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a b s t r a c t

The hypothalamus–pituitary–adrenal (HPA) axis is a key neuroendocrine system implicated in stress
response, major depression disorder, and post-traumatic stress disorder. We present a new, compact
dynamical systems model for the response of the HPA axis to external stimuli, representing stressors
or therapeutic intervention, in the presence of a circadian input. Our work builds upon previous HPA axis
models where hormonal dynamics are separated into slow and fast components. Several simplifications
allow us to derive an effective model of two equations, similar to a multiplicative-input FitzHugh-
Nagumo system, where two stable states, a healthy and a diseased one, arise. We analyze the effective
model in the context of state transitions driven by external shocks to the hypothalamus, but also mod-
ulated by circadian rhythms. Our analyses provide mechanistic insight into the effects of the circadian
cycle on input driven transitions of the HPA axis and suggest a circadian influence on exposure or cogni-
tive behavioral therapy in depression, or post-traumatic stress disorder treatment.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When presented with external stimuli and challenges, organ-
isms activate a series of physiological and behavioral actions to
minimize departure from homeostasis. These body-brain
responses are mostly coordinated by the hypothalamic–pitui
tary–adrenal (HPA) axis which controls the expression of three
major stress-related hormones: CRH (corticotropin-releasing hor-
mone), ACTH (adrenocorticotropic hormone), and glucocorticoids,
through a complex set of interactions, ligand-receptor binding
events, and feedback loops [1,2]. The most prevalent glucocorticoid
in humans is cortisol. The above hormones are secreted on a circa-
dian basis: under normal conditions levels are low at night, peak in
the early morning hours and decline slowly throughout the day [3].
Non-stimulated basal CRH is released in a pulsatile manner with a
frequency of about two to three episodes per hour; similarly ACTH
and cortisol manifest burst-like releases that follow a 60–90 min
periodicity [4–9]. As a result, an ultradian rhythm is superimposed
on the circadian cycle of each hormone. Animal studies suggest
that pulsatile CRH is not the source of the ultradian ACTH and cor-
tisol rhythms[10]. On the other hand, ACTH and cortisol pulses are
highly correlated, with cortisol typically trailing ACTH by a 15-min
delay [11].

The HPA axis regulates many physiological processes, including
digestion, the immune system, mood and emotions, sexuality and
metabolism. It is a highly conserved system that is present in many
vertebrate, invertebrate and mono-cellular species. Due to its cen-
tral role in the body’s response to environmental stimuli and
demands, disruptions to the HPA axis and related neuroendocrine
activity are associated to a wide variety of pathologies, including
stress-related ones [12]. For example, over-production of CRH
may be linked to major depressive disorder (MDD) [13–17] and
to anorexia nervosa where hypercortisolemia is also observed
[18–20]. Patients with acute MDD have also reported elevated cor-
tisol levels [21]. Increased ACTH and/or cortisol levels are observed
in patients with Nelson’s syndrome, Cushing syndrome or Cushing
disease [22–25]. Cortisol production irregularities are also linked
to Sheehan’s syndrome and are often observed in patients with
pituitary tumors [26–28]. Those at risk for depression have been
found to exhibit greater waking cortisol and a larger cortisol awak-
ening response [29], while abnormally low cortisol levels are
observed in post-traumatic stress disorder (PTSD) patients as mea-
sured by urinary and/or salivary samples [30–39]. Addison disease,
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or primary adrenal insufficiency, is marked by low levels of cortisol
due to adrenal gland disorders; secondary adrenal insufficiency is
marked by low levels of ACTH and cortisol due to dysregulation
of the pituitary gland; tertiary adrenal insufficiency is marked by
low levels of CRH, ACTH, and cortisol, due to hypothalamic diseases
[40]. Addison disease may also be characterized by high levels of
ACTH. Here, since the adrenal cortex is unable to synthesize and/
or secrete cortisol, the pituitary gland increases production of
ACTH in an effort to stimulate it. Some studies associate elevated
levels of CRH and cortisol to the onset of dementia and Alzheimer’s
disease, whereas others observe low CRH concentrations in
patients with advanced neurodegenerative conditions [41]. These
seemingly contrasting findings may be due to chronic HPA axis
overstimulation, where high levels of CRH and cortisol may induce
permanent damage to neuronal connectivity, so that eventually
secretion of CRH is reduced [42]. Other contradictory findings
may emerge in surveying the literature on alterations to HPA-
regulated hormonal activity. For example not all studies report cor-
tisol deficiencies [43] among PTSD patients. These discrepancies
may be due to methodological variabilities in sampling and/or tim-
ing, limited number of participants, confounding effects such as
patients of different ages or who are taking medications that affect
hormonal expression, and other extraneous factors.

As described above, one of the most important functions of the
HPA axis is to maintain homeostasis in response to mild to severe
stress via the enhanced release of CRH from the hypothalamus, ini-
tiating the CRH–ACTH–cortisol cascade. The secretion of cortisol
helps the body cope with the stressor, for example by facilitating
the release of glucose to activate ‘‘fight or flight” responses. How-
ever, sometimes the trauma is so severe (or the individual experi-
encing it is particularly susceptible) that the normal HPA axis
response is disrupted and abnormal levels of stress hormones are
produced on a permanent basis. Thus, acute stressful events such
as major accidents, combat, assaults, natural disasters, death of a
loved one, can lead to neuroendocrine dysfunction. This happens
in PTSD and in MDD: both can be triggered by episodes of acute
stress, and are characterized by abnormally low cortisol levels
(one biomarker of PTSD) and over-expression of CRH (a biomarker
of MDD). The evidence that the HPA axis is hypo/hyper active in
PTSD and/or MDD comes from clinical trials, biochemical studies,
functional HPA axis tests, neuro-imaging and postmortem studies.
Based on these observations, we formulate our main modeling
assumption, that external stressors may cause long-lasting damage.

The neuroendocrine dynamics of the HPA axis has been well-
studied using mathematical models that describe the abundances
of CRH, ACTH, cortisol, and glucocorticoid receptors and their
dynamics in response to external inputs [44–56]. These models
include physiologically motivated feedback loops and delays that
allow for the emergence of the ultradian oscillations. The external
input, which may be time dependent, is interpreted as environ-
mental stimulus, stressor or trauma, while the circadian rhythm
is typically neglected. Under given parametric regimes and model-
ing conditions two stable states or limit cycles emerge: one is iden-
tified as the ‘‘healthy” or ‘‘healthy” state, the other as a
psychiatrically ‘‘perturbed” or ‘‘diseased” condition [47,49]. Transi-
tions between the two states may arise from parameter changes,
which we interpret as physical injury, or as a function of external
input, which we interpret as psychological trauma. In the latter
case, HPA stress-related disorders may be viewed as a consequence
of the bistability of the system, with the diseased state emerging as
an organism’s response to psychological stress, rather than to
physiological damage. Mood disorders often appear as abnormali-
ties in CRH expression, which also manifest downstream, in ACTH
and/or cortisol expression. We thus seek for bistability at the origin
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of the hormonal sequence that is regulated by the HPA axis, that is
at the CRH level.

Separating CRH dynamics into a fast CRH release and a slow CRH
synthesis yields a larger parameter space and higher likelihood for
the emergence of the healthy-diseased bistable configuration
[55,56]. Apart from the action of external stressors, the time-varying
input into the hypothalamus can also model cognitive behavioral
therapy (CBT) or exposure therapy (ET), where patients are subjected
to psychological interventions or exposed to the stressor in a con-
trolled manner to relieve them of depression, PTSD and other stress
related symptoms. Within these dynamical systems models, external
inputs can trigger transitions between the healthy and diseased states
depending on input duration, amplitude and time of application rela-
tive to the intrinsic oscillations of the ultradian cortisol pulses [55,56].

The circadian cycle, which is known to affect the regulation and
metabolism of several hormones, has been neglected in previous
mathematical analyses. Here, we incorporate it as an input to the
dynamical system. Physiologically, the relevant oscillating pace-
maker is located in the suprachiasmatic nucleus (SCN), a group
of neurons in the hypothalamus that respond to photosensitive
ganglion cells in the retina [57–59]. The circadian rhythm can
modulate input from the hypothalamus to stimulate the secretion
of CRH hormones in the portal vessel which connects the hypotha-
lamus to the anterior pituitary [60]; it may also cause oscillations
in the relevant tissues and organs that comprise the HPA axis and
that respond to the SCN independently of the hypothalamus.

In Section 2, we derive a dynamical systems model of the HPA axis.
The ‘‘fundamental” formwe present in Eqs. 12 and 13 is based on exist-
ing models but it is more mathematically compact, allowing us to bet-
ter study the parameter regimes that yield healthy-diseased bistability,
and to include circadian driving. In Section 3 we discuss how the circa-
dian driving affects the dynamics and equilibria of the fundamental
form, through analytical and numerical analysis. In Section 4 we
include various forms of external inputs representing trauma and/or
exposure therapy. The complete stimulus to the HPA axis is given by
the superposition of basal, rhythmic and external/reactive terms. We
show that the magnitude and duration of the external input, its timing
relative to the phase of the circadian cycle, and the amplitude of the cir-
cadian rhythm, strongly affect the transition between healthy and dis-
eased states. We offer conclusions and a brief discussion in Section 5.
2. Reduced model without circadian drive

The model we use in this paper is a compact, reduced description
of the HPA neuroendocrine system that is derived from previous
work [53,49,54,48,50–52,55,56]. The simplifications introduced
allow us to incorporate the circadian drive and perform complete
analytical analyses. We begin by illustrating the full, initial model
which includes five variables that represent the most relevant hor-
mones and receptors involved in stress response [55,56]. Later we
show how our new, compact two-variable system is obtained.

The CRH neurons are the first to be activated by physiological
changes such as stress and the HPA axis model we consider includes
two compartments for it. One is CRH storage, that obeys relatively
slow dynamics, on the order of ten to twelve hours; the other is
CRH secretion, that follows relatively fast dynamics, on the order
of minutes. Secreted CRH initiates a cascade of events that includes
ACTH and cortisol production. Feedback loops emerge from circulat-
ing cortisol binding to glucocorticoid receptors leading to inhibition
of ACTH and self-upregulation of glucocorticoid receptor production.
Depending on the parameters chosen, a maximum of two stable
fixed points may arise, which are interpreted as the healthy and dis-
eased states. Specific time-dependent perturbations of the external



Table 1
Non-dimensional parameter values of the model Eqs. 1 as taken from Refs. [55,56].
We also include non-dimensional parameter values for the 24-h circadian rhythm.

