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ABSTRACT: Polymerization and formation of cross-linked polymer
networks are important processes in manufacturing, materials fabrication,
and in the case of hydrated polymer networks, synthesis of biomedical
materials, drug delivery, and tissue engineering. While considerable research
has been devoted to the modeling of polymer networks to determine
averaged, mean-field, global properties, there are fewer studies that
specifically examine the variance of the composition across “microregions”
(composed of a large, but finite, number of polymer network strands) within [P
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the larger polymer network. Here, we mathematically model the stochastic

formation of polymer networks comprised of linear network strands with two identical reactive end-groups that undergo an end-
linking gelation process. We focus on networks formed by chain-growth polymerization but also give examples of how our model can
be extended to networks formed by step-growth polymerization. We introduce a master equation that describes the evolution of the
probabilities of possible network microregion configurations as a function of time and the extent of reaction. We specifically focus on
the dynamics of network formation and the statistical variability of the gel microregions, particularly at intermediate extents of
reaction. We also consider possible annealing effects and study how cooperative binding between the two end-groups on a single
network strand affects network formation. Our results allow for a more detailed and thorough understanding of polymer network

dynamics and variability of network properties.

1. INTRODUCTION

The study of cross-linked polymer networks is important in
many applications from heavy industry to biomedical
research.'~® Cross-linked polymer networks can be formed by
various techniques, leading to a diverse and complex set of
structures and properties. Of these network types, considerable
attention has been paid to those formed by a process termed
“end-linking.” End-linked networks are usually comprised of
polymeric precursors, or “network strands,” that contain N
reactive end-groups.”'’ During gelation, cross-links, or
“branchpoints,” link multiple end-groups together. For example,
poly(ethylene glycol) (PEG)-based hydrogels, which are
common in biomedical applications, are typically formed
through the reaction of its end-groups.

Network strands can bind to form a network via two main
polymerization reaction mechanisms: chain-growth and step-
growth, as shown in Figure 1. Several excellent reviews have
been written to describe these processes.''~'* Briefly, gelation
by chain-growth polymerization (Figure 1A) occurs via a chain-
extension reaction where the network strand end-groups bind to
a growing chain of end-groups, termed the “active center” (e.g,
free-radical polymerization of vinyl end-groups). The chain of
end-groups forms a branchpoint that cross-links the network
strands together. Gelation by step-growth polymerization
(Figure 1B) typically involves a defined binary reaction (e.g,
thiol—ene or azide—alkyne reactions) between the network
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strand end-groups and the complementary binding sites of a
multifunctional branchpoint, which acts to cross-link the
network strands together. In this work, we primarily examine
networks formed by chain-growth polymerization but also give
examples of how our methods can be applied to step-growth
network formation.

Network strands binding via either step- or chain-growth may
exist in many states. We examine each end-group in the system
and ask if it has bound to a branchpoint or not. Strands in the
most representative experimental scenario’ each carry N = 2
reactive groups, one on each end, leading to three possible
strand states, as depicted in Figure 1C: (i) the strand may be
“free” where neither of the reactive ends have bound (sy-strand);
(ii) the strand may “dangle” where only a single end has bound
and the strand dangles from the rest of the network (s;-strand);
or (iii) the strand may be “intact” where both ends are bound to
the larger polymer network and bridge two different
branchpoints (s,-strand).'® Strands with both ends bound may
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Figure 1. Schematic of the network formation mechanism. (A) In chain-growth polymerization, an initiator reacts with a monomer to produce a
propagating species (e.g., radical) that can add to additional chain ends. The reaction terminates after the radical is neutralized or after the occurrence
of other terminating reactions. Locally, the reaction center/branchpoint resembles the center of a “star polymer.” (B) In step-growth polymerization,
network strand end-groups bind to complementary binding sites of a branchpoint with a defined number of functional groups, which cross-link the
network strands together. (C—H) Schematic of the local network structure following chain-growth polymerization. Black lines represent network
strands with reactive end-groups at each end that can be unbound (red dots) or bound (blue dots). Chain propagation starts at an initiator (green dots)
that produces a reactive group (black dot) that propagates down the chain. (C) Strands are either “free”—neither end-group is bound (s,-strand);
“dangling”—a single end-group is bound (s;-strand); or “intact’—both end-groups are bound (s,-strand). (D—H) Schematic of five uncoupled
“microregions” (dashed lines) within the network. Each is comprised of Nj strands but the extent of reaction p can vary. (D) For p = 0, all network
strands are in the sy-state. (E—G) For intermediate 0 < p < 1, many configurations are possible, including (E) only s;-strands, (F) a combination of s,-,
s and s,-strands, or (G) only s,- and s,-strands. (H) For p = 1, the only possible microregion configuration is for all the strands be fully bound in the s,-
state.

also form a loop, where both ends are bound to the same groups per microregion is p = m/(2N;). This quantity is also
branchpoint.'® The proportion of free, dangling, and intact known as the extent of reaction and can be experimentally tuned
network strands may affect the chemical and physical properties to control the elastic modulus, viscosity, swelling, mesh size, and
of the network, for example, in water-swollen polymeric other network properties.” By definition 0 < p < 1 since the
networks, bound strand ratios impact gel modulus, mesh size, number of bound end-groups m cannot exceed the total number
and swelling.” We assume that further binding at the of available ones 2N,. Finally, we assume that microregions are
branchpoint will not affect the state of a given network strand, large enough that boundary effects between bordering domains
under both the chain- and step-growth mechanisms. In Section are negligible so that the free, dangling, intact strand distribution
A.1 of the Appendix, we outline the different connective states of two adjacent microregions are not correlated. Note that the
that lead to free, dangling, and intact states. same value of 0 < p < 1 may be associated to different {rng, n;, n,}
Finally, the architecture of polymer networks formed by end- microregion configurations with n, free, n, dangling, and n,
linking gelation is not spatially uniform. Heterogeneous intact strands. Figure 1D—H shows five different microregion
domains within polymer networks exist that span a few to realizations within a larger network where N, is fixed but
hundreds of nanometers in size and arise through variations in different {n,, n,, n,} configurations arise, resulting in different
local strand concentration (termed “frozen concentration extents of reaction p. In Figure 1E—G, we show several distinct

fluctuation”), heterogeneous distribution of cross-linking, or {ng, ny, n,} configurations corresponding to fixed N, and p.
topological- and connectivity-based inhomogeneities due to Some quantities of interest may be derived using p such as the
variability in network strand assembly.”_zo We define these likelihood P,-(p)l’z’ls’m’22 of finding free (i = 0), dangling (i = 1),
microscopic domains as “microregions.” For simplicity, we and intact (i = 2) strands for a given p. A stochastic analysis
assume that microregions are statistically identical, independent, however would lead to an expression for the probability
and composed of a fixed number of N strands with two reactive distribution of finding any microregion configuration {n,, n,,
end-groups, resulting in a total of 2Nj available binding sites per n,} corresponding to a given p, offering a much richer
microregion. We also denote by m the number of bound end- understanding of the binding process. Previously developed
groups in each microregion, so that the fraction p of bound end- stochastic models use a subset-of-states approach,” > where a
127 https://dx.doi.org/10.1021/acs.macromol.0c01346
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polymerizing mixture is described as a set of “subgraph” states of
monomeric strands, a subset of which is used to drive
polymerization.””*” These models, however, only examine the
connectivity of small subgraphs, typically made of only a few
network strands, to represent large-scale networks and predict
bulk quantities such as the network gel point.””** Studies
involving larger subgraphs containing a sizable number of
strands (say, greater than 10) are still lacking. Finally, although
several Monte Carlo numerical studies have examined network
heterogeneity,”” > none of them have evaluated configuration
probability distributions.

We aim to determine the probability distribution for a given
configuration of free, dangling, and intact strands within a
microregion of N, strands with two reactive end-groups, for fixed
m bound end-groups, or equivalently for fixed p = m/2N. This
will allow us to go beyond the characterization of a microregion
by means of p and N alone and to obtain analytical expressions
for microregion properties that depend on possible {n, n;, n,}
configurations. In some experimental scenarios, m or p may
change among microregion realizations, and it may be useful to
understand the structure of the network for a given average,
intermediate extent of reaction (p). Our results will thus be
presented both as a function of time and of the average extent of
reaction. We draw on existing stochastic self-assembly and
nucleation models**~** and utilize a master equation approach.
Different forms of the master equation will be developed and
analyzed to account for different end-group reactivities and the
possibility for end-groups to dynamically rearrange within the
microregion. In Figure 1IE—G, when 0 < p <1, a single {ng, n;, n,}
state could be representative of a large number of possible
network topologies and connectivities. For simplicity, we do not
model branchpoint functionality, nor the formation of loops or
other complex topological structures, leaving the inclusion of
such features to future studies. In this work, we only focus on the
number of intact, dangling, and free {n,, n,, n,} strands within
microregions; as a result, the total number of branchpoints and
topology of the network do not affect our modeling. Table 1 lists
the various quantities used in the remainder of this work.

