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The hypothalamus-pituitary-adrenal (HPA) axis is a key neuroendocrine system implicated in stress
response, major depression disorder, and post-traumatic stress disorder. We present a new, compact
dynamical systems model for the response of the HPA axis to external stimuli, representing stressors
or therapeutic intervention, in the presence of a circadian input. Our work builds upon previous HPA axis
models where hormonal dynamics are separated into slow and fast components. Several simplifications
allow us to derive an effective model of two equations, similar to a multiplicative-input FitzHugh-
Nagumo system, where two stable states, a healthy and a diseased one, arise. We analyze the effective
model in the context of state transitions driven by external shocks to the hypothalamus, but also mod-
ulated by circadian rhythms. Our analyses provide mechanistic insight into the effects of the circadian
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PTSD cycle on input driven transitions of the HPA axis and suggest a circadian influence on exposure or cogni-
Chaos tive behavioral therapy in depression, or post-traumatic stress disorder treatment.
Bistability © 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and

Cognitive behavioral therapy

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When presented with external stimuli and challenges, organ-
isms activate a series of physiological and behavioral actions to
minimize departure from homeostasis. These body-brain
responses are mostly coordinated by the hypothalamic-pitui
tary-adrenal (HPA) axis which controls the expression of three
major stress-related hormones: CRH (corticotropin-releasing hor-
mone), ACTH (adrenocorticotropic hormone), and glucocorticoids,
through a complex set of interactions, ligand-receptor binding
events, and feedback loops [1,2]. The most prevalent glucocorticoid
in humans is cortisol. The above hormones are secreted on a circa-
dian basis: under normal conditions levels are low at night, peak in
the early morning hours and decline slowly throughout the day [3].
Non-stimulated basal CRH is released in a pulsatile manner with a
frequency of about two to three episodes per hour; similarly ACTH
and cortisol manifest burst-like releases that follow a 60-90 min
periodicity [4-9]. As a result, an ultradian rhythm is superimposed
on the circadian cycle of each hormone. Animal studies suggest
that pulsatile CRH is not the source of the ultradian ACTH and cor-
tisol rhythms|[10]. On the other hand, ACTH and cortisol pulses are

https://doi.org/10.1016/j.csbj.2020.10.035

highly correlated, with cortisol typically trailing ACTH by a 15-min
delay [11].

The HPA axis regulates many physiological processes, including
digestion, the immune system, mood and emotions, sexuality and
metabolism. It is a highly conserved system that is present in many
vertebrate, invertebrate and mono-cellular species. Due to its cen-
tral role in the body’s response to environmental stimuli and
demands, disruptions to the HPA axis and related neuroendocrine
activity are associated to a wide variety of pathologies, including
stress-related ones [12]. For example, over-production of CRH
may be linked to major depressive disorder (MDD) [13-17] and
to anorexia nervosa where hypercortisolemia is also observed
[18-20]. Patients with acute MDD have also reported elevated cor-
tisol levels [21]. Increased ACTH and/or cortisol levels are observed
in patients with Nelson’s syndrome, Cushing syndrome or Cushing
disease [22-25]. Cortisol production irregularities are also linked
to Sheehan’s syndrome and are often observed in patients with
pituitary tumors [26-28]. Those at risk for depression have been
found to exhibit greater waking cortisol and a larger cortisol awak-
ening response [29], while abnormally low cortisol levels are
observed in post-traumatic stress disorder (PTSD) patients as mea-
sured by urinary and/or salivary samples [30-39]. Addison disease,
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or primary adrenal insufficiency, is marked by low levels of cortisol
due to adrenal gland disorders; secondary adrenal insufficiency is
marked by low levels of ACTH and cortisol due to dysregulation
of the pituitary gland; tertiary adrenal insufficiency is marked by
low levels of CRH, ACTH, and cortisol, due to hypothalamic diseases
[40]. Addison disease may also be characterized by high levels of
ACTH. Here, since the adrenal cortex is unable to synthesize and/
or secrete cortisol, the pituitary gland increases production of
ACTH in an effort to stimulate it. Some studies associate elevated
levels of CRH and cortisol to the onset of dementia and Alzheimer’s
disease, whereas others observe low CRH concentrations in
patients with advanced neurodegenerative conditions [41]. These
seemingly contrasting findings may be due to chronic HPA axis
overstimulation, where high levels of CRH and cortisol may induce
permanent damage to neuronal connectivity, so that eventually
secretion of CRH is reduced [42]. Other contradictory findings
may emerge in surveying the literature on alterations to HPA-
regulated hormonal activity. For example not all studies report cor-
tisol deficiencies [43] among PTSD patients. These discrepancies
may be due to methodological variabilities in sampling and/or tim-
ing, limited number of participants, confounding effects such as
patients of different ages or who are taking medications that affect
hormonal expression, and other extraneous factors.

As described above, one of the most important functions of the
HPA axis is to maintain homeostasis in response to mild to severe
stress via the enhanced release of CRH from the hypothalamus, ini-
tiating the CRH-ACTH-cortisol cascade. The secretion of cortisol
helps the body cope with the stressor, for example by facilitating
the release of glucose to activate “fight or flight” responses. How-
ever, sometimes the trauma is so severe (or the individual experi-
encing it is particularly susceptible) that the normal HPA axis
response is disrupted and abnormal levels of stress hormones are
produced on a permanent basis. Thus, acute stressful events such
as major accidents, combat, assaults, natural disasters, death of a
loved one, can lead to neuroendocrine dysfunction. This happens
in PTSD and in MDD: both can be triggered by episodes of acute
stress, and are characterized by abnormally low cortisol levels
(one biomarker of PTSD) and over-expression of CRH (a biomarker
of MDD). The evidence that the HPA axis is hypo/hyper active in
PTSD and/or MDD comes from clinical trials, biochemical studies,
functional HPA axis tests, neuro-imaging and postmortem studies.
Based on these observations, we formulate our main modeling
assumption, that external stressors may cause long-lasting damage.

The neuroendocrine dynamics of the HPA axis has been well-
studied using mathematical models that describe the abundances
of CRH, ACTH, cortisol, and glucocorticoid receptors and their
dynamics in response to external inputs [44-56]. These models
include physiologically motivated feedback loops and delays that
allow for the emergence of the ultradian oscillations. The external
input, which may be time dependent, is interpreted as environ-
mental stimulus, stressor or trauma, while the circadian rhythm
is typically neglected. Under given parametric regimes and model-
ing conditions two stable states or limit cycles emerge: one is iden-
tified as the “healthy” or “healthy” state, the other as a
psychiatrically “perturbed” or “diseased” condition [47,49]. Transi-
tions between the two states may arise from parameter changes,
which we interpret as physical injury, or as a function of external
input, which we interpret as psychological trauma. In the latter
case, HPA stress-related disorders may be viewed as a consequence
of the bistability of the system, with the diseased state emerging as
an organism’s response to psychological stress, rather than to
physiological damage. Mood disorders often appear as abnormali-
ties in CRH expression, which also manifest downstream, in ACTH
and/or cortisol expression. We thus seek for bistability at the origin
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of the hormonal sequence that is regulated by the HPA axis, that is
at the CRH level.

Separating CRH dynamics into a fast CRH release and a slow CRH
synthesis yields a larger parameter space and higher likelihood for
the emergence of the healthy-diseased bistable configuration
[55,56]. Apart from the action of external stressors, the time-varying
input into the hypothalamus can also model cognitive behavioral
therapy (CBT) or exposure therapy (ET), where patients are subjected
to psychological interventions or exposed to the stressor in a con-
trolled manner to relieve them of depression, PTSD and other stress
related symptoms. Within these dynamical systems models, external
inputs can trigger transitions between the healthy and diseased states
depending on input duration, amplitude and time of application rela-
tive to the intrinsic oscillations of the ultradian cortisol pulses [55,56].

The circadian cycle, which is known to affect the regulation and
metabolism of several hormones, has been neglected in previous
mathematical analyses. Here, we incorporate it as an input to the
dynamical system. Physiologically, the relevant oscillating pace-
maker is located in the suprachiasmatic nucleus (SCN), a group
of neurons in the hypothalamus that respond to photosensitive
ganglion cells in the retina [57-59]. The circadian rhythm can
modulate input from the hypothalamus to stimulate the secretion
of CRH hormones in the portal vessel which connects the hypotha-
lamus to the anterior pituitary [60]; it may also cause oscillations
in the relevant tissues and organs that comprise the HPA axis and
that respond to the SCN independently of the hypothalamus.

In Section 2, we derive a dynamical systems model of the HPA axis.
The “fundamental” form we present in Eqs. 12 and 13 is based on exist-
ing models but it is more mathematically compact, allowing us to bet-
ter study the parameter regimes that yield healthy-diseased bistability,
and to include circadian driving. In Section 3 we discuss how the circa-
dian driving affects the dynamics and equilibria of the fundamental
form, through analytical and numerical analysis. In Section 4 we
include various forms of external inputs representing trauma and/or
exposure therapy. The complete stimulus to the HPA axis is given by
the superposition of basal, rhythmic and external/reactive terms. We
show that the magnitude and duration of the external input, its timing
relative to the phase of the circadian cycle, and the amplitude of the cir-
cadian rhythm, strongly affect the transition between healthy and dis-
eased states. We offer conclusions and a brief discussion in Section 5.

2. Reduced model without circadian drive

The model we use in this paper is a compact, reduced description
of the HPA neuroendocrine system that is derived from previous
work [53,49,54,48,50-52,55,56]. The simplifications introduced
allow us to incorporate the circadian drive and perform complete
analytical analyses. We begin by illustrating the full, initial model
which includes five variables that represent the most relevant hor-
mones and receptors involved in stress response [55,56]. Later we
show how our new, compact two-variable system is obtained.

The CRH neurons are the first to be activated by physiological
changes such as stress and the HPA axis model we consider includes
two compartments for it. One is CRH storage, that obeys relatively
slow dynamics, on the order of ten to twelve hours; the other is
CRH secretion, that follows relatively fast dynamics, on the order
of minutes. Secreted CRH initiates a cascade of events that includes
ACTH and cortisol production. Feedback loops emerge from circulat-
ing cortisol binding to glucocorticoid receptors leading to inhibition
of ACTH and self-upregulation of glucocorticoid receptor production.
Depending on the parameters chosen, a maximum of two stable
fixed points may arise, which are interpreted as the healthy and dis-
eased states. Specific time-dependent perturbations of the external
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input into the hypothalamus can drive transitions from one stable
point to the other, suggesting that onset of dysfunction in stress
response and its treatment can be framed in terms of dynamical
bistability. In non-dimensional terms, the full model [55,56] is
given by

dcs(t) _ Cx(0) = G
dt te ’
90 = (01— ) + g D) g
? _ ﬁ “psa, (1)
% =a-o,
2

Here, cs(t) represents the slowly evolving concentration of
stored CRH in the neurons of the paraventricular nucleus of the
hypothalamus, which is not directly affected by the external input,
but rather depends on circulating cortisol. Stored CRH may be
quickly released into the hypophyseal portal vessels before being
transported to the anterior pituitary. The concentration of CRH in
this “circulating” pool is denoted c(t). The stored CRH concentra-
tion cs(t) evolves on the long time scale t. and relaxes towards
an equilibrium value c. (o) that depends on cortisol levels o
through an indirect negative feedback process. From experimental
observations on rats ¢..(0) = C, 4+ €7 so that at steady state the
stored c;(t) decreases with o(t), leveling at c,, for large cortisol
levels as modulated by the parameter b [61,62]. Aside from natural
degradation modeled by the —q,c term, the dynamics of c(t) is dri-
ven by two processes. The first is the stimulus I(t) that triggers
release of stored CRH: this is modeled by the product between
I(t) and go(1 — e~*=®), In this expression g, is the maximum possi-
ble secretion rate of the stored cs pool to the circulating CRH pool
which is achieved in the ¢; — oo limit. For ¢ — 0, there is no stored
CRH to release. The coefficient k modulates the response between
these two limits. The second process is self-upregulation, whereby
circulating CRH stimulates further release of the same hormone
[62]. Since upregulation is mediated by CRH/receptor binding, we
use a Hill-type increasing function that varies between 0 and
Z.max- The coefficient q; is the inverse of the CRH concentration
that produces half maximum self-upregulation, and the Hill coeffi-
cients used are n = 5, although other choices of n will not qualita-
tively change our results. The concentration of ACTH generated in
the pituitary gland is denoted as a. As can be seen from Egs. 1, its
production is driven by circulating c levels but inhibited by cortisol
o bound to glucocorticoid receptors r through the negative feed-

back term (1 + p,(or))~". ACTH is cleared at rate p;. Cortisol pro-
duction in the adrenal gland is driven by a(t) and follows a
natural decay. Finally, glucocorticoid receptors in the anterior pitu-
itary self-upregulate through cortisol binding to the receptors
themselves [63]. The dynamics of r thus assumes a cortisol-
independent production rate ps; and cortisol-mediated generation

represented by the (or)?/(p, + (or)?) term; the clearance rate is
Ds- The non-dimensional parameters in Egs. 1 are highly variable
and may depend on genetic traits, age, gender, and other environ-
mental factors. Parameter choices are important as they may (or
may not) lead to bistable solutions, representing individuals who
are less (or more) resistant to dysfunctions of the HPA axis. The
parameters we use in this work for Egs. 1 lead to bistability. They
are set as in [56], and are listed in Table. 1.

