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We have constrained syneruptive pressure-temperature-time (P-T-t) paths of mafic
magmas using a combination of short-timescale cooling and decompression
chronometers. Recent work has shown that the thermal histories of crystals in the last
few seconds to hours of eruption can be constrained using concentration gradients of
MgO inside olivine-hosted melt inclusions, produced in response to syneruptive cooling
and crystallization of olivine on the inclusion walls. We have applied this technique to
the study of melt inclusions erupted by arc and ocean island volcanoes, including the
1974 subplinian eruption of Fuego volcano; the 1977 fire-fountain eruption of Seguam
volcano; and three eruptions of Kilauea volcano (episode 1 of the 1959 Kilauea Iki
fire-fountain eruption, the 1500 CE vigorous fire-fountain eruption, and the 1650 CE
subplinian eruption). Of the eruptions studied so far, melt inclusions from the 1959
Kilauea Iki eruption record the highest syneruptive cooling rates (3—-11°C/s) and the
shortest cooling durations (4-19 s), while inclusions from the 1974 Fuego eruption
record the slowest cooling rates (0.1-1.7°C/s) and longest cooling durations (21—
368 s). The high cooling rates inferred for the Kilauea |ki and Seguam fire fountain
eruptions are consistent with air quenching over tens of seconds during and after
fragmentation and eruption. Melt inclusions sampled from the interiors of small (~6 cm
diameter) volcanic bombs at Fuego are found to have cooled more slowly on average
than inclusions sampled from ash (with particle diameters < 2 mm) during the same
eruption, as expected based on conductive cooling models. We find evidence for a
systematic relationship between cooling rates and decompression rates of magmas,
in which rapidly ascending gas-bearing magmas experience slower cooling during
ascent and eruption than slowly ascending magmas. Our magma P-T-t constraints
for the Kilauea Iki eruption are in broad agreement with isentropic models that show
that the dominant driver of cooling in the conduit is adiabatic expansion of a vapor
phase; however, at Fuego and Seguam, our results suggest a significant role for latent
heat production and/or open-system degassing (both of which violate assumptions
required for isentropic ascent). We thereby caution against the application of isentropic
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conduit models to magmas containing relatively high initial water concentrations (e.g.,
arc magmas containing ~4 wt% water). We note that several processes that have
been inferred to occur in volcanic conduits such as magma stalling, magma mingling,
open- and closed-system degassing, vapor fluxing, and vapor accumulation (in foam
layers or as slugs of gas) are associated with different implied vapor volume fractions
during syneruptive ascent. Given the sensitivity of magma P-T-t paths to vapor volume
fraction, the syneruptive thermometer presented here may be a means of identifying
these processes during the seconds to hours preceding the eruption of mafic magmas.

Keywords: syneruptive magma ascent, diffusion, melt inclusions, olivine, thermal histories, conduit processes

INTRODUCTION

The temperature of magma during ascent through the volcanic
conduit exerts an important control on magma crystallinity
and viscosity, which in turn affect magma rheology and ascent
dynamics (Costa et al., 2007; Vona et al., 2011; Shea and Hammer,
2013; La Spina et al, 2016; Bamber et al, 2020). A recent
numerical modeling effort by La Spina et al. (2015) found that
“a temperature variation of 30 K at the base of the conduit
has a bigger effect on mass discharge rate than an increase of
1 wt% in water content;” thereby highlighting the impact of
seemingly small temperature variations on the vigor of explosive
basaltic eruptions. Temperature variations during ascent and
eruption also influence the speciation and oxygen fugacity of
exsolved vapor (Oppenheimer et al., 2018; Moussallam et al.,
2019). Recently developed real-time monitoring tools for gas
geochemistry are now providing continuous records of volcanic
gas emissions (Aiuppa et al., 2005; Shinohara, 2005; Aiuppa et al.,
2007; de Moor et al., 2016), but in order to interpret and harness
the information provided by these records, we must decipher
the relationships between the dynamics of magma degassing and
escape, magma temperature, and vapor speciation.

In addition to the importance of syneruptive temperature
changes as a control on eruption dynamics and outgassed vapor
speciation, the syneruptive cooling rate of tephra is also a key
parameter for accurately determining pre-eruptive CO, and
H,0O concentrations of melt inclusions, which are widely used
to estimate magma storage depths (e.g., Métrich and Wallace,
2008; Ruth et al., 2018; Rasmussen et al, 2019). CO, may
effectively partition into vapor bubbles during post-entrapment
cooling, thereby compromising the utility of melt inclusions as
magma barometers (Hartley et al., 2014; Moore et al., 2015). This
challenge has been met by the development of several analytical
(Hartley et al., 2014; Moore et al., 2015), modeling (Wallace
et al,, 2015; Maclennan, 2017; Tucker et al., 2019; Rasmussen
et al., 2020) and experimental (Mironov et al., 2015; Rasmussen
et al.,, 2020) approaches to correct for diffusion of CO, from
melt inclusions into their vapor bubbles. Syneruptive cooling rate
sets the time available for CO, diffusion within melt inclusions:
Eruptive deposits that cool slowly allow extensive loss of CO; into
vapor bubbles, while rapidly cooled melt inclusions pass through
a higher closure temperature for CO, diffusion and allow less
diffusion of CO; into vapor bubbles. One of the largest sources
of error in the models that have been developed to account for

diffusion of CO; into vapor bubbles is uncertainty in estimates
of the syneruptive cooling rate (Maclennan, 2017; Tucker et al.,
2019; Rasmussen et al., 2020). Similarly, it is widely recognized
that olivine-hosted melt inclusions are susceptible to syneruptive
and post-eruptive water loss via diffusion of water through the
host olivine (Massare et al., 2002; Gaetani et al., 2012; Bucholz
et al., 2013; Lloyd et al, 2013; Le Voyer et al., 2014). Melt
inclusions from pyroclasts that cool slowly suffer more extensive
water loss than those sampled from rapidly quenched pyroclasts,
demonstrating the strong control of syneruptive cooling rate on
the extent of post-eruptive water loss from melt inclusions.

Despite the importance of the thermal evolution of magma
as a control on eruptive processes (Costa et al., 2007; Vona
et al., 2011; Shea and Hammer, 2013; La Spina et al., 2016;
Bamber et al, 2020) and the post-entrapment evolution of
melt inclusion volatile contents, petrologic studies of magma
temperature changes during ascent and eruption are limited.
Blundy et al. (2006) used plagioclase-melt thermometry to infer
temperature increases of ~100°C over several months of magma
ascent during dome-building eruptions of Mount Saint Helens
and Shiveluch volcanoes. Plagioclase-melt thermometry also
reveals apparent temperature increases during magma ascent
at Soufriere Hills, Mount Unzen, and Izu Oshima (Humphreys
et al., 2016); however, Humphreys et al. (2016) suggest that
post-entrapment water loss and/or disequilibrium crystallization
could explain some or all of the apparent temperature increases
during magma ascent inferred by plagioclase-melt thermometry.
Other authors have exploited changes in water speciation during
quenching (Zhang et al., 1997) and calorimetry (Wilding et al.,
2000; Gottsmann and Dingwell, 2002; Potuzak et al., 2008;
Nichols et al., 2009) to infer cooling rates of silicate melts as they
pass through the closure temperature for water diffusion or the
glass transition temperature, respectively.

The techniques listed above are not sensitive to temperature
changes over the minute-to-hour timescales of magma ascent
during explosive eruptions. Newcombe et al. (2014) developed
a technique that uses MgO concentration gradients in olivine-
hosted melt inclusions to constrain multi-stage thermal histories
of magmas during the last few seconds to hours of ascent
and syneruptive quenching, potentially providing a means to
bridge the gap in timescales accessible with previously developed
methods. So far, this technique has been applied to melt
inclusions from submarine lavas, a sub-aerial hornito eruption,
olivine-bearing sand from Papakaloa Beach (Hawaii), sand from
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the Kilauea Iki crater, and olivines from martian meteorite
Yamato 980459 (Newcombe et al, 2014; Saper and Stolper,
2020). The application of this technique to explosive basaltic-
to-intermediate systems that exhibit a range of eruptive styles
could reveal systematics of temperature changes during late-
stage magma ascent, eruption, and quenching. Additionally,
constraints of cooling rates from individual olivine-hosted melt
inclusions will allow more accurate reconstruction of pre-
eruptive volatile contents using published models of vapor
bubble formation (Maclennan, 2017; Tucker et al, 2019;
Rasmussen et al., 2020).

In this study, we apply recently developed magma temperature
and ascent chronometers in concert to determine P-T-t paths of
magmas erupted at arc and ocean island volcanoes. The studied
eruptions exhibited a variety of eruptive styles [their volcanic
explosivity indices (VEI) range from 1 to 4] and their pre-
eruptive magmas contained variable water concentrations (from
~0.5 to ~4 wt% H,0O). Previously published determinations
of magma decompression rates for the eruptions considered
in this study indicate a range of linear decompression rates
from ~0.05 to 0.4 MPa/s (Lloyd et al., 2014; Ferguson et al.,
2016; Newcombe et al., 2020). There is increasing evidence
that the decompression rate of mafic magmas correlates with
eruption explosivity (Ferguson et al., 2016; Cassidy et al., 2018;
Barth et al.,, 2019); however, links between syneruptive T-t and
P-t paths have not previously been investigated via petrologic
methods. By exploring a range of magma properties and eruptive
styles, we aim to identify the dominant controls on syneruptive
magma P-T-t paths that can be used to guide future conduit
modeling efforts.

Background: Why Would the
Temperature of Magma Change During

Ascent?

During ascent from depth to the surface, magma experiences
an increase in its gravitational potential energy and an increase
in its kinetic energy. In order to satisfy conservation of energy,
these energy increases must be balanced by a decrease in the
internal energy of the magma. Whether or not this decrease
in the magma’s internal energy is associated with a decrease in
temperature depends on the extent to which the system (i.e.,
the ascending parcel of magma) is open to transfer of heat,
work, and mass. If a parcel of magma ascends rapidly enough
to prevent significant melt-vapor segregation and conduction of
heat across the conduit walls, then its ascent may closely follow
an adiabatic path (i.e., the system is closed to transfer of heat and
mass). If, furthermore, this parcel of magma experiences minimal
syneruptive crystallization, irreversible gas exsolution (Sahagian
and Proussevitch, 1996), or viscous heating, then its ascent
may be considered approximately isentropic. During isentropic
decompression of a melt-vapor mixture, expansion of the magma
(which is dominated by expansion of the vapor phase) does work
against its surroundings, and this is compensated by a decrease in
the enthalpy and temperature of the magma. Isentropic ascent is
an endmember scenario that produces maximal cooling (Mastin
and Ghiorso, 2001). Temperature changes expected during

adiabatic ascent of magma along both isentropic and isenthalpic
paths are considered in detail by Mastin and Ghiorso (2001).

A parcel of magma that ascends slowly enough to allow
significant loss of heat and/or mass through the conduit walls
cannot be approximated as an adiabatic system. Loss of vapor
from the magma may trigger degassing-driven crystallization
which produces latent heat (Blundy and Cashman, 2005).
Irreversible processes such as viscous heating and irreversible
vapor exsolution also lead to heat production during magma
ascent (Fujii and Uyeda, 1974; Sahagian and Proussevitch, 1996;
Koyaguchi, 2005; Mastin, 2005; Vedeneeva et al., 2005; Costa
et al., 2007). If minimal expansion or lifting work is done by
the magma (e.g., slow-moving magma extruded during a dome-
building eruption), and if heat production is able to exceed
heat loss by conduction through the conduit walls, then the
temperature of the magma may increase during ascent (Blundy
et al., 2006; Glazner, 2019).