2. MATHEMATICAL MODELS AND ANALYSIS

For completeness, we first review basic combinatoric methods
used to study equilibrium network configurations. We then
introduce a master equation to describe quenched end-group
binding in chain-growth polymerization. The master equation

Table 1. Summary of Variables Used

symbol representation
N number of reactive end-groups per network strand
i number of bound end-groups per network strand
s; designation of strand type with i bound end-groups
N, number of network strands per microregion
1o number of sy-network strands per microregion
n number of s,-network strands per microregion
1, number of s,-network strands per microregion
m total number of bound end-groups per microregion
P extent of reaction, p = m/(N,N)
t time of reaction (time units)
P(ny, nyt)  microregion configuration {n, n;, n,} probability at t
a end-group-binding cooperativity (unitless)
A binding rate (time™")
K end-group rearrangement rate to binding rate ratio (unitless)

128

we formulate allows end-groups to dynamically detach and
reattach and use it as a model for reversible network
polymerization. A variation of this master equation that can be
applied to step-growth polymerization is presented in Section
A4 of the Appendix.

2.1. Combinatoric Methods. Many mathematical studies
of network formation via end-linking have used combinatoric
approaches to quantify the number of polymeric strands in a
given state.'>*'=** The extent of reaction p, defined as the
fraction of bound end-groups per microregion, can also be
interpreted as the probability that any end-group within a
microregion has bound. The probability P,(p) of finding an s-
strand with 0 < i < N bound end-groups is thus

B(p) = (I:T]pi(l - 0

which assumes that of N end-groups, i are bound and N — i are
not. Equation 1 provides a basis for mean-field end-linking
gelation models used to predict network properties. Henceforth,
we assume N = 2. The average number n,(p) of s; strands within a
microregion of N; strands can thus be written as

2] 2-i
o) =)o - p) o

2.1.1. Limitations of the Combinatoric Approach. The
binding scenarios illustrated in Figure 1D—H reveal that many
possible configurations exist for a given microregion. Evaluating
the probability that any of them may arise requires a more
complex mathematical representation than eqs 1 or 2, which do
not provide any information on the possible distribution of free,
dangling, and intact strands within a microregion. Furthermore,
the combinatoric approach outlined above yields mean-field,
equilibrated determinations of network strand composition and
does not allow for specific/alternate network formation
processes to be studied. These include quenched end-group
binding, the presence of specific reaction steps, or network
strand binding cooperativity, which we address below.

Quenched end-group binding. The reaction steps asso-
ciated with network formation may be irreversible or reversible.
Irreversible reactions lead to the formation of “quenched”
networks whose properties are highly dependent on initial
conditions. This nuance cannot be captured by eq 2, which
implies equilibration and is independent of initial conditions.
Reversible reactions instead allow the network to rearrange
while forming, and “anneal,” yielding configurations that are
independent of initial conditions. As we shall see, equilibrated
and averaged quantities in the absence of cooperativity may be
described by eq 2.

Reaction steps during polymerization. End-group binding
proceeds via a specific sequence of steps under chain-growth
polymerization, as detailed in Figure 1A. In chain growth, when a
propagating species binds with an unreacted end-group, the
propagating species is no longer active but is replaced by a new
propagating end-group, allowing further end-group binding to
the chain. End-group binding to an active center (or
“branchpoint”) occurs sequentially, and at any given time only
one reactive site exists at the active center/branchpoint. Thus,
when end-groups line up in a chain (Figure 1A), the strand ends
may be attached to two other end-groups and the network
strands might be considered “tetrafunctional,” according to
common polymer chemistry terminology. For example, Flory
modeled the formation of networks formed by tetrafunctional

https://dx.doi.org/10.1021/acs.macromol.0c01346
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divinyl compounds using mean-field theory.*> While the use of
the “tetrafunctional strand” nomenclature might seem reason-
able, it can be misleading in the context of quenched end-group
binding during chain polymerization. While each strand end has
two potential binding sites, the end-group must first bind to an
active center before further binding to that end-group can occur.
Combinatorial models of tetrafunctional network strands do not
capture this nuance. Thus, each end is best described as a single
reactive site that can ultimately bind a variable number of other
strand ends to form a branchpoint (Figure 1A) until the reactive
site is terminated; each strand is assumed to have a total of two
reactive ends (N = 2). Moreover, this work does not keep track
of the size of the branchpoints (length of the kinetic chains) but
only studies the state of the network strands within a
microregion. We leave the enumeration of branchpoints to
future studies where the problem can be mapped onto one of
heterogeneous nucleation.*

Binding cooperativity. Some end-groups may also bind
differently than others depending on their intramolecular state, a
process we call “binding cooperativity” or “binding uncooper-
ativity” depending on whether binding is favored or hindered,
respectively. In the mathematical models we present below,
cooperative effects will be embodied by the parameter a,
representing the overall effect of different forces that cause
certain binding events to occur with higher or less likelihood
than others. Specifically, & > 1 represents cooperative binding so
that s; — s, binding events are more likely than s, = s, events.
The reverse is true for uncooperative binding; when a < 1 sy =
s; events are favored. Cooperative or uncooperative intra-
molecular network strand end-group binding effects may have
several chemical and/or physical origins. Cooperative binding
may arise when the unbound end-group of a dangling strand
more readily binds to form a fully bound, intact strand due to its
proximity to the polymerizing network, especially when the
polymer solution is dilute.”® Cooperative binding may also occur
if binding of s, free strands is inhibited. For example, dense
polymer solutions may restrict the movement of free strands to
find an appropriate binding site.

Uncooperative binding emerges when s, strand formation
from the binding of an existing s, strand is hindered by negative
allosteric effects, which has been shown to occur, for example, in
rigid strands.”> Uncooperative binding also emerges when s,
strand formation from the binding of an s, strand is enhanced.
For example, free strands might more readily bind than dangling
ones since diftusion allows them to more easily navigate the local
environment to find an appropriate reaction site. Hence,
dangling strands form more readily than intact ones.

Binding cooperativity may also be dependent on the time or
extent of reaction. For example, network strand diffusion
coefficients change as the network becomes more fully formed,
which could restrict the binding of free strands. In addition, at
higher extents of reaction, if a strand is bound at one end to a
branchpoint, the other end could bind to another branchpoint
only if the branchpoints (and the strands emanating from them)
do not exclude each other. The shielding of the branchpoints
might then prevent a dangling strand from efficiently finding
another branchpoint to attach to. Similarly, if the network
strands are long, binding of free strands to a crowded
branchpoint may be prevented. Crowding will be dependent
on the goodness of the solvent as well as on the configurations of
the branchpoints (which we do not consider here). While we do
not examine such effects in this work, they can be modeled by

setting @ to be a function of various network properties: a(N, n,,
ny, ).
2.2, Stochastic Model of Chain-Growth Polymer-
ization: The Master Equation for Quenched End-Group
Binding. We now derive the probability distribution P(nq, n,,
n,, t) of finding a given {1, n, n,, t} microregion configuration at
time ¢ through a master equation that allows for the inclusion of
reversible/irreversible (annealed/quenched) bond formation
and cooperative/uncooperative binding. Note that two major
assumptions applied in this work are well-mixing and
independence: each strand within a given microregion can
bind independently of its position within the microregion itself,
and strands do not interact with one another. We neglect spatial
arrangements of network strands and the branchpoints that they
bind to; this assumption could limit our approach if the
microregions are very large and end-groups do not have access
to every available binding site within the microregion. Since the
total number of strands per microregion is constant, the
constraint ny + n, + n, = N is obeyed at all times and effectively
P(ng, ny, ny, t) = P(ny, ny, t). We compare equilibrium or steady-
state solutions to eq 1; where possible, we also determine the full
time-dependent solution for P(ny, n,, t), which can be used to
derive other quantities of interest, such as the variance and
higher moments. We first consider the case of irreversible (or
quenched) end-group binding, whereby once an end-group has
bound, it will not detach. In chain-growth polymerizations, the
binding rate A of an end-group will depend on the number of
available reactive sites (radicals, anions, cations, etc.), which
exist either as active initiators or as active sites of the growing
polymer chain. The number of available reactive sites may also
change in time or depend on the extent of reaction. For example,
autoacceleration can occur as the network structure forms,
decreasing localized diffusion speeds, and hence the speed at
which termination occurs. Similarly, if active initiator formation
is slow or termination events occur before all end-groups are
bound, A will more strongly depend on the time and extent of
reaction.