Note that the model presented in Egs. 1 is non-dimensionalized
using the inverse of the decay rate of cortisol as the reference time
scale and various parameter combinations to obtain c,cs,a,0,r
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Table 1
Non-dimensional parameter values of the model Eqgs. 1 as taken from Refs. [55,56].
We also include non-dimensional parameter values for the 24-h circadian rhythm.

Parameter Value Description

Coo 0.2 minimal stored baseline CRH

b 0.6 stored CRH decay as a function of cortisol

te 69.3 CRH biosynthesis timescale

qo 28.0  maximum release rate of CRH in basal state

Iy 1.0 basal level of the external stimuli

k 2.83 relates stored CRH to CRH release rate

&e.max 42.0  maximum auto/paracrine effect of CRH in the pituitary

n 5 Hill coefficient describing the self-upregulation of CRH

q;! 25.0  circulating CRH conc. at half-maximum self-
upregulation

q 1.8 ratio of CRH and cortisol decay rates

P! 0.067 or-complex conc. for half-maximum negative feedback

D3 7.2 ratio of ACTH and cortisol decay rates

D4 0.05 (or-complex conc)? at half-maximum positive feedback
on r production

Ds 0.11 basal GR production rate by pituitary

Ds 29 ratio of GR and cortisol decay rates

) 0.045 frequency of 24-h circadian rhythm

[54-56]. Furthermore, in the original formulation of the model, a
delay T was included in the ACTH activated synthesis of cortisol so
that do(t)/dt = a(t — t) — o(t) [55,56]. The delayed response of the
adrenal gland to ACTH is well established and estimated to be
roughly 15 min [11]. Physiologically, the delay is due to the delivery
of ACTH from the pituitary to the adrenal gland and to the subse-
quent synthesis of cortisol. Mathematically, the delay allows for the
recovery of the ultradian rhythm [54-56]. We do not consider this
delay in the current work, as its mathematical implications are well
understood and our goal is to understand how the circadian rhythm,
which occurs on a much longer time scale than the delay, affects the
dynamics. For better insight into the model, and its non-
dimensionalization, the reader is referred to the analyses in [54-56].

The separation between CRH synthesis and release, processes
operating on two distinct time scales, yields interesting behavior,
including bistability and the possibility of transitions between
the respective basins of attraction. Eqs. 1 however are mathemat-
ically cumbersome and the inclusion of a circadian rhythm would
add algebraic tedium without offering clear insight. We thus pre-
sent a simplified version of Egs. 1 that exhibits the same main fea-
tures but that is much simpler to analyze. To proceed, we focus
only on ¢, and c in Egs. 1 and set the {a, o,r} subsystem to equilib-
rium under a given c, effectively parameterizing a, o, r. We use this
steady-state approximation since the {a,o0,r} subsystem evolves
on a much faster timescale than c;.

We keep the expression for cs in Eqs. 1 and simplify the dynam-
ics of ¢ with the goal of preserving bistability. Henceforth, unless
specified otherwise, we will work in (c;, ¢) space. For a given value
of I(t) =1Ip, equilibrium is attained when the two nullclines
obtained by setting dc,/dt =0 and dc/dt =0 in Eqgs. 1 intersect.
Since they evolve on different time scales, the first, c;-nullcline is
sometimes referred to as the slow nullcline, the latter, the c-
nullcline, as the fast one. Finally, note that the equilibrium values
of a,o,r define single-valued, positive, real functions of c; hence,
once c is specified they are uniquely defined and no bistability
can emerge at this stage. Conversely, if bistability emerges in
(cs, C), space it will be reflected in (a, 0, r) space as well, as parame-
trized by the two bistable values of c.

We begin by simplifying the right-hand side of Eqs. 1 driving
the ¢, dynamics. Since ¢, (0) = €., + e~ we must find an explicit
expression for o(c) so that our new model is self-contained in
(cs,c) space. Under the assumption that the a,o,r subsystem is
equilibrated, o(c) can be found through algebraic manipulation of
Eqs. 1 with the a, o0, r derivatives set to zero so that
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D4

PoPs(1+Ds) , 5 5 2
et 2N O Y7 + —_
{ (PaP3P4 +D3) Ds

3 04
Ds (P2b3) }

2p,p3(1 +ps) 3 2.3 } 3
—|——=——%c—p; — 0+ 2
{ Do D3 — P3P3P4 (2)
{p—2p3(; +Ps) 3pic— p%p%p‘lc} 0? +3c%p;0— 3 =0.
6

As written above, o is the root of a quartic polynomial where ¢
appears as a parameter in some of the coefficients. Writing the full
exact solution to Eq. 2, while possible, is cumbersome. We note how-
ever that using realistic parameters given in Refs.[55,56] the term

1+
[M (P3P +p3) — B2 (P2P3)3} o*
Ds Ds
2p,p3(1 +
i [ P2p3;6 ps) c-pi- p%p%m} 0* — 3¢%p;0

is relatively small compared to others. Thus, the relation between o
and c can be approximated by adding the three above terms to Eq. 2,
leading to a quadratic equation in 0%:

1+
2 {pizp s(LEPs) apap, 1 p2) — Pe (P2p3)3} o*
De De
1+ p:)c?
n [Pzpz( o ps)c” 3p2c _p%pgp‘d 0 = 3)

This simplified quadratic equation can be solved for 0%(c) and the
resulting o(c) can be inserted into ¢, (0) = €., + e in the first of Egs.
1 so that the evolution of ¢s(t) is completely described in (cs, ¢) space.
The approximated and full-model o(c) are shown in Fig. 1. In Appen-
dix 6 we discuss further approximations to the term e~ in Egs. 1.

We now explore approximations to the ¢ dynamics in the sec-
ond of Egs. 1 which couples ¢, and c. The analytical work in Ref.
[55,56] reveals that the key to bistability is the sigmoid, “S” shape
of the c-nullcline. Since the cubic is one of the simplest forms to
yield a sigmoid shape, we tailor an ad hoc cubic function c,(c) as
a proxy for the c-nullcline. To do this in a consistent manner, cer-
tain conditions must be met. We first consider the case of a fixed
input, I(t) = Io. As can be seen in [55,56] increasing I, will shift
the c-nullcline to the left in (cs, ¢) space; also the c-loci of the turn-

1.2 T T T

I
®

cortisol, o
o
>

0.4

0.2

o(c), simplified model
/ — — —o(c), full model

0 1 1 1

10 20

circulating CRH, ¢

30 40

Fig. 1. The o(c) curve expressing cortisol as a function of circulating CRH from the
full model is plotted by solving the exact Eq. 2 and is shown as a dashed line. The
o(c) curve from the simplified model derived from the approximate Eq. 3 is shown
as a solid line. Henceforth we will use the latter as it allows for an analytical
solution, while preserving the scale and salient features of the full model o(c). In
both cases parameters from Table 1 are used.
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ing points of the c-nullcline are mostly insensitive to Iy. The c-
nullcline must also pass through the origin so that if no CRH is syn-
thesized, no CRH can be released. Similarly, dc/dt > Owhen ¢; > 0
and ¢ = 0, indicating that the release of CRH increases when stored,
synthesized CRH is present. We also impose that dc/dt < Owhen
¢s =0 and ¢ > 0 so that when there is no stored CRH present, no
CRH can be released and its concentration ¢ will decrease due to
degradation. We thus posit dc/dt = kxlocs — kif(c) where f(c) is a
cubic in ¢ with f(0) = 0 and f(c) > 0 for ¢ > 0. The proportionality
constant k, should be positive so that ¢; > 0, c = 0 values will yield
dc/dt > 0. Furthermore, to preserve positivity along the c-
nullcline, ¢; = kif(c)/k2lo, we must also impose that k; > 0; posi-
tive values of k; also guarantee that if c¢;=0,c>0 then
dc/dt < 0, as discussed above. Typical values of c are one order of
magnitude larger than those of ¢ [55,56]; as a result k; must be
much smaller than k;, so that the nullcline equation
¢s = kif(c)/kzlo, which includes a cubic in c, will yield reasonable
values of c¢;. Under the assumption k; < ko, we finally write

c3

de = kzIoCS — k] (— —

de

1 +6
2

: )

A+ c;c),
so that increases in I, shift the nullcline to the left in (cs, ) space as
imposed above. The quantities c;, represent the turning points of
the cubic defined by f(c)=c3/3 — (¢} +¢5)/2c% + cicic, so that
df(c;,)/dc = 0. Without loss of generality we assume 0 < ¢} < c;.
Since ¢; must be positive at the ¢ = ¢j , turning points, we must also
impose c; > ¢;/3 and ¢; > ¢;/3. The form of the right-hand-side of
Eq. 4 implies that the c-nullcline follows a sigmoidal “S” shape
where the c-coordinate of the turning points are independent of Iy
as desired.

We can arrive at a similar expression for Eq. 4 through a differ-
ent route. Performing a Taylor expansion in ¢ of the right-hand
side of the ¢ dynamics in Egs. 1, the term qolo(1 — e %) yields
qoklocs to first order, whereas the expansion in (g,¢)" of

Eema(@€)"/(1+ (@,0)") results in g pmay[(610)" — (610)”"] to second
order so that setting n = 3/2 yields a cubic term with a negative
coefficient. Upon including a time-dependent form for I(t), the sub-
stitution Iy — I(t) will shift the c-nullcline accordingly. The full
model can thus be re-written as

C ~bo(c) _
% _Cote 657 (5)
dt tc
dc 1 c; + 6 .
@ = kolocs — kq (§ G-l 224 c]czc). (6)

where o(c) is the approximated form given implicitly in Eq. 3, and
where time-dependent inputs I(t) can be easily incorporated in lieu
of Iy. To guarantee bistability, the ¢; and the ¢ nullclines must allow
for multiple intersections. Let us denote the coordinates of the turn-
ing points of the cubic on the c-nullcline as (c;,,c;) and (c;,,c3),
where ¢;; = kif(cj)/k2lo and c;, = kif(c5)/k2lo with ¢; < c3. Since
c decreases along the slow nullcline as ¢ increases, multiple cross-
ings of the two nullclines will arise if (c;;, ¢;) lies to the right of the
slow, ¢, nullcline, and (c;,, ¢3) lies to its left. Mathematically this is
translated into the following bistability condition
€y > Co + 7@,

(7)
8)

As discussed above, c is typically one order of magnitude larger
than ¢, [55,56]. We thus further rescale c¢; by a factor
K = (ka/k1) > 1 so that the two CRH components are comparable
in size and define

Chy < Cop +€7206),
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X =, 9)
(k7

y = C(E) = B (10)

t = thy"k;"”. (11)

Note that the rescaling will also affect the time scale ¢, as seen

from Eq. 11. For simplicity, we drop the prime notation from t'

and introduce & = 1/(t.k}* k). Since the dynamics of ¢, unfolds

on the longer time scale t. compared to that of ¢, we also assume
2> k; 'k, so that & < 1. Our reduced model is now complete.
The ODE system written in terms of (x,y) is given by

dx o)
4 = fCe e —x), (12)
dy _ Tos VitVs o oo
ar = Jox— <§y 5y +y1y2y>, (13)
where o(y) is the real, positive solution to

1+
2 [IM (Pp3ps +13) -~ B (png)ﬂ o*

De De (14)
T {p—zp : (; EBs) iy 3ty pépipw%y} 0 — Kky* =0,

6

and y; , are the rescaled cj, values according to Eq. 10 and subject
to the following constraints

3y1%y; - yi°

yi>ys/3>0 x5 = 6l > o 4 €70°07), (15)
3 %24k 43 B )
Vi>y/3>0 x5 = %<cw+e*bowz>. (16)

The form of our reduced model in Egs. 12 and 13 under the con-
straints given by Egs. 15 and 16 is reminiscent of that of the
FitzHugh-Nagumo model for neuron spiking [64], which exhibits
rich dynamics in response to external excitations such as graded
responses, the appearance and disappearance of limit cycles, and
large excursions in phase space depending on the amplitude of
the external input. In Fig. 2 we show the area in (y},y3) parameter
space that yields bistability (i.e. two stable equilibria) obtained by
taking into account all constraints, Eqs. 15 and 16 and the assump-
tion that y; < y3. For given y;,y; values selected from this region,
the corresponding x;,x; values can be calculated through Egs. 15
and 16, leading to (x;,y;) and (x3,y3) coordinates for the turning
points of the cubic term in the fast y-nullcline.