Here, we consider magma ascent during explosive eruptions
of mafic magmas. These magmas have lower viscosities and
higher decompression rates (Lloyd et al., 2014; Ferguson et al.,
2016; Newcombe et al, 2020) than the andesitic magmas of
the dome-building eruptions considered by Blundy et al. (2006)
that were inferred to experience syneruptive heating. Conduit
models typically neglect to account for temperature variations
during ascent (Sahagian, 2005), but the small subset of models
that explicitly consider temperature variations during magma
ascent do so either by considering the contributions of both
adiabatic vapor expansion and latent heat of crystallization to
the temperature evolution of the magma (Kavanagh and Sparks,
2009; La Spina et al., 2015), or by making the assumption that
the ascending magma follows an isentropic path (Mastin and
Ghiorso, 2000; Mastin and Ghiorso, 2001; Campagnola et al,,
2016; Kiline, 2018). In particular, the popular Conflow and
Confort models that calculate temperature changes of magmas
undergoing isentropic ascent often predict tens of degrees of
syneruptive cooling in the conduit (Mastin and Ghiorso, 2000;
Campagnola et al., 2016). However, the assumptions of isentropic
models are easily violated, e.g., if the magma crystallizes or
stalls on ascent, or if melt-vapor segregation occurs. Given
the many challenges of numerically reproducing the complex
and dynamic conduit environment, we turn instead to the
development of syneruptive magma thermometers that can more
directly assess syneruptive P-T-t paths of magmas with fewer
a priori assumptions.

Samples

Olivine phenocrysts containing melt inclusions and/or melt
embayments were selected from the 1974 subplinian eruption
of Fuego volcano; the 1977 fire-fountain eruption of Seguam
volcano; and three eruptions of Kilauea volcano (episode 1 of
the 1959 Kilauea Iki fire-fountain eruption, the 1500 CE vigorous
fire-fountain eruption, and the 1650 CE subplinian eruption).
These samples were selected primarily because their syneruptive
ascent histories have been previously constrained using volatile
concentration gradients in melt embayments (Lloyd et al., 2014;
Ferguson et al., 2016; Newcombe et al, 2020), volatile loss
from olivine-hosted melt inclusions (Lloyd et al., 2013), and
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concentration gradients of water preserved in olivine and/or
clinopyroxene phenocrysts (Lloyd et al., 2016a; Newcombe et al.,
2020). These previous studies of syneruptive magma ascent will
allow us to examine potential relationships between thermal
histories and ascent histories of magmas in the last few seconds
to hours of their transport to the surface. The studied eruptions
span a range of eruptive styles, from the low-intensity fire-
fountain eruptions of Seguam and Kilauea Iki to the high-
intensity subplinian eruption of Fuego. Further details of the
studied eruptions are provided below.

Samples From the October 1974

Eruption of Volcan de Fuego (Guatemala)
We selected 19 olivine-hosted melt inclusions from the same
airfall samples studied by Lloyd et al,, (2013, 2014, 2016a).
These samples erupted on 17 October, 1974, and were collected
during the eruption by S. Bonis of the Instituto Geographico
Nacional, Guatemala City and provided by William Rose (IGSN:
ASL000001, ASL000002 and ASL000003). Olivine from this
phase of the eruption ranges in composition from Fo7; to Foyg
(Lloyd et al., 2013). Of the melt inclusions selected, four were
previously characterized for major, minor, and volatile element
concentrations by Lloyd et al. (2013) (sample names 127-1, 132-
2, 136-9, and 134D-R7). The melt inclusions were derived from
tephra with a range of clast sizes, and therefore they likely
experienced a range of post-eruptive thermal conditions: Twelve
of the melt inclusions were derived from ash (particles with
diameter < 2 mm; Lloyd et al., 2013); one inclusion was derived
from a lapillus (sample 136-9 of Lloyd et al., 2013; lapilli range in
size from 2 to 64 mm); and six were derived from the outer rim of
a volcanic bomb (sample 134D-R7 of Lloyd et al., 2013; volcanic
bombs are classified here as clasts with diameters > 64 mm).

The 17" October event had a volcanic explosivity index (VEI)
of 4 and its eruptive column is estimated to have reached a height
of ~15 km (Rose et al., 1978). The average decompression rate
of magma erupted during the 17th October subplinian event was
estimated by modeling the generation of volatile concentration
gradients in olivine-hosted melt embayments. The H,O, CO,
and S profiles in four embayments yielded decompression rates
between 0.3 and 0.5 MPa/s for magma that ascended from its
pre-eruptive storage region (at a depth of ~10 km) over a time
period of 8-12 min and at a velocity of 11-17 m/s (Lloyd et al,,
2014). Shapes of water concentration gradients measured across
clinopyroxene phenocrysts from this eruption are consistent with
the timescales of magma ascent derived from the olivine-hosted
melt embayments (Lloyd et al., 2016a).

Samples From the 1977 Eruption of

Seguam Volcano (Central Aleutian Arc)

We selected 12 olivine-hosted melt inclusions from a rapidly
quenched tephra sample (sample SEG-07-06 of Zimmer et al.,
2010). Melt inclusions from this sample were previously reported
to contain 3.3 £ 0.33 wt% water and their olivine hosts have
compositions that range from Fogy to Fogs (Zimmer et al.,
2010). Lloyd et al. (2016a) report water concentrations of
clinopyroxene phenocrysts and associated melt inclusions from

tephra sample SEG-07-06 and from a coevally erupted lava flow,
for which they developed a model of post-eruption water loss
from the lava samples during slow cooling. Newcombe et al.
(2020) report best-fit decompression rates for the Seguam 1977
eruption spanning 0.02 to 0.23 MPa/s, based on fitting volatile
concentration gradients in olivine-hosted melt embayments and
fitting water concentration gradients along the crystallographic
“a” axis of olivine phenocrysts. Plateaus in sulfur concentration
observed along the profiles of melt embayments from Seguam
suggest pre-eruptive stalling and/or crystallization of the Seguam
magma at a range of depths. Best-fit decompression histories
derived from Seguam melt embayments suggest magma ascent
durations of 9-320 min from initial pressures of 61-308 MPa
(Newcombe et al., 2020).

Samples From Kilauea Volcano (Hawaii)

We selected olivine-hosted melt inclusions from three
contrasting summit eruptions of Kilauea volcano, Hawaii,
which were previously studied by Ferguson et al. (2016),
who used volatile concentration gradients in olivine-hosted
melt embayments to determine magma ascent rates during
each eruption. A brief description of the three eruptions
is provided below.

Episode 1 of the 1959 Kilauea Iki Fire-Fountain
Eruption

The Kilauea Iki fire-fountain eruption began on November 14,
1959, and its 16 main eruptive episodes spanned 36 days (Richter
et al., 1970; Mueller et al., 2019). Each eruptive episode began
with a phase of pyroclastic fountaining and coeval filling of a
lava lake, followed by the abrupt cessation of fountaining and
subsequent draining of part of the lava lake back into the vent
(Eaton et al., 1987). For this reason, magma erupted during every
eruptive episode after episode 1 suffered from mixing with lava
that drained back into the vent during the previous eruptive
episode(s) (Eaton et al., 1987; Wallace and Anderson, 1998; Sides
etal., 2014). In order to avoid potential complexities in the ascent
and thermal histories of magmas that have mixed with degassed
and cooled drainback lava in the conduit, we focus on tephra
from episode 1 of the eruption which was the least affected by lava
drainback and shallow storage. Fire fountains from episode 1 of
the Kilauea Iki eruption reached a maximum height of ~380 m
and produced ~30 x 10° m> of lava over 7 days (Richter et al.,
1970; Eaton et al., 1987).

We selected six olivine-hosted melt inclusions from tephra
layer p17 of Stovall et al. (2011) collected and provided by Bruce
Houghton. Tephra from this layer is relatively coarse, with a
mean maximum clast size of ~55 mm (Stovall et al., 2011). The
host olivine phenocrysts range in composition from Fogs to Fogg
and the inclusions contain 0.65-0.81 wt% water [D. Ferguson,
unpublished data; see also Sides et al. (2014)]. Ferguson et al.
(2016) used volatile concentration gradients along an olivine-
hosted melt embayment from this sample to constrain a magma
decompression rate of ~0.05 & 0.005 MPa s~! from 110 MPa
(~4 km depth) during episode 1, corresponding to an ascent

duration of ~36 min at an average velocity of ~2 ms™ 1
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The Keanakako’i Basal Reticulite of the c. 1500 CE
Vigorous Fire-Fountain Eruption

The basal reticulite of the Keanakako’i tephra is thought to have
erupted c. 1500 CE from widely spaced vents around the rim
of Kilaueas caldera (Swanson et al, 2012; May et al., 2015).
The Keanakako’i basal reticulite forms in a thick layer (up to
~65 cm) along much of the caldera rim (Swanson et al., 2012).
The deposition of reticulite so close to its vent is consistent with
its eruption in a high fire fountain (estimated to be >600 m)
from a deep caldera (estimated to be ~200-300 m deep), such
that any denser pumice and scoria fell back into the caldera,
thereby allowing the preservation of the delicate reticulite along
the caldera rim (Swanson et al., 2012). The reticulite is golden-
brown in color with clast diameters from <1 cm to ~20 cm,
and it exhibits a distinctive open-cell polyhedral structure (i.e.,
similar to honeycomb) with vesicularities of ~95-98 vol.% (May
et al, 2015). The formation of this distinctive and delicate
texture is thought to require rapid ascent and late vesiculation of
supersaturated melt, followed by a period of textural maturation
by Ostwald ripening in the eruptive fountain, which is estimated
to occur in <20 s (Mangan and Cashman, 1996). Given these
textural constraints, we might expect the syneruptive thermal
history of the reticulite to be consistent with rapid ascent along
a liquid adiabat followed by quenching in air over a timescale on
the order of 10s.

We have analyzed two olivine-hosted melt inclusions from
the 1500 CE reticulite also collected by Bruce Houghton. Their
host olivine crystals range in composition from Fog; to Fogg and
the inclusions contain ~0.6 wt% water. Ferguson et al. (2016)
report magma decompression rates for the basal reticulite of 0.1-
0.32 4 0.02 MPa s~ ! from an initial pressure of 40 MPa (~1.5 km
depth), based on diffusion modeling of volatile concentration
gradients in melt embayments.

The 1650 CE Subplinian Eruption

The 1650 CE subplinian layer 6 deposit of the Keanoakako’i
tephra is a widely dispersed and conspicuously coarse layer of
fall scoria (McPhie et al.,, 1990). The deposit can be mapped
to the coast, ~20 km from the vent, and its dispersal in
a southeasterly direction suggests that the eruptive plume
reached the jet stream, thereby implying plume heights of
~10-20 km (Swanson et al, 2012). The layer 6 deposit
is thought to be the product of a small-volume, explosive
eruption with no evidence for groundwater involvement
(McPhie et al., 1990). The compositions of glasses in layer
6 juvenile clasts exhibit linear trends on MgO variation
diagrams of TiO, and K,O that are consistent with magma
mixing, possibly involving three endmember components
(Garcia et al., 2018).

We have analyzed one olivine-hosted melt inclusion from the
scoriaceous component of the 1650 CE layer 6 deposit collected
by Don Swanson. The olivine host of this melt inclusion has a
composition of Fogg, and the inclusion contains 0.6 wt% water.
Ferguson et al. (2016) report a magma decompression rate for the
layer 6 deposit of 0.45 + 0.01 MPa s~ ! from an initial pressure of
60 MPa (~2 km depth), based on diffusion modeling of volatile
concentration gradients in an olivine-hosted melt embayment.