Parameter Value Description

�c1 0.2 minimal stored baseline CRH
b 0.6 stored CRH decay as a function of cortisol
tc 69.3 CRH biosynthesis timescale
q0 28.0 maximum release rate of CRH in basal state
I0 1.0 basal level of the external stimuli
k 2.83 relates stored CRH to CRH release rate
gc;max 42.0 maximum auto/paracrine effect of CRH in the pituitary
n 5 Hill coefficient describing the self-upregulation of CRH
q�1
1

25.0 circulating CRH conc. at half-maximum self-
upregulation

q2 1.8 ratio of CRH and cortisol decay rates
p�1
2

0.067 or-complex conc. for half-maximum negative feedback

p3 7.2 ratio of ACTH and cortisol decay rates
p4 0.05 (or-complex conc)2 at half-maximum positive feedback

on r production
p5 0.11 basal GR production rate by pituitary
p6 2.9 ratio of GR and cortisol decay rates
x 0.045 frequency of 24-h circadian rhythm
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input into the hypothalamus can drive transitions from one stable
point to the other, suggesting that onset of dysfunction in stress
response and its treatment can be framed in terms of dynamical
bistability. In non-dimensional terms, the full model [55,56] is
given by

dcsðtÞ
dt

¼ c1ðoÞ � cs
tc

;

dcðtÞ
dt

¼ q0IðtÞð1� e�kcs Þ þ gc;max
ðq1cÞn

1þ ðq1cÞn
� q2c;

daðtÞ
dt

¼ c
1þ p2ðorÞ

� p3a;

doðtÞ
dt

¼ a� o;

drðtÞ
dt

¼ ðorÞ2
p4 þ ðorÞ2

þ p5 � p6r:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð1Þ

Here, csðtÞ represents the slowly evolving concentration of
stored CRH in the neurons of the paraventricular nucleus of the
hypothalamus, which is not directly affected by the external input,
but rather depends on circulating cortisol. Stored CRH may be
quickly released into the hypophyseal portal vessels before being
transported to the anterior pituitary. The concentration of CRH in
this ‘‘circulating” pool is denoted cðtÞ. The stored CRH concentra-
tion csðtÞ evolves on the long time scale tc and relaxes towards
an equilibrium value c1ðoÞ that depends on cortisol levels o
through an indirect negative feedback process. From experimental
observations on rats c1ðoÞ ¼ �c1 þ e�bo so that at steady state the
stored csðtÞ decreases with oðtÞ, leveling at �c1 for large cortisol
levels as modulated by the parameter b [61,62]. Aside from natural
degradation modeled by the �q2c term, the dynamics of cðtÞ is dri-
ven by two processes. The first is the stimulus IðtÞ that triggers
release of stored CRH: this is modeled by the product between
IðtÞ and q0ð1� e�kcsðtÞÞ. In this expression q0 is the maximum possi-
ble secretion rate of the stored cs pool to the circulating CRH pool
which is achieved in the cs ! 1 limit. For cs ! 0, there is no stored
CRH to release. The coefficient k modulates the response between
these two limits. The second process is self-upregulation, whereby
circulating CRH stimulates further release of the same hormone
[62]. Since upregulation is mediated by CRH/receptor binding, we
use a Hill-type increasing function that varies between 0 and
gc;max. The coefficient q1 is the inverse of the CRH concentration
that produces half maximum self-upregulation, and the Hill coeffi-
cients used are n ¼ 5, although other choices of n will not qualita-
tively change our results. The concentration of ACTH generated in
the pituitary gland is denoted as a. As can be seen from Eqs. 1, its
production is driven by circulating c levels but inhibited by cortisol
o bound to glucocorticoid receptors r through the negative feed-
back term ð1þ p2ðorÞÞ�1. ACTH is cleared at rate p3. Cortisol pro-
duction in the adrenal gland is driven by aðtÞ and follows a
natural decay. Finally, glucocorticoid receptors in the anterior pitu-
itary self-upregulate through cortisol binding to the receptors
themselves [63]. The dynamics of r thus assumes a cortisol-
independent production rate p5 and cortisol-mediated generation
represented by the ðorÞ2=ðp4 þ ðorÞ2Þ term; the clearance rate is
p6. The non-dimensional parameters in Eqs. 1 are highly variable
and may depend on genetic traits, age, gender, and other environ-
mental factors. Parameter choices are important as they may (or
may not) lead to bistable solutions, representing individuals who
are less (or more) resistant to dysfunctions of the HPA axis. The
parameters we use in this work for Eqs. 1 lead to bistability. They
are set as in [56], and are listed in Table. 1.

Note that the model presented in Eqs. 1 is non-dimensionalized
using the inverse of the decay rate of cortisol as the reference time
scale and various parameter combinations to obtain c; cs; a; o; r
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[54–56]. Furthermore, in the original formulation of the model, a
delay s was included in the ACTH activated synthesis of cortisol so
that doðtÞ=dt ¼ aðt � sÞ � oðtÞ [55,56]. The delayed response of the
adrenal gland to ACTH is well established and estimated to be
roughly 15min [11]. Physiologically, the delay is due to the delivery
of ACTH from the pituitary to the adrenal gland and to the subse-
quent synthesis of cortisol. Mathematically, the delay allows for the
recovery of the ultradian rhythm [54–56]. We do not consider this
delay in the current work, as its mathematical implications are well
understood and our goal is to understand how the circadian rhythm,
which occurs on a much longer time scale than the delay, affects the
dynamics. For better insight into the model, and its non-
dimensionalization, the reader is referred to the analyses in [54–56].

The separation between CRH synthesis and release, processes
operating on two distinct time scales, yields interesting behavior,
including bistability and the possibility of transitions between
the respective basins of attraction. Eqs. 1 however are mathemat-
ically cumbersome and the inclusion of a circadian rhythm would
add algebraic tedium without offering clear insight. We thus pre-
sent a simplified version of Eqs. 1 that exhibits the same main fea-
tures but that is much simpler to analyze. To proceed, we focus
only on cs and c in Eqs. 1 and set the fa; o; rg subsystem to equilib-
rium under a given c, effectively parameterizing a; o; r. We use this
steady-state approximation since the fa; o; rg subsystem evolves
on a much faster timescale than cs.

We keep the expression for cs in Eqs. 1 and simplify the dynam-
ics of c with the goal of preserving bistability. Henceforth, unless
specified otherwise, we will work in ðcs; cÞ space. For a given value
of IðtÞ ¼ I0, equilibrium is attained when the two nullclines
obtained by setting dcs=dt ¼ 0 and dc=dt ¼ 0 in Eqs. 1 intersect.
Since they evolve on different time scales, the first, cs-nullcline is
sometimes referred to as the slow nullcline, the latter, the c-
nullcline, as the fast one. Finally, note that the equilibrium values
of a; o; r define single-valued, positive, real functions of c; hence,
once c is specified they are uniquely defined and no bistability
can emerge at this stage. Conversely, if bistability emerges in
ðcs; cÞ, space it will be reflected in ða; o; rÞ space as well, as parame-
trized by the two bistable values of c.

We begin by simplifying the right-hand side of Eqs. 1 driving
the cs dynamics. Since c1ðoÞ ¼ �c1 þ e�bo we must find an explicit
expression for oðcÞ so that our new model is self-contained in
ðcs; cÞ space. Under the assumption that the a; o; r subsystem is
equilibrated, oðcÞ can be found through algebraic manipulation of
Eqs. 1 with the a; o; r derivatives set to zero so that
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p2p3ð1þ p5Þ
p6

ðp2
2p

2
3p4 þ p2

3Þ �
p4

p6
ðp2p3Þ3

� �
o4

� 2p2p
2
3ð1þ p5Þ
p6

c � p3
3 � p2

2p
3
3p4

� �
o3þ

p2p3ð1þ p5Þ
p6

c2 � 3p2
3c � p2

2p
2
3p4c

� �
o2 þ 3c2p3o� c3 ¼ 0:

ð2Þ

As written above, o is the root of a quartic polynomial where c
appears as a parameter in some of the coefficients. Writing the full
exact solution to Eq. 2, while possible, is cumbersome. We note how-
ever that using realistic parameters given in Refs.[55,56] the term

p2p3ð1þ p5Þ
p6

ðp2
2p

2
3p4 þ p2

3Þ �
p4

p6
ðp2p3Þ3

� �
o4

þ 2p2p
2
3ð1þ p5Þ
p6

c � p3
3 � p2

2p
3
3p4

� �
o3 � 3c2p3o

is relatively small compared to others. Thus, the relation between o
and c can be approximated by adding the three above terms to Eq. 2,
leading to a quadratic equation in o2:

2
p2p3ð1þ p5Þ

p6
ðp2

2p
2
3p4 þ p2

3Þ �
p4

p6
ðp2p3Þ3

� �
o4

þ p2p3ð1þ p5Þc2
p6

� 3p2
3c � p2

2p
2
3p4c

� �
o2 ¼ c3: ð3Þ

This simplified quadratic equation can be solved for o2ðcÞ and the
resulting oðcÞ can be inserted into c1ðoÞ ¼ �c1 þ e�bo in the first of Eqs.
1 so that the evolution of csðtÞ is completely described in ðcs; cÞ space.
The approximated and full-model oðcÞ are shown in Fig. 1. In Appen-
dix 6 we discuss further approximations to the term e�boðcÞ in Eqs. 1.