For simplicity, we assume that the number of available
reactive sites is constant and that active site termination does not
occur (which is the case for living polymerizations*®). Thus, the
binding rate A of an end-group will be a constant and does not
depend on the extent of reaction. Conversely, when constructing
master equation models of step-growth polymerization, which
we briefly explore in Section A.4 of the Appendix, one must
consider that the number of complementary binding sites
decreases as the extent of reaction increases.

Future extensions of this work can include more complex
kinetics where A depends on the extent of reaction and the
specific microregion configuration: A(N,, n,, ny, ...) or by adding
a specific prefactor to the master equation as we demonstrate in
Section A.4 of the Appendix. Under these conditions, the master
equation for the probability distribution P(n;, n, t) evolves
according to

ap(n,, n,, t
) 10,y =+ )P0~ 1,0
+ da(n; + 1)P(n; + 1, n, — 1, t)

— A2(N, — n; — n,) + an;1P(ny, n,, t)
(3)

where we have explicitly used the ny = N, — n; — n, constraint.
Equation 3 also includes the reactivity parameter ¢, as described

https://dx.doi.org/10.1021/acs.macromol.0c01346
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in Section 2.1.1: & > 1 represents cooperative binding so that s;
— s, binding events are more likely than sy, — s, events; the
reverse is true for uncooperative binding, o < 1, where s, = s;
events are favored. The first term on the right-hand side of eq 3
represents the process of an unbound strand attaching to the
network structure to form a singly bound dangling strand (s, >
s;), which gives the configuration transition {ny + 1, n, — 1, n,}
— {ng, ny, n,} (Figure 2). The multiplicative factor N, — n; — n,
+ 1 represents the number s, strands in the starting configuration
that can bind to the network; the 2 prefactor is included since an
so strand can bind to the network at either of its two unbound
end-groups. Similarly, the second term represents an unbound
end-group from a singly bound strand binding to the network
and forming a doubly bound strand (s; — s,). The related
transition is {ng, n, + 1, n, — 1} = {n, ny, n,} (Figure 2). The
multiplicative factor n, + 1 represents the number of s, strands
that can bind to the network to form an s, strand. Finally, the last
term describes the processes that drive the system out of the {n,,
ny, n,} configuration, where either an sy — s, transition, with {n,,
ny,my} = {ny—1,n,+1,n,}, orans; — s, transition, with {n, n;,
n,} = {ng, n, — 1, n, + 1}, occur (Figure 2). The total number of
distinct {n,, n, n,} states can be enumerated via

N, Ni—n
N N, . (NH2)(N+ 1)
1= _"7vs 7
Eo 2;3 2 4

Due to the irreversibility of the binding process, at t = oo we
expect the system to consist only of s,-network strands: P(n,, n,,
t— o0) =0 forall {n}, n,} #{0,N;} and P(0, N, t > o0) = 1, as
depicted in Figure 1H. We can obtain an alternate
representation for eq 3 using the ny + n, + n, = N, constraint
to represent n, so that P(ng, ny, ny, t) = P(ng, ny, t) and the
master equation reads

dP("o: 1y, t)

& =2A(ny + 1)P(ny + 1, n, — 1, t)

+ Aa(n, + 1)P(ng, n, + 1, t)

— A(2ny + an)P(ny, ny, t) (s)
This representation is equivalent to eq 3 and will be useful in
deriving the distribution P(ng, ny, t) from which P(n,, n,, t) can
be obtained. We now nondimensionalize our model by
measuring time in units of the typical bond formation time,
A~!. Henceforth, time ¢ will be dimensionless and A will no longer
appear (equivalently, we set A = 1 in eqs 3 and S). The mean
number of strand types (n,(t)) in single microregions are defined

by

{n 1, n-1,n} {n-1,n+1,n}

P

{n,ntl,n-1} S {ngn-1,n+1}
= ¥ @3
D\o 0\0

Figure 2. Possible end-group binding transitions for N, = 6. The state at
the center of the schematic is {ng, 1, n,} = {2, 2, 2} corresponding to m
= 6. To the left are two m = S and to the right are two m = 7
configurations. Under quenched binding discussed in Section 2.2, the
dynamics will flow from left to right following the unidirectional arrows.
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<”i(t)> = Z niP(nl, 1y, t)

ny,hy

(6)

for i =1, 2, under the 0 < n; + n, < N, constraint. The
corresponding mass-action equations can be derived by
multiplying eq 3 by #; and by summing over n,;, n, under the
same constraint so that

d("o(t)>

PO (72)
d(n,(t)) _
? = 2(”0) - a<“1> (7b)
d(n, (1))

P (76)

Equations 7a—7c can be solved under the initial condition 1,(0)
= N,, representing all strands being unbound at ¢t = 0. We find

(no(D) = N, ™ (8)
3 Z(E—at _ e—2t)
<n1(t)> - l\Ts 2 —« (Sb)
-2t —at
(n,()) = N| 1 + ae " —2e
—a (8¢)

so that (n;(t—>00)) — 0 fori = 0, 1 and (n, (t > o)) — N,.
Equations 8a—8c represent average values calculated across all
microregions at time t under quenched binding. We compare
eqs 8a—8c to eq 2, which estimates average strand numbers

using combinatoric arguments. To do so, we evaluate (m) = (n,)
+ 2 (n,) to find

(D)) = =D [2 g — e 4 (a=1) e ]
-

)

from which we calculate the average extent of reaction (p(t)) =

(m(t))/2N,
1
() =1 - ——

2

[e—at _ 1) e—2t]

a —_—
( (10)
Inverting the transcendental eqs 9 and 10 for general a is not
possible; however, under neutral cooperativity @ = 1, we find

)y =1-¢" (11)

A simple analysis of eqs 10 and 11 reveals that (p(t)) is a
monotonically increasing function of t for all @ > 0, which is
expected given that end-groups bind but do not unbind. For a =
1, eqs 8a—8c can be recast as

(ng) = N(1 = (p)) (12a)
(m) = 2N{p)(1 = (p)) (12b)
(m) = N(py’ (12¢)

Equations 12a—c have the same form as eq 2, obtained using
mean-field arguments. This implies that the mean-field approach
for a given extent of reaction p and @ = 1 corresponds to an
irreversible (quenched) stochastic process halted at time ¢* such
that (p(t*)) in eq 11 satisfies (p(t¥)) = 1 — e™" = p. We plot the
normalized average strand numbers (n;(t))/N; as a function of
time and as derived from eqs 8a—8c in Figure 3A—C, for N, = 40
and different values of . We find that s; strand formation is
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(ny(0)/N, = =-(n®)/N, = (n,®)/N,

2

7107 107 107 10° 10' 100 0.0 02 04 0.6 08 1.0
t (p(0))

Figure 3. Average strand fractions (n,(t))/N, fori = 0, 1, 2 and N, =
40 as evaluated from eqs 8a—8c and plotted as a function of (A—C)
time and (D—F) parametrically against the extent of reaction (p(t))
given by eq 10. The chosen values of the reactivity parameter « are: (A,
D)2=0.5,(B,E)a=1,and (C,F) a =2.

favored at smaller @, and s, strand formation is favored at higher
@, as might be expected. Since (p(t)) is a monotonic function of
time, we can plot (n;(t))/N, using eqs 8a—8c as parametric
equations against (p(1)) given in eq 10. Results are shown in
Figure 3D—F for various values of a. These curves differ from
those derived from the solution to the mean-field eq 2. Most
noticeably, (n,(t)) loses its symmetry about (p(t)) = 0.5 and
becomes skewed.