MATERIALS AND METHODS

Analytical Techniques

Melt inclusions and their host olivine phenocrysts were analyzed
for major, minor, and trace elements using a Cameca SX100
microprobe (EMP) at the American Museum of Natural History
(AMNH). We analyzed linear traverses along the diameters of
the melt inclusions (beginning and ending in the adjacent host
olivine), with each analysis along the traverse being spaced
~2 pwm apart (see also Newcombe et al., 2014). The traverses were
analyzed using a 10 nA beam current and a 15 kV accelerating
potential with a focused beam (nominal beam diameter ~1 pm).
On-peak counting times for major elements varied between 5 s
(Na), 20 s (Mg, Si, K Ca, Al, and Fe), and 40 s (Mn, Ti, and
P). Background counting times for the elements were set to 50%
of their on-peak counting times. All analyses were corrected
for inter-run calibration offsets using factors determined by
replicate analyses of in-house, hydrous basaltic glass standards
FR:ND-60-01 and MR:ND-70-01 (Lloyd et al., 2013; Ferguson
et al., 2016). Raw data, corrected data, accepted compositions
of glass standards, and correction factors are provided in
the Supplementary Data Tables. Replicate analyses of glass
standards FR:ND-60-01 and MR:ND-70-01 yielded average RSDs
of <1% for SiO2, <2% for Al203 and MgO, and <3% for FeO
and CaO. We note that use of a focused beam on hydrous glasses
is known to cause sodium loss (London, 2005). We aimed to
minimize this effect while maximizing the spatial resolution and
precision of our major element analyses by reducing the on-peak
counting time for Na to 5s and by analyzing sodium during the
first pass of analyses.

Concentrations of volatiles (H,O, CO,, S, Cl, and F) in
11 melt inclusions from Seguam volcano were characterized
using the Cameca NanoSIMS 50L at the Department of
Terrestrial Magnetism, Carnegie Institute of Washington,
following previously developed analytical protocols (Hauri et al.,
2002, 2011; Lloyd et al., 2014; Ferguson et al., 2016). Samples
were mounted in dental resin; polished to 0.25 wm; cleaned in
ultrasonic baths of toluene, acetone and isopropanol; baked in a
vacuum oven at ~110°C for several days; pressed into indium
mounts; coated in gold; and placed into the sample exchange
chamber of the nanoSIMS 1-3 days prior to the beginning
of the analytical session. The Cs™ primary beam was tuned
to achieve an approximate beam diameter of ~5 um and a
current of ~4 nA, with charge compensation provided by an
electron gun. Prior to data collection, the sample area was
pre-sputtered for 120 s in order to remove the gold coat and
surface contamination. The primary beam was rastered over a
10 x 10 pm area. During data collection, electronic gating was
applied to ensure the collection of ions from only the inner
14% of the measurement area (corresponding to an area of
3.7 x 3.7 pm). Negatively charged ions of 2C~, °0'H~, F~,
308i~, 3257, and ¥Cl~ were detected simultaneously using six
electron multipliers. *°Si~ was used as a denominator of all
reported ion intensity ratios, and the mass resolution power
was sufficient to resolve *O'H~ from 0. A selection of
basaltic and basaltic andesitic glasses with well-characterized
major element and volatile contents were used as standards (see
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Supplementary Data Tables). 35 replicate analyses of basaltic
andesite standard glass MR:ND-70-01 yielded relative standard
deviations (100*standard deviation/mean) of 4.4% for CO,, 4.5%
for H,0, 2.8% for F, 6.0% for S, and 16.1% for CL

We also provide in the Supplementary Data Tables analyses
of volatile concentrations in five olivine-hosted melt inclusions
from Seguam volcano that were measured using the Cameca IMS
6f SIMS at the Department of Terrestrial Magnetism, Carnegie
Institute of Washington. The sample preparation protocols and
analytical standards were the same as used for the nanoSIMS
analyses described above. Analytical protocols and measurements
of secondary standards are provided in Newcombe et al. (2020).

Constraint of Syneruptive Thermal
Histories Using MgO Zonation in

Olivine-Hosted Melt Inclusions

During syneruptive cooling, olivine-hosted melt inclusions
typically crystallize a thin rim (on the order of ~1 pm) on
their walls. Rapid crystallization of this olivine rim results in the
production of a diffusive boundary layer in the adjacent melt that
is depleted in elements that are compatible in olivine (e.g., Mg
and Fe) and enriched in incompatible elements (e.g., Al, Ca, Na,
K, and Ti). If cooling and crystallization are sufficiently slow, this
boundary layer will diffusively propagate toward the center of the
melt inclusion. Newcombe et al. (2014) characterized chemical
zonation in olivine-hosted melt inclusions from MORB and OIB
settings, and they developed a numerical method for using the
shape of the MgO zonation in the inclusions to constrain the
rate and duration of syneruptive cooling from the liquidus to
the temperature corresponding to the lowest measured MgO in
the melt. A calculation to demonstrate the expected evolution of
MgO zonation in an olivine-hosted melt inclusion in response to
cooling and syneruptive crystallization is provided in Figure 1.
We have applied the method of Newcombe et al. (2014) to
olivine-hosted melt inclusions from arc and OIB settings with
well constrained ascent histories with the aim of determining
syn- and post-eruptive thermal histories of melt inclusions from
explosive eruptions of basaltic and basaltic andesitic magmas
containing up to ~4 wt% water. The consideration in this study
of hydrous melts warrants reexamination of parameterizations
adopted by the model of Newcombe et al. (2014) to account for
changes in the physical and chemical properties of basaltic melts
resulting from water addition.

Effect of Water Addition and Major
Element Composition on the Diffusivity
of MgO in Basaltic Melt

The model of Newcombe et al. (2014) applies a temperature-
dependent, effective binary MgO diffusivity based on
experiments by Chen and Zhang (2008) of olivine dissolution
in basaltic melt from the Juan de Fuca (JDF) Ridge. The
consideration in this study of melt compositions that are
significantly different (particularly in terms of their water
concentrations) to JDF basalt raises the question of the extent
to which MgO diffusivity (Dygo) varies with melt composition.
Natural silicate melts are multicomponent systems, and the

diffusion of any one component depends on the concentration
gradients of all of the other components. Full treatment of the
development of boundary layers within olivine-hosted melt
inclusions would require knowledge of the multicomponent
diffusion matrix for basaltic and basaltic andesitic melts. While
much progress has been made (Kress and Ghiorso, 1995; Liang,
2010; Guo and Zhang, 2016, 2018, 2020), multicomponent
diffusion matrices are still only available for dry haplobasaltic
and basaltic melts at a few temperatures. Effective binary
treatment of MgO diffusion during olivine dissolution has
been shown to work well experimentally (Chen and Zhang,
2008) and multicomponent diffusion calculations are consistent
with effective binary calculations for MgO (Guo and Zhang,
2020). The advantage of multicomponent diffusion treatment
is the ability to simultaneously model diffusion profiles of
other major oxides, but the temperature dependence of the
multicomponent diffusion matrices are less well constrained
than that of the effective binary diffusivity of MgO. Hence, the
effective binary treatment is better suited for inferring thermal
histories (Newcombe et al., 2014), which is our goal here.

The experimental studies described above constrain Dygo in
nominally anhydrous melts; however, no experimental studies are
currently available that constrain the effect of H,O on Dygo in
basaltic melts. In order to address this uncertainty in our model,
we performed an experiment to determine Dyjgo in hydrous arc
basaltic melt. Our experimental setup is similar to that of the
olivine dissolution experiments performed by Chen and Zhang
(2008), except that a hydrous arc basalt composition (synthesized
using reagent-grade powdered oxides; the composition of the
starting material is provided in the Supplementary Data Tables)
was used in place of JDF basalt, and ~3.8 wt% water was added
to the mixture as AI(OH)s;. The powdered starting material
was placed in a Ni capsule containing a polished piece of San
Carlos olivine. The Ni capsule was placed in a 3/4-inch pyrex-
NaCl assembly and was held at 10 kbar and 1225°C in a piston
cylinder apparatus (at the Smithsonian Institution) for 2400 s,
at which point the experiment was quenched by shutting off
the power. The quenched experimental charge was cut and
polished along its diameter, and major and minor elements
were analyzed by electron microprobe along a traverse normal
to the olivine-glass interface. The electron microprobe traverse
across the quenched melt reveals that olivine dissolution took
place during the experiment, producing diffusive boundary layers
that propagated into the adjacent melt (see Supplementary
Figure S1). In order to assess the likely effect of water addition
on Dygo, we have applied the approach of Chen and Zhang
(2008) to constrain Dygo = 3.13(£0.15) x 10~ m%s~! in our
experimental melt at 1225°C, which is a factor of 3.44 higher
than Dygo calculated at 1225°C using the parameterization of
Chen and Zhang (2008) for dry basalt. Based on this result,
when fitting MgO data in melt inclusions containing hydrous
arc basaltic melts (i.e., inclusions from Fuego and Seguam) we
reduce our cooling timescales (calculated using the Chen and
Zhang (2008) parameterization of Dpgo) by multiplying by a
factor of 0.29 [i.e., we assume the relationship x oc \/Dygot,
where x is the characteristic diffusion length-scale and ¢ is time,
such that an increase in Dygo by a factor of 3.44 must be
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FIGURE 1 | Forward model of the generation of MgO zonation in an olivine-hosted melt inclusion subjected to cooling from 1200 to 1000°C at a rate of 0.6°C/s
(based on Figure 7 of Newcombe et al., 2014). (A) Temperature-time path imposed by the forward model. Colored circles indicate “snapshots” of the thermal history
that are plotted in (B). (B) Development of MgO zonation in a 150-um radius melt inclusion in response to the temperature-time path displayed in (A). The inclusion
is assumed to have an initially homogenous composition (black line). As the temperature decreases, the MgO concentration in the melt at the edge of the inclusion
evolves according to the temperature-dependent partition coefficient of MgO between melt and olivine (Newcombe et al., 2014). In response to the cooling and
crystallization-induced decrease of MgO at the inclusion edges, MgO diffuses from the center to the edges of the inclusion. Blue, red, cyan, and green curves show
snapshots of the evolution of MgO zonation in the melt inclusion after 36, 72, 144, and 360 s, respectively. The green shaded regions are olivine. Note that the
position of the olivine-melt interface is assumed to be fixed. Mass balance calculations indicate that the width of the olivine growth rim produced during syneruptive
cooling is typically ~1% of the radius of the inclusion such that the movement of the olivine-melt boundary can safely be neglected (Newcombe et al., 2014).
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compensated by a decrease in t by a factor of 1+-3.44 (which is
equal to 0.29)].

We have also assessed potential uncertainties in our modeled
timescales associated with the application of the Chen and Zhang
(2008) parameterization of Dygo to our Kilauea melt inclusions.
These inclusions contain slightly higher water concentrations
(~0.65-0.81 wt% H,O) than JDF basalt (~0.3 wt% H,0O), and
they have different major element compositions (e.g., Kilauea
basalts are depleted in Al;O3 and FeO and enriched in MgO
compared to JDF basalts). Zhang et al. (2010) proposed a
parameterization of Dygo as a function of anhydrous melt
composition, and application of this parameterization suggests
that Dygo in anhydrous Kilauea melt could be ~1.5 times Dygo
in JDF melt, such that our modeled cooling durations at Kilauea
could be off by a factor of ~0.7 (i.e,, 1+1.5) if we assume the
Chen and Zhang (2008) parameterization of Dygo. We note that
this offset is within the uncertainty of the Dyjgo parameterization
of Zhang et al. (2010), which is able to reproduce experimental
data within a factor of ~2, so we consider the Chen and Zhang
(2008) parameterization of Dygo to be acceptable for our Kilauea
melt inclusions.