Once all the physiological parameters are chosen, transitions
between the two stable equilibria can be induced by perturbations,
even transient ones, to the stimulus I(t). In principle, one can con-
sider a more complex description of the system where instead of
bistability, the nullclines intersect three or more times. Two of
these equilibria would then represent healthy and diseased condi-
tions, the others would be interpreted as prenosological states.
Mental disorders in combatants for example can be preceded by
milder neurotic conditions [65]. In this case, changes to I(t) could
induce direct transitions between healthy and diseased states,
but could also modulate a first passage from the healthy to the
prenosological state, and then from the prenosological to the dis-
eased state. Another scenario is that of a tailored I(t) that once
the prenosological state is reached would lead to a reverse transi-
tion back to the healthy one, representing early intervention. For
simplicity we only consider bistability in the remainder of this

paper.
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Fig. 2. Shaded in gray is the parameter region in (y;,y3;) space that yields bistability
for k =1 x 10*. The constraints that lead to this region are detailed in the text. The
three blue lines are y; = 3y;,y; =y; and y5 =1y;. The dotted curve is implicitly
defined via x; = ¢, + e ?07; the dashed one via x; = ¢, + e 03 as in Egs. 15 and
16 respectively, with I, = 1. All other parameters are as listed in Table 1. We set
y; = 1.04,y; = 1.87 as denoted by the red dot. These values fall in the bistable, gray
region and allow for good qualitative agreement between Eqs. 12 and 13, and the
full model in Egs. 1.

2.1. Analysis of the dynamical model without circadian drive

The steady-state solutions (x,,y,) of the reduced model Egs. 12
and 13 are found by setting their right-hand sides to zero so that

Xy = Coo + €700, (17)
] 1 + > 4 gk
loxs = 3 -4 Zyzyﬁw]yzyu. (18)

If the turning point coordinates y; , are chosen as in Fig. 2, two
distinct solutions arise and (xy,y,) = (x;,y,) or (x_,y_), labelled
according to x, > x_. In Fig. 3 we compare the nullclines derived
from Eqgs. 12 and 13 with those arising from the full model in
Egs. 1, showing that qualitative features are preserved. Two differ-

3 T T T T
— — fast ¢ nullcline, full model
25 1
= | — slow 2 nullcline, fundamental model | -~ _ _ _ ————-
o
P15r 1
=
=
2 -
R=
[ ]
05 b
0
0 0.25 0.5 0.75 1 1.25

stored CRH, =

Fig. 3. Fast CRH release (solid, red) and slow CRH synthesis (solid, blue) nullclines
of the fundamental HPA axis model obtained by setting dx/dt = 0 and dy/dt =0
respectively in Egs. 12 and 13. For comparison we also plot the corresponding c-
nullcline (dashed, red) and c;-nullcline (dashed, blue) from Eqs. 1 as a function of
X = ¢s and y = ¢/k'/3. Although the details of the nullclines from the model (Egs. 12
and 13) and from the full model (Eqs. 1) differ, the main features persist. All
parameters used are as in Table 1.
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ent ways for the equilibrium values to relate to each other are
shown in Fig. 4. To the left, the stable points are characterized by
x, >x_andy, <y_; totherightx, >x_andy, >y_. When iden-
tifying healthy and diseased states with either of the two (xy,y,)
equilibria, the relation between y,,y_ will be important since, as
discussed in the Introduction, stored CRH (a decreasing function
of cortisol) and circulating CRH may be both over- or under-
expressed, or one may be deficient while the other is produced
in excess. The left-hand panel represents the case where abnormal-
ities are marked by high stored CRH and low circulating CRH (or
vice versa); the right-hand panel represents the case where abnor-
malities manifest via both high (or both low) stored and circulating
CRH. We will mostly focus on the left-hand side representation but
our analysis and conclusions are similarly applicable to the right-
hand panel.

We can further analyze Eqs. 12 and 13 by noting that the
dynamics contains two time scales: t, over which y evolves, and
T = ¢t < t over which x evolves. To make analytical progress we
use asymptotic expansion methods [66] by first calculating solu-
tions in these two time scales respectively and then matching
the solutions in the intermediate scale where are valid. We begin
with the t time scale, and pose

= Xo(t) + 0(¢),
Yo(t) + O(e).

Upon inserting Egs. 19,20 into Eqs. 12 and 13, we find to leading
order in t,

(19)
(20)

dXo _

& =0 21)
d 1 1Y -

T = loxo - <§y87y Y 2yé+y1yzyo>, (22)

which imply the fast dynamics will occur along the vertical, y axis
while x = X, remains constant. The slower motion instead will
arise from assuming Eqs. 12 and 13 evolve over the time scale
T = &t. We thus pose

X(7) = x1(7) + 0(e), (23)
(1) = y(1)+ (), (24)
and use the chain rule to derive

dx _

d—; = Cp + 00 _x (25)

dy 15 yi+ys -
b = {Iom - (gy? B AR 2D I (26)

25
2 L

> 2f 18}

% 16f

% 15+

= 14|

=

8

£ 1r 12+

1 L
0.5
06 07 08 09 1 .08 1.09 1.1 111 112
stored CRH T stored CRH T

Fig. 4. Fast (red) and slow (blue) nullclines for two schematic realizations of the reduced
model in Egs. 12 and 13. (a) The slow nullcline defines a negative slope resulting in the
two nullclines intersecting at equilibrium points (x_,y_) and (x.,y.), where x, > x_
and y, <y_. (b). The slow nullcline defines a positive slope corresponding to
equilibrium points (x_,y_) and (x.,y.), where x, >x_ and y, >y,. In panel (a) we
show the intersections (xy,y,) = (X+,y.), in panel (b) we show the turning points
(x1,y1) and. (x2,¥,).
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By matching orders of ¢ we find

dx _

Gr = Cete?ox, (27)
‘l *+ * s

I - (397 -Y5 2% vy ) = o (28)

Egs. 27 and 28 imply that over long time scales the trajectory
moves along the slow nullcline, and that x;(7),y,(t) are related
via Eq. 28. The two sets of solutions, at the short and long time
scales must coincide at intermediate times when t — +o0o and
T — 0+. We thus impose

lim xo(t) = lim x,(7), (29)
—00 70"
lim yo(t) = limy, (o) (30)

Solving Eqgs. 21 and 22 leads to Xo(t) = Xoinit = constant, while
¥o(t) can be found by factoring the right-hand side of Eq. 22 once
Xoinit has been inserted, and solving via separation of variables.
On the other hand, solving Eqs. 27 and 28 requires specifying the
exact form of o(y,) which can be in principle found through Egs.
2 or 3. However, since all functions involved are analytic and since
upon inspection of Eq. 28 y,(7) is a function of x;(t), we can lin-
earize e~ as a function of x; and write e-?°01) = px, + g, where
0 < px; +q < 1. Under this assumption and using Eq. 29 we find

Cxt+q
1-—

x(1) = [1—e P74+ Xgjnice P,

- (31)

We can finally estimate y, (7) by inserting Eq. 31 into Eq. 28 and
by solving the resulting cubic equation for y, (7). At steady state,
two stable solutions emerge for y,(tT — oo) corresponding to
X1(T — oo). From Eq. 31 we can also estimate the typical time scale
to reach steady state as T ~ 1/(1 — p), or t ~ 1/[(1 — p)¢]. The fully
linearized problem, where we set e~ = px + q directly into Egs.
12 and 13, allows us to write the two nullclines as a vertical line
intersecting a cubic, under fast y and slow x dynamics. We consider
this problem in Appendix 6.

3. Reduced model with circadian drive

Eqs. 12 and 13 describe the fundamental dynamics of the full
model without circadian driving. One important physiological fea-
ture we now add is the circadian cycle, as modulated by the SCN in
the hypothalamus. This rhythm is manifest as a small, periodic
variation in the basal input Ip. As a result, the full model presented
in Egs. 1 must be rewritten with a time-dependent term I(t) which
we model as

Ip + o sin(wt). (32)

Here, o is the amplitude of the circadian perturbation, and w
its frequency, defining the period T = 27/w. Since we assume
the time-dependent term is small compared to the basal term,
o < Ip, the analysis performed in Section 2 remains valid. We
can thus study our reduced problem, Eqgs. 12 and 13, by replacing
Ip with I(t) as expressed in Eq. 32 and with the t — t’' rescaling
shown in Eq. 11. Under this non-dimensionalization, wt — w't’,

and the rescaled frequency is o' = w/(k;”*k3’®), corresponding
to a period T =Tk}’k2”? with @ =2n/T given in Table 1.
Henceforth we consider the rescaled version of Eq. 32, I(t') =
Ip + osin(w’t’) where ¢ is as in Eq. 11 and drop the prime
notation.

Before numerically analyzing the circadian version of Eqgs.
12 and 13 driven by Eq. 32, we present some analytical approx-
imations. Since both o, ¢ are assumed to be small, our analysis
will depend on how the two relate to each other. If « < ¢ < 1,
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the circadian rhythm defines the smallest perturbation and
solutions to the model without the circadian rhythm pre-
sented in Section 2.1 (Eqgs. 12 and 13 with I(t) = Iy) are valid
zero-th order approximations to the circadian problem. If
instead o = 0(¢) the analysis presented in Section 2.1 is no
longer valid and the contribution of CRH hormonal storage
and of the circadian rhythm must be jointly considered. We
consider the two cases below.