The master eq 3 also allows us to derive the time-dependent
likelihood of each of the many possible configurations

(enumerated in eq 4), a much more powerful tool than average
quantities. For example, eq 3 can be solved to find P(n;, n,, t) for
all times t once the initial condition is specified. We set this to be
P(n,=0,n,=0,t=0) =1 and P(n,, n,, t = 0) = 0 for all other
values of 1}, n, # 0, so that the microregion is initially made only
of free strands. If one chooses to solve eq S to find P(ng, ny, t) the
equivalent initial conditions are P(ny= N, n, =0,t=0) = 1 and
P(ng, n,,t=0) =0 for ny # N, and n; # 0. We solve eq 5 for P(n,,
n, t) rather than eq 3 for P(n;, n, t) as the analytical
computations are simpler. From P(n, ny, t), we can then derive
P(ny, ny, t) by changing variables through the ny + 1, + n, = N,
constraint. To proceed, we introduce the generating function
G(zg, 2y, t) defined as

G(zg, 2z t) = Z P(ny, ny, t)z4'z)"
1,1y (13)

under the constraint 0 <ny + n; < N;. Upon multiplying eq 5 by
zy'zy' and summing over ng, n;, under the same constraint, we
find the following differential equation for G(z, zy, t)

0G 0G
— =2(z; - z9)— +a(l —z)—
oz, 0z, (14)

Equation 14 is coupled to the corresponding initial condition
G(zg, 21, t = 0) = 2y Using the method of characteristics, we

find

G(Zo; Zy t) =

_ — _ —at 1N
o 2z1(e at_e 2t) ae 2t_2e at
zge T —————— 1 —
2 —a 2 —-a

(1)

After performing a Taylor series expansion in zyz, and upon
comparison with eq 13, we find

N (e~ _ o2 M
P(no, ny, t) = [ s ]e_zmo[u

2—-a

( ae?—2e™ )Ns_nu_nl
X114+ —F—
2—a (16)

From the constraint ny = Ny — n; — n,, we can finally write

—P(0,0, 1) P(1,0,f) ——P(2,0, ) e===pP3 0,{) —— P(0, 1, 1)
—P(1, 1,0 P2, 1, f) e P(0, 2, {) P(1,2, ) P(0, 3, £)
C
b oa=2
. N =3

S

.0.0 02 04 06 08 1000 02 04 06 08 1000 02 04 06 08 1.0

(p(0))

(p()) (p(0))

Figure 4. Probability distributions P(n,, n,, t) for N, = 3 under quenched binding, as evaluated from eq 17. We plot P(n,, n,, t) parametrically against
(p(t)), as evaluated from eq 10 for (A) @ =0.5, (B) @ =1, and (C) & = 2. Of the 10 possible configurations, two are highlighted: {n, n;, n,} = {0, 3,0}

(magenta) and {1, 0, 2} (green).
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(m@)/N, —(m®)/N,

(m®)/N,

00 02 04 06 08 1000 02 04 06 08 1.0 00 02 04 06 08 1000 02 04 06 08 1.0

(p(®)) (p()) (p(0)) (p(0))

Figure 5. (A—D) Probability distributions P(n,, n,, t) for several values of N, under quenched binding, as evaluated from eq 17. We set a = 1 and plot
P(ny, ny, t) parametrically against (p(t)), as evaluated from eq 10. (E—H) Average strand fractions {n,(t))/N, fori = 0, 1, 2 plotted parametrically
against (p(t)). Standard deviations are calculated as the square root of the variance in eq 21a; shaded areas represent the associated error intervals.
Chosen N values are (A, E) N, =S, (B, F) N, = 10, (C, G) N, = 20, and (D, H) N, = 40.

P(n, n,, t) = ( § )e_zf(Ns—n,—”Z{ T )nl (1)) = Z (ny + 2n,)*P(ny, ny, 1)

ny, ny 2—-—a ny,hy
ey e\ = (2(0) + 42O) + MmO (0)
x|1+——=°
2 —a (17) Using eqs 8a—8c, 9, 18, and 19 we find the variances
Note that P(ny, ny, t — 00) = 0 for {n;, n,} # {0, N;} and that Var(n,(t)) = (n}(t)) — (n,(t)Y, (21a)
P(0,N,, t — o0) =1 as expected from a forward process. Figure 4
shows the probability of individual configurations P(n;, n,, t) of Var(m(t)) = (m*(t)) — (m(t))* (21b)

microregions with N, = 3 plotted parametrically against (p(t))
for different values of a. Two different configurations are

. . 2\ - .
highlighted: {ny, ny, n,} = {0, 3,0} and {1, 0, 2}. For @ = 2, when fori = 1, 2. Finally, {n,"} is obtained as

end-group binding is cooperative, the probability of config- 204)) = N — n — n)*P ¢

urations with more s, strands decreases and those with more s, {ng (D)) rg (N = = ) P, my, )

strands increases compared to the neutral (@ = 1) or v

uncooperative (@ = 0.5) cases shown here. In highly cooperative = st + (nf(t)) + <n22(t)> + Ns(nl(t))

scenarios, once a network strand has bound the transition

toward a fully bound s,-strand is fast. In Figure SA—D, we plot + Nn,(t)) + (ny(t)n,(t)) (22)

the microregion configuration probabilities P(n,, n,, t) as a ) ) . )
function of the average extent of reaction (p(t)) with increasing Equ;1.t1.()ns 22 anc% 8a—8c yleleVar(nO(t) 2) = {ng*()) = (no(1))"
N,. The highest value of N, = 40 we used results in 861 distinct Explicit expressions for (n(t)), (m*(t)), Var(n(t)), and

{no, ny, n,} microregion configurations, as per eq 4, all with Var(m(t)) are presented in Section A.2 of the Appendix. In
nonzero probability at a finite time. Larger values of N are Figure SE—H, we show the parametric plots of the average
possible but graphically difficult to display. strand fractions (n,(t))/N, for i = 0, 1, 2 against the average

By inserting the explicit expression for P(ny, n,, t) from eq 17 extent of reaction (p(t)) for several values of N,. The associated
into eq 6, we evaluate the average values (n,(t)) fori = 1, 2 to standard deviations calculated as the square root of the variance
reobtain the same expressions for (n,(t)), fori = 0, 1, 2 already in eq 21a are also displayed. As can be expected, fluctuations

decrease as N, increases. Figure 6A shows the parametric plot of
Var(n,(t)) against {(p(t)) for different values of @ and N = 40.
For strong uncooperative binding (& — 0) and small extents of
(niz(t)) = Z "izP("p ny, t) reaction (p(t)), only free strands bind to the network and the
nomy (18) variance is very small. However, once all strands have bound at

least at one end, and (p(t)) ~ 0.5, the dangling strands transition
to the fully bound state and the variance starts increasing. In eq
33 of Section A.2 of the Appendix, we give an exact analytical

(m()m (1)) = Z mnP(m, o, ) expression for Var(n,(t)); 1;psimple calcgulation shows tha};tthe
o (19) maximum variance is N,/4 for all values of & and is attained at

from which we can derive {(m?*(t)) smaller average extents of reaction {p(t)) as @ increases. In

displayed in eqs 8a—8c. From eq 17, we can also calculate the

second moments {n(t)) as

fori = 1, 2, and the correlation function
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Figure 6B, we plot the parametric dependence of Var(p(t))
against the average extent of reaction (p(t)) with variable @ and
N; = 40. For very small values of & — 0, Var(p(t)) is bimodal and
approximately zero at (p(t)) — 0.5. This is because, as discussed
above, for @ — 0 end-group binding occurs only on free strands
for (p(t)) < 0.5 and the most likely configurations are those with
so and s; strands. As (p(t)) — 0.5, only s, dangling strands
remain so that (n,(t)) = N, (n,2(t)) = N?, and Var(n,(t)) = 0,
and as a result, Var(p(t)) — 0. Fully bound strands start
emerging for (p(t)) > 0.5, increasing Var(p(t)). As « increases,
the variance increases for all (p(t)) and the minimum at (p(t)) ~
0.5 turns into a maximum. A more detailed discussion is
presented in Section A.3 of the Appendix.

In Figure 6C, we plot Var(n,(t))/N;* against (p(t)) for
different values of N; the curves decrease in magnitude as N
increases. Finally, in Figure 6D we plot (n,(t))/N, parametri-
cally against (p(t)) for several values of a. The curves decrease
with a once (p(t)) is fixed. This also follows from eq 8b, which
implies that (n,(t)) is a decreasing function of « for any time ¢.
Since (p(t)) is univocally associated to t via eq 10, it also follows
that (n;(t)) is a decreasing function of a for any (p(t)).
Equations 8b and 10 reveal that the maximum (n,(t,,,,))/N; =
(a/2) 79 s attained at (p(tne)) = 1 — ((a + 1)/a) e 2=
where t,,. = In(2/a)/(2 — a). One can easily verify that
(p(tnay)) is a decreasing function of a as well. These results can
be expected as larger a favors the formation of fully bound
strands. Thus, for a given average extent of reaction (p(t)), the
fraction of dangling ends decreases with @ and the maximum is
found at an average extent of reaction (p(t)) that also decreases
with a.