Impact of Water Addition on

Olivine-Liquid Thermometry

A key component of the model of Newcombe et al. (2014) is the
assumption of a simple relationship between temperature and
MgO concentration of silicate melt in equilibrium with olivine.
Many such olivine-liquid thermometers have been proposed
(e.g., Roeder and Emslie, 1970; Ford et al., 1983; Beattie, 1993;
Sugawara, 2000; Chen and Zhang, 2008; Putirka, 2008). The
original model of Newcombe et al. (2014) adopted a thermometer
developed by Chen and Zhang (2008), which was calibrated using

dissolution experiments of Fogy San Carlos olivine in basaltic
melt from the Juan de Fuca Ridge. Here, we instead adopt the
olivine-liquid thermometer of Sugawara (2000), which has the
advantages of being calibrated over a wider range of olivine and
melt compositions than the thermometer of Chen and Zhang
(2008) and of being easy to implement due to the simplicity
of the parameterization for which temperature and liquid MgO
content are the only variables. We have adapted the Sugawara
(2000) thermometer to account for the effect of water on the
liquidus temperature of olivine-saturated melt by adding a water-
dependent temperature offset based on the results of Médard and
Grove (2008):

ATy,0 = 40.4*H,0 — 2.97*H,0% + 0.0761*H,0° (1)

T (K) = 1316 + (12.95/0.68)"MgO — ATy,o0  (2)

In equations (1) and (2), T is temperature in Kelvin, ATy, is
degrees by which the liquidus temperature is depressed due to
water addition, and H,O and MgO are in wt%. Temperatures
calculated for our Fuego and Seguam melts using equation (2)
are up to ~50°C lower than temperatures calculated using the
model of Putirka et al. (2007). We have tested the effect of this
temperature offset on our modeled thermal histories and we find
that increasing our temperatures by ~50°C results in an increase
in our best-fit cooling rates by a factor of ~2 (see Supplementary
Material). We note that, while the choice of thermometer affects
absolute values of temperatures and cooling rates calculated by
our model, our focus here is on relative changes in temperature
and cooling rate during syneruptive magma cooling, and we
expect relative differences between thermal histories of the melt
inclusions to be preserved with the consistent application of
any thermometer.
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FIGURE 2 | Mg# [molar Mg/(Mg + Fe?*)] of melt inclusions against forsterite
content of their host olivine crystals. Fe3+/(Fe3* + Fe?*) in the melt is
assumed to be 0.2 at Fuego (Lloyd et al., 2013), 0.23 at Seguam (Zimmer
et al., 2010), and 0.18 at Kilauea (Helz et al., 2017). The colored curves
indicate equilibrium between olivine and melt, assuming the
composition-dependent model for Kp proposed by Toplis (2005) (Fuego in
green, Seguam in orange, and Kilauea in purple). Note that all Kilauea melt
inclusions and the majority of Fuego melt inclusions have undergone some
amount of post-entrapment crystallization of olivine (i.e., their measured
compositions lie below the equilibrium curve), while several of the Seguam
inclusions appear to have undergone post-entrapment melting (i.e., their
compositions are too Mg-rich to be in equilibrium with their olivine hosts).

Choice of Initial and Final Temperatures
for Thermal History Modeling

The starting temperature for the thermal history modeling
is calculated based on an estimate of the pre-eruptive MgO
concentration of each melt inclusion, and the final temperature
considered by the model is the temperature corresponding to
the lowest measured MgO concentration at the edge of the melt
inclusion. For the Fuego melt inclusions (in Fo;_7¢ olivine
hosts), we estimated the pre-eruptive MgO concentration of
the inclusions by calculating the liquid MgO concentration that
would be in equilibrium with the far-field olivine host (Figure 2),
assuming an Fe-Mg exchange coefficient (Kp) of 0.35 (Toplis,
2005; Lloyd et al,, 2013) and a molar Fe3/Fe?T ratio of 0.20
(Lloyd et al.,, 2013). Four of the largest Fuego melt inclusions
(VF-127-1; VF-132-2; FuegoNL-7; and VF-136-6) were found
to contain slightly higher MgO concentrations than implied by
equilibrium with their host olivine crystals (see Figure 2 and
Supplementary Data Tables); for these inclusions the average
of the central ~5 measurements of MgO concentration were
adopted as the initial MgO concentration. The Fuego melt
inclusions exhibit a clear relationship between their central
MgO concentrations and the size of the inclusions (Figure 3):
On average, the smallest inclusions have the lowest central
MgO concentrations and vice versa. This trend is consistent
with the idea that the post-entrapment crystallization of this
suite of inclusions occurred syneruptively rather than during
long-timescale magma chamber processing (i.e., the boundary
layer of MgO depletion produced during syneruptive olivine
crystallization is able to propagate to the centers of the small
inclusions in the suite, while this boundary layer is confined to
the edges of the large inclusions such that their central MgO
concentrations are unmodified).
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FIGURE 3 | MgO concentration measured in the centers of melt inclusions
(not corrected for post-entrapment crystallization) plotted against inclusion
radius. Each point represents an average of ~5 MgO measurements.
Inclusions from Fuego with radii <~50 wm and inclusions from Seguam with
radii <~30 pm are depleted in MgO in their centers due to the propagation of
a diffusive boundary layer of MgO depletion produced during syneruptive
olivine crystallization on the inclusion walls. Colored dashed curves show
relationships between central MgO concentrations and inclusion radii
calculated by a one-stage linear cooling model. The initial MgO concentration
and cooling rate for each model were set to the average best-fit values
determined by fitting MgO concentration gradients in individual melt inclusions
from Fuego ash and bombs, Seguam, and Kilauea Iki (see Figure 4). The
purple curve uses an initial MgO of 9.6 wt% and a cooling rate of 3.9°C/s
(designed to match the Kilauea Iki melt inclusions); the green curve uses an
initial MgO of 6.7 wt% and a cooling rate of 3.1°C/s (to match the Seguam
inclusions); the orange curve uses an initial MgO of 4.5 wt% and a cooling
rate of 0.6°C/s; and the gray curve uses an initial MgO of 4.5 wt% and a
cooling rate of 0.3°C/s (to match the Fuego bombs).

For the Seguam melt inclusions (in Fog, g3 hosts), calculation
of the liquid MgO concentration implied by equilibrium with
the far-field olivine [using the model of Toplis (2005) to
calculate a Kp of 0.34 and assuming a molar Fe*>*/Fe?* ratio
of 0.23 (Zimmer et al., 2010)] reveals that several of the melt
inclusions have MgO concentrations that lie above their expected
equilibrium values (Figure 2). This suggests that several of
the inclusions may have undergone a small amount of post-
entrapment melting prior to eruption. For these inclusions, we
assume an initial MgO concentration equal to the average of ~5
MgO measurements from their center. For the few inclusions
that appear to have undergone syneruptive post-entrapment
crystallization (Segl-MI2; Seg6-MI2; Seg6-MI3), we assume an
MgO concentration implied by equilibrium with their olivine
host. Notably, those inclusions for which diffusion has reached
the inclusion centers are the smallest in diameter in the Seguam
suite (Figure 3).

For the Kilauea melt inclusions (in Fogs _gg hosts), calculation
of the liquid MgO concentration implied by equilibrium with the
far-field olivine [using the model of Toplis (2005) to calculate
a Kp of 0.33 and assuming a molar Fe>*/Fe?* ratio of 0.18
(Helz et al., 2017)] reveals that all of the melt inclusions in this
suite have undergone extensive post-entrapment crystallization
(9.25-25%; see Figure 2). The Kilauea inclusions are all relatively
large (radii range from 43 to 170 pwm; see Figure 3 and
Supplementary Data Tables), and many of the inclusions exhibit
long central plateaus of approximately constant MgO, AL, O3,
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FIGURE 4 | Results of thermal history fitting to MgO concentration gradients in melt inclusions using the model of Newcombe et al. (2014), modified as described in
section “Constraint of Syneruptive Thermal Histories Using MgO Zonation in Olivine-Hosted Melt Inclusions.” One representative melt inclusion is shown for Fuego
ash and volcanic bombs, Seguam, and Kilauea Iki. Data and model fits for all melt inclusions are provided in the Supplement. MgO data from each inclusion have
been fit to both one- and two-stage linear thermal histories. MgO data and best-fit thermal history model curves for (A) Fuego ash inclusion VF131-4, (B) Fuego
bomb inclusion VF134D-15, (D) Seguam inclusion Seg13-MI1, and (E) Kilauea inclusion Iki1-MI9. Best-fit one- and two-stage thermal histories for (C) Fuego
inclusions VF131-4 and VF134D-15 and (F) Seg13-MI1 and Iki1-MI9. Note difficult scales for (C,F).

CaO and SiO; concentrations (Figure 4 and Supplementary
Data Tables). The existence of central plateaus in MgO and
other major element concentrations in these inclusions indicates
that the post-entrapment crystallization that impacted the central
compositions of the inclusions must have happened long enough
prior to ascent and syneruptive quenching that the inclusions
had time to diffusively re-homogenize. The minimum timescale
required for re-homogenization of a ~10% jum diameter inclusion
at magmatic temperatures is only ~10? min (Newcombe et al,,
2014), much shorter than the hours to years available for melt re-
homogenization during residence of the inclusion in a magma
chamber (Danyushevsky et al., 2000, 2002; Lynn et al., 2017;
Rasmussen et al., 2018). Once re-homogenized, information
about the timescale of post-entrapment crystallization is lost
from the melt inclusion, although information concerning the
timescale of crystallization may be derived from chemical
gradients in the surrounding host olivine (Danyushevsky et al.,
2002). The focus of this study is on syneruptive thermal histories
of olivine-hosted melt inclusions, so we have used the average
of the central ~5 MgO measurements in each of the Kilauea

melt inclusions as the initial MgO concentration for the thermal
history modeling. We note that this choice of initial condition
does not consider the pre-eruptive magmatic histories of these
melt inclusions in the hours to years prior to ascent and eruption,
but instead focuses on temperature changes during the seconds
to hours of magma ascent and syneruptive quenching.

RESULTS

Characteristics of Chemical Zonation in
the Melt Inclusions

We measured major element concentration gradients across a
total of 40 olivine-hosted melt inclusions: 19 from Fuego (12
inclusions from ash, 6 inclusions from bomb interiors, and 1
inclusion from lapilli), 12 from Seguam, and 9 from Kilauea
(6 inclusions from Kilauea Iki, 2 inclusions from the 1500 CE
reticulite, and 1 inclusion from the 1650 CE subplinian deposit).
Every melt inclusion analyzed exhibits chemical zonation
consistent with that described by Newcombe et al. (2014). All of
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the inclusions have regions of MgO depletion at their edges,
indicative of rapid crystallization of olivine on the inclusion
walls in response to syneruptive cooling. Interestingly, some
of the Seguam inclusions (Seg4-MI1, Seg5-MI1, Seg6-MI1, and
Seg7-MI1; see Supplementary Material) exhibit subtle hints of
concave-up concentration gradients of MgO across their centers,
which may reflect a period of heating prior to quenching on
eruption. This would be consistent with the observation that
these inclusions have melt compositions that are too primitive
to be in equilibrium with their host olivine (Figure 2), which
could be explained if they had undergone a small amount
of post-entrapment melting prior to eruption. Alternatively,
the concave-up MgO profiles could be a consequence of
multicomponent diffusion effects (Saper and Stolper, 2020) or
they could conceivably be an artifact of melt advection during
growth of the large vapor bubbles observed in the majority of
these inclusions.

