

EF−s

∑

q ��s

vq θq,X
∗ θ( )

( )
[ ]

.

Here F−s � Πq��sFq denotes the product measure over the types of all agents other than agent s. Note that this
choice of Ls ensures that the prices are nonnegative. We also restrict our attention to only those settings where
the VCG mechanism satisfies the opt-out assumption (Assumption 2). This implies that for every agent s, there
exists a report θs such that cs(θs) � 0. For example, in the single-item setting we discussed earlier, the payment
rule (16) yields the expected externality payments as in Example 2, and an agent can report v̂s � 0 to guarantee
zero payment.

5.2. Price of Anarchy of the REAP-VCG Mechanism

Throughout this section, we state our results from the perspective of agent 1; however, all results admit a
corresponding version for agent 2.
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Our approach to proving price of anarchy guarantee for the REAP-VCG mechanism is via a technique reminiscent of
smoothness (see Roughgarden [39]). In particular, given any strategy profile (A1,A2), it is enough for us to show
that individual deviations from that profile to truth-telling can guarantee agents their share of welfare in-
dependently of what strategy the other agent is playing. Recall that u1(A1,A2;RVCG) denotes the expected utility of
agent 1 in the RVCG mechanism, when the strategy profile is (A1,A2). The main result of this section is as follows.

Theorem 4 (Smoothness of REAP-VCG). Given a two-player setting under the RVCG mechanism, for any arbitrary
strategy profile (A1,A2), we have

u1 Tr,A2;RVCG( )

T
≥
u1 Tr,Tr;RVCG( )

T
−O

̅̅̅̅̅̅̅
logT

T

√( )
. (17)

Note that (17) does not exactly fit the definition of (λ, μ) smoothness (see Roughgarden [39]), because we
characterize the difference between “entangled” and “truthful” utilities via an additive rather than multi-
plicative factor. This difference, however, does not change the nature of the argument. In particular, this
immediately yields the following corollary.

Corollary 2 (Price of Anarchy). Let (A1,A2) be any equilibrium profile under the REAP-VCG mechanism. Then
u1(A1,A2;RVCG) + u2(A2,A1;RVCG) ≥ u1(Tr,Tr;RVCG) + u2(Tr,Tr;RVCG) − o(T).

Proof. Because (A1,A2) is an equilibrium profile, we have u1(A1,A2;RVCG) ≥ u1(Tr,A2;RVCG) (and similarly for
agent 2). Moreover, from (17), we have u1(Tr,A2;RVCG) ≥ u1(Tr,Tr;RVCG) − o(T). Combining and summing over
both agents, we get our result. □

Thus, the rest of this subsection is dedicated to proving Theorem 4. We do so by again employing the
auxiliary game we constructed earlier (see Section 3.2), in which agents are required to satisfy their budget
constraints only in expectation. We start by proving a smoothness property for the auxiliary game; we then
use the closeness of the auxiliary and original game to port the smoothness result over to the original game.

We first need some additional notation. We use Ût
1(θ

t
1, θ̃

t
2) to denote the utility of agent 1 in period t in the

auxiliary game if she reports type θt
1 and agent 2 reports type θ̃

t
2. The following lemma, the main driver of the

proof of Theorem 4, establishes a connection between utility of the first agent when she is reporting truthfully
and the payments of the second agent. This proof follows by a direct rearrangement of the terms in the pricing
rule (16) and is omitted for brevity.

Lemma 7. In the auxiliary game, suppose agent 2’s report at time t is θ̃
t
2. Then the expected utility of agent 1 under truthful

reporting (i.e., θt
1 ∼ F1) satisfies

E Ût
1 θt

1, θ̃
t
2

( )⃒⃒
⃒θ̃t

2

[ ]
� L2 − c2 θ̃

t
2

( )
. (18)

Using this characterization, we can now demonstrate smoothness for the auxiliary game.