We now explore approximations to the c dynamics in the sec-
ond of Eqs. 1 which couples cs and c. The analytical work in Ref.
[55,56] reveals that the key to bistability is the sigmoid, ‘‘S” shape
of the c-nullcline. Since the cubic is one of the simplest forms to
yield a sigmoid shape, we tailor an ad hoc cubic function csðcÞ as
a proxy for the c-nullcline. To do this in a consistent manner, cer-
tain conditions must be met. We first consider the case of a fixed
input, IðtÞ ¼ I0. As can be seen in [55,56] increasing I0 will shift
the c-nullcline to the left in ðcs; cÞ space; also the c-loci of the turn-
Fig. 1. The oðcÞ curve expressing cortisol as a function of circulating CRH from the
full model is plotted by solving the exact Eq. 2 and is shown as a dashed line. The
oðcÞ curve from the simplified model derived from the approximate Eq. 3 is shown
as a solid line. Henceforth we will use the latter as it allows for an analytical
solution, while preserving the scale and salient features of the full model oðcÞ. In
both cases parameters from Table 1 are used.
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ing points of the c-nullcline are mostly insensitive to I0. The c-
nullcline must also pass through the origin so that if no CRH is syn-
thesized, no CRH can be released. Similarly, dc=dt > 0when cs > 0
and c ¼ 0, indicating that the release of CRH increases when stored,
synthesized CRH is present. We also impose that dc=dt < 0when
cs ¼ 0 and c > 0 so that when there is no stored CRH present, no
CRH can be released and its concentration c will decrease due to
degradation. We thus posit dc=dt ¼ k2I0cs � k1f ðcÞ where f ðcÞ is a
cubic in c with f ð0Þ ¼ 0 and f ðcÞ > 0 for c > 0. The proportionality
constant k2 should be positive so that cs > 0; c ¼ 0 values will yield
dc=dt > 0. Furthermore, to preserve positivity along the c-
nullcline, cs ¼ k1f ðcÞ=k2I0, we must also impose that k1 > 0; posi-
tive values of k1 also guarantee that if cs ¼ 0; c > 0 then
dc=dt < 0, as discussed above. Typical values of c are one order of
magnitude larger than those of cs [55,56]; as a result k1 must be
much smaller than k2, so that the nullcline equation
cs ¼ k1f ðcÞ=k2I0, which includes a cubic in c, will yield reasonable
values of cs. Under the assumption k1 � k2, we finally write

dc
dt

¼ k2I0cs � k1
c3

3
� c�1 þ c�2

2
c2 þ c�1c

�
2c

� �
; ð4Þ

so that increases in I0 shift the nullcline to the left in ðcs; cÞ space as
imposed above. The quantities c�1;2 represent the turning points of

the cubic defined by f ðcÞ ¼ c3=3� ðc�1 þ c�2Þ=2c2 þ c�1c
�
2c, so that

df ðc�1;2Þ=dc ¼ 0. Without loss of generality we assume 0 < c�1 < c�2.
Since cs must be positive at the c ¼ c�1;2 turning points, we must also
impose c�2 > c�1=3 and c�1 > c�2=3. The form of the right-hand-side of
Eq. 4 implies that the c-nullcline follows a sigmoidal ‘‘S” shape
where the c-coordinate of the turning points are independent of I0
as desired.

We can arrive at a similar expression for Eq. 4 through a differ-
ent route. Performing a Taylor expansion in cs of the right-hand
side of the c dynamics in Eqs. 1, the term q0I0ð1� e�kcs Þ yields
q0kI0cs to first order, whereas the expansion in ðq1cÞn of

gc;maxðq1cÞn=ð1þ ðq1cÞnÞ results in gc;max ðq1cÞn � ðq1cÞ2n
h i

to second

order so that setting n ¼ 3=2 yields a cubic term with a negative
coefficient. Upon including a time-dependent form for IðtÞ, the sub-
stitution I0 ! IðtÞ will shift the c-nullcline accordingly. The full
model can thus be re-written as

dcs
dt

¼ �c1 þ e�boðcÞ � cs
tc

; ð5Þ
dc
dt

¼ k2I0cs � k1
1
3
c3 � c�1 þ c�2

2
c2 þ c�1c

�
2c

� �
: ð6Þ

where oðcÞ is the approximated form given implicitly in Eq. 3, and
where time-dependent inputs IðtÞ can be easily incorporated in lieu
of I0. To guarantee bistability, the cs and the c nullclines must allow
for multiple intersections. Let us denote the coordinates of the turn-
ing points of the cubic on the c-nullcline as ðc�s;1; c�1Þ and ðc�s;2; c�2Þ,
where c�s;1 ¼ k1f ðc�1Þ=k2I0 and c�s;2 ¼ k1f ðc�2Þ=k2I0 with c�1 < c�2. Since
c decreases along the slow nullcline as cs increases, multiple cross-
ings of the two nullclines will arise if ðc�s;1; c�1Þ lies to the right of the
slow, cs nullcline, and ðc�s;2; c�2Þ lies to its left. Mathematically this is
translated into the following bistability condition

c�s;1 > �c1 þ e�boðc�1Þ; ð7Þ
c�s;2 < �c1 þ e�boðc�2Þ: ð8Þ

As discussed above, c is typically one order of magnitude larger
than cs [55,56]. We thus further rescale cs by a factor
j ¼ ðk2=k1Þ � 1 so that the two CRH components are comparable
in size and define
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x ¼ cs; ð9Þ

y ¼ c
k1
k2

� �1=3

¼ c
j1=3 ; ð10Þ

t0 ¼ tk1=31 k2=32 : ð11Þ
Note that the rescaling will also affect the time scale t, as seen

from Eq. 11. For simplicity, we drop the prime notation from t0

and introduce e ¼ 1=ðtck1=31 k2=32 Þ. Since the dynamics of cs unfolds
on the longer time scale tc compared to that of c, we also assume

t3c � k�1
1 k�2

2 so that e� 1. Our reduced model is now complete.
The ODE system written in terms of ðx; yÞ is given by

dx
dt

¼ eð�c1 þ e�boðyÞ � xÞ; ð12Þ
dy
dt

¼ I0x� 1
3
y3 � y�1 þ y�2

2
y2 þ y�1y

�
2y

� �
; ð13Þ

where oðyÞ is the real, positive solution to
Fig. 2. Shaded in gray is the parameter region in ðy�1; y�2Þ space that yields bistability
for j ¼ 1

3 � 104. The constraints that lead to this region are detailed in the text. The
three blue lines are y�2 ¼ 3y�1; y

�
2 ¼ y�1 and y�2 ¼ 1

3 y
�
1. The dotted curve is implicitly

defined via x�1 ¼ �c1 þ e�boðy�1Þ; the dashed one via x�2 ¼ �c1 þ e�boðy�2Þ as in Eqs. 15 and
16 respectively, with I0 ¼ 1. All other parameters are as listed in Table 1. We set
y�1 ¼ 1:04; y�2 ¼ 1:87 as denoted by the red dot. These values fall in the bistable, gray
region and allow for good qualitative agreement between Eqs. 12 and 13, and the
full model in Eqs. 1.
2
p2p3ð1þ p5Þ

p6
ðp2

2p
2
3p4 þ p2

3Þ �
p4

p6
ðp2p3Þ3

� �
o4

þ p2p3ð1þ p5Þ
p6

j2
3y2 � 3p2

3j
1
3y� p2

2p
2
3p4j

1
3y

� �
o2 � jy3 ¼ 0;

ð14Þ

and y�1;2 are the rescaled c�1;2 values according to Eq. 10 and subject
to the following constraints
0 0.25 0.5 0.75 1 1.25
0

0.5

1

1.5

2

2.5

3

Fig. 3. Fast CRH release (solid, red) and slow CRH synthesis (solid, blue) nullclines
of the fundamental HPA axis model obtained by setting dx=dt ¼ 0 and dy=dt ¼ 0
respectively in Eqs. 12 and 13. For comparison we also plot the corresponding c-
nullcline (dashed, red) and cs-nullcline (dashed, blue) from Eqs. 1 as a function of
x ¼ cs and y ¼ c=j1=3. Although the details of the nullclines from the model (Eqs. 12
and 13) and from the full model (Eqs. 1) differ, the main features persist. All
parameters used are as in Table 1.
y�1 > y�2=3 > 0 x�1 ¼ 3y�1
2y�2 � y�1

3

6I0
> �c1 þ e�boðy�1Þ; ð15Þ

y�2 > y�1=3 > 0 x�2 ¼ 3y�2
2y�1 � y�2

3

6I0
< �c1 þ e�boðy�2Þ: ð16Þ

The form of our reduced model in Eqs. 12 and 13 under the con-
straints given by Eqs. 15 and 16 is reminiscent of that of the
FitzHugh-Nagumo model for neuron spiking [64], which exhibits
rich dynamics in response to external excitations such as graded
responses, the appearance and disappearance of limit cycles, and
large excursions in phase space depending on the amplitude of
the external input. In Fig. 2 we show the area in ðy�1; y�2Þ parameter
space that yields bistability (i.e. two stable equilibria) obtained by
taking into account all constraints, Eqs. 15 and 16 and the assump-
tion that y�1 < y�2. For given y�1; y

�
2 values selected from this region,

the corresponding x�1; x
�
2 values can be calculated through Eqs. 15

and 16, leading to ðx�1; y�1Þ and ðx�2; y�2Þ coordinates for the turning
points of the cubic term in the fast y-nullcline.

Once all the physiological parameters are chosen, transitions
between the two stable equilibria can be induced by perturbations,
even transient ones, to the stimulus IðtÞ. In principle, one can con-
sider a more complex description of the system where instead of
bistability, the nullclines intersect three or more times. Two of
these equilibria would then represent healthy and diseased condi-
tions, the others would be interpreted as prenosological states.
Mental disorders in combatants for example can be preceded by
milder neurotic conditions [65]. In this case, changes to IðtÞ could
induce direct transitions between healthy and diseased states,
but could also modulate a first passage from the healthy to the
prenosological state, and then from the prenosological to the dis-
eased state. Another scenario is that of a tailored IðtÞ that once
the prenosological state is reached would lead to a reverse transi-
tion back to the healthy one, representing early intervention. For
simplicity we only consider bistability in the remainder of this
paper.
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2.1. Analysis of the dynamical model without circadian drive

The steady-state solutions ðxu; yuÞ of the reduced model Eqs. 12
and 13 are found by setting their right-hand sides to zero so that

xu ¼ �c1 þ e�boðyuÞ; ð17Þ

I0xu ¼ 1
3
y3u �

y�1 þ y�2
2

y2u þ y�1y
�
2yu: ð18Þ

If the turning point coordinates y�1;2 are chosen as in Fig. 2, two
distinct solutions arise and ðxu; yuÞ ¼ ðxþ; yþÞ or ðx�; y�Þ, labelled
according to xþ > x�. In Fig. 3 we compare the nullclines derived
from Eqs. 12 and 13 with those arising from the full model in
Eqs. 1, showing that qualitative features are preserved. Two differ-
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ent ways for the equilibrium values to relate to each other are
shown in Fig. 4. To the left, the stable points are characterized by
xþ > x� and yþ < y�; to the right xþ > x� and yþ > y�. When iden-
tifying healthy and diseased states with either of the two ðxu; yuÞ
equilibria, the relation between yþ; y� will be important since, as
discussed in the Introduction, stored CRH (a decreasing function
of cortisol) and circulating CRH may be both over- or under-
expressed, or one may be deficient while the other is produced
in excess. The left-hand panel represents the case where abnormal-
ities are marked by high stored CRH and low circulating CRH (or
vice versa); the right-hand panel represents the case where abnor-
malities manifest via both high (or both low) stored and circulating
CRH. We will mostly focus on the left-hand side representation but
our analysis and conclusions are similarly applicable to the right-
hand panel.