— =180 — 118 12 — 1
—2 8 —380
104A ¢ 4B
= 8 =
Na 34 i
= ° =
= 4 =
§ Sa -
2 x107
0 0
——N =10 —20 40
—80 —— 160
1.0
NZV, C 08 D Increasing
= =06
oo 04
s 702
>
0.00 0.0

0.0 02 04 06 0.8 1.0

()

0.0 0.2 04 0.6 0.8 1.0
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Figure 6. Variance of the number of (A) s, strands and of (B) extent of
reaction p, as evaluated by eq 2lafora=1/8,1/2, 1,2, or 8 and N, = 40.
Var(n,(t)) and Var(p(t)) are plotted parametrically against {(p(t)), as
evaluated from eq 10. For @ > 80 and a < 1/80, the curves do not
change significantly from those displayed. (C) Variance of the fraction
of s, strands Var(n,)/N? for N, = 10, 20, 40, 80, and 160 and @ = 1. (D)
Relative (n,(t))/N,, as calculated from eq 8b for @ =1/8,1/2, 1,2, 0r 8
and N; = 40.
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2.3. Dynamic End-Group Rearrangement/Redistribu-
tion. We now consider an equilibration process that allows the
bound end-groups in a microregion to dynamically rearrange,
attaching and detaching until thermodynamic equilibrium is
reached"” while maintaining a fixed total number of m bound
end-groups. We assume that m < 2N, (p < 1) so that the reaction
is not complete and multiple {n, n;, n,} configurations are
possible. Experimental realizations include the formation
reversible hydrazone bonds,*® imine bonds," guest—host
interactions,”’ among many other mechanisms.”’ While most
polymer networks that include dynamic bonds are typically
made of network strands with more than two reactive end-
groups, dynamic allyl sulfide bonds have recently been
introduced into network strands with only two end-groups
that cross-link via multifunctional branchpoints.”> We can thus
envision the possibility of introducing other types of dynamic
covalent bonds into network strands with two reactive end-
groups as well.”' We also note that bond rearrangement may be
less realistic for networks formed by chain-growth polymer-
ization (compared to networks formed by step-growth polymer-
ization, which we briefly explore in Section A.4 of the Appendix).
However, one could construct a network strand with reversible
covalent bonds at its end-groups terminated by a moiety that can
undergo chain polymerization, such as an acrylate. While not the
same type of dynamic covalent chemistry described here,
network strands that polymerize into photodegradable hydro-
gels are constructed in this manner.”® Finally, we use bond
rearrangement to directly compare the results of eq 3 to mean-
field theory (eq 2) and combinatorial models (Section A.S of the
Appendix) that assume binding and unbinding occur until
equilibrium has been reached; we demonstrate that such models
are not accurate representations of networks formed by
quenched end-group binding.

During the rearrangement process, an intact s, strand may
detach at one of its ends to form a dangling s, strand, while a free
so strand binds to the network to form another s, strand (Figure
7). The reverse process where two s, strands become an s, and s
strand is also possible. In all scenarios m = n, + 2n, is fixed, but
there are many distinct ways for the bound end-groups to
distribute in s, or s, strands. The final equilibrium configuration
is independent of initial conditions so our results will depend
only on the selected value of m. We write the reversible master
equation for P(ny, ny, t) as

More sl—strands More S5 sz-strands

ng-l,n+2,n,-1} n,t1,n-2,n+1}

o
N\,

Figure 7. Possible end-group bond rearrangement transitions for N, =
6. The state at the center is {ng, n;, n,} = {2, 2, 2} corresponding to m =
6, p =0.5. From right to left, the number of dangling s, strands increases,
from left to right, the number of intact s, and free s, strands increase,
Throughout, m = 6 remains fixed. Dynamic rearrangement, as discussed
in Section 2.3, allows strands to equilibrate among {n,, n,, n,} states
with the same m, similarly to the three shown here for m = 6.

{no’ n, nz}
o—
. O\o/_
— —7

™~

https://dx.doi.org/10.1021/acs.macromol.0c01346
Macromolecules 2021, 54, 126—142


https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01346?fig=fig7&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c01346?ref=pdf

Macromolecules

pubs.acs.org/Macromolecules

dP(n,, n,, t
(”1 n, )=2

n + 2
ka® | P(n, +2,n, — 1,t)
dt 2

+4k(N, — n; — ny + 1)(n, + 1)P(n; — 2, n, + 1, t)
n
—2Kka’” (21] P(ny, n,, t)

—4kny (N, = ny = ny)P(ny, ny, t)
(23)

Here, k is dimensionless and represents the rearrangement rate
measured in terms of the binding rate. The first term on the
right-hand side of eq 23 accounts for the formation of a fully
bound s, strand and a free s, strand from two dangling s, strands
(2s; — sy + 5,). Here, the bound end-group of one of the two s,
strands exchanges with the unbound end-group of the other,
leading to the {ny — 1, n, + 2, n, — 1} = {n,, n,, n,} transition, as
shown in Figure 7. The combinatorial factor enumerates the
number of s, strands present in the microregion and the 2
prefactor represents both s, strands being able to exchange with
the other. Finally, the reactivity parameter « is squared, since
two dangling ends must bind to form a fully bound strand. The
second term represents a fully bound s, strand detaching on one
end while promoting the binding of a free s, strand, giving rise to
two dangling s, strands. This process is represented by the {n, +
1,n; —2,n, + 1} = {ny, n;, n,} transition, as shown in Figure 7.
The factors (N, — n; — n, + 1) and (n, + 1) represent the
number of s, and s, network strands available, respectively. The
prefactor 4 accounts for the number of possible bond
movements: either of the two bound end-groups on the s,
strand can relocate to either of the two unbound end-groups of
the sy-strand, yielding a total of four combinations. The last two
terms represent the same two processes described above but
driving the system away from {n, 11, n,}. Note that there are no
terms in eq 23 representing bonds leaving an s, strand to
populate an s, strand; this transition would not change the
overall the microregion configuration {ng, n;, n,}. The
probability P,(m,t) of having m bound-ends at time ¢ can be
written as

[m/2]
B(m, t) = Z P(m — 2n,, n,, t)

n,=0 (24>
where all possible #,, n, combinations that yield m = n, + 2n, are
included. Using eq 23, it can be easily verified that Py(m,t) =
Py(m,t = 0). As expected, the master eq 23 only rearranges the
distribution of s, and s, strands, but m remains unchanged. We
thus assume that the system is initiated with a given m so that n;
+ 2n, = m at all times. In addition to this constraint, the number
of strands is fixed so that ny + 1, + n, = N,. We can thus cast eq 23
in terms of only one of the 1y, n,, or n, populations. We choose n,
and determine the steady-state P(n,, n,, t > 00) = P*(n,) by
imposing a detailed balance between the first and the last terms
on the right-hand side of eq 23 or equivalently the second and
the third, since it can be easily verified that the conditions are the
same. We find

P*(ny, — 1) _ 4n,(N,—m + n,)
P*(n,) az(m—an +2)(m=2n, + 1)

(25)

which can be solved to yield
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PH(ny) = — (2/a)" "N
Zyn, (m = 2n,) Iy L(Ny = m + ny)! (26)
where Z,,N, is the normalization constant
, _ [m/2] (Z/a)m_Z"ZNS!
m,N, = (m = 2n)In, (N, — m + n,)! (27)

This result is the same as eq 56 of Section A.5 of the Appendix
when a combinatorial approach is taken to approximate
microregion configuration probabilities for a fixed m; this
approach is equivalent to allowing for relaxation on the network
with a fixed number of bound-ends and m = 2pN..

2.3.1. End-Group Rearrangement/Redistribution and
Bond Formation. We now consider the two processes of
bond formation and redistribution occurring simultaneously and
combine the two master eqs 3 and 26 so that

dP(”l) 1y, t)
dt
+a(n; + 1)P(n, + 1, n, — 1, t)

=2(N,—n, —n, + )P(n; — 1, n,, t)

+xka’(n; + 2)(n, + 1)P(n, + 2, n, — 1, t)
+4xk(N, — n, — ny + 1)(n, + )P(n; — 2, n, + 1, t)
—[xka*n,(n, — 1) + 4xkny(N, — n, — n,)

+2(N, — n; — n,) + any]P(ny, ny, t)

(28)
Fast annealing, fast binding, and quenched/irreversible binding
are modeled by setting k > 1, k < 1, and k = 0, respectively.
Although a full analytical time-dependent solution cannot be
found, the effects of annealing can be observed in Figure 8. Here,
we parametrically plot P(n,, n,, t) against {(p(t)) using eq 28 for
N,=m=3,a=0.5,and a = 2, under fast annealing (x = 1000) or
quenched binding (k = 0). Since the rearrangement process
allows for more configurations to be explored, we expect
cooperative effects to be more pronounced under fast annealing
than under quenched binding. In Figure 8A, we set a = 0.5; since
binding is uncooperative, annealing favors configurations with
lower values of n,. Indeed, the k = 1000 curves show an increase
in P(5, 0, t) compared to the corresponding k = 0 curves,
whereas P(3, 1, t), P(1, 2, t) decrease. Similar trends are
observed in Figure 8B, where we set & = 2. Cooperative binding