Lemma 8 (Smoothness of the Auxiliary Game). Suppose the budget of agent 2 is B2 � (1 + δ2)c̄2T. Then, for any feasible
strategy A2 of agent 2, we have

û1 Tr,A2( ) � û1 Tr,Tr( ) − δ2c̄2T.

Proof. Let {θ̃
t
2 : t ∈ [1, 2, . . . ,T]} denote a sequence of reported types produced by agent 2’s strategy A2 in a sample

path of the mechanism. Note that these reports may be correlated with each other, or with the reports of the first
agent. Now we have

(by Lemma 7)

û1 Tr,A2( ) � E

∑T

t�1

Û1 θt
1, θ̃

t
2

( )[ ]

� E

∑T

t�1

E Û1 θt
1, θ̃

t
2

( )⃒⃒
⃒θ̃t

2

[ ][ ]

� E

∑T

t�1

L2 − c2 θ̃
t
2

( )( )[ ]

� TL2 − ĉ2 A2( ).
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Now, because the strategy A2 is feasible, we have ĉ2(A2) ≤ B2, and hence

û1 Tr,A2( ) ≥ TL2 − B2 � TL2 − c̄2T − δ2c̄2T � û1 Tr,Tr( ) − δ2c̄2T,

where the last equality follows from observing cs[2]T � TL2 − û1(Tr,Tr), which can be derived from (18) by
taking expectation over truthful reports θt

2 ∼ F2. □

Next, to extend this smoothness result to the original setting, we need a generalization of Lemma 5 for
settings where agent s reports truthfully, while other agents are playing some strategy A−s (which is feasible in
the original game). As before, we let εs denote the event that agent s depletes her budget before time T while
reporting truthfully under the REAP-VCG mechanism. We have the following lemma, whose proof is
analogous to that of Lemma 2 and is omitted for brevity.

Lemma 9. For any strategy A2 of agent 2 in the REAP-VCG mechanism, we have

u1 Tr,A2( ) − û1 Tr,A2( )
⃒⃒ ⃒⃒

≤ TvmaxP ε1( ).

Finally, these lemmas allow us to prove Theorem 4 in a manner analogous to that of the proof of Theorem 1.

Proof of Theorem 4. We can write the entangled utility term (left-hand side of (17)) as

u1 Tr,A2;RVCG( ) − u1 Tr,Tr;RVCG( )

� u1 Tr,A2;RVCG( ) − û1 Tr,A2( )
( )

+ û1 Tr,A2( ) − û1 Tr,Tr( )
( )

+ û1 Tr,Tr( ) − u1 Tr,Tr;RVCG( )
( )

≥ −TvmaxP ε1( ) + δ2c̄2T − Tvmax P ε1( ) + P ε2( )( ),

where the first bound follows from Lemma 5, the second from Lemma 8, and the last from Lemma 9.

Substituting our choice of δ1 �
̅̅̅̅̅̅̅̅̅̅̅̅̅
6(log 2+logT)

R1T

√
, we get the result. □

Unfortunately, the technique of proving vanishing price of anarchy via analyzing the deviation to truth-
fulness does not extend to the case of more than two agents; namely, our result relies on the connection
between agent 1’s utility and agent 2’s payment as stated in Lemma 7, which holds even if agent 2 is
misreporting. Such a connection does not persist when there are multiple opponents, because externality
imposed by a group of agents does not equal to the sum of externalities of individual agents. Whether the
price of anarchy result persists in the case of more than two agents is an open question.

5.3. Existence of a Near-Efficient BIC Mechanism

Finally, we return to the question of whether there exists a nonmonetary BIC mechanism with vanishing
inefficiency (α � 0, β � o(1), according to Definition 1). We now show how we can leverage the price of anarchy
result from the previous section to prove the existence of such mechanism, under the assumption that the type
spaces are finite.

Theorem 5. If the type spaces Θs are finite, there exists a Bayes–Nash equilibrium in the REAP-VCG mechanism.