3.1. Small circadian drive limit

We first consider the o < ¢ < 1 case, and expand solutions to
the circadian problem in Eqgs. 12 and 13 in different orders of o
as follows

X(t) = Xu(t) + O(X“(f) + 0(0‘2)7
y(t) = yu(t) + fxyoc(t) + @(az)»

where (x,(t),y,(t)) are solutions to the reduced non-circadian
model, that solve Eqs. 12 and 13 with I(t) = Ip. These solutions equi-
librate towards the steady-state values presented in Eqs. 17 and 18,
(Xu(t — 00),¥,(t = 0)) = (Xu,¥,) = (X+,¥.), under the bistable con-
ditions shown in Fig. 2. Upon inserting Eqs. 33 and 34 into the cir-
cadian model with I(t) given by Eq. 32 we find

(33)
(34)

Computational and Structural Biotechnology Journal 19 (2021) 664-690

To further simplify our analysis, without loss of generality
we also assume that (x,(t),y,(t)) in Eqs. 35 and 36 are set as
one of the two stable, fixed-points under
I(t) = Io, (Xu(t),y,(t)) = (Xu,¥y) = (X+,¥,) so that Eqs. 35 and 36
become an inhomogeneous linear ODE system with respect
to X,,Y,. We can now rewrite Eqs. 35 and 36 as a matrix
equation

dx,

q = Ax.+b (37)

where X, (t) = (X,(t),y,(t))", b(t) = (0, sin(wt)) x,, and

A= | ¢ —ebo' (y,)e 0w } ' (38)
IO _( u—}’?)(}’u—J’E)

Using standard methods to solve linear ODE systems driven by a
periodic term we find

T11721Xy
12 — T2l
(24 sin(wt) + wcos(wt)  y sin(wt) + w cos(wt)
w? + )2 N ? + 72 ’
Xy
T2 — T2l
—r12r21 (41 sin(wt) + wcos(wt)) T (4 sin(wt) + @ cos(wt))}

X, (t) =

(39)

yac(t) =

)

02+ 75 2+ 75

(40)

dx
o el b (e My, (35)
dyd =1 B * * 36 )
Tz = ot + Sin(@0% — (1~ Y1)V ~ VW (36)
a=0.01 a=0.02
analytical analytical
22 numerical 2.2 numerical
X (z-,y-) X (z_,y-)
2.1 2.1
> 2 % > 2
1.9 1.9
1.8 1.8
0725 073 0735 0.74 0725 073 0735 0.74
X x
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11 + (’J«'+ay+) 11 + (z+,y+)
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= 0.9 @ = 0.9
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Fig. 5. Periodic orbits in (x,y) space driven by a circadian rhythm of amplitude o« = 0.01,0.02,0.03, from left to right. Analytical estimates are derived from Eqs. 33 and 34;
numerical results are obtained from Eqs. 12 and 13. Parameters are listed in Sections 3.1, 3.2 and Table 1. For these values ¢ = 0.0269. Analytical estimates closely match
numerical results for a < ¢, as detailed in the text. Top row: periodic orbits for perturbations around the fixed point (x,,y,) = (x_,y_) = (0.73,2.01). Bottom row: periodic

orbits for perturbations around the fixed point (x,y,) = (x;,y..) = (0.81,0.89).
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where 1; and /, are the eigenvalues of A, corresponding to eigenvectors
r, = (rn,rlz)T and r; = (r21,r22)T, respectively. We now compare and
contrast the analytical results in Eqs. 33 and 34 truncated at first order
in o and with (x,,y,) given in Egs. 39 and 40 with numerical evaluation
for the two (x,,y,) steady-states. For concreteness we specify
Iy=1,c; =15.5,c; =28 and k; =2.4x 107> k, = 8 in addition to
the other parameters given in Table 1. The above choices yield
y; = 1.04,y5 = 1.87 which fall in the bistability region shown in Fig. 2,
and lead to ¢ = 0.0269. These choices ensure all constraints listed in Sect.
2 are met and that the reduced model is as close as possible to the original
full model in Egs. 1. Unless otherwise noted, the above parameters will be
fixed at the above values for the remainder of this work.

In Fig. 5, we show numerical results for « = 0.01,0.02,0.03. In the
top row we consider perturbations around the fixed-point
(Xu,¥y) = (x_,y_). Similarly, those around the fixed point (x,y.) are
shown in the bottom row. For « = 0.01, analytical results from Egs.
33 and 34 agree well with numerical ones for both fixed-points, as o
increases discrepancies between the two become more pronounced.

Computational and Structural Biotechnology Journal 19 (2021) 664-690
3.2. Circadian drive comparable to stored CRH dynamics

We now assume o = ((¢) and pose & = Ma. Since the ¢ and o
contributions in Egs. 12 and 13 and in Eq. 32 are of the same order
of magnitude, we must derive our analytical results independently
of the results found in Section 2.1. We again expand with respect to

o as follows
x(t) = xy(t) + oxV(t) + a2x2 (8) + 0(a?),

y(t) =y, () + oyl () + 2y2(t) + O().

We expect the zero-th order solution, (x,(t),y,(t)) in Egs. 41 and
42 to be the same as the fast solution to the non-circadian problem
in Egs. 21 and 22 given that now all perturbations arise to order o.
We also include second order terms because, as we shall see below,
the first order term x,(t) is constant. Upon inserting Eqgs. 41 and 42
into Egs. 12 and 13, and using Eq. 32 we find the following sets of
identities stemming from the three orders of «

(41)
(42)

This is to be expected, as the current analytical results are valid only dx, 0, (43)
insofar as « < & = 0.0269. Not shown in Fig. 5 are numerical and ana- ddt 1 i .
lytical results for valpes of o < .0.014 which are also in good agreement. % = Iopxy — <§ - 1 JZFJ’2 V2 4y, y;yu) 7 (44)
Note that the analytical approximations define curves that are centered
._abou.t both fixed points (xy,y,)- T_his is becaqst_e the ﬁrst—grder approx- dx( _ M(e. + b0 _ x) (45)
imations in Eqs. 39 and 40 contain superpositions of oscillatory terms dt © un
with the same frequency w, so that the dynamics in (x, y) space is sym- dy&l) ; ) ; _ ;
metric about the central, fixed point. T - Ioxy) + sin(@wt)x) — (v, —¥3) (¥ — ¥3)¥5, (46)
a=0.01 a=0.02 a=0.03
analytical analytical analytical
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Fig. 6. Periodic orbits in (x,y) space driven by a circadian rhythm of amplitude o« = 0.01,0.02,0.03, from left to right. Analytical estimates are derived from Eqs. 41 and 42;
numerical results are obtained from Eqs. 12 and 13. Parameters are listed in Sections 3.1, 3.2, Table 1 and Fig. 5. Analytical estimates closely match numerical results for o ~ ¢,
as detailed in the text. Top row: periodic orbits for perturbations around (x.,y,) = (x_,y_). Bottom row: periodic orbits for perturbations around (x,,y,) = (x;,y.). Note the
better agreement between analytic and numerical curves for « = 0.02,0.03 than Fig. .6.
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dxy? b 1 1

dr " —M(bo'(y,)e "yl +x(1), (47)
(2)

dz; = Ipx?) + sin(wt)xl)

oy -
- (yﬁy&” ) A 2y, + ) +y§yzyé?>) :
(48)

Solutions to Eqs. (43)-(48) will depend on the initial conditions.
As expected, Egs. 43 and 44 are the same as Eqs. 21 and 22, so the
zeroth order dynamics is the same as in the non-circadian case. If
we also assume that (x,(t),y,(t)) = (Xu,¥,) = (x+,y.) are the time-
independent equilibrium solutions to the non-circadian model, we
also find that the right-hand side of Eq. 45 vanishes, leading to a
constant value of x{"). We can now solve Eq. 46 using the above
assumptions. We find

(1)
Y0 = y 0+ 1 ey
+ a)ZXi-tﬁ (we " + o sin(wt) — w cos(mt)), (49)
where
0 = Vu=Y1)0u—Y2) (30)

Note that o > 0, sincey, =y, andy, <y;, andy_>y;,. Eq. 49
depends on the constant value for x, and on the initial condition
y$(0). If we assume x{"(0) =x{" =y'”(0) =0, the first order
dynamics along the y axis is given by
X
(t) = .

o (we™% + g sin(wt) — w cos(wt)).

¥ (51)
We can also impose x{(0) = x" # 0 and assume x}", y{"(0) are

related via

I ox
(1) — 0% Pl
¥:'(0) o o io? (52)
to find a purely oscillatory solution
ToxtV X :
(1) — “ v _
v (t) o 1o (o sin(wt) — @ cos(wt)). (53)

To find the dynamics for x2(t) and yP(t) we assume
x1(0) = x{V = 0 for simplicity and set y{"(0) as in Eq. 52 leading
to Eq. 53 so that

dx? (1) botyy) %
% _ / ~bo(y,) __"u —osi
a@ Mbo'(y,)e 452 (w cos(wt) — o sin(wt)),

(54)
resulting in
x;2>(t):Mbo’(yu)e*b°wu>Mw’§7"wz)(wsin(wt)+acos(wt)—a)+x£f)(0).

(55)

The value of x?'(0) is arbitrary and can be set to zero; we can

also choose x{'(0) so that the higher order solution x{?)(t) remains

oscillatory. This is shown in Appendix 7, where we also derive

y$2(t), the solution to Eq. 48, which follows from tedious but
straightforward computations.

In Fig. 6 we plot (x(t),y(t)) as derived from Eqgs. 41 and 42, trun-
cated to second order. For simplicity, we focus on purely periodic solu-
tions, by setting the proper initial conditions to all the relevant orders

of o. Specifically we use x’(0) = x{"’ = 0,y{"(0) as given by Eq. 53

and x?(0) and y2(0) as given in Eqs. 88 and 86 respectively in
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Appendix 7. As done in Fig. 5, we consider both steady-state values
(Xu,Yy) = (X+,y.) and compare analytical and numerical evaluations
for o = 0.01,0.02,0.03, and M = ¢/o with ¢ = 0.0269. The results
shown in Fig. 6 reveal good agreement between analytical and numer-
ical curves. Upon comparing Figs. 5 and 6 however we find that when
o = 0.01 ¢, Egs. 33 and 34 are a closer approximation to the numer-
ical results than Eqgs. 41 and 42, but the reverse is true for
o =0.02,0.03 ~ ¢, as can be expected since we are here considering
the o = ¢(¢) limit. The analytical approximations define curves that
are not centered about the fixed points (x,,y,), to the contrary of
what observed in Fig. 5. This is because the second-order approxima-
tions to Eqgs. 47 and 48, shown in Eq. 55 and in Eq. 85 of Appendix 7,
superimpose constants and oscillatory terms of frequency 2w to the
first order approximations centered about the fixed point and contain-
ing oscillations of frequency w. These second-order terms break the
symmetry about the fixed point, so that (x,,y,) is no longer central
as x(t) and y(t) in Eqs. 41 and 42 oscillate. More details are shown
in Appendix 8. We investigate the behavior of the system for larger
values of o in Appendix 9. As can be seen, for o > 0.034 period-
doubling, subharmonics, and chaotic behavior emerge. While mathe-
matically interesting, this limit does not allow to clearly distinguish
between healthy and diseased states. In the remainder of this work
we thus study stress-induced transitions to the HPA axis by keeping
the amplitude of the circadian rhythm o < 0.034.

4. Inducing transitions between steady states

We have hitherto assumed that the two stable states in the
absence of the circadian drive, (xy,y,) = (x+,y,) for o = 0, repre-
sent a healthy and a diseased state. For concreteness and without
loss of generality we identify (x_,y ) with the healthy state, and
(x4+,y,) with the diseased one, where x, >x_ and y, <y_. This
choice is simply made for illustrative purposes, since as discussed
in the Introduction, over- or under-expression of any of the hor-
mones regulated by the HPA axis induce stress-related patholo-
gies. As shown in Sect. 3 including the circadian drive yields
limit cycles around both (x.,y,) for « < 0.034. Since at steady
state limit cycles will orbit around them, we use these points as
markers for healthy and/or diseased conditions even in the pres-
ence of the circadian drive. Finally, we limit our analysis to the
o < 0.034 regime, since larger values of o may lead to chaotic
behavior.

We now study how the system transitions between the two
limit cycles, or equilibrium values, in response to external pertur-
bations. Within the diseased/healthy context introduced above,
transitions from (x_,y_) to (x,,y, ) (or from and to the limit cycles
orbiting around them) represent the onset of disease, and the
opposite progression, healing. These transitions may arise through
parameter changes, which we associate to physical injury or surgi-
cal intervention, or in response to external input I (t) such as psy-
chological trauma, cognitive behavioral or exposure therapy. We
only consider the latter scenario and study how an external input
Iexe(t) superimposed to the circadian drive may or may not induce
transitions between the two limit cycles. Thus, the basal value I, in
Eq. 13 is replaced by Iy — Io + asin(wt) + Iexe(t). While several
shapes are possible we only consider illustrative examples where
a simple pulse of fixed amplitude I, duration T, is applied at
a given phase ¢ = wt (modulo 27) of the circadian rhythm. The
complete form of I(t) includes basal, circadian, and reactive inputs
to the HPA axis. In previous work, where the circadian drive was
not included, the amplitude and duration of the external input
were shown to greatly influence transitions between steady states
[55,56]. Here, the acute stressors I (t) may evoke strong
responses, even surpassing the rhythmic ones; however the ampli-
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tude, duration and timing of the circadian drive contribute to the
emergence of transitions in non-trivial ways.