K>>1 k=0
02 A B P(5,0,0)
“7 P3,1,f)=———=meeeeee-
_ P(1.2,)
N& o=2
S 0.1 - 2\ No=5
5 y X m=5
QL
0.0 T 1 T al
0.0 0.5 1.0 0.0 0.5 1.0

(p(0)) (p@0))

Figure 8. Configuration probabilities P(n,, n,, t) calculated from eq 28
and plotted parametrically against (p(t)) under fast annealing (k =
1000, solid lines) and quenched binding (x = 0, dashed lines) for N, = §
and (A) a=05,m=5;(B)a=2,m=S.
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increases the likelihood of configurations with higher n,, so in
this case, P(1, 2, t) increases, while P(3, 1, ), P(5, 0, t) decrease.
Note that P(S, 0, t), P(3, 1, t), and P(1, 2, t) all obey the
constraint n, + 2n, = N, = S. For a = 2, and under quenched
binding at k = 0, eq 17 yields P(S, 0, ) = 32 e 1945 which is
maximized at t = 1/2 corresponding to (p(t=1/2))=1—-3/2e
# 1/2, as per eq 10. Similarly, P(3, 1, t) = 8™ £(1 — (2t +
e and P(1, 2, t) = 2741 — (2t + 1) e™*) are also
maximized at times that correspond to {p(t)) # 1/2. None of the
three distribution curves are thus symmetric about (p(t)) = 1/2.
When k = 1000, however the master eq 28 yields numerical
results that are closely aligned with those derived from eq 23
upon setting n, + 2n, = Ny = 5. This is because annealing is much
faster than binding and the time between binding events is much
longer than the time for equilibration of a fixed number of bound
strands. As a result, once a strand binds, the network can almost
tully equilibrate before the next binding event occurs. The curves
in Figure 8B for k = 1000 thus mirror eq 26, with the proportions
P(5,0):P(3, 1):P(1, 2) following eq 25 and become symmetric
about (p(t)) = 0.5, as predicted by eq 26 when m = N,. The same
trends arise when comparing the quenched binding and the fast
annealing curves for the uncooperative (a = 0.5) case.

In Figure 9, we plot (n,(t))/N, parametrically against (p(t))
for a=0.5, 1, and 2 using the probability distribution in eq 28 for
i=0,1,2 and x = 1000. The most notable feature is the
symmetry of (n;(t)) about (p(t)) = 0.5 for all @, a feature of the
combinatoric approach, as discussed in Section A.S of the
Appendix. Intermediate values of x 1 yield curves that
interpolate between the two extremes k >> 1 and k = 0 shown
here. Our results imply that networks formed via quenched end-
group binding, as per eq 17, should not be described by models
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Figure 9. Average strand fractions (n,(t))/N, fori = 0, 1, 2 and N, =
10 evaluated using the probability distribution in eq 28 and plotted
parametrically against (p(t)) under fast annealing (x = 1000). The
reactivity parameter is set as (A) a = 0.5, (B) @ =1, and (C) a = 2. All
curves closely resemble those obtained from the equilibrium
distribution in eq 26. (D) Under fast annealing, {,(t))/N;is symmetric
about (p(t)) = 0.5 for all &, here setat @ =1/8,1/2, 1,2, and 8, from top
to bottom.
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that assume network strands equilibration via redistribution, as
per eq 1 and eq 57 in Section A.S of the Appendix.

3. DISCUSSION AND CONCLUSIONS

In this work, we studied the stochastic properties of network
strands with two reactive ends that undergo an end-linking
gelation process. We developed and analyzed a master equation
to describe quenched and annealed binding events in micro-
regions within a larger polymer network and include a reactivity
parameter to model cooperative effects. While typical models
quantify “average” mean-field properties, we are able to evaluate
the full probability distribution for any given configuration as a
function of time and the extent of reaction. By modeling the
probability of a configuration within a microregion, we can
propose a crude framework to describe the effects of
heterogeneity across the entire sample.

For example, our approach can be used in several polymer
network applications under the assumption that a macroscopic
region is comprised of a collection of statistically identical,
independent, smaller microregions (Figure 10). For example,
nano/micrometer-scale differences in the polymer network
properties can affect the fate of cells that are cultured on them®*
as well as the mechanical properties of high-performance
materials.” If these properties depend on the local number of
free, dangling, and intact strands, we can use the relevant
probability distribution to evaluate the likelihood of a given
configuration {ne, ny, n} in any number of microregions
sampled by, e.g, a cell. The statistical distribution for each
microregion can then be used to construct the probability
distribution of the entire macrosystem and thus to estimate the
chemical or mechanical properties of the polymer network,
including their local variability.

Similar considerations can be applied to the study of elastic
properties, in particular within the phantom network theory,
which posits that the shear modulus of an ideal network depends
on the number density of elastically effective network strands.
While complex topological features that affect network
mechanical properties (including primary loops,'” which we
do not tabulate here) can form, our results are readily applicable
if we assume that s, strands are elastically effective and the
number of branchpoints is fixed. Starting from the probability
P(ny, n,, t) that a microregion is in the {ny, n;, n,} configuration,

p=0.792
{no,nl,nz_} =1{0

~ .
P N
. N ’Qi
9

p=0375
573 Angnn} ={552}

UOIZAI-0IOIA

p=0833

{ngn.n,} =363} {nynn}={129}

Figure 10. Schematic of four uncoupled “microregions” (dashed lines)
within the network. Each is comprised of N strands but the extent of
reaction p can vary.
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A Free s-strand B Dangling s -strand

C Intact s,-strand

______________

______________

Figure 11. Different scenarios of network strand attachment to the network. (A) For a free s, strand, neither end-group is bound. (B) For a dangling s,
strand, one end-group is unbound, and the other can be connected to either the middle of a polymerizing chain, at the end of the chain at the reactive
site, or to a chain that only consists of an initiator and the bound end-group of interest. (C) Intact s, strand consists of two end-groups bound to a chain.
Similarly, each bound end-group may independently exist in the middle of the kinetically growing chain, at the reactive site of the chain, or to a chain

that only consists of an initiator.

we can also compute the likelihood that a given threshold is met,
say, n, > n¥. This quantity can then be interpreted as the
probability for a “bond” to stretch across a microregion. One can
then calculate the likelihood that a given number of contiguous
microregions with n, > n¥ span the sample through percolation,
leading to a dramatic stiffening of the network. In future
iterations of this model, branchpoint functionality can be
examined using models of heterogeneous nucleation,” and
models of network theory can be incorporated to determine the
probability of different cyclic defects such as finite-strand
aggregates, loops, and other topologies,”” all of which may affect
the mechanical properties of the network.

Finally, our work can also be applied to the study of network
degradation, which has attracted much attention over the past
two decades as degradable sites have been increasingly
incorporated into experimental realizations of end-linking
polymerization. These degradable strands typically cleave by
enzymatic, hydrolytic, photolytic, or other chemical mechanisms
and allow for a reverse gelation process. Here, strands initially
exist in the fully bound, intact state where both ends are
unreacted. Reverse gelation occurs via reaction or degradation of
either end, so that intact strands first become dangling strands,
and dangling strands then become free strands. Halting the
extent of reaction is common in degradable networks as a way to
tune the gel mechanics and this results in a large variability of the
microregion composition. Photodegradable networks formed by
the end-linking of network strands with two end-groups that can
be degraded by exposure to light*****°™% are of particular
interest as they are uniquely suited to spatially pattern network
stiffness, with a high degree of control.’® Some mathematical
models of reverse gelation have been formulated by adapting
models of gelation; ~ more specific mean-field photodegradable
network models have also been proposed.*”** The present work
can be adapted to model degradable networks by associating
intact network strands to s, strands (zero degraded end-groups),
dangling strands to s, strands (one degraded end-group), and
free strands to s, strands (two degraded end-groups).
Cooperative effects arise in this context as the undegraded
end-groups of an intact strand might more readily react due to
tension across the strand induced by network swelling. Once one
of the end-groups has cleaved and the strand dangles, the stress is
removed so that the remaining undegraded end-group is less
susceptible to further degradation. Using our stochastic
framework, one can calculate the probability of any given
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microregion configuration, distinguishing between quenched
and annealed network degelation reactions. Melting and
collapse of rigidity can then be described using percolation
concepts.