The proof of this theorem is based on the fact that REAP-VCG is a finite state space game and can be found
in Appendix A.

Corollary 3 (Existence of a BIC Mechanism). Under the conditions in Theorem 5, there exists a BIC mechanism for two
agents with expected welfare loss of o(T).

Proof. In Theorem 5, we establish that a Bayes–Nash equilibrium exists for the REAP-VCGmechanism; moreover,
Corollary 2 guarantees that expectedwelfare loss at this equilibrium is at most o(T). Thus, given such a Bayes–Nash
equilibrium strategy, one can use the revelation principle to construct a mechanism that is Bayesian incentive
compatible and has the same welfare guarantees. □

6. Discussion
We have presented a general black-box reduction technique that allows us to convert any static monetary
mechanism to a repeated nonmonetary mechanism, while approximately preserving the incentive, welfare,
and tractability guarantees of the original mechanism. The modular nature of the proof of our main results
allows us to study how it extends to settings more general than the one we have analyzed. Below, we briefly
discuss two such extensions.
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6.1. Nonstationary Independent Type Distributions

A simple extension to our model allows agents’ type distributions Fts(·) that depend on the time period. It is
straightforward to show that our results extend to this setting. We briefly describe some details here.

Both NMBR and REAP mechanisms have a natural extension to nonstationary distributions: in the NMBR
mechanism, type sampling (Algorithm 1, Step 4) would be performed with respect to the appropriate dis-
tribution Fts(θs), and in the REAP mechanism, the pricing rule (11) would depend on time t. We update the
definition of cs to cs �

1
T

∑T
t�1 E[c

t
s(θ

t;Mmoney)], where cts(θ
t;Mmoney) denotes the payment of agent s in the static

BIC mechanism Mmoney, when types are distributed as Ft. Similarly, we define cmax
s � maxt,θ c

t
s(θ;Mmoney).

With these modifications, our proofs go through with no change; we illustrate this in the proof for the
NMBR mechanism. The definition of the auxiliary problem remains untouched, and the sensitivity (Lemma 1)
and the closeness (Lemma 2) results still follow, as their proofs do not use stationarity. We can also extend the
concentration result (Lemma 3), as the Chernoff bound holds for bounded, nonidentical, independent
distributions.

6.2 Conditionally Independent Types

Our results are less amenable to the case when types of agents are correlated, either across agents or across
time. The primary reason for this is that there is no straightforward way to extend the NMBR or REAP
mechanisms to these cases. For instance, when types are independent, the NMBR mechanism uses samples
from an agent’s distribution once her budget runs out (see Algorithm 1, Step 4). When types are correlated,
the (conditional) distribution of an agent’s type may be a priori unknown to the principal, and it is unclear
how agents with no remaining budgets should be handled. Similarly, when types are independent, the REAP
mechanism charges each agent her expected payment in the Mmoney mechanism given her report (see (11)).
When types are correlated, an agent’s payment in the Mmoney mechanism will be correlated with her type;
without access to an agent’s type, in general, the principal cannot compute the expected payment in Mmoney.

Despite the above concerns, our (α, β)-approximation results can be extended under a mild form of cor-
relation in agents’ types, namely, when the agents’ types are conditionally independent. Formally, this cor-
responds to the case where there exists an underlying random process {ωt : t ∈ [T]} such that at each time t,
conditional on ωt, the agents’ types θt are independent. We further require that for any t, given {ωr : r < t}, the
distribution of ωt is independent of {θr : r < t}. Finally, we assume that the principal has access to ωt prior to
making the allocation at each time t. This assumption captures resource allocation settings where agents’ value
for the resource depends on an (observable) quality of the resource (e.g., weather conditions in the case of
allocation of parking spots or vacation days). (Note that nonstationary independent type distributions form a
special case of conditionally independent distributions, where ωt � t for each t ∈ [T].)