We can further analyze Eqs. 12 and 13 by noting that the
dynamics contains two time scales: t, over which y evolves, and
s ¼ et � t over which x evolves. To make analytical progress we
use asymptotic expansion methods [66] by first calculating solu-
tions in these two time scales respectively and then matching
the solutions in the intermediate scale where are valid. We begin
with the t time scale, and pose

xðtÞ ¼ x0ðtÞ þ OðeÞ; ð19Þ
yðtÞ ¼ y0ðtÞ þ OðeÞ: ð20Þ

Upon inserting Eqs. 19,20 into Eqs. 12 and 13, we find to leading
order in t,

dx0
dt

¼ 0; ð21Þ
dy0
dt

¼ I0x0 � 1
3
y30 �

y�1 þ y�2
2

y20 þ y�1y
�
2y0

� �
; ð22Þ

which imply the fast dynamics will occur along the vertical, y axis
while x ¼ x0;init remains constant. The slower motion instead will
arise from assuming Eqs. 12 and 13 evolve over the time scale
s ¼ et. We thus pose

xðsÞ ¼ x1ðsÞ þ OðeÞ; ð23Þ
yðsÞ ¼ y1ðsÞ þ OðeÞ; ð24Þ
and use the chain rule to derive

dx1
ds

¼ �c1 þ e�boðy1Þ � x1 ð25Þ

e
dy1
ds

¼ I0x1 � 1
3
y31 �

y�1 þ y�2
2

y21 þ y�1y
�
2y1

� �� �
: ð26Þ
Fig. 4. Fast (red) and slow (blue) nullclines for two schematic realizations of the reduced
model in Eqs. 12 and 13. (a) The slow nullcline defines a negative slope resulting in the
two nullclines intersecting at equilibrium points ðx�; y�Þ and ðxþ; yþÞ, where xþ > x�
and yþ < y� . (b). The slow nullcline defines a positive slope corresponding to
equilibrium points ðx�; y�Þ and ðxþ; yþÞ, where xþ > x� and yþ > yþ. In panel (a) we
show the intersections ðxu; yuÞ ¼ ðx	; y	Þ, in panel (b) we show the turning points
ðx1; y1Þ and. ðx2; y2Þ.
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By matching orders of e we find

dx1
ds

¼ �c1 þ e�boðy1Þ � x1; ð27Þ

I0x1 � 1
3
y31 �

y�1 þ y�2
2

y21 þ y�1y
�
2y1

� �
¼ 0: ð28Þ

Eqs. 27 and 28 imply that over long time scales the trajectory
moves along the slow nullcline, and that x1ðsÞ; y1ðsÞ are related
via Eq. 28. The two sets of solutions, at the short and long time
scales must coincide at intermediate times when t ! þ1 and
s! 0+. We thus impose

lim
t!1

x0ðtÞ ¼ lim
s!0þ

x1ðsÞ; ð29Þ

lim
t!1

y0ðtÞ ¼ lim
s!0þ

y1ðsÞ: ð30Þ

Solving Eqs. 21 and 22 leads to x0ðtÞ ¼ x0;init ¼ constant, while
y0ðtÞ can be found by factoring the right-hand side of Eq. 22 once
x0;init has been inserted, and solving via separation of variables.
On the other hand, solving Eqs. 27 and 28 requires specifying the
exact form of oðy1Þ which can be in principle found through Eqs.
2 or 3. However, since all functions involved are analytic and since
upon inspection of Eq. 28 y1ðsÞ is a function of x1ðsÞ, we can lin-
earize e�boðy1Þ as a function of x1 and write e�boðy1Þ ¼ px1 þ q, where
0 < px1 þ q < 1. Under this assumption and using Eq. 29 we find

x1ðsÞ ¼ �c1 þ q
1� p

½1� e�ð1�pÞs� þ x0;inite�ð1�pÞs: ð31Þ

We can finally estimate y1ðsÞ by inserting Eq. 31 into Eq. 28 and
by solving the resulting cubic equation for y1ðsÞ. At steady state,
two stable solutions emerge for y1ðs! 1Þ corresponding to
x1ðs! 1Þ. From Eq. 31 we can also estimate the typical time scale
to reach steady state as s � 1=ð1� pÞ, or t � 1=½ð1� pÞe�. The fully
linearized problem, where we set e�boðyÞ ¼ pxþ q directly into Eqs.
12 and 13, allows us to write the two nullclines as a vertical line
intersecting a cubic, under fast y and slow x dynamics. We consider
this problem in Appendix 6.
3. Reduced model with circadian drive

Eqs. 12 and 13 describe the fundamental dynamics of the full
model without circadian driving. One important physiological fea-
ture we now add is the circadian cycle, as modulated by the SCN in
the hypothalamus. This rhythm is manifest as a small, periodic
variation in the basal input I0. As a result, the full model presented
in Eqs. 1 must be rewritten with a time-dependent term IðtÞ which
we model as

IðtÞ ¼ I0 þ a sinðxtÞ: ð32Þ
Here, a is the amplitude of the circadian perturbation, and x

its frequency, defining the period T ¼ 2p=x. Since we assume
the time-dependent term is small compared to the basal term,
a� I0, the analysis performed in Section 2 remains valid. We
can thus study our reduced problem, Eqs. 12 and 13, by replacing
I0 with IðtÞ as expressed in Eq. 32 and with the t ! t0 rescaling
shown in Eq. 11. Under this non-dimensionalization, xt ! x0t0,

and the rescaled frequency is x0 ¼ x=ðk1=31 k2=32 Þ, corresponding

to a period T 0 ¼ Tk1=31 k2=32 with x ¼ 2p=T given in Table 1.
Henceforth we consider the rescaled version of Eq. 32, Iðt0Þ ¼
I0 þ a sinðx0t0Þ where t0 is as in Eq. 11 and drop the prime
notation.

Before numerically analyzing the circadian version of Eqs.
12 and 13 driven by Eq. 32, we present some analytical approx-
imations. Since both a; e are assumed to be small, our analysis
will depend on how the two relate to each other. If a � e � 1,
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the circadian rhythm defines the smallest perturbation and
solutions to the model without the circadian rhythm pre-
sented in Section 2.1 (Eqs. 12 and 13 with IðtÞ ¼ I0) are valid
zero-th order approximations to the circadian problem. If
instead a ¼ OðeÞ the analysis presented in Section 2.1 is no
longer valid and the contribution of CRH hormonal storage
and of the circadian rhythm must be jointly considered. We
consider the two cases below.

3.1. Small circadian drive limit

We first consider the a � e � 1 case, and expand solutions to
the circadian problem in Eqs. 12 and 13 in different orders of a
as follows

xðtÞ ¼ xuðtÞ þ axaðtÞ þ Oða2Þ; ð33Þ
yðtÞ ¼ yuðtÞ þ ayaðtÞ þ Oða2Þ; ð34Þ
where ðxuðtÞ; yuðtÞÞ are solutions to the reduced non-circadian
model, that solve Eqs. 12 and 13 with IðtÞ ¼ I0. These solutions equi-
librate towards the steady-state values presented in Eqs. 17 and 18,
ðxuðt ! 1Þ; yuðt ! 1ÞÞ ¼ ðxu; yuÞ ¼ ðx	; y	Þ, under the bistable con-
ditions shown in Fig. 2. Upon inserting Eqs. 33 and 34 into the cir-
cadian model with IðtÞ given by Eq. 32 we find

dxa
dt

¼ � e½xa þ bo0ðyuÞe�boðyuÞya�; ð35Þ
dya
dt

¼ I0xa þ sinðxtÞxu � ðyu � y�1Þðyu � y�2Þya: ð36Þ
Fig. 5. Periodic orbits in ðx; yÞ space driven by a circadian rhythm of amplitude a ¼ 0:01
numerical results are obtained from Eqs. 12 and 13. Parameters are listed in Sections 3
numerical results for a � e, as detailed in the text. Top row: periodic orbits for perturba
orbits for perturbations around the fixed point ðxu; yuÞ ¼ ðxþ; yþ:Þ ¼ ð0:81; 0:89Þ.
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To further simplify our analysis, without loss of generality
we also assume that ðxuðtÞ; yuðtÞ) in Eqs. 35 and 36 are set as
one of the two stable, fixed-points under
IðtÞ ¼ I0; ðxuðtÞ; yuðtÞÞ ¼ ðxu; yuÞ ¼ ðx	; y	Þ so that Eqs. 35 and 36
become an inhomogeneous linear ODE system with respect
to xa; ya. We can now rewrite Eqs. 35 and 36 as a matrix
equation

dxa
dt

¼ Axa þ b ð37Þ

where xaðtÞ ¼ ðxaðtÞ; yaðtÞÞT , bðtÞ ¼ ð0; sinðxtÞÞTxu, and

A 
 �e �ebo0ðyuÞe�boðyuÞ

I0 �ðyu � y�1Þðyu � y�2Þ

" #
: ð38Þ

Using standard methods to solve linear ODE systems driven by a
periodic term we find

xaðtÞ ¼ r11r21xu
r11r22 � r12r21

k1 sinðxtÞ þx cosðxtÞ
x2 þ k21

� k2 sinðxtÞ þx cosðxtÞ
x2 þ k22

" #
; ð39Þ

yaðtÞ ¼ xu
r11r22 � r12r21

r12r21ðk1 sinðxtÞ þx cosðxtÞÞ
x2 þ k21

� r11r22ðk2 sinðxtÞ þx cosðxtÞÞ
x2 þ k22

" #
;;

ð40Þ
; 0:02;0:03, from left to right. Analytical estimates are derived from Eqs. 33 and 34;
.1, 3.2 and Table 1. For these values e ¼ 0:0269. Analytical estimates closely match
tions around the fixed point ðxu; yuÞ ¼ ðx�; y�Þ ¼ ð0:73;2:01Þ. Bottom row: periodic
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where k1 and k2 are the eigenvalues of A, corresponding to eigenvectors
r1 ¼ ðr11; r12ÞT and r2 ¼ ðr21; r22ÞT , respectively. We now compare and
contrast the analytical results in Eqs. 33 and 34 truncated at first order
in a and with ðxa; yaÞ given in Eqs. 39 and 40 with numerical evaluation
for the two ðxu; yuÞ steady-states. For concreteness we specify
I0 ¼ 1; c�1 ¼ 15:5; c�2 ¼ 28 and k1 ¼ 2:4� 10�3; k2 ¼ 8 in addition to
the other parameters given in Table 1. The above choices yield
y�1 ¼ 1:04; y�2 ¼ 1:87 which fall in the bistability region shown in Fig. 2,
and lead to e ¼ 0:0269. These choices ensure all constraints listed in Sect.
2 aremet and that the reducedmodel is as close as possible to the original
full model in Eqs. 1. Unless otherwise noted, the above parameters will be
fixed at the above values for the remainder of this work.