4.1. Transitions between healthy and diseased states

In Figs. 7 to 11 we show trajectories under piece-wise constant
perturbations of magnitude I lasting for Ty assuming the initial
condition is along the normal or diseased limit cycles for o # 0, or,
if o = 0, at the normal or diseased fixed point. Although Ty in our
computations is measured in non-dimensional units, according to
the scaling provided in Eq. 11 and in Ref. [55], for concreteness,
we describe following figures using dimensional values in the cap-
tions. Superimposing an external input to the circadian drive
changes the shape of the fast y nullcline, but not of the slow x
one. Following [55], we adopt the convention I > 0, since the
majority of neural circuits that project to the PVN are excitatory.
This setting also avoids the emergence of negative values in the
driving stimulus, since Ip + lexr = o when Iy =1, < 0.034. As a
result, the fast y nullcline is compressed or stretched horizontally
when the circadian and/or external drive are added to the basal

a=0, Iy = 1, Toy, = 1440min

®  stress start
X stress end
0 L L
0.7 0.8 0.9
x
a = 0.02, In; = 1, Thy, = 1440min
3 T T —
2F
PN
1F
®  stress start
X stress end
0 1 1
0.7 0.8 0.9

T
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Io. If Iexe > o, the smallest compression factor Ip + lexe — o arises
when sin(wt) = -1 and the largest compression factor
Ip + lext + o occurs when sin(wt) = 1. If I < o the nullcline is
stretched by a factor Iy + Iexr — o when sin(wt) = —1 and similarly
compressed by Iy + lex + o wWhen sin(wt) = 1. The fast nullcline
oscillates between the bounds provided by the two limits above.
Whether transitions arise or not depends on the intricate interplay
between the external input and the oscillating nullclines. In certain
regimes transitions will arise, in others, they will not. Unless other-
wise specified, parameters for the figures shown in this subsection
and the next are as listed in Sect. 3.1, 3.2 and Table 1; illustration
conventions are as described in Figs. 7 and 8.

We begin in Fig. 7 by showcasing the dynamics of the system
when an external stressor I = 1 is applied for Texx = 24 hours
with and without a circadian rhythm of varying amplitude o. The
initial state is the healthy state at (x_,y_). The four panels show
that increasing the magnitude of « affects the transitions from
the healthy to the diseased state in a non-trivial way. As can be
seen, in the absence of the circadian drive, I induces a transition
from (x_,y_) to (x,,y,), a modest amplitude o = 0.01 hinders the
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Fig. 7. Dynamics in phase space for (upper left) o = 0, (upper right) o = 0.01, (lower left) & = 0.02, (lower right) « = 0.03, when Iy = 1 is active from t =0 to t = Tpax = 24
hours and the system is initiated at the healthy (x_,y_) state. All other parameters are as listed in Sect. 3.1, 3.2, and Table 1. For « = 0, the red solid curve is the fast nullcline
when Iy = 0, the red dashed curve is the fast nullcline when I = 1, and the blue curve is the slow nullcline. The black curve is the trajectory. The three red solid curves that
arise for o # 0 are the fast nullclines when I.xc = 0 and the circadian drive defines a phase ¢ = —m/2,0, /2 (modulo 27) from right to left, respectively. The fast nullcline
oscillates between these three curves. The red dashed curves are the fast nullclines when I.xc = 1. We also use three values of the circadian phase ¢ = —m/2,0, /2, however
the corresponding fast nullclines are not sufficiently resolved and appear as a single dashed line. The blue curve is the slow nullcline. When o = 0, the external input I is
sufficient to induce a transition from the healthy state to the diseased one. Including a circadian drive with intermediate « = 0.01 hinders the transition and the system
remains in the healthy limit cycle. Further increases to o« = 0.02,0.03 restores the transition to the diseased state.
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transition and the system remains in the healthy state, but larger
values o = 0.02,0.03 restore the transition to the diseased one. In
the top row of Fig. 8 we initiate the system at the diseased state
(x;,y,) and apply a pulse Iex = 0.02 for Texe = 12 hours with and
without a circadian rhythm of amplitude o« = 0.02. For o = 0 the
system persists at the diseased state even after the pulse Iy is
applied, whereas for o = 0.02,l induces a transition to the
healthy state. In the bottom row of Fig. 7 the opposite outcome
is observed. Here, the system is also originally initiated in the dis-
eased state (x.,y,) and Ie is applied for Teyx = 12 hours. In the
absence of the circadian drive, the external input induces a transi-
tion to the healthy state, however a circadian rhythm with ampli-
tude oo = 0.03 hinders the same transition, with I., unable to
dislodge the system from the diseased state. These two examples
show that the circadian drive may strongly influence how external
pulses, representing therapeutic intervention, affect the system.
Subjects may thus respond differently to cognitive behavior treat-
ment depending on how sensitive they are to the circadian rhythm.
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To understand the role of the magnitude I, in Fig. 9 we con-
sider the non-circadian o = 0 case, where the external pulse Iex
is active from t = 0 to t = Tpax = 48 hours and where the magni-
tude is increased from I = 0.5 to I = 0.8, while keeping all
other parameters fixed. In both cases, the external perturbation
dislodges the system from the diseased state (x,,y,) towards the
perturbed equilibrium given by the intersection of the slow null-
cline with the perturbed fast nullcline. Since Ty is large enough,
the system will settle in this new equilibrium, marked by the red
cross in Fig. 9. However, once I is terminated, the system must
return to either of the original steady states. For I = 0.5, the per-
turbed equilibrium falls into the basin of attraction of the original
healthy equilibrium, so the trajectory will settle into the healthy
steady state and a transition is recorded, as shown in the left panel
of Fig. 9. The value I« = 0.8 instead leads the system further away
from the original nullclines so that here the new perturbed equilib-
rium, marked by the red cross, falls into the basin of attraction of
the original diseased state. As a result, after a large excursion in
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Fig. 8. Dynamics in phase-space for (upper left) o = 0 and (upper right) o = 0.02 when Iy = 0.02 is active from t = 0 to t = Ty = 12 h, and for (lower left) o = 0 and (lower
right) o = 0.03 when Iy = 0.03 is active for Texe = 12 hours, from t = 720 min (¢ = 7) to t = 1440 min. The initial condition is always the diseased (x,.y. ) state. The first row
shows the circadian-induced, diseased-to-healthy transition. The second row shows the circadian drive impeding the same transition. In the left panels, the solid red curves
are the fast nullcline in the basal state, sy = o = 0. The dashed red curves are the fast nullcline when I, # 0 and o = 0. The blue curve is the slow nullcline. In the right
panels, the three red solid curves to the outermost right are the fast nullcline when I = 0 and the circadian drive defines a phase ¢ = —m/2,0,7/2, from right to left,
respectively. For Iexc = 0,0 # 0, the fast nullcline oscillates between them. The three dashed curves to the outermost left are the fast nullcline when I # 0 and similarly
¢ = —m/2,0,7/2 from right to left. For [« # O the fast nullcline oscillates between them. Due to the numerical values of I, & some of the fast nullclines superimpose. From
right to left, the driving terms of the fast nullclines are Iy — o, Iy = Iy + Iext — o (superimposed), Iy + o = Iy + lex (Superimposed), Iy + Iex + o We plot the healthy limit cycle as

a dotted black curve in the lower right panel for reference.
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a =0, I = 0.5, Ty = 2880min o =0, I = 0.8, Toxy = 2880min
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Fig. 9. Dynamics in phase-space for (left) lexe = 0.5 and (right) Iexc = 0.8 active from t = 0 to t = Texe = 48 hours. In the left panel, Ixc = 0.5 causes a transition from the initial
diseased state to the perturbed equilibrium, which falls into the basin of attraction of the non-perturbed healthy equilibrium. Once I is terminated, the system transitions to
this healthy state. A larger I.x = 0.8 disrupts the dynamics further and the new perturbed equilibrium falls into the basin of attraction of the non-perturbed diseased state.
After a long excursion, the termination of I returns the system to the diseased state.

phase space, the trajectory returns towards the diseased state. This
is a slightly counter-intuitive finding, since one may expect that
larger pulses I may better facilitate transitions to the healthy
state.

In Fig. 10 we show that another determinant of the transition
between states is given by the starting time of I relative to the
phase of the circadian rhythm. In the left panel we apply two exter-
nal inputs Iy = 0.2 lasting Texe = 24 hours. In the first case I is
applied from t =0 to t = Tex = 1440 min. The trajectory in the
black solid line, is perturbed but stays in the healthy state. In the
second case, although similarly Iexs = 1 and Ty = 24 hours, the
external input is delayed, starting at t = 480 min and terminating
at t = 1920 min. As can be seen, the transition to the diseased state
does occur. The same dynamics is observed in the right panel
where the system is initiated at the diseased state and two external
inputs e = 1 lasting Texe = 27 hours are applied. When ey is
applied from t =0 to t = Texe = 1620 min, a transition towards

o= 0.02, Ly = 0.2, Toge = 1440min
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the healthy state arises, whereas when the external stressor is
delayed and initiated at t=720min and terminated at
t = 2340 min, the transition does not occur and the trajectory
returns to the diseased state.

The effects of duration of the external input I are shown in
Fig. 11 where I is applied at t = 0 but for different durations
Text- In the left panel, the system starts in the healthy state and
o =0.02. When an external stressor I = 0.3 is applied for
Text = 12 hours (solid black curve), a transition to the diseased
state is observed, however when I = 0.3 is applied for Tex; = 18
hours (dash-dot black curve), the system remains at the healthy
state. Similarly, in the right panel the system starts in the diseased
state and o = 0.01. When an external pulse I = 1 is applied for
Text = 36 hours (solid black curve), the system does not transition
to the healthy state, however when Iy = 1 is applied for Teyx = 39
hours (dash-dot black curve), a transition to the healthy state is
observed. Upon further increasing Tex to Texe = 48 hours, the sys-
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Fig. 10. Dynamics in phase-space where an external input of magnitude Iy lasting Tex is applied at different phases ¢ relative to the circadian rhythm. In the left panel
Iexe = 0.2 is applied for a system initially at the healthy state, for Tex = 1440 min, with start times of t = 0 (¢ = 0, solid black curve) and t = 480 min (¢ = 27/3, dash-dot
black curve). The amplitude of the circadian rhythm is set at o = 0.02. When I is initiated at t = O the trajectory remains at the healthy state, when I is initiated at
t = 480 min the trajectory transitions to the diseased state. Similar dynamics are shown in the right panel when I, = 1 is applied for a system initially at the diseased state,
for Texe = 1620 min, with start times of t = 0 (¢ = 0, solid black curve) and t = 720 min (¢ = 7, dash-dot black curve). When I, is initiated at t = O the trajectory transitions
to the healthy state, when I is initiated at t = 720 min the trajectory returns to the diseased state.
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Fig. 11. Dynamics in phase-space when an external input .y lasting for variable Ty is applied in the presence of the circadian rhythm. In the left panel Ix, = 0.3 is applied to
the healthy state at time t = 0 (¢ = 0) for Texe = 720 min (solid black curve), and for Texr = 1080 min (dash-dot black curve). The amplitude of the circadian rhythm is set at
o = 0.02. When Ty = 720 min the external stressor induces a transition to the diseased state, when Ty = 1080 min no transition arises. Similarly in the right panel Iy, = 1 is
applied for a system initially at the diseased state, at time t = 360 min (¢ = 7/2) for Texe = 2160 min (solid black curve) and t = 2340 min (dash-dot black curve) for o = 0.01.
In the first case the trajectory returns to the diseased state, in the second case, the pulse allows the system to transition to the healthy state.

tem will remain in the diseased state. We do not plot this case, but
the trajectory follows very closely the one observed for Tex = 36
hours. These results show that the amplitude of the circadian drive
o, the magnitude I, onset phase ¢, and duration of the external
input Ty affect transitions between states in subtle ways. Finally,
Figs. 9-11 show that under stressed conditions, trajectories may
access perturbed equilibria that persist as long as the stress
remains active. These perturbed equilibria can be considered
meta-stable states that vanish once the external stressor/input is
removed. The system will then return to its original healthy or dis-
eased, non-stressed state or transition to the opposite one.

4.2. Transition diagrams between healthy and diseased states
In this section we study the interplay between Iy, Tex:, & and ¢,

by plotting transition diagrams in {Tex, lexc } Space for two possible
initial conditions (healthy and diseased) and several values of «, ¢.
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I ext
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These diagrams will indicate whether a transition has occurred or
not after a stressor or pulse characterized by {Tex, lext} applied at
phase ¢ is terminated.