There are some other notable characteristics of the MgO
zonation observed in melt inclusions from each eruption. For
example, the largest of the melt inclusions erupted during the
Seguam and Kilauea Iki fire-fountain eruptions exhibit long
plateaus of approximately constant MgO across their centers
and sharp decreases in MgO that are confined to the outer
~10-20 pm of the inclusions (e.g., Seg4-MI1, Seg5-MI1, Seg7-
MII, Segl13-MI1, Seg15-MI1, Iki-MI6, Iki-MI7, and Iki-MI9; see
Figure 4 and Supplementary Material). These narrow zones
of MgO depletion indicate that the syneruptively generated
boundary layer was unable to reach the centers of these melt
inclusions before they cooled below the closure temperature
for MgO diftusion through the melt. In contrast, syneruptively
generated MgO concentration gradients in the Fuego melt
inclusions appear to have propagated to the centers of even the
largest inclusions in this sample suite.

Results of Thermal History Modeling

We have used the model of Newcombe et al. (2014),
modified as described in section “Constraint of Syneruptive
Thermal Histories Using MgO Zonation in Olivine-Hosted
Melt Inclusions,” to find one- and two-stage linear thermal
histories that are best able to reproduce the shapes of the MgO
concentration gradients measured in our olivine-hosted melt
inclusions. A Monte Carlo approach is used to find the best-
fit cooling rates and the uncertainties associated with these
cooling rates for each melt inclusion (details of this approach are
described in Newcombe et al., 2014). Our code is freely available
on Github’, the best-fit thermal histories and fits to the data
are provided in the Supplementary Material, and the results of
fitting the MgO gradients to the one-stage model are summarized
in Figure 5. Melt inclusions from the 1959 Kilauea Iki fire
fountain eruption record the highest syneruptive cooling rates
(3-11°C/s) and the shortest cooling durations (4-19 s), while
inclusions from the 1974 subplinian eruption of Fuego volcano
record the lowest cooling rates (0.1-1.7°C/s) and longest cooling
durations (21-368 s) of the studied eruptions (Figure 5). Our
best-fit cooling rates for Kilauea Iki are in excellent agreement
with best-fit cooling rates for this eruption determined by Saper

doi: 10.5281/zenodo.3998246

and Stolper (2020). Notably, the inclusions sampled from the
interiors of small (~6 cm diameter) volcanic bombs at Fuego
are found to have cooled more slowly on average than inclusions
sampled from ash (with particle diameters < 2 mm) during the
same eruption (see discussion in section “Influence of Clast Size
on Post-Eruptive Thermal Histories”).

In addition to fitting MgO concentration gradients in
individual melt inclusions, we have also examined trends between
the central MgO concentration of the inclusions and the radii
of the inclusions (Figure 3). Our expectation is that, for a
given cooling rate, there will be a critical melt inclusion radius
above which the leading edge of the diffusive boundary layer
produced during syneruptive olivine crystallization will not
be able to propagate to the center of the inclusion, thereby
leaving the centers of all inclusions that are larger than this
critical radius unmodified from their pre-eruptive compositions.
Inclusions smaller than this critical radius should exhibit a
trend of decreasing central MgO with decreasing inclusion size
(assuming that all inclusions in a suite experience similar cooling
rates and have similar initial MgO concentrations). Such a trend
was observed in melt inclusions from the Siqueiros transform
fault and was successfully reproduced by a syneruptive cooling
model (Figure 5 of Newcombe et al., 2014). Similar trends are
observed here at Seguam and Fuego, and these trends can also be
reproduced by single-stage linear cooling models (see curves on
Figure 3). At Seguam, the critical radius above which the central
compositions of the inclusions are unmodified from their pre-
eruptive values is ~30 pwm, while at Fuego, the critical radius
is ~40 pm for the ash-derived melt inclusions and >60 pwm
for the bomb-derived melt inclusions (i.e., all of the bomb-
derived inclusions have compositions that appear to have been
modified by the propagation of syneruptive boundary layers to
their centers). We note that inclusion Seg4-MI1 appears to be an
outlier of the central MgO vs. melt inclusion radius relationship
observed at Seguam; however, this particular inclusion is hosted
in lower forsterite (Fogj.;) olivine than other inclusions in
this suite, and despite the relatively low MgO content of this
inclusion, its central composition does not appear to have
been modified by syneruptive boundary layer propagation (see
Supplementary Material and Data Tables). This inclusion may
have been picked up from a cooler, more evolved part of the
magmatic system during ascent.

The model curves on Figure 3 were generated using the
average best-fit cooling rate determined by fitting MgO profiles
across individual inclusions from each deposit: the Fuego ash
cooling model assumes a cooling rate of 0.6°C/s; the Fuego
bomb cooling model assumes a cooling rate of 0.3°C/s; and the
Seguam cooling model assumes a cooling rate of 3.1°C/s.

Unlike the Seguam and Fuego inclusions, melt inclusions
from Kilauea do not exhibit clear trends between their
central MgO concentrations and inclusion size. The majority
of these inclusions have plateaus of approximately constant
MgO across their centers, with narrow zones of MgO
depletion confined to the outer few tens of microns of
the inclusions. All of the inclusions from Kilauea have
undergone large amounts (~10-25%) of post-entrapment
olivine crystallization (see Supplementary Data Tables). The
central plateaus of MgO concentration across these inclusions
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FIGURE 5 | Results of thermal history modeling (A) Best-fit cooling durations obtained by fitting MgO concentration gradients in olivine-hosted melt inclusions to a
one-stage linear cooling model. (B) Best-fit cooling rates obtained by fitting MgO concentration gradients in olivine-hosted melt inclusions to a one-stage linear
cooling model. Estimated errors on best-fit parameters are provided in the Supplementary Data Tables.

indicate that this post-entrapment cooling and crystallization
occurred long enough prior to eruption that the inclusion
compositions were able to re-homogenize before the generation
of syneruptive boundary layers. The relatively uniform central
MgO concentrations of the Kilauea Iki inclusions is consistent
with a model of rapid syneruptive cooling (the Kilauea cooling
model curve on Figure 3 assumes a cooling rate of 3.9°C/s) such
that only inclusions with radii <30 pm (i.e., smaller than any
of the inclusions analyzed) would have their center compositions
modified by boundary layer diffusion.

In summary, we find significant differences between best-
fit thermal histories of melt inclusions from Fuego ash,
Fuego bombs, Seguam, and Kilauea. These differences can
be distinguished by fitting MgO concentration gradients in
individual melt inclusions from each deposit, but they can
also be discerned by examining trends in central MgO
versus inclusion size.

Relationship Between Syneruptive
Cooling Rates and Syneruptive

Decompression Rates

We observe a negative correlation between syneruptive
magma decompression rates and cooling rates (Figure 6).
Magmas erupted during fire-fountain-style eruptions (Seguam,
Kilauea Iki, and the Keanakako’i reticulite) decompressed
relatively slowly (Ferguson et al, 2016; Newcombe et al,
2020) and experienced relatively rapid cooling over
relatively short durations, while magmas erupted during
subplinian eruptions (Fuego and the Keanakako’i layer
6 deposit) decompressed relatively rapidly (Lloyd et al,
2014; Ferguson et al, 2016) and experienced relatively slow
cooling over relatively long durations. The origins of the
correlation observed in Figure 6 are discussed in section
“Causes of Variations in Best-Fit Thermal Histories Among
Different Eruptions.”

DISCUSSION

Influence of Clast Size on Post-eruptive

Thermal Histories

A recent study by Lloyd et al. (2013) characterized water
concentrations of olivine-hosted melt inclusions from clasts of
different sizes (fine-grained ash, lapilli, and bombs) erupted
at Fuego on 17th October, 1974, and they found that those
inclusions from the interiors of the large bomb clasts had lost
more water than the inclusions derived from the fine-grained ash.
This finding is consistent with the longer expected durations of
post-eruptive cooling of large versus small clasts based on simple
conductive cooling models.

Conductive cooling models are relatively straightforward to
implement and they provide estimates of the thermal histories
experienced by volcanic clasts as a function of clast diameter and
distance from the cooling surface. However, many parameters
required by these models are poorly constrained (see analysis by
Birnie and Dyar, 1986) and the models make many simplifying
assumptions (e.g., the easiest models to implement are analytical
solutions to the heat equation that assume a constant boundary
temperature) such that they cannot capture the complexities
of syn- and post-eruptive thermal histories of real volcanic
clasts. For example, pyroclasts likely break up and change shape
during eruptions; grains may migrate from center to edge of
a pyroclast (or vice versa) during eruption; tephra may suffer
comminution in the conduit; lavas may experience drain-back
and re-eruption; clasts may be re-heated by subsequent eruptive
events; or post-depositional processing may dislodge individual
grains from large clasts. Given the many simplifying assumptions
and limitations of most conductive cooling models, and the
importance of cooling rate as a control on physical properties of
erupting magma (and the ability of olivine-hosted melt inclusions
to preserve pre-eruptive water concentrations), much effort
has been made to develop techniques for directly measuring
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FIGURE 6 | Average best-fit cooling durations and cooling rates versus best-fit decompression rates for each eruption. Decompression rates (and associated error
bars) are from the one-stage ascent models of Lloyd et al. (2014), Ferguson et al. (2016), and Newcombe et al. (2020). (A) Average best-fit cooling durations are
positively correlated with magma decompression rate. Melt inclusions from the subplinian eruptions (Fuego and the Keanakako'i layer 6 deposit) experienced longer
durations of syneruptive cooling and higher magma decompression rates on average than inclusions from the fire-fountain eruptions (Seguam, Kilauea Iki, and the
Keanakako'i Reticulite). (B) Average best-fit cooling rates are negatively correlated with magma decompression rate. Inclusions from the subplinian eruptions
experienced slower cooling, consistent with cooling during ascent in the conduit just prior to quenching on eruption (and/or cooling in the volcanic plume), while
inclusions from the fire-fountain eruptions experienced rapid cooling, consistent with sub-aerial quenching, but not consistent with significant cooling in the conduit
just prior to eruption.

syn-eruptive cooling rates of pyroclasts (Zhang et al., 1997, 20005
Gottsmann and Dingwell, 2002; Xu and Zhang, 2002; Potuzak
et al., 2008; Nichols et al., 2009; Newcombe et al., 2014; Saper and
Stolper, 2020).

The technique developed by Newcombe et al. (2014) of
using MgO concentration gradients in olivine-hosted melt
inclusions to constrain their syneruptive thermal histories
provides a direct record of syn- and post-eruptive magma
temperatures during cooling from liquidus temperature to the
temperature corresponding to the lowest measured MgO in
the melt. This record could potentially be used to identify
slowly cooled inclusions, and thereby assess the likelihood of
syn- or post-eruptive water loss from the inclusions prior
to making expensive and time-consuming measurements of
their volatile contents. Additionally, syneruptive cooling rates
determined from MgO zonation in melt inclusions can be
used to estimate the closure temperature for CO,, which
is an important parameter for assessing the extent of CO,
diffusion into melt inclusion vapor bubbles (Maclennan,
2017; Tucker et al., 2019; Rasmussen et al., 2020). To our
knowledge, it is the only technique currently available that
enables multi-stage syneruptive thermal histories of magma to
be constrained.