Under conditional independence, both NMBR and REAP mechanisms allow a straightforward extension. In
particular, in the simulation step (Algorithm 1, Step 4) of the NMBR mechanism, for any agent s with no

remaining budget, the mechanism samples a report θ̂t
s from the conditional distribution given ωt. Similarly, for

the REAP mechanism, each agent s is charged her (conditional) expected payment in the Mmoney mechanism,
given ωt. With these modifications, Lemma 1 and Lemma 2 continue to hold. Thus, our (α, β)-approximation
results survive as long as the process {ωt : t ∈ [T]} satisfies a concentration result analogous to Lemma 3. This
holds, for example, when ωt is independent across time.
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Appendix A. Additional Proofs of Results
A.1. Proofs for the NMBR Mechanism

Proof of Theorem 2. Let Gs be the event that B̃s differs from its expected value (the endowment Bs in the NMBRmechanism) by
more than Tcsδs/2, that is,

Gs �
⃒⃒
B̃s − Bs

⃒⃒
≥ Tcsδs/2

{ }
.

We now have the following concentration bound.
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Lemma A.1. Given sample-average budget B̃s � cs
m(1 + δs) obtained from m samples (for some 0 < δs < 1/2), we have

P Gs[ ] ≤ 2 exp −
δ2sRsm

27

( )
.

Proof. The first bound follows from standard Chernoff bounds (see Lemma 6):

P B̃s ≥ Tcs 1 + δ + δ/2( )
[ ]

≤ P Tcs
m 1 + δ( ) ≥ Tcs 1 + δ( )

1 + 3δ/2

1 + δ

[ ]

≤ P Tcs
m 1 + δ( ) ≥ Tcs 1 + δ( ) 1 + δ/3( )

[ ]
≤ exp −

δ2sRsm

27

( )
.

Analogous derivation for the lower bound of B̃s yields the result. □

We denote by us(As;Gs) the expected utility of agent s playing strategy As conditioned on the event Gs. When the event Gs

happens, we can repeat the argument of Theorem 1 to obtain

us As;Gs( ) − us Tr;Gs( ) ≤
3

2
Tcsδs + 4 exp −

δ2sRsT

12

( )
Tvmax. (A.1)

The expected utility profile bound is obtained analogously to the proof of Theorem 1, by taking a union bound of events
Gs and εs:

us Tr;Gs( ) ≥ Tus Tr;Mmoney

( )
− 2 exp −

δ2RsT

27

( )
Tvmax. (A.2)

Now choose δs �
̅̅̅̅̅̅̅̅
27 logT

TR̃s

√
, where R̃s �

cs
m

cmax
. Note that here we had to use R̃s instead of Rs �

cs
cmax

, which may be unknown to
the mechanism designer. This, however, does not affect the bound: it follows from Lemma A.1 that P[|cms (Tr) − cs| ≤

cs/2] ≤ 2 exp(− Rsm
27 ) � o(T1−k) for any k. This, together with the choice of δs and the bounds (A.1) and (A.2), yields the

needed result. □

A.2. Proofs for the REAP Mechanism

Proof of Lemma 5. Define the utility received by the agent s in the auxiliary problemwhen playing strategyAs against truthful
opponents as

Ûs A( ) �
∑T

t�1

vs θ
t
s,X θ̂t

s, θ
t
−s;Mmoney

( )( )
.

Observe that, conditioned on the event ¬ε−s (i.e., restricting to sample paths where no agent apart from s runs out of credits),
expected utilities in original and auxiliary games are equal; formally, we have E Us(As)|¬ε−s

[ ]
� E[Ûs(A

∅
s )|¬ε−s]. This gives us

us As( ) �P ¬ε−s]E Us As( )|¬ε−s[ ]+P ε−s]E Us As( )|ε−s[ ] ≤P ¬ε−s[ ]E Ûs A
∅
s

( )
|¬ε−s

[ ]
+2P ε−s[ ]Tvmax ≤ ûs A

∅
s

( )
+2P ε−s[ ]Tvmax.