In Fig. 12 we start the system in the healthy (left panel) and the
diseased (right panel) states and show the final equilibrium config-
uration in the absence of the circadian rhythm (o = 0). As can be
seen in the left panel, transitions from the healthy (x_,y_) to the
diseased state (x,,y, ) arise for sufficiently large external stressors
Iexe Of sufficient duration Te. Interestingly, in the right-hand panel,
long lived pulses are associated with transitions from the diseased
(x;,y,) to the healthy state (x_,y_) only if I is of intermediate
value, but not too small or too large. Why would large pulses that
last long enough not induce transitions? The answer is the asym-
metry induced by selecting I > 0. This choice always compresses
the fast nullcline and its corresponding limit cycle to the left. When
starting in the diseased state, small values of I are not large
enough to sufficiently perturb the system, so no transitions are

1 T T T T
diseased
0.8
0.6 |
healthy
0.4r 1
0.2 1
[ =
1/4 1/2 3/4 1 5/4 3/2 714 2
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Fig. 12. Final equilibrium states in {Tex, lex: } SPace in the absence of the circadian rhythm (o = 0), starting from the healthy (left) and diseased state (right). Durations are set
as Texe = mrT/8, with 1 < my < 16, magnitudes are set at [ = 0.01m, with 1 <m < 100, defining 1600 combinations, corresponding to 1600 rectangles centered at
(Texts lext)- Colors represent the final equilibrium state after cessation of the (Tex, lex) perturbation: yellow ones indicate a final healthy equilibrium at (x_,y_), purple ones
indicate a final diseased equilibrium at (x.,y, ). Note that large and long perturbations always lead to the diseased state, regardless of the initial configuration.
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observed, as can be expected. Intermediate I, values may induce
transitions, however if Iy is too large, the compression to the left
may cause the intersection between the fast and slow nullclines
corresponding to the diseased (x.,y,) state to vanish. The trajec-
tory must leave the initial (diseased) equilibrium and start evolv-
ing towards the perturbed one arising under I.. For short
durations Tey, upon termination of the external pulse, the system
may still be en route to the perturbed equilibrium and/or be in
the basin of attraction of the non-perturbed healthy state and a
transition will be observed. However, when T is sufficiently
large, the trajectory will be in the proximity, or at, the perturbed
equilibrium while Iy is still active. Once the pulse is terminated,
if Iex; is large enough, the perturbed equilibrium may be sufficiently
distant from the non-perturbed nullclines and fall into the basin of
attraction of the original, diseased equilibrium. In this case, there
will be a large excursion in (x,y) space but the system will eventu-
ally return to the original diseased state. Representative dynamics
are shown in Fig. 9 where an intermediate value of I for suffi-
ciently large T induces a transition, but larger values of I do
not. These results show that large, long lived external inputs will
always result in the system stabilizing at the diseased state,
regardless of initial conditions, indicating that therapeutic inter-
vention should be applied judiciously.

We present similar results in Figs. 13 to 18 where the amplitude
of the circadian rhythm is set at & = 0.01,0.02,0.03, and where the
system is initiated at the healthy state in Figs. 13-15, and at the
diseased state in Figs. 16-18. Plotting conventions are the same
as in Fig. 12; however, here we also consider the phase at which
Iext is superimposed on the initial, healthy or diseased, limit cycle
relative to the circadian rhythm. Specifically, we set ¢ =n,m/4,
with 0<n, <7, resulting in eight panels for each choice of
o # 0. see Fig. 17.

In Fig. 13, I is applied when o = 0.01 and the system is in a
limit cycle about the healthy state. For relatively low Ty and/or
Iext, NO transitions to the diseased state occur and the system
remains in the healthy state. However, external stressors with
longer duration and larger magnitude do not necessarily imply a
higher likelihood of transitioning to the diseased state, as observed
in the non-circadian case. Rather, regions in {Tex, [ext} Space where
transitions to the diseased state occur are separated from those
where no transitions occur by an undulating parameter boundary
exhibiting multiple minima in Iy, a consequence of the pulsatile
circadian rhythm imposed on the HPA dynamics. For a null onset

$=0

p=m/4

0.8

diseased

diseased

0.6

healthy healthy
0.4
0.2
AR 34 1 S/ 3R T4 2 Ve 1R 34 1 5432 74 2
Tcxt/T TCXt/T
p=m ¢ = 57 /4
! 1
0.8 diseased 0.8 diseased
N&i " healthy o0 healthy
0.4 0.4
0.2 0.2
VAR 3 TS 3RTA 2 412 34 1 53R I 2
Text/T Text/T

Computational and Structural Biotechnology Journal 19 (2021) 664-690

phase of the external stressor relative to the circadian rhythm,
¢ =n, =0, the nadir of the separatrix emerges at Texx = 3/2T. As
¢ increases from ¢ = 0 to ¢ = 77/4, this minimum shifts to shorter
Tex: following an approximate Tey = (12 — n,)T/8 trend. At ¢ = T,
an additional nadir emerges at Te = 2T, which follows a
Texe = (20 — n,)T/8 trend as ¢ further increases. The time at which
the stressor ends defines a phase relative to the circadian rhythm
given by ¢enq = ¢ + 21 Texe/T where we add the onset phase ¢
and the phase defined by the duration of the external stressor
27 Text/T. For all recorded minima in Fig. 13, ¢enq = ™ (modulo
27), indicating that the lowest I that can be applied to induce a
transition from the healthy to the diseased limit cycle should last
long enough, and be terminated when the circadian rhythm is at
o sin(wt) = o Sin(Peng) = 0.

Qualitatively, low values of Teyx and/or I do not allow the
system, initially at the healthy limit cycle, to reach the diseased
one, so transitions are unlikely. Once Tey and/or I are suffi-
ciently large however, the trajectory will reach the perturbed
limit cycle and remain anchored to it. Further increasing Tex
and/or I will still result in the trajectory oscillating about the
perturbed healthy limit cycle so that beyond a certain threshold
the magnitude of Tex and/or I become irrelevant. Thus, upon
terminating the external input, whether the trajectory returns
to the healthy limit cycle or is able to escape towards, and finally
attracted into, the diseased one, is highly sensitive to the end
phase .4, Which determines the position of the oscillating fast
nullcline, and much less to Tex: and/or Ix. The optimal end phase
for the trajectory to remain at the diseased state is the “neutral”
configuration ¢.,q = 7.

These features persist for o« = 0.02, as shown in Fig. 14 where all
minima in {Tex, lex:} Space are marked by an end phase ¢enq =
(modulo 2m), just as for o = 0.01. The region where the transition
is observed (depicted in purple) however is larger than for
o = 0.01. Here, the larger oscillations induced by the circadian
drive allow lower values of Te and/or I to induce transitions.
Finally, in Fig. 15 where o = 0.03 and circadian oscillations are
even wider, transitions occur in most of phase space, except for
very low values of Iey.

In Figs. 16-18 we initiate the system at the diseased limit cycle
around (x,,y.) and set the amplitude of the circadian rhythm to
o = 0.01,0.02,0.03, respectively. In Fig. 16 a small parameter
region with low I and a broad range of Ty is observed where tra-
jectories remain at the diseased state. For slightly larger values of
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Fig. 13. Starting from a healthy-state limit cycle, we show the final configurations in {Tex,lexc} space for o = 0.01 and eight values of the start time of the external stress

relative to the circadian drive ¢.
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Iext, pulses with intermediate durations Tey Will induce a transition
to the healthy limit cycle; however, larger Te may not be con-
ducive to transitions. The dynamics here mirrors the non-
circadian o = 0 case, where large values of I, may cause the dis-
eased steady state to vanish. Finally note that the boundaries
between regions in {Tex, lexr} Space where transitions do and do
not emerge shares some similarities to the ones observed in Figs. 13
to 15.

5. Discussion and conclusions

Building on previous work, we incorporated a circadian cycle
into a dynamical systems model of the HPA axis. We start by con-
sidering the dynamics and interplay of five main quantities
involved in the HPA axis response to external perturbations (stored
CRH, circulating CRH, ACTH, cortisol and glucocorticoid receptor
concentrations), and introduce several simplifications to build a
simpler two-dimensional reduced model. We first review the
non-circadian limit and neglect the known delay in ACTH activa-
tion of adrenal gland secretion of cortisol. This delay of approxi-
mately fifteen minutes allows for the emergence of ultradian
(hourly) oscillations. Since we are interested in the effects of the
circadian (diurnal) cycle, which unfolds over a longer time frame
than hourly oscillations, we do not include delays, and refer the
interested reader to previous work where its impacts are discussed
[55,56]. We also note that the dynamics of ACTH, cortisol and glu-
cocorticoid receptor concentrations, evolve on much shorter time
scales than stored CRH, allowing us to consider the steady state
values of these quantities, effectively projecting the original sys-
tem of five equations to a set of two coupled ones for stored and
circulating CRH. Of these, the first evolves on a longer time scale,
of the order of hours, the other on a shorter one on the order of
minutes. Once the equations for stored and circulating CRH are
solved, values for the other quantities (ACTH, cortisol and gluco-
corticoid receptors) can be derived by substitution in the respec-
tive steady state expressions. Using order of magnitude estimates
for the various terms involved we finally express the right-hand
side of the dynamics of circulating CRH via a cubic expression. This
form bears no physiological relationship to the actual evolution of
circulating CRH, however it is a very good ad hoc substitute in that
it allows for a thorough mathematical analysis while preserving
the main features of the system, namely the emergence of bistabil-
ity, i.e. of two steady states, one marked by low values of circulat-
ing CRH, and the other by higher values. These stable states emerge
as intersections of a fast nullcline, when circulating CRH reaches
equilibrium, and a slow nullcline, when stored CRH reaches equi-
librium. We interpret them as diseased and healthy states, respec-
tively. After analyzing the two coupled, self-contained equations
using a cubic approximation (without the circadian rhythm, Egs.
12 and 13), we included the circadian drive and considered several
possibilities for the amplitude of the circadian component relative
to the evolution of the slow nullcline. We show that low ampli-
tudes of the circadian rhythm turn the two fixed points from the
non-circadian system into limit cycles about them, allowing us to
identify healthy and diseased limit cycles. We also obtain analyti-
cal approximations for them. For larger values of the circadian
amplitude, the two limit cycles merge into one and chaotic behav-
ior is observed, reminiscent of Duffing oscillator dynamics. Finally,
we include an external, constant pulse input (box function) of
amplitude Iy, and duration Te, and investigate the trajectories
of the system and whether transitions from healthy to diseased
states or vice versa can occur. We find that whether transitions
arise or not depends in a complex way on lex, Text, @ and the phase
¢ at which the external input is applied or terminated relative to
the circadian rhythm. Interestingly, we find that an important
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determinant for the existence of transitions depends on the phase
¢ena at Which the external stressor is terminated relative to the cir-
cadian rhythm. We also find that large perturbations I.x applied
for sufficiently long times T., on the diseased state may greatly
disrupt the system leading to large excursions in the dynamics of
stored and circulating CRH. This disruption may however be tem-
porary and the system will eventually return to the original dis-
eased state. In the context of therapeutic intervention, this result
may signify that large, long lasting external inputs may not be as
effective as more moderate ones, applied for shorter times. We also
find that due to the nullcline structure of the system, remaining
in/transitioning to the diseased state is more likely for large circa-
dian amplitudes o than for smaller ones.

In this work we have assumed that the diseased state corre-
sponds to larger stored CRH and lower circulating CRH, exempli-
fied by the steady state (or the limit cycle) about (x.,y,). This
configuration corresponds to low circulating levels of cortisol since
X = ¢ and, at steady state, ¢; = C., + e is a decreasing function of
cortisol. Conversely, the healthy equilibrium or limit cycle at
(x_,y_) is characterized by lower stored CRH (and higher cortisol)
and larger circulating CRH. This is one of many choices, since other
pathologies may exhibit different relative hormonal levels
between healthy and diseased states. For example, acute manifes-
tations of major depressive disorder (MDD) are marked by high
levels of secreted CRH and of cortisol [17,21], implying that the
healthy state can be identified with (x,,y,) and the diseased one
with (x_,y_). In this case the external stressor I. applied to the
healthy state can be identified as a triggering event that leads to
MDD, or, if applied to the diseased state, as a pulse associated to
exposure or cognitive behavioral therapy (CBT). Mutatis mutandis,
our results would also indicate that transitions to MDD may be
more easily induced by lower values of the circadian amplitude
«, consistent with experimental findings that find blunted ampli-
tude of the circadian rhythm in depressed patients [67]. On the
other hand, PTSD is often associated with low levels of cortisol
but relatively high values of CRH. This would translate to large
(cs,c) values for the diseased state, or equivalently large (x,y). In
our specific model, the slow nullcline carries a negative slope as
shown in the left-hand panel of Fig. 4. In order for the intersection
between nullclines to yield a set of larger (c,c) values in the dis-
eased state, parameters would have to be chosen so that the slow
nullcline has a positive slope has a positive slope, as in the right-
hand panel of Fig. 4.