We have tested the ability of this technique to resolve
variations in post-eruptive thermal histories by applying it to
the same Fuego ash, lapilli, and bomb samples considered by
Lloyd et al. (2013). We observe that the mean duration of

cooling experienced by inclusions derived from the bomb clasts
is longer (up to ~6 min; see Figure 5A) than the mean duration
of cooling experienced by inclusions derived from ash (up to
~2 min; Figure 5A), confirming expectations of their relative
cooling durations based on conductive cooling models [e.g.,
Lloyd et al. (2013) use the model of Recktenwald (2006) to
estimate post-eruptive cooling durations from ~1030 to ~450°C
of ~10 min in the interior of the Fuego bombs and <1 s for the
fine-grained ash].

It is notable that the best-fit cooling durations for the ash-
derived melt inclusions are significantly longer than the <1 s
post-eruptive cooling duration calculated by the conductive
cooling model employed by Lloyd et al. (2013). In part, this
is due to the assumption made by this conductive cooling
model of a constant ambient temperature surrounding the
pyroclasts of 30°C, while models of the temperature evolution
of fire fountains and volcanic plumes suggest that the ambient
temperature experienced by pyroclasts as they exit the conduit
decreases from the eruption temperature to temperatures below
the closure temperatures for HO and MgO diffusion over time
periods of ~10' s (Hort and Gardner, 2000; Porritt et al.,
2012; Ayris et al, 2014). In addition to post-fragmentation
cooling, it is likely that the magma experienced cooling in
the conduit prior to fragmentation in response to adiabatic
expansion of vapor bubbles, thereby further increasing the
durations of cooling recorded by MgO zonation in the ash-
derived melt inclusions.
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Assessment of the Contribution of
Syneruptive Water Loss to Apparent
Temperature Decreases Recorded by

Olivine-Hosted Melt Inclusions

In addition to post-eruptive water loss from melt inclusions
derived from large clasts, Lloyd et al. (2013) discuss the possibility
that water could be diffusively lost from olivine-hosted melt
inclusions during magma ascent and degassing in the conduit.
This raises the question of the extent to which water loss (which
is known to drive olivine crystallization) could be contributing to
the apparent temperature decreases inferred from MgO zonation
in the Fuego inclusions. In order to address this question, we have
calculated the expected diffusive water loss from melt inclusions
with radii of 10-80 pm, positioned 110 um away from the nearest
edge of their host olivine crystal, during magma ascent from
220 MPa to the surface (Figure 7A). Model setup and parameters
are provided in the caption to Figure 5. For ascent durations of
10 min (Lloyd et al., 2014), we calculate that melt inclusions with
radii as small as 10 wm would lose < 2% of their initial water.
This water loss would drive an amount of olivine crystallization
equivalent to a temperature decrease of < 4°C [assuming an
initial water concentration of 4.2 wt% and the H,O-liquidus
temperature function of Médard and Grove (2008)]. Thus, we
consider cooling rather than water loss to be the dominant driver
of syneruptive crystallization in our Fuego ash melt inclusions.

It is apparent on Figure 7B that the bomb-derived melt
inclusions have higher calculated amounts of cooling than
the ash-derived inclusions, consistent with the lower closure
temperature for MgO afforded by slower cooling of these

inclusions (see further discussion in the Supplementary
Material), and also consistent with some amount of post-eruptive
water loss from the bomb-derived inclusions prior to passing
through the closure temperature for MgO. The total amount
of post-eruptive water loss from the bomb-derived inclusions
is estimated to be ~1 wt% (Lloyd et al., 2013). If this water
loss happened above the closure temperature for MgO, it would
drive crystallization equivalent to a temperature drop of 37.5°C.
However, the temperature drop recorded by the bomb melt
inclusions is only ~20°C greater than recorded by the ash
inclusions, suggesting that much of the post-eruptive water
loss happened after the cessation of post-entrapment olivine
crystallization and diffusion of MgO through the melt. This
makes sense given the higher diffusivity, and hence lower closure
temperature, of H,O.

Causes of Variations in Best-Fit Thermal
Histories Among Different Eruptions

Figures 5, 6 demonstrate variations in best-fit thermal histories
among our studied eruptions. Some of this variability can be
explained as a result of variable clast sizes; e.g., the slower cooling
experienced by Fuego bombs versus ash (section “Influence of
Clast Size on Post-Eruptive Thermal Histories”). However, clast
size is not responsible for all of the observed variation; e.g., our
Fuego ash-derived melt inclusions record slower cooling than our
Kilauea Iki inclusions despite the smaller average grain size of
Fuego ash compared with the average grain size of the Kilauea Iki
tephra. Instead, it appears that eruptive style may play a role in
controlling the thermal histories recorded by our melt inclusions
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FIGURE 7 | (A) Model of diffusive water loss from olivine-hosted melt inclusions during syneruptive magma decompression. Calculations are shown for melt
inclusions with radii of 10, 50, and 80 um, positioned 110 wm away from the nearest edge of their host olivine crystal. The magma is assumed to ascend from
220 MPa to the surface and to contain an initial water concentration of 4.2 wt%. Parameters for this calculation are chosen based on observations of Fuego
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olivine-hosted melt inclusions and embayments (Lloyd et al., 2013, 2014). Water diffusivity through olivine is 2.45 x 10""" m?s™" based on the Arrhenius relationship
from Barth et al. (2019) and assuming 1D diffusion along the crystallographic ‘a’ direction at 1030°C. The partition coefficient for water between melt and olivine is
assumed to be 0.001 and the external magma is assumed to follow a closed-system degassing path (Newman and Lowenstern, 2002). At a magma decompression
rate of ~0.4 MPa/s (Lloyd et al., 2014) we expect very little water loss (<2%) from the Fuego melt inclusions during ascent. (B) Calculated amount of cooling (i.e.,
the temperature implied by the maximum measured MgO minus the temperature implied by the minimum measured MgO in each melt inclusion) versus inclusion
radius. The lack of a clear negative correlation between these variables supports the conclusion of the calculations in (A) that the Fuego inclusions lose minimal
water during magma ascent. The bomb-derived inclusions have higher calculated temperature drops on average than the ash-derived inclusions, consistent with
slower cooling of the bomb-derived inclusions to a lower MgO closure temperature and/or post-eruptive water-loss-driven olivine crystallization.

Frontiers in Earth Science | www.frontiersin.org 13 September 2020 | Volume 8 | Article 531911


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

Newcombe et al.

Magma Pressure-Temperature-Time Paths

(Figure 6); e.g., tephra from the Kilauea Iki and Seguam fire
fountain eruptions experienced more rapid cooling than tephra
from the higher VEI eruptions that generated ash clouds (Fuego
and the Keanakako’i layer 6 deposit).

Why would tephra from the more explosive eruptions
experience slower cooling? One possibility is that post-
fragmentation cooling of tephra in subplinian ash columns
could be slower than post-fragmentation cooling in fire-fountain
plumes. Several models of the temperature evolution of volcanic
plumes suggest that tephra rapidly cools below the closure
temperature of MgO within ~10! s in both fire-fountain plumes
(Porritt et al., 2012) and during Plinian eruptions (Sparks, 1986;
Hort and Gardner, 2000). Models and experiments by Ayris
et al. (2014) suggest that HCI adsorption by volcanic glasses at
temperatures of ~200-800°C can occur over minute timescales
in volcanic plumes, although we note that these adsorption
reactions occur below the closure temperature for MgO diffusion.
Based on these modeling efforts, we consider it unlikely that the
longer thermal histories we observe for our subplinian eruptions
are a result of slower post-fragmentation cooling.

Another possibility for explaining the longer cooling durations
recorded by melt inclusions from our more explosive eruptive
deposits is that the carrier magma for these melt inclusions
contained a high vapor fraction in the shallow conduit that
drove cooling via adiabatic decompression during the last few
minutes of magma ascent in the conduit (considered in greater
detail below). We cannot definitively rule out either endmember
scenario described above (or indeed, a hybrid model in which
the subplinian tephras experienced slower cooling than the fire-
fountain tephras both pre- and post-fragmentation). However,
regardless of which scenario is correct, the following observations
allow us to place constraints on the pre-eruptive P-T-t paths of
these magmas during their ascent through the conduit:

e Our largest Fuego and Seguam melt inclusions have central
MgO concentrations that are approximately in equilibrium
with their far-field olivine hosts (Figures 2, 3). This
requires the net temperature change between melt inclusion
entrapment and the onset of syneruptive cooling to be
minimal (see section “Do the MgO Plateaus Observed
in Our Kilauea and Seguam Melt Inclusions Require
Approximately Isothermal Magma Ascent, or Are More
Complex Thermal Histories Possible”).

e Our largest Seguam and Kilauea Iki melt inclusions have
plateaus of MgO across their centers and narrow zones
of MgO depletion at their edges that are consistent with
approximately isothermal ascent followed by quenching
on eruption (although we note that such profiles may not
require isothermal ascent; see section “Do the MgO Plateaus
Observed in Our Kilauea and Seguam Melt Inclusions
Require Approximately Isothermal Magma Ascent, or Are
More Complex Thermal Histories Possible”).

In the following sections, we use these constraints and
our best-fit thermal histories to assess the validity of
syneruptive temperature variations calculated by conduit
models.

Comparison of Estimated Magma P-T-t
Paths With Expectations Based on the

Isentropic “Conflow” Model

The observations described in section “Characteristics of
Chemical Zonation in the Melt Inclusions” and section “Results
of Thermal History Modeling” suggest that magmas erupted
during the Kilauea Iki and Seguam fire-fountain eruptions
ascended approximately isothermally, while magmas represented
by the 1974 Fuego Ash, the Keanakako’i basal reticulite, and
the Keanakako’i layer 6 deposit underwent net cooling during
the last ~minute of ascent and eruption. As described in
the Introduction, the most reasonable process responsible for
driving magma cooling on ascent is adiabatic expansion of a
vapor phase. In this section, we compare the thermal histories
we have determined using MgO concentration gradients in
olivine-hosted melt inclusions to results of calculations using
the conduit model “Conflow” (Mastin and Ghiorso, 2000;
Mastin and Ghiorso, 2001; Campagnola et al., 2016) to explore
the meaning and implications of the syneruptive thermal
histories experienced by each of the magmas erupted at Fuego,
Seguam, and Kilauea.

The Conflow model is used here to calculate the expected
changes in temperature, pressure, velocity, and vapor volume
fraction during syneruptive ascent of magmas at Fuego, Seguam,
and Kilauea volcanoes. This model is one of few existing
conduit models that consider temperature changes of magma
during ascent (Sahagian, 2005). Assumptions made by the
Conflow model include: (1) the magma-gas mixture is treated
as a homogeneous fluid (i.e., there is no relative movement
between gas and liquid during ascent); (2) gas exsolution is
assumed to follow equilibrium solubility laws; (3) the conduit
is assumed to be vertical and cylindrical; (4) flow properties
are uniform across the radius of the conduit (i.e., the model
is one-dimensional); (5) flow is assumed to be steady-state;
(6) no heat is transferred across the conduit walls; (7) gas,
melt, and crystals are at thermal equilibrium; (8) H,O is the
only vapor species; (9) no vapor escapes across the conduit
walls; (10) no crystallization occurs during ascent; and (11)
magma ascent is assumed to be adiabatic and reversible (i.e., the
magma-gas mixture follows an isentropic path). The model is
designed to be most applicable to sustained eruptions of rapidly
ascending magmas (e.g., basaltic fire-fountain eruptions like the
eruptions of Seguam and Kilauea Iki, and Plinian or subplinian
eruptions like the Fuego 1974 eruption), and justifications
and limitations of the above listed model assumptions are
provided in Mastin and Ghiorso (2000). In addition to the
assumptions listed above, we further assume a constant conduit
diameter of 10 m (Barth et al., 2019), zero crystallinity, and a
fragmentation criterion of 0.75 vapor volume fraction. Additional
input parameters and model outputs are provided in the
Supplementary Data Tables.