B APPENDIX

A.1. Connectivity of a Network Strand

During network formation, a strand with N = 2 reactive end-
groups may exist in one of three states: (i) the two end-groups
are unbound and the strand is free (s, strand); one end-group is
bound and the other is not, so the strand “dangles” from the
network (s; strand); and finally, both end-groups are bound to a
branchpoint or to a polymerizing chain and the strand is intact
(s, strand). During end-group binding, the size of the
polymerizing chain and the position of the bound end-group
along the chain may differ (see Figure 11). The end-group may
be attached only to an initiator, within the chain, or at the
reactive site, at the end. For simplicity, we define a single end-
group bound to an initiator as a branchpoint. Each scenario,
however, does not change the inherent state of the network
strand of interest (free, dangling, intact). In our definition, each
end-group is either unbound or bound. We then count the
number of corresponding s, s;, and s, strands, regardless of the
state of the branchpoint to which each end-group is attached.

A.2. Second Moments

We here derive (n}(t)), Var(n(t)), and Var(m(t)) for
i =0, 1, 2 using the explicit form for P(ny, n,, t), as given in
eq 17. We begin with

5 3 N, Ni—n, 5
(ni (1)) = Z Z n; P(ny, ny, t)
n,=0 n;=0 (29)

and the associated variances for i = 1, 2. Using the binomial
theorem, we find

2y 2N
(n (1)) = - a)2

X[2—a+2(N, - 1)(e™™ -

(e—at _ e—Zt)

)] (30)
which coupled with eq 8b for (n;(¢)) leads to
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2N,
(2 s )2 (e—at _ e—Zt)
—-a

Xx2-a-2e"+2e7%)

Var(n,(£)) =

(31)
Similarly, eq 29 for 7/ = 2 yields

2oy DN
<”2(t)> = (- a)z

XIN2-—a—-2e™ +ae™)

Q-a-2e%+ae™

+2e —qe™

(32)
which, coupled with eq 8c for (n,(t)), leads to

Var(nz(t)) = (2 —a-2e" +a e—Zt)

(2-a)y’
XxQ2e™ —a e_Zt)

Equation 33 is maximized for time #y; implicitly given by

(33)

2—-a
2 (34)
which corresponds to Var(n,(ty)) = N,/4, independent of the

value of a. To evaluate (m*(t)), we must first calculate the
correlation function

—at, —2t,
2e M—qe ™M=

N, N—n,
(n()ny(t)) = z Z nnyP(ny, 1y, t)
n,=0 n;=0 (35)
which yields
ZI\TS 1\75 - 1) —a —
(0, () = TR (= e
XQ2—-a—-2e" +ae™ (36)
We can now evaluate (m?*(t)) using eqs 20, 30, and 32
2
(mz(t)> = ﬁ[Z —a+ (a- l)e_Zt — e P
o 2_1\’;)2 (2 = a)(e™ + (3 — 2a) &)
—2(a— 1) e — ] (37)
from which the variance is obtained as
Var(n(9) = 12 = (e (3= 20) )
= 2f(a — 1) e — ] (38)

where we used eqs 8b and 8c to evaluate (m(t)). Finally, using
the constraint n, = Ny — n; — n,, we find

(ng(t)) = NIN, e™ + e7(1 = ™)] (39)
which together with eq 8a finally yields
Var(ng(f)) = N, e (1 = e™*) (40)

A.3. Strong Uncooperative Binding

All evaluations in the main text assume a # 0, since the
completely uncooperative case (@ = 0) would not allow for the
formation of s, strands. Setting a = 0 however can be used to
explore the short time behavior when a — 0. This is the case of
highly uncooperative binding where although rare, the
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formation of a fully bound s, strand is still possible. Setting o
=0 in eqs 8b, 8¢, and 10, so that e™ — 1 for all times, we find

(m(1)) = N(1 - ™) (41)
(ny(8)) =0 (42)
(p(0) = (1 = ™) -
Upon setting @ = 0 in eq 38, we also find

- L ar(m
Var(p(t)) = 4N52V (m(t))

_ 1 e 2(] — o

=N (1 )

1
= 4—N52<p(t)>(1 = 2(p(1))) "

Note that eq 43 yields (p(t)) < 0.5 for all times, implying that for
a = 0 the reaction cannot be completed, as expected since fully
bound strands cannot emerge. Equation 44 also reveals that
Var(p(t)) is symmetric about (p) = 1/4 and its maximum is
attained at Var(p(t)) = (16N,) . The above results still apply in
the @ — 0 limit, albeit for at < 1 where e™ — 1. For example,
Var(p(t)) follows eq 44 in Figure 6B up to (p(t)) ~ 0.5. At
longer times, since « is small but not zero, the binding will
proceed, and s, strands will emerge. We can thus re-evaluate eqs

8b, 8¢, and 10, for @ — 0 but at long times where e > — 0 and
e % =£ 0 so that
(n(t)) = N, ™ (45)
(ny(t)) = N(1 — ™) (46)
1 —at
t))=1— —e
(p(1)) . 47)
Finally, in the e ™ — 0 limit, eq 38 becomes
1
Var(p(t)) = —Var(m(t
(p(t)) e (m(t))
— L e—(lt(l _ e—(lt)
= 2(p(0)(1 - 2p(1)
4N (48)

The results in eqs 47 and 48 indicate that as t > o0, (p(t)) > 0.5
and (p(t)) — 1. Furthermore, we observe that the shape of
Var(p(t)) in eq 48 is the same as in eq 44 as also emerges from
the bimodal form in Figure 6B. Finally, we note that for t — oo,
(ny(t)) = 0, even as @ — 0 since eventually all strands will be

fully bound and {n,(t)) — N..

A.4. Stochastic Model of Step-Growth Polymerization
Using the Master Equation

In Section 2.2, we presented a master equation to model the
probability of different network strand configurations within a
microregion. Equation 3 is specific to networks formed by chain-
growth polymerization. Modifications are necessary to make it
applicable to networks formed by step-growth polymerization.
Thus, in Figure 12 we show the possible end-group binding
transitions during step-growth polymerization of N = 2 network
strands, which are the equivalent of Figures 2 and 7 for chain-
growth polymerization. Step-growth polymerization reactions
only involve binding between an end-group and an open,
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Figure 12. Possible end-group binding transitions during step-growth
polymerization for N = 6. The state at the center of the schematic is {n,,
ny, my} = {2, 2,2} corresponds to m = 6. To the left are two m = § and to
the right are two m = 7 configurations. Under quenched binding, the
dynamics will flow from left to right following the unidirectional arrows.
To the top and bottom of the {ny, ny, n,} = {2, 2, 2} state are other m =6
configurations. Under dynamic rearrangement, the system equilibrates
following the vertical lines.

complementary binding site on a multifunctional branchpoint.
Multistep binding as in chain-growth polymerization does not
occur. Additionally, the functionality of the branchpoint is
usually defined in step-growth. Thus, the probability distribution
P(ny, n,, t) for step-growth can be written as

dP(nl) Ny t)

=2A02N, — n, — 2n, + 1
dt ( s 1 2 )

X (N, —n —ny, + 1)P(n; — 1, ny, t)
+ Aa(2N, — n; — 2n, + 1)(n; + DP(n; + 1, ny — 1, t)

— A2N, — n; = 2n,)[2(N, — n; — n,) + an]P(n, n,, t)

(49)
As can be seen by comparing eq 49 with eq 3, there is an extra
prefactor in each term. These represent the number of
complementary binding sites, which is given by the total
number of end-groups 2N in each microregion, minus the
number of end-groups that have already bound, given by the
number of s; strands and twice the number of s, strands, since
they are engaged in two end-group bindings. For example, the
factor 2 Ny — n; — 2n, + 1 is exactly the number of open, available
binding sites in a microregion with n; — 1 single strands and with
n, intact strands, given by 2N, — (n; — 1) — 2n,. Similar
reasoning applies to all additional factors in eq 49 that do not
appear in eq 3. We leave the analysis of eq 49 to future work.
Here, we end by examining step-growth network formation
when bonds are allowed to reversibly bind and rearrange within
the network. As shown in Figure 12, bond rearrangements can
occur by which the unbound end-group of an s, strand binds to
the network to become an s, strand; at the same time, a different
s; strand unbinds from the network to become an s, strand. The
reverse process is also possible by which an sy and s, strand
become two s, strands. Under step-growth polymerization, these
rearrangement events are more realistic than under chain-

growth polymerization (Table 2). Indeed, it has been recently
demonstrated that reversible covalent bonds can be used to
generate a multitude of step-growth networks.>"

Conveniently, the redistribution dynamics are independent of
whether bond formation occurs via step or chain growth,
implying that eq 23 is applicable to both polymerization
processes. This is because of the fundamental assumption that
the rearrangement of bonds between two strands occurs in a
pair-wise fashion without the need for other auxiliary strands to
mediate the process and thus without the need to enumerate
them. For step-growth polymerization, if we allow both bond
formation and redistribution to occur simultaneously we can
combine the two master eqs 23 and 49 so that

dP(n,, n,, t)

= 2A(N. — —2n, + 1
at (s m n, )

X (N, —n;—n, + 1)P(n, — 1, ny, t)
+ Aa(N, — n; — 2n, + 1)(n; + )P(n; + 1, n, — 1, t)
+ ka’(n, + 2)(n, + 1)P(n, + 2, n, — 1, t)
+ 4k(N, — n; —ny + 1)(ny + 1)P(n; — 2, n, + 1, t)
= AN = ny = 2my))[2(N; — ny — ny) + any]P(ny, ny, t)
— ka’n(n, = 1)P(ny, ny, 1)
= 4xny (N, — ny — n))P(ny, ny, t)
(50)
Due to the added terms and complexity of eqs 49 and 50, we
could not solve for them directly as we did for eq 17. Instead,
they can be solved analytically as a system of linear differential
equations, which limits the number of network strands N; that

can be described within an individual microregion. We leave the
analysis of eq 50 for future work.