The SCN modulates not only the input signal I(t), but the activ-
ity of the adrenal gland as well. The latter responds to circadian
stimuli via the splanchnic nerves that relay synaptic signals from
the central nervous system to the peripheral sympathetic neurons.
These innervate, among other organs, the adrenal medulla, allow-
ing input from the SCN to be relayed to the adrenal tissues. Thus,
another possible way of including circadian responses is to include
oscillations in the sensitivity parameter that regulates cortisol
release in the adrenal gland, as stimulated by ACTH. Specifically,
further analysis would include diurnal periodicity in the produc-
tion of cortisol, driven by an ad hoc periodic form h(t) so that
do/dt = h(t)a — o in Eqgs. 1. The two oscillatory responses to the
SCN, h(t) and o sin(wt), may be out of phase with each other and
could lead to interesting “constructive” and “destructive” interfer-
ence. Diurnal responses in the HPA axis are also known to depend
on age, gender, neuroadaptation, exposure to light, jet-lag, and the
use of medication [68-73]. Interindividual variability and/or
stochastic fluctuations may also be present. These influences can
be incorporated in the analysis by introducing time-dependent
parameters, by coupling Il (t) = osin(wt) to environmental
stimuli that modulate o and/or @ and introduce possible time-
dependent phases, and/or by including random noise to the circa-
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Fig. 14. Starting from a healthy-state limit cycle, we show the final configurations in {Tex, lexc} space for oo = 0.02 and eight values of the start time of the external stress
relative to the circadian drive ¢.
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Fig. 15. Starting from a healthy-state limit cycle, we show the final configurations in {Tex,lex:} Space for oo = 0.03 and eight values of the start time of the external stress
relative to the circadian drive ¢.

dian amplitude «. Different circadian clock speeds could also be tantly with melatonin, and that melatonin may inhibit production
studied following Aschoff’s rule, whereby the circadian period T, of cortisol in the adrenal gland [77]. Vice-versa, the beta-adregenic
is shortened in diurnal mammals exposed to bright, constant light receptors of the pineal gland are believed to be sensitive to ACTH
[74]. Conversely, individuals suffering from non-24-h sleep-wake concentrations [78]. These findings suggest strong interplay
disorder, display abnormally long circadian rhythms, with a per- between stress and the circadian system [79], so that a natural
iod Tp of 25 or 26 h [75]. These scenarios lead to circadian inputs extension of our work would be to relate pineal gland and HPA axis
of the type I.«(t) = asin(w.t) (bright, constant light) and dynamics through proper feedback and feedforward equations.
Lirc(t) = asin(wpt) (sleep-wake disorder) that could be compared Other interesting avenues of research would include analysis of

to the standard circadian drive I (t) =asin(wt) where neuroendocrine systems upstream of the HPA axis or more general
w, =21/T. > w, and wp = 27/Tp < w to investigate how shorter forms of I (t), in the context of control theory. Similarly, environ-
or longer periods affect the dynamics, and the system'’s response mental stochasticity could also be explored. Preliminary results
to acute external stressors. where o is modeled as a random variable subject to white noise,

Also of interest is the pineal gland which translates light/dark show that when the noise amplitude is large enough, transitions
inputs from the retina into hormonal signals. Specifically, the not previously realized can arise, indicating that external fluctua-

pineal gland releases melatonin via the activation of beta-adrener- tions may strongly affect the dynamics. Our mechanistic model
gic receptors by norepinephrine to regulate the circadian rhythm. provides a framework through which therapeutic interventions
Stress-induced activation of the HPA appears to correlate with an can be explored, such as cognitive behavioral therapy, often
increase in melatonin production [76]; other studies hypothesize recommended as a first intervention for many psychological
that the pineal gland produces CRH-inhibiting factor concomi- disorders.

679



X. Cheng, M.R. D'Orsogna and T. Chou Computational and Structural Biotechnology Journal 19 (2021) 664-690

p=0 p=mn/4 o=m/2 ¢ =3m/4

1 1 1 1
: diseased
0.8 diseased 0.8 08 08
% 06 0.6 0.6 0.6
,\q': healthy healthy healthy healthy
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
1412 344 1 54 3R 74 2 1412 34 1 5432 74 2 1412 34 1 5432 74 2 1412 34 1 5432 74 2
Toxt/T Text/T Text/T Text/T
¢ = br/4 ¢ =3m/2 ¢="Tr/4

diseased

diseased diseased

healthy healthy healthy

healthy

1412 34 1 SA3RTA 2 VAR 34 1 SA 3R TA 2 VAR 34 1 SA 3R TA 2 AR 34 1 SA 3R TA 2
Text/T Texe/T Texe/T Text/T

Fig. 16. Starting from a diseased-state limit cycle, we show the final configurations in {Tex, lexc} space for o = 0.01 and eight values of the start time of the external stress
relative to the circadian drive ¢.
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Fig. 17. Starting from a diseased-state limit cycle, we show the final configurations in {Tex, lexc} space for o = 0.02 and eight values of the start time of the external stress
relative to the circadian drive ¢.

6. Appendix - Linearized model _ i ; 13

X = 8o Vi +y5)°u, (58)

To better study the dynamics of our specific problem we lin- 3 ., .
-2 59
earize Eq. 12 by expanding e %) = px + q as a function of x. This ) 01 +y2)?, (59)
allows us to also formulate a more general system made of two ¢ = 4 v + y*)’zt' (60)
intersecting nullclines: a slow one, given by a vertical line, and a 3V 2 ’
fast one, given by a cubic curve. In this Appendix we study this e — §(y* +y*)2«§ (61)
simplified system as it may serve as a new paradigm for slow- T4 2"
fast bistable dynamical systems. To begin, we write Eqs. 12 and 9 3
13 as X = STO(y; +¥3) U, (62)
4 k4% * k| T

% — o — %), (56) 7 = 3Na0ity) (63)
dy 1 vy We finally arrive at a fundamental form
dr = lox- (§y3 =5y +y§y§y), 67

&* &(Us — U), (64)
where &(1-p) — & (Co+9q)/(1—p) —x.. We also rescale @ —u— (P —? " 65
{x,y,t} — {u, v,t'} and introduce &,u..,7 as follows de ( +7), (65)
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Fig. 18. Starting from a diseased-state limit cycle, we show the final configurations in {Tex, lexc} space for o = 0.03 and eight values of the start time of the external stress

relative to the circadian drive ¢.

where we dropped the prime notation. The slow u, and fast » null-
clines respectively are

Uy, (66)

(67)
The formulation in Eqgs. 66 and 67 allows us to better study the

dynamics and to classify different behaviors. Along the fast » null-
cline the following holds

du

=v® - v +y0.

302 -2v+7, (68)

dv

which implies that if y > 1/3, the v nullcline is an increasing func-
tion of #, and the intersection with the slow u nullcline will yield
only one stable fixed-point. Conversely, for y < 1/3, the fast » null-
cline will have two extrema, located at v;, = (1 ++/1 —3y)/3and
corresponding to ujp = (2y — v12)212/3. The (up,v1) and (uy, v2)
points also represent the turning points of the cubic equation. Note
that for y < 1/3, if v1 < v, then u; > uy, and that for y < 1/4,u, is
negative. If u,, > u; or u,, < u only one stable fixed-point will arise
from the intersection of the two nullclines, whereas if u, < u,, < uy,
three intersections exist that yield two stable, fixed-points. We
denote these by (u., v{) and (u., v), with v > v_. Henceforth,
we assume to be in the bistable regime, u; < u,, < u;. The fast
dynamics occurs along the following trajectory

du

@ -0 (69)
dv s,

a - u—(v°— v +yv). (70)

and thus, initially at least, the system evolves only along the v axis,
with u being fixed at its initial condition u(0). By introducing t = &t,
we can also write the equations that describe the slow dynamics

du
i - Uy —U (71)
u=1-v+yo. (72)

Since Eq. 71 can be solved analytically, the slow motion along
the u axis is
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u(t) (u(0) — u)e™ +u,. (73)

Upon inserting Eq. 73 in Eq. 72 we can implicitly determine the
slow dynamics of »(t)

V- +yr = U0) —u)e ™ +u,. (74)

Although trajectories usually move quickly along the v direc-
tion, towards the fast » nullcline, for some initial conditions the
dynamics may evolve in more subtle ways and additional local
analyses may be required. One interesting case is if the initial
position is within a small neighborhood of the turning points
(12, v12) of the fast » nullcline. Without loss of generality we
focus on the (u;,7;) turning point and assume u(0)=u;+
ou1(0), v(0) = v1 + 6v1(0), with éu;(0) a small perturbation from
uq,|ouq (0)] < uq, and similarly |62;(0)| < v4. As per Egs. 64 and
65, the dynamics is such that if éu;(0),52;(0) > 0 the trajectory
will escape the initial neighborhood of the (u;, #;) turning point
and reach the upper stable fixed-point at (u., ). Similarly, if
du1(0), 671 (0) < O the trajectory will reach the lower stable fixed-
point at (u.,v,). Determining the dynamics in other cases
depends on the amplitude of |du;(0)|, |[621(0)|. To be concrete, we
assume that duq(0) > 0,6271(0) < 0. In this case, if »(t) reaches
v = v; before u(t) reaches u = u;, the trajectory will reach the
upper stable fixed-point at (u,., v, ), whereas if the opposite is true,
the lower stable fixed-point at (u., v,) will be reached. This is
depicted in Fig. 19-20, where if the trajectory crosses the blue-
dashed boundary it will reach (u., ), while if it crosses the
red-dashed boundary it will reach (u., ¢}). For a given initial con-
dition u(0) = u; + du(0), 2(0) = v1 + dv41(0) we thus estimate the
time t; it takes for u(t;) =uy, and the time ¢t} it takes for
v(t,) = v1, and compare the two to determine which basin of
attraction the initial condition belongs to. We begin by studying
the dynamics for the slow variable u(t) by writing the solution to
Eq. 64 as follows

u(t) = up+ [(ug +6ur(0) — o )e ™ + uy — uy], (75)
so that at t=0,u(0)=u; +du(0). Note that by writing
u(t) =uy +du(t) Eq. 75 yields ou(t) = (uy +dus(0) —u,)e “+

u,, — u;. We now pose v(t) = v; + dv;(t) and find the time evolu-



X. Cheng, M.R. D'Orsogna and T. Chou

Uco
0.575 :
0.460 -~
)
03454 | P\ - U1
0.230 -
U
0.115 L T
0.09 0.108 0.126 0.144

U

Fig. 19. Detail of the fast nullcline structure in {u, v} space near the lower turning
point (u, v7). The dynamics of any starting point in the quadrant defined by
u > uy, v < v is determined by time t; and t;, trajectories take to the horizontal or
vertical lines at » = v; or u = u,, respectively. For the red initial condition at
(u,v) =,t, <t, so the trajectory escapes the basin of attraction of the lower
equilibrium point at (u.., v;,) and eventually reaches the higher equilibrium point
at (u., v}). For the blue initial condition at (u, v)=, t, > t, so the trajectory remains
in the basin of attraction of the lower equilibrium point and settles at (u.., 7).
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tion for s (t). Upon inserting Eq. 75 into Eq. 65 and expanding the
cubic around (uq, v41) we find that dv;(t) obeys the following

d51/1

it (ug +0ur(0) —u)e ™ + (1 —301)d02 — (Ug — Uy).