In Fig. 5, we show numerical results for a ¼ 0:01;0:02;0:03. In the
top row we consider perturbations around the fixed-point
ðxu; yuÞ ¼ ðx�; y�Þ. Similarly, those around the fixed point ðxþ; yþÞ are
shown in the bottom row. For a ¼ 0:01, analytical results from Eqs.
33 and 34 agree well with numerical ones for both fixed-points, as a
increases discrepancies between the two become more pronounced.
This is to be expected, as the current analytical results are valid only
insofar as a� e ¼ 0:0269. Not shown in Fig. 5 are numerical and ana-
lytical results for values of a < 0:01 which are also in good agreement.
Note that the analytical approximations define curves that are centered
about both fixed points ðxu; yuÞ. This is because the first-order approx-
imations in Eqs. 39 and 40 contain superpositions of oscillatory terms
with the same frequencyx, so that the dynamics in ðx; yÞ space is sym-
metric about the central, fixed point.
Fig. 6. Periodic orbits in ðx; yÞ space driven by a circadian rhythm of amplitude a ¼ 0:01
numerical results are obtained from Eqs. 12 and 13. Parameters are listed in Sections 3.1,
as detailed in the text. Top row: periodic orbits for perturbations around ðxu; yuÞ ¼ ðx�; y�
better agreement between analytic and numerical curves for a ¼ 0:02; 0:03 than Fig. .6.
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3.2. Circadian drive comparable to stored CRH dynamics

We now assume a ¼ OðeÞ and pose e ¼ Ma. Since the e and a
contributions in Eqs. 12 and 13 and in Eq. 32 are of the same order
of magnitude, we must derive our analytical results independently
of the results found in Section 2.1. We again expand with respect to
a as follows

xðtÞ ¼ xuðtÞ þ axð1Þa ðtÞ þ a2xð2Þa ðtÞ þ Oða3Þ; ð41Þ
yðtÞ ¼ yuðtÞ þ ayð1Þa ðtÞ þ a2yð2Þa ðtÞ þ Oða3Þ: ð42Þ

We expect the zero-th order solution, ðxuðtÞ; yuðtÞÞ in Eqs. 41 and
42 to be the same as the fast solution to the non-circadian problem
in Eqs. 21 and 22 given that now all perturbations arise to order a.
We also include second order terms because, as we shall see below,
the first order term xaðtÞ is constant. Upon inserting Eqs. 41 and 42
into Eqs. 12 and 13, and using Eq. 32 we find the following sets of
identities stemming from the three orders of a

dxu
dt

¼ 0; ð43Þ
dyu
dt

¼ I0xu � 1
3
y3u �

y�1 þ y�2
2

y2u þ y�1y
�
2yu

� �
; ð44Þ

dxð1Þa

dt
¼ Mð�c1 þ e�boðyuÞ � xuÞ; ð45Þ

dyð1Þa

dt
¼ I0xð1Þa þ sinðxtÞxð1Þu � ðyu � y�1Þðyu � y�2Þyð1Þa ; ð46Þ
; 0:02;0:03, from left to right. Analytical estimates are derived from Eqs. 41 and 42;
3.2, Table 1 and Fig. 5. Analytical estimates closely match numerical results for a � e,
Þ. Bottom row: periodic orbits for perturbations around ðxu; yuÞ ¼ ðxþ; yþÞ. Note the
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dxð2Þa

dt
¼ �Mðbo0ðyuÞe�boðyuÞyð1Þa þ xð1Þa Þ; ð47Þ

dyð2Þa

dt
¼ I0xð2Þa þ sinðxtÞxð1Þa

� y2uy
ð2Þ
a þ yuðyð1Þa Þ2 �y�1 þy�2

2
ð2yuyð2Þa þðyð1Þa Þ2Þþy�1y

�
2y

ð2Þ
a

� �
:

ð48Þ
Solutions to Eqs. (43)–(48) will depend on the initial conditions.

As expected, Eqs. 43 and 44 are the same as Eqs. 21 and 22, so the
zeroth order dynamics is the same as in the non-circadian case. If
we also assume that ðxuðtÞ; yuðtÞÞ ¼ ðxu; yuÞ ¼ ðx	; y	Þ are the time-
independent equilibrium solutions to the non-circadian model, we
also find that the right-hand side of Eq. 45 vanishes, leading to a

constant value of xð1Þa . We can now solve Eq. 46 using the above
assumptions. We find

yð1Þa ðtÞ ¼ yað0Þe�rt þ
I0x

ð1Þ
a

r
ð1� e�rtÞ

þ xu
x2 þ r2 ðxe�rt þ r sinðxtÞ �x cosðxtÞÞ; ð49Þ

where

r ¼ ðyu � y�1Þðyu � y�2Þ: ð50Þ
Note that r > 0, since yu ¼ y	 and yþ < y�1;2 and y� > y�1;2. Eq. 49

depends on the constant value for xa and on the initial condition

yð1Þa ð0Þ. If we assume xð1Þa ð0Þ ¼ xð1Þa ¼ yð1Þa ð0Þ ¼ 0, the first order
dynamics along the y axis is given by

yð1Þa ðtÞ ¼ xu
x2 þ r2 ðxe�rt þ r sinðxtÞ �x cosðxtÞÞ: ð51Þ

We can also impose xð1Þa ð0Þ ¼ xð1Þa – 0 and assume xð1Þa ; yð1Þa ð0Þ are
related via

yð1Þa ð0Þ ¼ I0x
ð1Þ
a

r
� xxu
x2 þ r2 ; ð52Þ

to find a purely oscillatory solution

yð1Þa ðtÞ ¼ I0x
ð1Þ
a

r
þ xu
x2 þ r2 ðr sinðxtÞ �x cosðxtÞÞ: ð53Þ

To find the dynamics for xð2Þa ðtÞ and yð2Þa ðtÞ we assume

xð1Þa ð0Þ ¼ xð1Þa ¼ 0 for simplicity and set yð1Þa ð0Þ as in Eq. 52 leading
to Eq. 53 so that

dxð2Þa ðtÞ
dt

¼ Mbo0ðyuÞe�boðyuÞ xu
x2 þ r2 ðx cosðxtÞ � r sinðxtÞÞ;

ð54Þ
resulting in

xð2Þa ðtÞ¼Mbo0ðyuÞe�boðyuÞ xu
xðx2þr2ÞðxsinðxtÞþrcosðxtÞ�rÞþxð2Þa ð0Þ

ð55Þ
The value of xð2Þa ð0Þ is arbitrary and can be set to zero; we can

also choose xð2Þa ð0Þ so that the higher order solution xð3Þa ðtÞ remains
oscillatory. This is shown in Appendix 7, where we also derive

yð2Þa ðtÞ, the solution to Eq. 48, which follows from tedious but
straightforward computations.

In Fig. 6 we plot ðxðtÞ; yðtÞÞ as derived from Eqs. 41 and 42, trun-
cated to second order. For simplicity, we focus on purely periodic solu-
tions, by setting the proper initial conditions to all the relevant orders

of a. Specifically we use xð1Þa ð0Þ ¼ xð1Þa ¼ 0; yð1Þa ð0Þ as given by Eq. 53

and xð2Þa ð0Þ and yð2Þa ð0Þ as given in Eqs. 88 and 86 respectively in
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Appendix 7. As done in Fig. 5, we consider both steady-state values
ðxu; yuÞ ¼ ðx	; y	Þ and compare analytical and numerical evaluations
for a ¼ 0:01;0:02;0:03, and M ¼ e=a with e ¼ 0:0269. The results
shown in Fig. 6 reveal good agreement between analytical and numer-
ical curves. Upon comparing Figs. 5 and 6 however we find that when
a ¼ 0:01Ke, Eqs. 33 and 34 are a closer approximation to the numer-
ical results than Eqs. 41 and 42, but the reverse is true for
a ¼ 0:02;0:03 � e, as can be expected since we are here considering
the a ¼ OðeÞ limit. The analytical approximations define curves that
are not centered about the fixed points ðxu; yuÞ, to the contrary of
what observed in Fig. 5. This is because the second-order approxima-
tions to Eqs. 47 and 48, shown in Eq. 55 and in Eq. 85 of Appendix 7,
superimpose constants and oscillatory terms of frequency 2x to the
first order approximations centered about the fixed point and contain-
ing oscillations of frequency x. These second-order terms break the
symmetry about the fixed point, so that ðxu; yuÞ is no longer central
as xðtÞ and yðtÞ in Eqs. 41 and 42 oscillate. More details are shown
in Appendix 8. We investigate the behavior of the system for larger
values of a in Appendix 9. As can be seen, for a > 0:034 period-
doubling, subharmonics, and chaotic behavior emerge. While mathe-
matically interesting, this limit does not allow to clearly distinguish
between healthy and diseased states. In the remainder of this work
we thus study stress-induced transitions to the HPA axis by keeping
the amplitude of the circadian rhythm a < 0:034.
4. Inducing transitions between steady states

We have hitherto assumed that the two stable states in the
absence of the circadian drive, ðxu; yuÞ ¼ ðx	; y	Þ for a ¼ 0, repre-
sent a healthy and a diseased state. For concreteness and without
loss of generality we identify ðx�; y�Þ with the healthy state, and
ðxþ; yþÞ with the diseased one, where xþ > x� and yþ < y�. This
choice is simply made for illustrative purposes, since as discussed
in the Introduction, over- or under-expression of any of the hor-
mones regulated by the HPA axis induce stress-related patholo-
gies. As shown in Sect. 3 including the circadian drive yields
limit cycles around both ðx	; y	Þ for a < 0:034. Since at steady
state limit cycles will orbit around them, we use these points as
markers for healthy and/or diseased conditions even in the pres-
ence of the circadian drive. Finally, we limit our analysis to the
a < 0:034 regime, since larger values of a may lead to chaotic
behavior.