A.5. Equilibrated Distribution Models of Microregion
Configuration

In some scenarios of network formation (particularly by step-
growth polymerization), the probability distribution of different
microregion configurations can be derived via combinatoric
arguments, for example, in the case of reversible binding, when
equilibrium is reached and the annealing process is complete
(Table 2). We evaluate this limit here and find the probability
distribution for a given microregion configuration {n,, n;, n,}
with 7y unbound s, strands, n, singly bound s; strands, and n,
doubly bound s, strands, under the assumption that a total of m
end-groups have bound. We do not consider how the pairs of
end-groups are bound. For example, in the case of network
strand binding to two branchpoints that are very far away from

Table 2. Overview of Different Approaches Used to Model
End-Linked Networks for Both Chain and Step-Growth
Polymerization Mechanisms

Polymerization mechanism
Chain-growth Step-growth

-x-9---1 ————
—_—— 1
! 1 1 1
1 1 H
! 1
! 1 1

1
! 1 1 1
[ - H

Model type | be————— N _!
Equilibrated distribution N.A. Eq. 57
Master equation, quenched Eq. 17 Eq. 49
Master equation, bond rearrangement Eq. 28" Eq. 50
* Bond rearrangement may not be realistic for chain-growth polymeriza-
tions.
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Figure 13. Results from the equilibrated distribution Py, ,(n,), as evaluated from eq 57 for N; = 10 and as a function of the extent of reaction

p=m/2N,for (A) a=0.5, (B) a=1,and (C) a = 2. Each point represents a different configuration {n, n,, n,}; those with the same 1, are connected by
lines. (D) Average populations (n;) /N, fori = 0, 1, 2, N, = 40, and a = 0.5 (dotted line), @ = 1 (solid line), and a = 2 (dashed line). (E) Normalized
variance of n,/N; as a function of p for N = 40 and several values of a. (F) Normalized variance of n,/N; for a = 1 and several values of N,. A maximum

emerges at p = 0.5, whose value decreases with N;. Notice the symmetry in (n,) and Var(n,)/N? about p = 0.5 for all values of .

one another, we do not consider the restriction of certain states
from existing by steric or other effects; instead, every binding site
is accessible to every possible end-group, independent of spatial
restrictions. We assume that each microregion examined is well
mixed and that our assumptions follow mass-action kinetics.

At equilibrium, the time and order at which strands were
linked do not affect configuration likelihoods, so the task of
finding the probability distribution for {ng, n,, n,} is equivalent
to finding the number of ways N(ng, n,, n,) one can distribute
{ng, ny, n,} among N strands with m total bindings, where we
assume equal probability between all potential conformations.
The above quantities are related by ny + n, + n, = N since all
strands must be accounted for and by n; + 2n, = m to include the
contribution of each strand type to the total bound end-group
count. Hence, a given microregion with configuration {ng, n;, n,}
can be equivalently described by {N,, m, n,}. The extent of
reaction p can also be determined from {N, m, n,} via p = m/
(2N,). Combinatoric arguments yield N(n, ny, n,) as

N
N(ny, ny, n,) = 2"{ ]
Ny, Ny, Ny (51)
Here, the 2" factor arises from the fact that the bound end-group
on an s; strand can be arranged in two configurations per strand.
The above can be rewritten using ny= Ny — m + ny and n; =m —

2n, as follows

Zm—ZnZI\TS!
(N, = m + ny)!(m — 2n,)n,! (52)

N(IVS; m, ”2) =

Upon summing over n, with N, m fixed, we find Zy ,, the

partition function over all possible configurations, with N, m

fixed

[m/2]

Zyw= D3 NN, m, ny)
n,=0 (53)

where [-] indicates the integer part of its argument. The
equilibrium probability distribution can finally be calculated as

N(Ns' m, ”2)

Zy

PNS,m(nZ) =
m (54)

Equation 54 may be used to evaluate many different microregion
properties, such as averages, variances, and higher moments. We
begin with the average number of free, dangling, and intact
strands, respectively, given by

[m/2]
(n) =N, —m+ Y nyPy,(n,)
n,=0 (553.)
[m/2]
(n) =m—2 Z ”ZPM_,m(”z)
n,=0 (SSb)
[m/2]
(ny) = 2 1>Py m(112)
n,=0 (SSC)
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In eqs 55a—55¢, the average, denoted by (-), is taken across all
microregions with the same N, and m, or equivalently, using all
possible configurations within a single microregion with Nj
strands and m total number of bound end-groups. The above
combinatoric argument assumes that end-group binding is
accompanied by end-group annealing until equilibrium is
reached, independent of the number of bound end-groups
already present. However, within cooperative or uncooperative
binding, bound end-groups may promote or hinder the binding
of other end-groups. We include these phenomena by rewriting
eq S2 as

(Z/a)m—ZnZM!
(N, — m + n,)!(m — 2n,)!n,!

N(ZVSJ m, n,, a) = (56)

where the reactivity parameter a > 1 represents cooperative
binding, penalizing dangling ends in favor of s, — s, events.
Values of @ < 1 represent uncooperative binding where s, = s;
events are favored. The neutral case is @ = 1. Finally, the
equilibrium probability distribution Py, ,(,) can be written as

_ N(l\rs; m, 1, a)
= 7
ZEZ:O] N(I\Is; m, n,, a)

PNs,m,a(nz)
(87)

We plot Py ,,, 4(1,) in eq 57 for several values of 1,, under three

choices of & and as a function of the extent of reaction p = m/
(2N,) in Figure 13A—C. The solid lines connect microregion
configurations with the same n,; we choose this representation
as the number of intact “elastically effective” s, network strands
is an important feature of polymer networks and determines
both the mechanical modulus and swelling behavior of the
network.” As « increases, all curves tend to shift to the left, as
might be expected since increasing cooperative effects favor the
emergence of s, strands for a given p. In Figure 13D, we plot the
average strand fractions (n;) /N fori = 0, 1, 2 as evaluated via
eqs 55a—55c¢ for N; = 40 and as a function of p. Note that for all
values of a, the average quantity (n,) is a symmetric function of
m about Nj as can be verified by imposing m’ = 2N, — m in eq
55b and verifying that (n,) remains unchanged. Since p = m/
2N, this also implies that (n;) will be symmetric about p = 1/2
for all values of @, as seen in Figure 13E,F. The (n;) quantities in
eqs 55a—55c closely match those obtained from eq 28 for all a,
as can be seen upon comparing Figure 13D with Figure 9A—C.
We also calculate the second moment (n3) defined as

[m/2]
(n3) = 7 1Py almy)

n,=0 (58)
from which we obtain the variance Var(n,) = (n3) — {n,)> where
(n,) is derived in eq S5c. Similarly as for (n,), one can verify that
Var(n,) is symmetric about p = 1/2 for all values of a. Since n, =
m — 2n,, ng = Ny — m + n,, and given (n,) and (n,) from eqs 55a
and 55b, Var(n,) = (n}) — (n,)* and Var(n,) = (n3) — (n,)* can
also be derived using eqs S5c and 58. Figure 13E shows Var(n,)/
N? as a function of p for different values of a. In each case, the
maximum variance occurs when half of all possible end-groups
have bound at p = 1/2. As a deviates from the neutral condition
a = 1, the bias toward certain bond types induced by
cooperativity or uncooperativity causes the variance to decrease.
In Figure 13F, we plot Var(n,)/N? as a function of p for different
values of N: the curve remains symmetric about p = 0.5 and as
N, increases, the normalized variance decreases.
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