The Conflow model calculates the temperature change of
ascending magma by applying the following expression of energy
conservation (Mastin and Ghiorso, 2001):

dh + udu + gdz = 0 (3)
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where h is specific enthalpy of the magma-gas mixture, u is
velocity, z is depth, and g is gravitational acceleration. Integration
of equation (3) gives the following expression (Mastin and
Ghiorso, 2000):

h= h+ (uf —u?) +g(z1 — 2) (4)

where h is the enthalpy of the melt-vapor mixture at the base of
the conduit, u; is the velocity at the base of the conduit, and z;
is the depth at the base of the conduit. The enthalpy of a crystal-
free melt-vapor mixture can be calculated as follows (Mastin and
Ghiorso, 2000):

h= mghg + mmhm (5)

where m, and my are the mass fractions of gas and melt,
respectively, and hy and hy are the specific enthalpies of gas
and melt. The specific enthalpy of water vapor is a function of
pressure and temperature and can be calculated using the method
of Haar et al. (1984). Similarly, the specific enthalpy of the melt
is a function of temperature, pressure and composition, and can
be calculated using the method of Ghiorso and Sack (1995). As
the model magma ascends through the conduit, its enthalpy at
each pressure is calculated using equation (2). The temperature
of the magma is then adjusted until the enthalpy of the melt-
vapor mixture calculated by equation (3) is in agreement with
the enthalpy prescribed by equation (2) (Mastin and Ghiorso,
2000). We note that the assumption made by the Conflow
model of isentropic ascent produces maximal cooling because
the model neglects to account for heat-producing processes
such as crystallization and also prevents the loss of vapor from
the system (Mastin and Ghiorso, 2001). As such, ascent-driven
temperature decreases predicted by Conflow calculations should
be considered upper bounds.

Figure 8 shows a comparison between temperature-time
paths calculated by Conflow and best-fit temperature-time paths
determined by fitting MgO concentration gradients in olivine-
hosted melt inclusions. For each eruption, we plot an overall
best-fit thermal history determined by averaging the best-fit
parameters for all of the individually fit melt inclusions.

At Kilauea Iki, Conflow predicts that the magma undergoes
very little cooling on ascent (Figure 8). This is consistent with
our thermal history modeling based on MgO zonation in the
olivine-hosted melt inclusions from this eruption: Several of the
inclusions exhibit plateaus of MgO concentration across their
centers that are consistent with approximately isothermal magma
ascent. The lack of adiabatic cooling experienced by Kilauea Iki
magma is likely a result of the low initial water concentration of
the magma. The relatively dry Kilauea Iki magma exsolves water
vapor very late in its ascent history (Figure 9A), so the magma
follows a liquid-only adiabat for most of its ascent. Significant
cooling begins just a few hundred meters from the surface
when water vapor rapidly exsolves, driving fragmentation, greater
adiabatic expansion and cooling. Short durations (~10! s) of
cooling implied by MgO decreases in the outer ~10! jLm of the
melt inclusions are consistent with expected durations of sub-
aerial quenching in a fire fountain (Porritt et al., 2012). We note
that the lack of evidence of cooling during ascent of the Kilauea
Iki magma is consistent with the rise-speed-dependent model for
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FIGURE 8 | Thermal histories of syneruptive magmas from Fuego, Seguam,
and Kilauea Iki, as determined by fitting melt inclusion MgO concentration
gradients to one-stage (red dashed lines) and two-stage (blue lines) cooling
models, and as calculated by the ‘Conflow’ model (Mastin and Ghiorso, 2000;
Campagnola et al., 2016) (black curves). At Kilauea Iki, the Conflow model
suggests that the magma cooled very little during ascent through the conduit.
We interpret the ~10 s of cooling recorded by the inclusions to represent
quenching in the fire-fountain. At Seguam and Fuego, we do not find good
agreement between our inclusion-derived thermal histories and the Conflow
calculation: Conflow predicts 20-40°C of magma cooling during ascent, while
the MgO concentrations in the centers of our Seguam and Fuego inclusions
are approximately in equilibrium with their olivine hosts, which suggests that
they did not experience net cooling during ascent. One- and two-stage
cooling model parameters are averages of parameters obtained by fitting
individual melt inclusions from a given eruption (see Supplementary Data
Tables). Values of input parameters for the Conflow model curves (e.g., initial
ascent velocity, initial pressure and magma composition) are provided in the
Supplementary Data Tables. Initial ascent velocities for Seguam and
Kilauea Iki are based on ascent histories derived from volatile concentration
gradients along melt embayments; the choice of initial velocity and initial
pressure determines the duration of the calculated ascent history for each of
these eruptions. For the subplinian Fuego eruption, we assume that the
magma reaches sonic velocity at the surface (i.e., the theoretical maximum
velocity). Application of this assumption for the Conflow calculation results in
magma ascent velocities that are comparable to those obtained by fitting
volatile concentration gradients in melt embayments (Lloyd et al., 2014).

fire-fountain eruptions in which vapor bubbles are retained in the
magma in which they formed (Parfitt and Wilson, 1995). On the
other hand, our Kilauea Iki results may be in conflict with the
collapsing foam model (Jaupart and Vergniolle, 1989) in which
fire-fountain eruptions are driven by the ascent of a CO,-rich
foam through the conduit. In this case we would expect much
longer durations of cooling in the conduit, driven by adiabatic
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FIGURE 9 | Results of Conflow modeling of the Fuego, Seguam, and Kilauea Iki eruptions. (A) Relationships between volume fraction of exsolved vapor and depth
in the conduit. Fuego and Seguam magmas each begin their ascent histories with ~4 wt% water, so these magmas exsolve a vapor phase at greater depths than
the relatively dry (~0.75 wt%) magma erupted at Kilauea Iki. (B) Variations in the slope of the adiabat (dT/dP) with depth. Prior to exsolution of a vapor phase, dT/dP
of silicate liquid is relatively low (<5°C/kbar). Following the exsolution of vapor dT/dP rapidly increases in response to adiabatic expansion and cooling of the vapor
(which has a much higher thermal expansivity than the silicate liquid). (C) Variations in magma ascent velocity with depth. (D) Relationship between dT/dP and
volume fraction of vapor in the magma. Despite significant differences among our studied eruptions for all other parameters explored in this figure, the relationships
between dT/dP and vapor volume fraction are approximately identical, illustrating that vapor volume fraction is the dominant control on dT/dP during adiabatic
magma ascent.

expansion of the vapor-rich foam. It is possible that the collapsing
foam model could apply to the Keanakako’i basal reticulite and
the Keanakako’i layer 6 deposit, both of which exhibit longer
cooling durations (~44-67 s) than those observed at Kilauea Iki;
however, as noted in section “Samples From Kilauea Volcano
(Hawaii),” the formation of reticulite is estimated to occur in
<20 s (Mangan and Cashman, 1996), so textural constraints
suggest that expansion of a foam layer in the conduit may not
be a viable explanation for the relatively long thermal histories
observed for the Keanakako’i basal reticulite. An alternative
explanation for the longer cooling durations observed for the
Keanakako’i basal reticulite is the effect of clast size (see section
“Influence of Clast Size on Post-Eruptive Thermal Histories™).
We do not have constraints on the size of the specific clasts
from which our reticulite melt inclusions were derived, but we
note that clasts of up to ~20 cm have been observed in the
Keanakako'i basal reticulite (May et al., 2015). Clast sizes of just a
few cm could explain the slower cooling rates experienced by our
reticulite-derived melt inclusions.

At Seguam and Fuego, we do not find good agreement between
the Conflow model and our thermal histories determined from

modeling of MgO gradients in olivine-hosted melt inclusions.
Conflow predicts cooling of ~20°C during ascent of the Seguam
magma over a time period of ~40 min (Figure 8), while plateaus
of MgO concentration across the centers of the largest Seguam
melt inclusions are suggestive of approximately isothermal
magma ascent. As described in section “Characteristics of
Chemical Zonation in the Melt Inclusions,” some inclusions
exhibit hints of concave-up MgO profiles across their centers
that could be indicative of a small amount of magma heating
during ascent, but the Conflow model predicts monotonic
cooling. As observed at Kilauea, MgO decreases in the outer
~10! jum of Seguam melt inclusions are consistent with expected
durations (~10' s) of sub-aerial quenching in a fire-fountain
plume and thus do not appear to require any cooling in during
ascent in the conduit.

Our best-fit thermal histories for Fuego melt inclusions
provide an excellent match to the overall amount of cooling
predicted by Conflow, but we find shorter durations of cooling
than the Conflow model [Conflow predicts cooling of ~40°C
over ~8 min during ascent of the Fuego magma, while our
thermal history modeling of Fuego ash-derived melt inclusions
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suggests cooling of ~40°C over 0.4-2.2 min]. Our Fuego melt
inclusion MgO zonation profiles do not enable us to constrain
the ascending magma’s thermal history prior to the final couple
of minutes of syneruptive ascent and quenching; however, the fact
that the centers of our largest Fuego inclusions are approximately
in equilibrium with their olivine hosts (Figures 2, 3) suggests
minimal net change in temperature from entrapment until the
final couple of minutes of ascent and eruption.

The mismatch between the Conflow model and our best-
fit thermal histories at Fuego and Seguam suggest that the
assumption of isentropic ascent made by the Conflow model may
be inappropriate for these eruptions. Unlike the relatively dry
Kilauea magma, Fuego and Seguam magmas contain ~4 wt%
water. Degassing of this water begins at ~300 MPa (Newcombe
et al, 2020) and likely triggers crystallization (Blundy and
Cashman, 2005). We note that clinopyroxenes from the Seguam
eruption display textures and melt inclusions compositions
consistent with rapid growth conditions during magma ascent
(Lloyd et al., 2016b). Latent heat produced by crystallization
on ascent would act to counter (to some extent) the cooling

effect of vapor expansion. Conflow does not account for latent
heat production, so it is therefore unsurprising that the Conflow
model overestimates the extent (at Seguam) and duration (at
Seguam and Fuego) of cooling experienced by wet magmas
undergoing degassing-driven crystallization.

Another potential issue with the application of the Conflow
model to hydrous arc magmas is the likelihood of vapor loss from
the magma during ascent (i.e., open-system degassing), which
would violate the closed system assumption of the isentropic
model. Slow ascent of hot, basaltic magma may allow migration
and escape of vapor bubbles, thereby reducing the adiabatic
cooling experienced by the magma (which is dominated by the
expansion of the vapor phase). This process could potentially
produce a systematic relationship between magma temperature
change and syneruptive ascent rate, in which fast-ascending
magmas (in which vapor bubbles are more efficiently retained)
experience more net cooling than slow-ascending magmas (in
which vapor bubbles may migrate and escape). This idea is
explored further in section “Systematics of Magma Temperature
Changes During Ascent.”
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FIGURE 10 | Forward modeling to calculate the effects of temperature variations of £ 20°C on the generation of MgO zonation in inclusion Seg5-MI1. (A) Two
separate thermal histories are imposed: one in which the temperature increases and decreases by 20°C over a period of 100 min before quenching at 0.9°C/s (red
dashed lines); and one in which the temperature first decreases and then increases by 20°C over a period of 100 min before quenching at 0.9°C/s (blue lines).