We now study how the system transitions between the two
limit cycles, or equilibrium values, in response to external pertur-
bations. Within the diseased/healthy context introduced above,
transitions from ðx�; y�Þ to ðxþ; yþÞ (or from and to the limit cycles
orbiting around them) represent the onset of disease, and the
opposite progression, healing. These transitions may arise through
parameter changes, which we associate to physical injury or surgi-
cal intervention, or in response to external input IextðtÞ such as psy-
chological trauma, cognitive behavioral or exposure therapy. We
only consider the latter scenario and study how an external input
IextðtÞ superimposed to the circadian drive may or may not induce
transitions between the two limit cycles. Thus, the basal value I0 in
Eq. 13 is replaced by I0 ! I0 þ a sinðxtÞ þ IextðtÞ. While several
shapes are possible we only consider illustrative examples where
a simple pulse of fixed amplitude Iext, duration Text, is applied at
a given phase / ¼ xt (modulo 2p) of the circadian rhythm. The
complete form of IðtÞ includes basal, circadian, and reactive inputs
to the HPA axis. In previous work, where the circadian drive was
not included, the amplitude and duration of the external input
were shown to greatly influence transitions between steady states
[55,56]. Here, the acute stressors IextðtÞ may evoke strong
responses, even surpassing the rhythmic ones; however the ampli-
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tude, duration and timing of the circadian drive contribute to the
emergence of transitions in non-trivial ways.

4.1. Transitions between healthy and diseased states

In Figs. 7 to 11 we show trajectories under piece-wise constant
perturbations of magnitude Iext lasting for Text assuming the initial
condition is along the normal or diseased limit cycles for a– 0, or,
if a ¼ 0, at the normal or diseased fixed point. Although Text in our
computations is measured in non-dimensional units, according to
the scaling provided in Eq. 11 and in Ref. [55], for concreteness,
we describe following figures using dimensional values in the cap-
tions. Superimposing an external input to the circadian drive
changes the shape of the fast y nullcline, but not of the slow x
one. Following [55], we adopt the convention Iext P 0, since the
majority of neural circuits that project to the PVN are excitatory.
This setting also avoids the emergence of negative values in the
driving stimulus, since I0 þ Iext P a when I0 ¼ 1;a < 0:034. As a
result, the fast y nullcline is compressed or stretched horizontally
when the circadian and/or external drive are added to the basal
Fig. 7. Dynamics in phase space for (upper left) a ¼ 0, (upper right) a ¼ 0:01, (lower left
hours and the system is initiated at the healthy ðx�; y�Þ state. All other parameters are as
when Iext ¼ 0, the red dashed curve is the fast nullcline when Iext ¼ 1, and the blue curve i
arise for a– 0 are the fast nullclines when Iext ¼ 0 and the circadian drive defines a pha
oscillates between these three curves. The red dashed curves are the fast nullclines when
the corresponding fast nullclines are not sufficiently resolved and appear as a single das
sufficient to induce a transition from the healthy state to the diseased one. Including a
remains in the healthy limit cycle. Further increases to a ¼ 0:02; 0:03 restores the trans
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I0. If Iext > a, the smallest compression factor I0 þ Iext � a arises
when sinðxtÞ ¼ �1 and the largest compression factor
I0 þ Iext þ a occurs when sinðxtÞ ¼ 1. If Iext < a the nullcline is
stretched by a factor I0 þ Iext � a when sinðxtÞ ¼ �1 and similarly
compressed by I0 þ Iext þ a when sinðxtÞ ¼ 1. The fast nullcline
oscillates between the bounds provided by the two limits above.
Whether transitions arise or not depends on the intricate interplay
between the external input and the oscillating nullclines. In certain
regimes transitions will arise, in others, they will not. Unless other-
wise specified, parameters for the figures shown in this subsection
and the next are as listed in Sect. 3.1, 3.2 and Table 1; illustration
conventions are as described in Figs. 7 and 8.

We begin in Fig. 7 by showcasing the dynamics of the system
when an external stressor Iext ¼ 1 is applied for Text ¼ 24 hours
with and without a circadian rhythm of varying amplitude a. The
initial state is the healthy state at ðx�; y�Þ. The four panels show
that increasing the magnitude of a affects the transitions from
the healthy to the diseased state in a non-trivial way. As can be
seen, in the absence of the circadian drive, Iext induces a transition
from ðx�; y�Þ to ðxþ; yþÞ, a modest amplitude a ¼ 0:01 hinders the
) a ¼ 0:02, (lower right) a ¼ 0:03, when Iext ¼ 1 is active from t ¼ 0 to t ¼ Tmax ¼ 24
listed in Sect. 3.1, 3.2, and Table 1. For a ¼ 0, the red solid curve is the fast nullcline
s the slow nullcline. The black curve is the trajectory. The three red solid curves that
se / ¼ �p=2;0;p=2 (modulo 2p) from right to left, respectively. The fast nullcline
Iext ¼ 1. We also use three values of the circadian phase / ¼ �p=2; 0;p=2, however
hed line. The blue curve is the slow nullcline. When a ¼ 0, the external input Iext is
circadian drive with intermediate a ¼ 0:01 hinders the transition and the system

ition to the diseased state.
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transition and the system remains in the healthy state, but larger
values a ¼ 0:02; 0:03 restore the transition to the diseased one. In
the top row of Fig. 8 we initiate the system at the diseased state
ðxþ; yþÞ and apply a pulse Iext ¼ 0:02 for Text ¼ 12 hours with and
without a circadian rhythm of amplitude a ¼ 0:02. For a ¼ 0 the
system persists at the diseased state even after the pulse Iext is
applied, whereas for a ¼ 0:02; Iext induces a transition to the
healthy state. In the bottom row of Fig. 7 the opposite outcome
is observed. Here, the system is also originally initiated in the dis-
eased state ðxþ; yþÞ and Iext is applied for Text ¼ 12 hours. In the
absence of the circadian drive, the external input induces a transi-
tion to the healthy state, however a circadian rhythm with ampli-
tude a ¼ 0:03 hinders the same transition, with Iext unable to
dislodge the system from the diseased state. These two examples
show that the circadian drive may strongly influence how external
pulses, representing therapeutic intervention, affect the system.
Subjects may thus respond differently to cognitive behavior treat-
ment depending on how sensitive they are to the circadian rhythm.
Fig. 8. Dynamics in phase-space for (upper left) a ¼ 0 and (upper right) a ¼ 0:02 when I
right) a ¼ 0:03 when Iext ¼ 0:03 is active for Text ¼ 12 hours, from t ¼ 720 min (/ ¼ p) to
shows the circadian-induced, diseased-to-healthy transition. The second row shows the
are the fast nullcline in the basal state, Iext ¼ a ¼ 0. The dashed red curves are the fast
panels, the three red solid curves to the outermost right are the fast nullcline when Ie
respectively. For Iext ¼ 0;a – 0, the fast nullcline oscillates between them. The three da
/ ¼ �p=2; 0;p=2 from right to left. For Iext – 0 the fast nullcline oscillates between them
right to left, the driving terms of the fast nullclines are I0 � a; I0 ¼ I0 þ Iext � a (superimpo
a dotted black curve in the lower right panel for reference.
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To understand the role of the magnitude Iext, in Fig. 9 we con-
sider the non-circadian a ¼ 0 case, where the external pulse Iext
is active from t ¼ 0 to t ¼ Tmax ¼ 48 hours and where the magni-
tude is increased from Iext ¼ 0:5 to Iext ¼ 0:8, while keeping all
other parameters fixed. In both cases, the external perturbation
dislodges the system from the diseased state ðxþ; yþÞ towards the
perturbed equilibrium given by the intersection of the slow null-
cline with the perturbed fast nullcline. Since Text is large enough,
the system will settle in this new equilibrium, marked by the red
cross in Fig. 9. However, once Iext is terminated, the system must
return to either of the original steady states. For Iext ¼ 0:5, the per-
turbed equilibrium falls into the basin of attraction of the original
healthy equilibrium, so the trajectory will settle into the healthy
steady state and a transition is recorded, as shown in the left panel
of Fig. 9. The value Iext ¼ 0:8 instead leads the system further away
from the original nullclines so that here the new perturbed equilib-
rium, marked by the red cross, falls into the basin of attraction of
the original diseased state. As a result, after a large excursion in
ext ¼ 0:02 is active from t ¼ 0 to t ¼ Text = 12 h, and for (lower left) a ¼ 0 and (lower
t ¼ 1440 min. The initial condition is always the diseased ðxþ:yþÞ state. The first row
circadian drive impeding the same transition. In the left panels, the solid red curves
nullcline when Iext – 0 and a ¼ 0. The blue curve is the slow nullcline. In the right
xt ¼ 0 and the circadian drive defines a phase / ¼ �p=2; 0;p=2, from right to left,
shed curves to the outermost left are the fast nullcline when Iext – 0 and similarly
. Due to the numerical values of Iext ;a some of the fast nullclines superimpose. From
sed), I0 þ a ¼ I0 þ Iext (superimposed), I0 þ Iext þ a. We plot the healthy limit cycle as



Fig. 9. Dynamics in phase-space for (left) Iext ¼ 0:5 and (right) Iext ¼ 0:8 active from t ¼ 0 to t ¼ Text ¼ 48 hours. In the left panel, Iext ¼ 0:5 causes a transition from the initial
diseased state to the perturbed equilibrium, which falls into the basin of attraction of the non-perturbed healthy equilibrium. Once Iext is terminated, the system transitions to
this healthy state. A larger Iext ¼ 0:8 disrupts the dynamics further and the new perturbed equilibrium falls into the basin of attraction of the non-perturbed diseased state.
After a long excursion, the termination of Iext returns the system to the diseased state.
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phase space, the trajectory returns towards the diseased state. This
is a slightly counter-intuitive finding, since one may expect that
larger pulses Iext may better facilitate transitions to the healthy
state.