[[
(A.3)

For the second inequality, note that, conditioned on¬ε−s ∩ ¬εs (i.e., no agent runs out of credits), the utility of a truthful agent
in the auxiliary game is equal to her utility in the original game, that is, E[Us(Trs]|¬ε−s ∩ ¬εs] � E[Us(Trs)|¬ε−s ∩ ¬εs]. The
bound is then derived similarly to Equation (A.3). □

We now turn back to the REAP mechanism and prove the promised (α, β)-approximation guarantee.

Proof of Theorem 3. Let As denote an arbitrary strategy in REAP. We have

us As( ) − us Tr( ) � us As( ) − ûs A
∅
s

( )
+ ûs As( ) − ûs Tr( ) + ûs Tr( ) − us Tr( ). (A.4)

We can now use bounds from Lemma 5 for us(As) − ûs(A
∅
s ) and ûs(Tr) − ûs(Tr), and Lemma 4 for ûs(As) − ûs(Tr). Substituting

them into (A.4) gives

us As( ) − us Tr( ) ≤ Tcsδ + 2 2n + 1( )Tvmax exp −
δ2sRsT

3

( )
.

Substituting δs �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6(log n+logT)

RsT

√
in the above equation, we get the first promised bound (for the gains from deviation).
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To prove the β-approximation, we first need some additional notation. Let ε � ∪s∈[n]εs denote the event where at least one
agent runs out of money before the end of T rounds. Note also that under our choice of δs, we have, for all s,

δ2sRs �
6(log n+logT)

T ≜ δ2R. Finally, from Lemma 6, we have P[ε] ≤ n exp − δ2RT
3

( )
. Now we have

E us Tr( )
[ ]

≥ P ¬ε[ ]E Us Trs( )|¬ε
[ ]

≥ ûs Tr( ) − nvmaxTP ε[ ] ≥ us Tr;Mmoney

( )
− 2nvmaxTP ε[ ] .

Substituting δ2R �
6(log n+logT)

T yields the result. □

Proof of Theorem 5. Note that in the REAPmechanism, the budget of each agent at any time t is completely determined by the
previous reports. Because the type space Θ is finite and we focus on direct-revelation mechanisms, the set of possible reports is
finite. Thus, the set of possible budgets of each agent at any time t is finite.

Now, in the REAP mechanism, the budget of an agent at any time t denotes her state, and the type space denotes her actions.
Because this is a finite game, the existence of a BNE follows using standard arguments (Fudenberg and Tirole [18, chap-
ter 14]). □

Appendix B. Applicability of the REAP Mechanism: Examples
The main difference between the mechanisms described in Sections 3 and 4 is the dependence on excludability assumption
(Assumption 1); namely, the NMBR mechanism makes use of it and the REAP mechanism does not. This can be viewed
as a trade-off between generality and tractability, but how restricting is Assumption 1? And are there important problems
that can be solved with REAP but not NMBR?

In this section, we aim to answer this question by providing several examples.

B.1. Assumptions on the Allocation Setting

We start with the example of central allocation of items with combinatorial preferences, for which we argue both
mechanisms are applicable.

Example B.1 (Combinatorial Auction). There are n agents and m items, and agents have combinatorial preferences for the
allocated set of items that result from independently and randomly drawn types θs.

Assumption 1 clearly holds for this setting. For the NMBR mechanism, we can use VCG with the Clarke pivot rule as an
input monetary mechanism Mmoney. If more is known about utility functions, other results from monetary mechanism
design can be employed for tractability purposes, for example, using the work of Hartline et al. [27].

Example B.2 (Mutually Beneficial Exchange of Goods). There are two agents, and at each round, an item is given to one of them
at random, and agents sample their values vts ∼ F for the item independently from the same distribution F at every round. A
mechanism is to choose whether to reallocate the item at every round.