(B) Modeled MgO zonation in melt inclusion Seg5-MI1 in response to the thermal histories imposed in (A). Both models (red and blue curves) provide a reasonably
good match to the data (black circles). In these examples, the imposed temperature variations occur over a long enough duration that MgO variations are able to
approximately homogenize by diffusion, thereby erasing the evidence of the prior thermal histories. (C) Imposed thermal histories used to generate the model curves
in (D). Note that in these examples, there is a net temperature change of £10°C between the initial temperature and the temperature reached just prior to
quenching. (D) Modeled MgO zonation in melt inclusion Seg5-MI1 in response to the thermal histories imposed in (C). Thermal histories in which we impose a net
10°C increase (red curve) or net 10°C decrease (blue curve) in temperature prior to quenching are unable to match our Seg5-MI1 data. This demonstrates the
sensitivity of MgO zonation in Seguam melt inclusions to net temperature changes during magma ascent.
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Do the MgO Plateaus Observed in Our
Kilauea and Seguam Melt Inclusions
Require Approximately Isothermal
Magma Ascent, or Are More Complex

Thermal Histories Possible?

As discussed in section “Characteristics of Chemical Zonation
in the Melt Inclusions,” several Kilauea Iki and Seguam melt
inclusions exhibit plateaus of approximately constant MgO
across their centers. The simplest interpretation of these MgO
plateaus is that the Kilauea and Seguam magmas ascended
the conduit approximately isothermally prior to quenching on
eruption. However, it seems likely that the Seguam magma,
which underwent significant crystallization and degassing of ~4
wt% water during ascent, may have experienced periods of both
cooling and heating in the conduit. This assertion is supported
by the results of conduit modeling by La Spina et al. (2015) that
accounts for latent heat production. La Spina et al. (2015) find
evidence for ~20°C of cooling followed by ~20°C of heating
during magma ascent just prior to the 2007 effusive eruption
of Stromboli, Italy (e.g., their Figure 1). We have conducted
some simple forward models to test whether the MgO plateaus
observed in our Seguam melt inclusions are consistent with
the kinds of temperature variations predicted by the La Spina
et al. (2015) model (Figure 10). We impose thermal histories
with durations of ~100 min (chosen to match the average
duration of magma ascent determined via modeling of volatile
diffusion in melt embayments; Newcombe et al., 2020) in which
the temperature varies by up to £ 20°C prior to quenching
on eruption. Models in which the net temperature change
during magma ascent is 0°C (prior to quenching) provide a
reasonably good match to the MgO profile measured in Seg5-MI1
(Figures 10A,B). However, models in which the net temperature
change during magma ascent is 10°C (prior to quenching)
are unable to match the MgO profile (Figures 10C,D). We
conclude from this exercise that it is possible to erase the effects
of temperature variations of tens of °C on MgO zonation in
our Seguam melt inclusions. This behavior is more likely to
occur in wet magmas in which Dyjgo is enhanced (see section
“Effect of Water Addition and Major Element Composition on
the Diftusivity of MgO in Basaltic Melt”) and in magmas that
ascend slowly enough to provide time for MgO variations to
diffusively homogenize. However, the fact that the central MgO
concentrations of our Seguam melt inclusions are approximately
in equilibrium with their olivine hosts requires minimal net
temperature change during magma ascent (we estimate a
maximum net temperature change of ~4°C can be tolerated by
our Seg5-MI1 data). We note that the thermal histories imposed
in Figure 10 are highly non-unique. The incorporation into
our model of chemical zonation of oxides other than MgO
could narrow the range of viable thermal histories (Saper and
Stolper, 2020); e.g., we note that concave-up profiles of CaO
across our Seguam inclusions likely rule out thermal histories
with prolonged cooling prior to quenching (such as the thermal
history plotted in red in Figure 10A). Future efforts are needed
to constrain the families of possible thermal histories that satisfy
major element zonation data in olivine-hosted melt inclusions,

perhaps by coupling with models of magma ascent based on
thermodynamic and fluid dynamic principles; however, such
efforts are beyond the scope of this work.

Systematics of Magma Temperature

Changes During Ascent

We have used MgO concentration gradients in olivine-hosted
melt inclusions to constrain syneruptive temperature changes of
magmas during five basaltic eruptions. The syneruptive magmas
involved in these eruptions had variable decompression
rates (Fuego > Keanakako’i layer 6 > Keanakako’i
reticulite > Seguam > Kilauea Iki) and contained different
initial water concentrations (Fuego > = Seguam > > Kilauea).
What are the underlying processes and controls driving
temperature changes during these eruptions?

Thermodynamic models of adiabatic magma ascent (Mastin
and Ghiorso, 2000; Mastin and Ghiorso, 2001) support the idea
that the dominant control on adiabatic cooling is the volume
fraction of vapor in the magma: Kilauea Iki, Seguam, and
Fuego magmas experienced very different ascent histories (e.g.,
Figures 9A-C), but relationships between the slope of the adiabat
(dT/dP) and the volume fraction of vapor calculated by Conflow
are almost identical for all three magmas (Figure 9D).

The clear importance of vapor volume fraction as a driver
of syneruptive magma cooling suggests that we may be able to
explain the systematics of magma temperature changes in terms

Adiabatic cooling Heat of
of retained vapor 3 crystallization
dominates dominates
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Kimberlites?
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Dome-building

Magma decompression rate (MPa/s)
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FIGURE 11 | Hypothesized trend between magma decompression rate and
temperature change during ascent. We find evidence that the Seguam 1977
magma experienced a net temperature change of ~0°C during syneruptive
ascent and the Fuego 1974 magma experienced a net temperature change
between ~-40°C (if our best-fit thermal histories reflect cooling in the conduit)
and ~0°C (if our best-fit thermal histories reflect cooling in the volcanic plume).
Blundy et al. (2006) report a temperature increase of ~100°C accompanying
slow extrusion of magma during dome-building eruptions at Mount Saint
Helens and Shiveluch volcanoes. Together, these results are suggestive of a
negative correlation between decompression rate and temperature change
during ascent, which likely relates to higher degrees of melt-vapor segregation
and more crystallization in slower ascending magmas. Studies of ascent and
syneruptive temperature changes at volcanoes with a wider variety of eruptive
styles (e.g., Plinian eruptions) and magma compositions will be required to
test the validity of this hypothesized trend. Photo credit: USGS.
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of a magma’s ability to produce and retain vapor bubbles during
ascent. As described in the previous section, magmas erupted at
Fuego and Seguam both initially contained ~4 wt% water such
that the volume fraction of vapor exsolved by each magma must
have been approximately equal; however, rapid magma ascent at
Fuego (Lloyd et al., 2014) allowed this magma to retain its vapor,
while slower ascent at Seguam (Newcombe et al., 2020) likely
led to melt-vapor segregation and crystallization on ascent. The
lower initial volatile content of the Kilauea Iki magma resulted
in delayed (i.e., shallower) vapor exsolution from this magma
compared to the magmas erupted at Fuego and Seguam, thereby
explaining the lack of cooling in the conduit inferred from MgO
gradients in the melt inclusions from Kilauea.

Several studies have been conducted of pre- and syn-eruptive
temperature changes during andesitic dome-building eruptions.
Blundy et al. (2006) used plagioclase-melt thermometry to
infer temperature increases of ~100°C of andesitic magmas
leading up to dome-building eruptions of Shiveluch and Mount
Saint Helens volcanoes. Blundy et al. (2006) proposed that this
temperature increase was a result of latent heat production during
degassing-driven crystallization. Additionally, several studies of
dome-building eruptions at Soufriere Hills (Devine et al., 1998;
Rutherford and Devine, 2003) have found evidence for heating
events just prior to and/or during magma ascent and eruption
(much of this heating was attributed to recharge of hot basaltic
magma, but some of the heating could conceivably be a result
of syneruptive degassing-driven crystallization). Placing these
results in the context of our findings at Fuego, Seguam, and
Kilauea, we hypothesize that there may be a direct relationship
between magma ascent rate and temperature change during
magma ascent, with the slowest ascending magmas experiencing
net temperature increases during ascent due to crystallization
and vapor loss, and the fastest ascending magmas experiencing
net temperature decreases during ascent due to retention and
adiabatic expansion of exsolved vapor (Figure 11).

The application of olivine-hosted melt inclusion thermometry
to the study of syneruptive temperature changes during explosive
basaltic eruptions suggests that thermal histories of hydrous
arc magmas are not well-reproduced by isentropic models
of magma ascent, likely due to the occurrence of open-
system degassing and/or degassing-driven crystallization, so
we caution against the use of isentropic conduit models for
arc magmas. Future work (e.g., application of this technique
to kimberlitic magmas and effusively erupted magmas) will
further elucidate the systematics of pressure-temperature-time
conditions experienced by syneruptive basaltic magmas. Similar
techniques could be applied to silicic systems (e.g., Blundy et al.,
2006; Myers et al., 2018), where higher melt viscosities may
produce different behaviors on magma ascent (e.g., higher shear
heating and increased vapor retention).

CONCLUSION

e We have used MgO concentration gradients in olivine-
hosted melt inclusions to estimate syneruptive T-t paths
of mafic magmas erupted at Fuego, Seguam, and Kilauea

volcanoes. By combining our syneruptive T-t constraints
with previously determined decompression histories for
these magmas, we are able to place constraints on the P-T-t
paths of basaltic magmas during ascent and eruption.

e Melt inclusions from the 1959 Kilauea Iki fire fountain
eruption record the highest syneruptive cooling rates
(3-11°C/s) and the shortest cooling durations (4-19 s),
while inclusions from the 1974 subplinian eruption of
Fuego volcano record the lowest cooling rates (0.1-
1.7°C/s) and longest cooling durations (21-368 s) of the
studied eruptions.

e A comparison of bomb- and ash-derived melt inclusions
from Fuego demonstrates the importance of clast size as
a control on syneruptive cooling rates. Melt inclusions
sampled from the interiors of small (~6 cm diameter)
volcanic bombs at Fuego are found to have cooled more
slowly on average than inclusions sampled from ash (with
particle diameters < 2 mm) during the same eruption, as
expected based on conductive cooling models. The effects
of clast size may also explain the relatively long durations of
cooling recorded by melt inclusions from the Keanakako’i
basal reticulite.

e Our constraints on the P-T-t paths of magmas erupted at
Kilauea Iki are consistent with the predictions of conduit
models that assume isentropic magma ascent and little
degassing-driven crystallization.

e Our P-T-t constraints at Seguam and Fuego (both
containing initial water concentrations of ~4 wt%) reveal
less cooling than predictions of isentropic magma ascent
models, and may indicate the importance of open-system
degassing and/or degassing-driven crystallization in the
minutes to hours preceding these eruptions.

e We find evidence for a systematic relationship between
magma thermal history and decompression rate, in which
rapidly ascending gas-bearing magmas experience slower
cooling during ascent and eruption than slowly ascending
magmas. This relationship may be rationalized by
thermodynamic models that show that the dominant driver
of cooling in the conduit is adiabatic expansion of a vapor
phase, because a corollary of these models is that, in order to
drive syneruptive cooling, the magma must ascend rapidly
enough to prevent significant melt-vapor separation.

Given the expected sensitivity of magma P-T-t paths to vapor
volume fraction, it may be possible to use the syneruptive ascent
chronometers and thermometers presented here as a means of
identifying processes that are otherwise difficult to constrain,
such as magma stalling, open- and closed-system degassing,
vapor fluxing, and vapor accumulation during syneruptive ascent
of mafic magmas.
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