In Fig. 10 we show that another determinant of the transition
between states is given by the starting time of Iext relative to the
phase of the circadian rhythm. In the left panel we apply two exter-
nal inputs Iext ¼ 0:2 lasting Text ¼ 24 hours. In the first case Iext is
applied from t ¼ 0 to t ¼ Text ¼ 1440 min. The trajectory in the
black solid line, is perturbed but stays in the healthy state. In the
second case, although similarly Iext ¼ 1 and Text ¼ 24 hours, the
external input is delayed, starting at t ¼ 480 min and terminating
at t ¼ 1920 min. As can be seen, the transition to the diseased state
does occur. The same dynamics is observed in the right panel
where the system is initiated at the diseased state and two external
inputs Iext ¼ 1 lasting Text ¼ 27 hours are applied. When Iext is
applied from t ¼ 0 to t ¼ Text ¼ 1620 min, a transition towards
Fig. 10. Dynamics in phase-space where an external input of magnitude Iext lasting Tex

Iext ¼ 0:2 is applied for a system initially at the healthy state, for Text ¼ 1440 min, with
black curve). The amplitude of the circadian rhythm is set at a ¼ 0:02. When Iext is ini
t ¼ 480 min the trajectory transitions to the diseased state. Similar dynamics are shown
for Text ¼ 1620 min, with start times of t ¼ 0 (/ ¼ 0, solid black curve) and t ¼ 720 min (
to the healthy state, when Iext is initiated at t ¼ 720 min the trajectory returns to the di
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the healthy state arises, whereas when the external stressor is
delayed and initiated at t ¼ 720 min and terminated at
t ¼ 2340 min, the transition does not occur and the trajectory
returns to the diseased state.

The effects of duration of the external input Iext are shown in
Fig. 11 where Iext is applied at t ¼ 0 but for different durations
Text. In the left panel, the system starts in the healthy state and
a ¼ 0:02. When an external stressor Iext ¼ 0:3 is applied for
Text ¼ 12 hours (solid black curve), a transition to the diseased
state is observed, however when Iext ¼ 0:3 is applied for Text ¼ 18
hours (dash-dot black curve), the system remains at the healthy
state. Similarly, in the right panel the system starts in the diseased
state and a ¼ 0:01. When an external pulse Iext ¼ 1 is applied for
Text ¼ 36 hours (solid black curve), the system does not transition
to the healthy state, however when Iext ¼ 1 is applied for Text ¼ 39
hours (dash-dot black curve), a transition to the healthy state is
observed. Upon further increasing Text to Text ¼ 48 hours, the sys-
t is applied at different phases / relative to the circadian rhythm. In the left panel
start times of t ¼ 0 (/ ¼ 0, solid black curve) and t ¼ 480 min (/ ¼ 2p=3, dash-dot
tiated at t ¼ 0 the trajectory remains at the healthy state, when Iext is initiated at
in the right panel when Iext ¼ 1 is applied for a system initially at the diseased state,
/ ¼ p, dash-dot black curve). When Iext is initiated at t ¼ 0 the trajectory transitions
seased state.



Fig. 11. Dynamics in phase-space when an external input Iext lasting for variable Text is applied in the presence of the circadian rhythm. In the left panel Iext ¼ 0:3 is applied to
the healthy state at time t ¼ 0 (/ ¼ 0) for Text ¼ 720 min (solid black curve), and for Text ¼ 1080 min (dash-dot black curve). The amplitude of the circadian rhythm is set at
a ¼ 0:02. When Text ¼ 720 min the external stressor induces a transition to the diseased state, when Text ¼ 1080 min no transition arises. Similarly in the right panel Iext ¼ 1 is
applied for a system initially at the diseased state, at time t ¼ 360 min (/ ¼ p=2) for Text ¼ 2160 min (solid black curve) and t ¼ 2340 min (dash-dot black curve) for a ¼ 0:01.
In the first case the trajectory returns to the diseased state, in the second case, the pulse allows the system to transition to the healthy state.
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tem will remain in the diseased state. We do not plot this case, but
the trajectory follows very closely the one observed for Text ¼ 36
hours. These results show that the amplitude of the circadian drive
a, the magnitude Iext, onset phase /, and duration of the external
input Text affect transitions between states in subtle ways. Finally,
Figs. 9–11 show that under stressed conditions, trajectories may
access perturbed equilibria that persist as long as the stress
remains active. These perturbed equilibria can be considered
meta-stable states that vanish once the external stressor/input is
removed. The system will then return to its original healthy or dis-
eased, non-stressed state or transition to the opposite one.

4.2. Transition diagrams between healthy and diseased states

In this section we study the interplay between Iext; Text;a and /,
by plotting transition diagrams in fText; Iextg space for two possible
initial conditions (healthy and diseased) and several values of a;/.
Fig. 12. Final equilibrium states in fText; Iextg space in the absence of the circadian rhythm
as Text ¼ mTT=8, with 1 6 mT 6 16, magnitudes are set at Iext ¼ 0:01m, with 1 6 m 6
ðText; IextÞ. Colors represent the final equilibrium state after cessation of the ðText; IextÞ pe
indicate a final diseased equilibrium at ðxþ; yþÞ. Note that large and long perturbations
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These diagrams will indicate whether a transition has occurred or
not after a stressor or pulse characterized by fText; Iextg applied at
phase / is terminated.

In Fig. 12 we start the system in the healthy (left panel) and the
diseased (right panel) states and show the final equilibrium config-
uration in the absence of the circadian rhythm (a ¼ 0). As can be
seen in the left panel, transitions from the healthy ðx�; y�Þ to the
diseased state ðxþ; yþÞ arise for sufficiently large external stressors
Iext of sufficient duration Text. Interestingly, in the right-hand panel,
long lived pulses are associated with transitions from the diseased
ðxþ; yþÞ to the healthy state ðx�; y�Þ only if Iext is of intermediate
value, but not too small or too large. Why would large pulses that
last long enough not induce transitions? The answer is the asym-
metry induced by selecting Iext > 0. This choice always compresses
the fast nullcline and its corresponding limit cycle to the left. When
starting in the diseased state, small values of Iext are not large
enough to sufficiently perturb the system, so no transitions are
(a ¼ 0), starting from the healthy (left) and diseased state (right). Durations are set
100, defining 1600 combinations, corresponding to 1600 rectangles centered at
rturbation: yellow ones indicate a final healthy equilibrium at ðx�; y�Þ, purple ones
always lead to the diseased state, regardless of the initial configuration.
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observed, as can be expected. Intermediate Iext values may induce
transitions, however if Iext is too large, the compression to the left
may cause the intersection between the fast and slow nullclines
corresponding to the diseased ðxþ; yþÞ state to vanish. The trajec-
tory must leave the initial (diseased) equilibrium and start evolv-
ing towards the perturbed one arising under Iext. For short
durations Text, upon termination of the external pulse, the system
may still be en route to the perturbed equilibrium and/or be in
the basin of attraction of the non-perturbed healthy state and a
transition will be observed. However, when Text is sufficiently
large, the trajectory will be in the proximity, or at, the perturbed
equilibrium while Iext is still active. Once the pulse is terminated,
if Iext is large enough, the perturbed equilibriummay be sufficiently
distant from the non-perturbed nullclines and fall into the basin of
attraction of the original, diseased equilibrium. In this case, there
will be a large excursion in ðx; yÞ space but the system will eventu-
ally return to the original diseased state. Representative dynamics
are shown in Fig. 9 where an intermediate value of Iext for suffi-
ciently large Text induces a transition, but larger values of Iext do
not. These results show that large, long lived external inputs will
always result in the system stabilizing at the diseased state,
regardless of initial conditions, indicating that therapeutic inter-
vention should be applied judiciously.

We present similar results in Figs. 13 to 18 where the amplitude
of the circadian rhythm is set at a ¼ 0:01;0:02;0:03, and where the
system is initiated at the healthy state in Figs. 13–15, and at the
diseased state in Figs. 16–18. Plotting conventions are the same
as in Fig. 12; however, here we also consider the phase at which
Iext is superimposed on the initial, healthy or diseased, limit cycle
relative to the circadian rhythm. Specifically, we set / ¼ n/p=4,
with 0 6 n/ 6 7, resulting in eight panels for each choice of
a – 0. see Fig. 17.

In Fig. 13, Iext is applied when a ¼ 0:01 and the system is in a
limit cycle about the healthy state. For relatively low Text and/or
Iext, no transitions to the diseased state occur and the system
remains in the healthy state. However, external stressors with
longer duration and larger magnitude do not necessarily imply a
higher likelihood of transitioning to the diseased state, as observed
in the non-circadian case. Rather, regions in fText; Iextg space where
transitions to the diseased state occur are separated from those
where no transitions occur by an undulating parameter boundary
exhibiting multiple minima in Iext, a consequence of the pulsatile
circadian rhythm imposed on the HPA dynamics. For a null onset
Fig. 13. Starting from a healthy-state limit cycle, we show the final configurations in fT
relative to the circadian drive /.
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phase of the external stressor relative to the circadian rhythm,
/ ¼ n/ ¼ 0, the nadir of the separatrix emerges at Text ¼ 3=2T. As
/ increases from / ¼ 0 to / ¼ 7p=4, this minimum shifts to shorter
Text following an approximate Text ¼ ð12� n/ÞT=8 trend. At / ¼ p,
an additional nadir emerges at Text ¼ 2T , which follows a
Text ¼ ð20� n/ÞT=8 trend as / further increases. The time at which
the stressor ends defines a phase relative to the circadian rhythm
given by /end ¼ /þ 2pText=T where we add the onset phase /
and the phase defined by the duration of the external stressor
2pText=T. For all recorded minima in Fig. 13, /end ¼ p (modulo
2p), indicating that the lowest Iext that can be applied to induce a
transition from the healthy to the diseased limit cycle should last
long enough, and be terminated when the circadian rhythm is at
a sinðxtÞ ¼ a sinð/endÞ ¼ 0.

Qualitatively, low values of Text and/or Iext do not allow the
system, initially at the healthy limit cycle, to reach the diseased
one, so transitions are unlikely. Once Text and/or Iext are suffi-
ciently large however, the trajectory will reach the perturbed
limit cycle and remain anchored to it. Further increasing Text

and/or Iext will still result in the trajectory oscillating about the
perturbed healthy limit cycle so that beyond a certain threshold
the magnitude of Text and/or Iext become irrelevant. Thus, upon
terminating the external input, whether the trajectory returns
to the healthy limit cycle or is able to escape towards, and finally
attracted into, the diseased one, is highly sensitive to the end
phase /end, which determines the position of the oscillating fast
nullcline, and much less to Text and/or Iext. The optimal end phase
for the trajectory to remain at the diseased state is the ‘‘neutral”
configuration /end ¼ p.