(76)

The linear term in dv; in Eq. 76 does not contribute to the
dynamics, since we are expanding around an extremum of
the cubic curve. Also note that 1-3»; >0 and that
u; — Uy, > 0. We also neglect higher order 523 terms. Eq. 76
defines a Riccati equation that can be solved by imposing
Sur(t) = —(1 — 3wy) " 'fr(t)/f(t) and deriving a second order dif-
ferential equation for f(t). After tedious but straightforward
algebra we find that f(t) can be written as a linear combination
of Bessel functions and that év,(t) obeys

ov (t) _ \/(Ul + Uy (0) - uoo)e—ét Y{(f(t)) o H,];(i(t))
! d-301)  Y,(&0) - HL, ()’

where v =2/g./(u; — u.)(1 —3v;) and the argument ¢(t) of the J,
and Y, Bessel functions is

(77)

Et) = %\/(1 —3v1)(ug + 0uy(0) — uy)ee. (78)
Finally, the prefactor H is
ov1(0)vT —301Y,(£(0)) — /ur +0ui (0) — u Y, (£(0))
51(0)vT=321/,(¢(0)) — /ur + 611 (0) — uJ(£(0))
(79)
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Fig. 20. Periodic orbits in (x,y) space driven by a circadian rhythm of amplitude « = 0.01,0.02,0.03, from left to right. The green curves represent the exact, numerical

solutions obtained from Eqs. 12 and 13; since xV

t) = 0, the blue curves represent analytical approximations up to second order in x with x2(t) in Eq. 55 and first order in
P y pp p q y

with yi" (t) given by Eq. 53; the yellow curves represent analytical approximations up to second order in y where y$ (t) given by Eq. 85 is further included. The second order

curves typically approximate the exact, numerical solutions with higher accuracy.
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The time t;, it takes for the trajectory to reach the vertical line at

u = uyq, from u(0) = u; + éu;(0) is given by imposing du,(t)) = 0.

From Eq. 75 we find

£ o= - log <1 4ot (2) > (80)
U —

Similarly, the time to reach the horizontal line at v = v, from

v1(0) = v1 + év1(0) is given by imposing év;(t;) = 0. From Eq. 77
we find the implicit expression for t},
Y,(E() _ (81)

Jy(E(t)

Thus, if t;, < t;, the initial condition will belong to the basin of
attraction of the lower fixed-point at (u., v), whereas if t;; >t}
the initial condition will equilibrate at the higher fixed-point at
(U, v1). Finally, the dynamics under initial conditions du;(0) < 0

and Jv;(0) > Odepend on how Jv;(0) compares with vs, — vy,
where vy, is given by
W +0uy(0) = 03, — 02, + Vs (82)

If vsy > v1, and dv1(0) < vs, — v1, the trajectory will equilibrate
at the lower stable fixed-point at (u.., vy). If 6v1(0) > vs, — 21, the
explicit time dependence of the trajectory must be evaluated.

7. Appendix - Higher order solutions to the circadian problem

In this Appendix we find y? (t), the second order solution in « to
the circadian problem presented in Eqs. 12 and 13 as driven by Eq.
32. We thus solve Eq. 48 and, for simplicity, specifically seek peri-

odic solutions. To this end, we set the proper initial conditions so
that only oscillatory terms arise from Eq. 48. Upon inserting Eqgs.

53 and 55 into Eq. 48, with x{" = 0, we obtain
dy?
dz = —oy? + Bsin(wt) + Ccos(wt) + D cos(2wt) + Esin(2wt) + F
(83)
where
— / —bo(yy) L
B = IyMx,bo’(y,)e PCETL
— o
C = IpMxybo'(y,)e Oy)W7
D- _xz< Y +yz> w? — o’
N G (84)
2 Yity:)  2wo
=Xu{Yu— 20
2 ) 2(w?+02)
F = Ipx?(0) — IoMbo'(y, )e*b‘)(}/u) _ X0
“ 4 w(w? + 02)
oy _Yitys Xg
u 2 2(w? +0?%)°
and where 0 = (y, — ¥}) (V. — ¥3). Thus,
@ (v wB B aC 2wE B oD _E ot
Yo () < g (0)+w2+02 02102 407 ra? gurin o)°
+ cos(wt)+ 6_B+w_C sin(wt)
w2+o-2 w2+o-2 w2+o-2 w2+o-2
oD 20E
+<4w2 +02 4w+ )Cos(zwt)
+ 20D 7 sin(2wt)+—
40?102 Aot 1o
(85)
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To obtain a purely oscillatory solution we impose that the e=°*
prefactor be zero, so that
Bw
w? 4 62

n oC
w2+o'2

_ 20E
402 + 7

N oD
402 + 02

F
+—.
o
(86)
We also determine the value of x? (0) that should be used as the
proper initial condition to Eq. 55 if one is seeking a pure oscillatory
solution to order o3. We thus derive the time dynamics for x{'(t)
dxy)
dt

= —Mbo'(y,)e Wy

M __

e 0 (0(0(r,)) — b0 (1)) 05) - Mx. (87)
After inserting Eqs. 53, 55 and 85 with x{" = 0 into Eq. 87, we

set the resulting constant term in the right-hand side to zero, so

that upon integration of Eq. 87 there are no linear terms and x%

is purely periodic. After some algebraic manipulations we find

+

1 2 / "
%:(0) = oe™) 1 bo'(y,)lo { (w)guf a?) (bz(o( b)) =o' U))
u 2bo’ u ub u —bo
ST
+Xu};uw 7"u¢‘)(}"1l +YZ))} (88)

8. Appendix - Numerical comparisons between first and second
order approximations

In this section we show the difference between lower (first)
and higher (second) order approximations to the limit cycles
in (x,y) space driven by the circadian rhythm I (t) = asin(wt)
where o = 0.01,0.02,0.03. In Fig. 20, the exact, numerical solu-
tions obtained from Eqs. 12 and 13 are shown in green; since
x(t) = 0, second order approximations of x(t) upto x2'(t) from
Eq. 55 and first order approximations of y(t) upto y{’(t) from
Eq. 53 are depicted in blue, and second order approximations

both in x and y, with y{?(t) from Eq. 85 further included are plot-
ted in yellow. Second order curves typically approximate the
exact, numerical solutions with higher accuracy.

9. Appendix - Stored CRH dynamics as the smallest perturbation

We now explore numerical solutions for values of o > 0.03
where period-doubling, subharmonics, and chaotic behavior
emerge. Unless specified, all parameters are chosen as in Sec-
tion 3.1, 3.2 and Table 1 with initial conditions set at
(x(0),y(0)) = (x,,y.). Henceforth all of our numerical integration
will be performed using ode45 in MATLAB®. Before illustrating
our results, we note that the circadian version of Eqs. 12 and 13,
where Iy — I + asin(wt), is reminiscent of the well known Duffing
oscillator, characterized by a periodic forcing term and nonlinear
elasticity [80]. The Duffing oscillator displays period doubling,
other subharmonic responses, and chaos, as the amplitude of the
forcing term is varied. These features arise from the nonlinear elas-
ticity, so that a forcing term of period T may yield a response of
augmented period mT, where m is an integer. The case m = 2 rep-
resents period-doubling. Other values of m are subharmonic
responses of order 1/m, whereas very large values of m are associ-
ated to chaos. Our circadian system is more complicated than the
Duffing oscillator, however, inertia, nonlinear terms and periodic
forcing are similarly present. One key parameter is «, the prefactor
of the circadian term and the equivalent of the amplitude of the
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Fig. 21. Time series and phase portraits from Eqs. 12 and 13 driven by I(t) = Iy + asin(wt) for o = 0.033,0.034, 0.035. Other parameters are listed in Sect. 3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T = 27 /. Periods are T (o = 0.033), and 11T (« = 0.034). Chaos emerges at o = 0.035.
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Fig. 22. Time series and phase portraits from Eqgs. 12 and 13 driven by I(t) = I, + o sin(wt) for o = 0.037,0.038,0.039. Other parameters are listed in Sect. 3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T = 27/w. Chaotic trajectories arise for o = 0.037,0.038. For o = 0.039, the period is 3T.
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Fig. 23. Time series and phase portraits from Eqgs. 12 and 13 driven by I(t) = I, + o sin(wt) for o = 0.071,0.072,0.073. Other parameters are listed in Sect.,3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T = 27 /w. Periods are 3T (o = 0.071), 13T (o = 0.072), and 2T (o = 0.073).
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Fig. 24. Time series and phase portraits from Eqgs. 12 and 13 driven by I(t) = I + a sin(wt) for o = 0.075,0.08,0.09. Other parameters are listed in Sect.,3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T = 27/w. Periods are 2T (o = 0.075), 2T (o = 0.08), and T (o = 0.09).
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forcing term in the Duffing oscillator. We find that increasing o
leads to the emergence of period-doubling bifurcations, subhar-
monics, and chaos in the circadian version of Egs. 12 and 13, just
as for the Duffing oscillator.

In Figs. 21-24 we plot the time series x(t) and y(t) and the phase
portraits (x,y) as derived from Eqs. 12 and 13 with
Ip — Ip + asin(wt), for increasing values of o > 0.03. All trajecto-
ries are initiated at the steady state (x.,y,)= (x,y,) of the
reduced model Eqs. 12 and 13 without the circadian term. We let
the system run for t = 200T and then reset the clock, following
the dynamics for a further t = 40T period. Since we are interested
in the long term dynamics, we only plot the trajectories during the
final t = 40T period and do not show the initial t = 200T transient.
The sole exceptions are the chaotic cases « = 0.035,0.037,0.038 in
Figs. 21 and 22 where the transient is set at t = 500T. The red dots
in Figs. 21-24 represent the Poincaré section, the discrete set of
points in phase space at times t = mT. If the response is a simple
periodic orbit the Poincaré section is a single point; after a
period-doubling bifurcation, the Poincaré section consists of two
points, representing doubling of the periodicity. For a subharmonic
response of order 1/m, the Poincaré section consists of m points,
indicating that the period is increased by a factor m with respect
to the circadian term. Chaos leads to a richer set of points in the

Computational and Structural Biotechnology Journal 19 (2021) 664-690

Poincaré section. Chaotic behavior arises for 0.035 < o < 0.038 as
can be seen in Figs. 21 and 22. In Fig. 23 we find a 1/3 subhar-
monic with period 3T for o = 0.071. The limit cycle passes in
the vicinity of both (x_,y_) and (x;,y,) and crosses itself. A
slight increase to o = 0.072 leads to a 1/13 subharmonic with
period 13T, yet further increases to o =0.073 result in
period-doubling with the emergence of limit cycle of period
2T. Finally, in Fig. 24 we observe the limit cycle acquiring sim-
pler periodic forms from o = 0.075 to « = 0.09. In Appendix 10
we show chaotic phase portraits for 0.035 < « < 0.038 over a
much longer time frame, up to t =10,000T. We also tested
both lower accuracy (ode23) and higher accuracy (smaller
time step-sizes and stricter tolerances for absolute and
relative errors) methods to verify that chaotic behavior is an
intrinsic feature of the dynamics and not an artifact of our
numerical computation.

10. Appendix - Chaotic phase portraits

In Fig. 25 we show the chaotic phase portraits and the Poincaré
maps arising from Eqs. 12 and 13 driven by the circadian term
Ip + asin(wt) for 0.035 < o < 0.038. All other parameters are cho-
sen as in Sect. 3.2, Appendix 9 and Table 1. The initial condition is

a = 0.035 a = 0.036
2.5 . . 2.5 . ;
(z—,y-) (z-y-)
($+,y+) (ac+,y+)
2t 1 2t ]
151 1= 1.5} q
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X

T

Fig. 25. Phase portraits in (x,y) space arising from Eqs. 12 and 13 driven by I(t) = I, + asin(wt) for 0.035 < o < 0.038. The initial transient is not shown. Numerical
evaluations are carried out up to 10,000T. Each red dot represents times that are integer multiples of T = 27/w indicating chaotic behavior.
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set at (Xy,Y,) = (x;,y,) of the reduced problem Eqs. 12 and 13
without the circadian drive. As described in Appendix 9 we let
the system run for t = 500T and then reset the clock, following
the dynamics for an additional t = 10,000T. We do not show the
initial t = 500T transient in any of the panels in Fig. 25 but follow
the dynamics over the subsequent t = 10,000T. There is no limit-
ing period over the t = 10,000T timeframe.
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