It is easy to see that, whatever the value distribution is, the expected optimal allocation in this case Pareto dominates
the default one, as both players have greater utility under the mechanism compared with initial allocation, and so (as we
argue in Section 2) our individual rationality criterion is satisfied. Thus, REAP is an approximately IC, approximately
efficient, and ex ante individually rational mechanism.

Example B.3 (Voting). There are n agents and m options. In each round, agents have value vtsk ∼ Fsk for the option k (drawn
i.i.d.). A mechanism is to choose a single option in every round, and utilities of agents are their values for the option chosen.

Again, Assumption 1 does not apply here, as it is impossible to prevent an agent from deriving utility from whatever
option is chosen by the mechanism. However, there is nothing that prevents us from applying the REAP mechanism to
derive near-optimal welfare.

Appendix C. Interim Guarantees for the NMBR Mechanism
Although throughout this paper we focus on ex ante guarantees, our results also imply that after a constant fraction γT (for
any γ < 1) of the time periods has passed, with high probability (but decreasing in γ), the agent will continue to find
truthful reporting to be approximately optimal (with approximation factor decreasing in γ). More formally, one can show
the following result.

Theorem C.1. Consider the NMBR mechanism and any constant γ ∈ (0, 1), and let T̃ � (1 − γ)T. Then, with probability

p ≥ 1 − 2e−
δ2s RsγT

3 , the following hold simultaneously for all agents s at round γT, if all agents report truthfully up to this turn:

uT̃s As;NMBR( ) − uT̃s Tr;NMBR( )

T̃
≤ c̄s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 1 + γ
( )

log T̃

1 − γ
( )

RsT̃

√
+ 2vmaxT̃

−1

and us Tr;Mmoney

( )
−
uT̃s Tr;NMBR( )

T̃
≤ 2nvmaxT̃

−1,
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where uT̃s (As;NMBR) �
∑T

t�γT vs(θ̂s, ,X(θ̂s, θ−s;NMBR)) is the utility agent s derives from playing strategy As against truthful
opponents in the NMBR mechanism, starting with round t � γT.

Proof. Note that after γT periods, the remaining game is equivalent to the original one,with budgetsB
γT
s � B0

s −
∑γT

t�1 Cs(θ;Mmoney)

and T̃ rounds remaining. Thus, we can reduce the statement of the theorem to that of the Theorem 1, if we can show that, with high
probability, B

γt
s � csT̃(1 + δ̃s) for some δ̃s.

In particular, we can use the Chernoff bound to see that

P

∑γT

t�1

Cs θ
t;Mmoney

( )
[

∈ γTcs 1 − δs( ), γTcs 1 + δs( )
[ ]

]
≥ 1 − 2e−

δ2s RsγT

3 .

Also, because the initial budget is set to Bs � csT(1 + δs), the remaining budget at turn t � γT is given by

BγT
s � csT 1 + δs( ) −

∑γT

t�1

Cs θ;Mmoney

( )
.

Combining the Chernoff bound with this, we get that B
γT
s � csT̃(1 + δ̃s), where

δ̃s ∈ δs, 1 +
2γ

1 − γ

( )
δs

[ ]
with probability at least 1 − 2e−

δ2s RsγT

3 .

We can now reduce the proof of the theorem to that of Theorem 1. To do this, we just need to notice that, to upper bound P[εs],
we can use the lower bound for the value of δ̃s (because the probability to run out of credits is highest when the budget is the
smallest). To upper bound gains from deviations, we use the upper bound for δ̃s, as the bound given by Lemma 4 is widest when
the budget surplus is large. We can now substitute the correct values of δ̃s in place of δs in the statement of Theorem 1 to obtain
the needed result. □

Endnotes
1Throughout, we use the notation [m] to denote the set {1, 2, . . . ,m} for any positive integer m.
2Here, we define welfare as the sum of the agents’ utilities.
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