These features persist for a ¼ 0:02, as shown in Fig. 14 where all
minima in fText; Iextg space are marked by an end phase /end ¼ p
(modulo 2p), just as for a ¼ 0:01. The region where the transition
is observed (depicted in purple) however is larger than for
a ¼ 0:01. Here, the larger oscillations induced by the circadian
drive allow lower values of Text and/or Iext to induce transitions.
Finally, in Fig. 15 where a ¼ 0:03 and circadian oscillations are
even wider, transitions occur in most of phase space, except for
very low values of Iext.

In Figs. 16–18 we initiate the system at the diseased limit cycle
around ðxþ; yþÞ and set the amplitude of the circadian rhythm to
a ¼ 0:01;0:02;0:03, respectively. In Fig. 16 a small parameter
region with low Iext and a broad range of Text is observed where tra-
jectories remain at the diseased state. For slightly larger values of
ext ; Iextg space for a ¼ 0:01 and eight values of the start time of the external stress
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Iext, pulses with intermediate durations Text will induce a transition
to the healthy limit cycle; however, larger Text may not be con-
ducive to transitions. The dynamics here mirrors the non-
circadian a ¼ 0 case, where large values of Iext may cause the dis-
eased steady state to vanish. Finally note that the boundaries
between regions in fText; Iextg space where transitions do and do
not emerge shares some similarities to the ones observed in Figs. 13
to 15.
5. Discussion and conclusions

Building on previous work, we incorporated a circadian cycle
into a dynamical systems model of the HPA axis. We start by con-
sidering the dynamics and interplay of five main quantities
involved in the HPA axis response to external perturbations (stored
CRH, circulating CRH, ACTH, cortisol and glucocorticoid receptor
concentrations), and introduce several simplifications to build a
simpler two-dimensional reduced model. We first review the
non-circadian limit and neglect the known delay in ACTH activa-
tion of adrenal gland secretion of cortisol. This delay of approxi-
mately fifteen minutes allows for the emergence of ultradian
(hourly) oscillations. Since we are interested in the effects of the
circadian (diurnal) cycle, which unfolds over a longer time frame
than hourly oscillations, we do not include delays, and refer the
interested reader to previous work where its impacts are discussed
[55,56]. We also note that the dynamics of ACTH, cortisol and glu-
cocorticoid receptor concentrations, evolve on much shorter time
scales than stored CRH, allowing us to consider the steady state
values of these quantities, effectively projecting the original sys-
tem of five equations to a set of two coupled ones for stored and
circulating CRH. Of these, the first evolves on a longer time scale,
of the order of hours, the other on a shorter one on the order of
minutes. Once the equations for stored and circulating CRH are
solved, values for the other quantities (ACTH, cortisol and gluco-
corticoid receptors) can be derived by substitution in the respec-
tive steady state expressions. Using order of magnitude estimates
for the various terms involved we finally express the right-hand
side of the dynamics of circulating CRH via a cubic expression. This
form bears no physiological relationship to the actual evolution of
circulating CRH, however it is a very good ad hoc substitute in that
it allows for a thorough mathematical analysis while preserving
the main features of the system, namely the emergence of bistabil-
ity, i.e. of two steady states, one marked by low values of circulat-
ing CRH, and the other by higher values. These stable states emerge
as intersections of a fast nullcline, when circulating CRH reaches
equilibrium, and a slow nullcline, when stored CRH reaches equi-
librium. We interpret them as diseased and healthy states, respec-
tively. After analyzing the two coupled, self-contained equations
using a cubic approximation (without the circadian rhythm, Eqs.
12 and 13), we included the circadian drive and considered several
possibilities for the amplitude of the circadian component relative
to the evolution of the slow nullcline. We show that low ampli-
tudes of the circadian rhythm turn the two fixed points from the
non-circadian system into limit cycles about them, allowing us to
identify healthy and diseased limit cycles. We also obtain analyti-
cal approximations for them. For larger values of the circadian
amplitude, the two limit cycles merge into one and chaotic behav-
ior is observed, reminiscent of Duffing oscillator dynamics. Finally,
we include an external, constant pulse input (box function) of
amplitude Iext and duration Text, and investigate the trajectories
of the system and whether transitions from healthy to diseased
states or vice versa can occur. We find that whether transitions
arise or not depends in a complex way on Iext; Text;a and the phase
/ at which the external input is applied or terminated relative to
the circadian rhythm. Interestingly, we find that an important
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determinant for the existence of transitions depends on the phase
/end at which the external stressor is terminated relative to the cir-
cadian rhythm. We also find that large perturbations Iext applied
for sufficiently long times Text on the diseased state may greatly
disrupt the system leading to large excursions in the dynamics of
stored and circulating CRH. This disruption may however be tem-
porary and the system will eventually return to the original dis-
eased state. In the context of therapeutic intervention, this result
may signify that large, long lasting external inputs may not be as
effective as more moderate ones, applied for shorter times. We also
find that due to the nullcline structure of the system, remaining
in/transitioning to the diseased state is more likely for large circa-
dian amplitudes a than for smaller ones.

In this work we have assumed that the diseased state corre-
sponds to larger stored CRH and lower circulating CRH, exempli-
fied by the steady state (or the limit cycle) about ðxþ; yþÞ. This
configuration corresponds to low circulating levels of cortisol since
x ¼ cs and, at steady state, cs ¼ �c1 þ e�bo is a decreasing function of
cortisol. Conversely, the healthy equilibrium or limit cycle at
ðx�; y�Þ is characterized by lower stored CRH (and higher cortisol)
and larger circulating CRH. This is one of many choices, since other
pathologies may exhibit different relative hormonal levels
between healthy and diseased states. For example, acute manifes-
tations of major depressive disorder (MDD) are marked by high
levels of secreted CRH and of cortisol [17,21], implying that the
healthy state can be identified with ðxþ; yþÞ and the diseased one
with ðx�; y�Þ. In this case the external stressor Iext applied to the
healthy state can be identified as a triggering event that leads to
MDD, or, if applied to the diseased state, as a pulse associated to
exposure or cognitive behavioral therapy (CBT). Mutatis mutandis,
our results would also indicate that transitions to MDD may be
more easily induced by lower values of the circadian amplitude
a, consistent with experimental findings that find blunted ampli-
tude of the circadian rhythm in depressed patients [67]. On the
other hand, PTSD is often associated with low levels of cortisol
but relatively high values of CRH. This would translate to large
ðcs; cÞ values for the diseased state, or equivalently large ðx; yÞ. In
our specific model, the slow nullcline carries a negative slope as
shown in the left-hand panel of Fig. 4. In order for the intersection
between nullclines to yield a set of larger ðcs; cÞ values in the dis-
eased state, parameters would have to be chosen so that the slow
nullcline has a positive slope has a positive slope, as in the right-
hand panel of Fig. 4.

The SCN modulates not only the input signal IðtÞ, but the activ-
ity of the adrenal gland as well. The latter responds to circadian
stimuli via the splanchnic nerves that relay synaptic signals from
the central nervous system to the peripheral sympathetic neurons.
These innervate, among other organs, the adrenal medulla, allow-
ing input from the SCN to be relayed to the adrenal tissues. Thus,
another possible way of including circadian responses is to include
oscillations in the sensitivity parameter that regulates cortisol
release in the adrenal gland, as stimulated by ACTH. Specifically,
further analysis would include diurnal periodicity in the produc-
tion of cortisol, driven by an ad hoc periodic form hðtÞ so that
do=dt ¼ hðtÞa� o in Eqs. 1. The two oscillatory responses to the
SCN, hðtÞ and a sinðxtÞ, may be out of phase with each other and
could lead to interesting ‘‘constructive” and ‘‘destructive” interfer-
ence. Diurnal responses in the HPA axis are also known to depend
on age, gender, neuroadaptation, exposure to light, jet-lag, and the
use of medication [68–73]. Interindividual variability and/or
stochastic fluctuations may also be present. These influences can
be incorporated in the analysis by introducing time-dependent
parameters, by coupling IcircðtÞ ¼ a sinðxtÞ to environmental
stimuli that modulate a and/or x and introduce possible time-
dependent phases, and/or by including random noise to the circa-



Fig. 14. Starting from a healthy-state limit cycle, we show the final configurations in fText ; Iextg space for a ¼ 0:02 and eight values of the start time of the external stress
relative to the circadian drive /.

Fig. 15. Starting from a healthy-state limit cycle, we show the final configurations in fText ; Iextg space for a ¼ 0:03 and eight values of the start time of the external stress
relative to the circadian drive /.
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dian amplitude a. Different circadian clock speeds could also be
studied following Aschoff’s rule, whereby the circadian period TL

is shortened in diurnal mammals exposed to bright, constant light
[74]. Conversely, individuals suffering from non-24-h sleep-wake
disorder, display abnormally long circadian rhythms, with a per-
iod TD of 25 or 26 h [75]. These scenarios lead to circadian inputs
of the type IcircðtÞ ¼ a sinðxLtÞ (bright, constant light) and
IcircðtÞ ¼ a sinðxDtÞ (sleep-wake disorder) that could be compared
to the standard circadian drive IcircðtÞ ¼ a sinðxtÞ where
xL ¼ 2p=TL > x, and xD ¼ 2p=TD < x to investigate how shorter
or longer periods affect the dynamics, and the system’s response
to acute external stressors.

Also of interest is the pineal gland which translates light/dark
inputs from the retina into hormonal signals. Specifically, the
pineal gland releases melatonin via the activation of beta–adrener-
gic receptors by norepinephrine to regulate the circadian rhythm.
Stress-induced activation of the HPA appears to correlate with an
increase in melatonin production [76]; other studies hypothesize
that the pineal gland produces CRH-inhibiting factor concomi-
679
tantly with melatonin, and that melatonin may inhibit production
of cortisol in the adrenal gland [77]. Vice-versa, the beta-adregenic
receptors of the pineal gland are believed to be sensitive to ACTH
concentrations [78]. These findings suggest strong interplay
between stress and the circadian system [79], so that a natural
extension of our work would be to relate pineal gland and HPA axis
dynamics through proper feedback and feedforward equations.
Other interesting avenues of research would include analysis of
neuroendocrine systems upstream of the HPA axis or more general
forms of IextðtÞ, in the context of control theory. Similarly, environ-
mental stochasticity could also be explored. Preliminary results
where a is modeled as a random variable subject to white noise,
show that when the noise amplitude is large enough, transitions
not previously realized can arise, indicating that external fluctua-
tions may strongly affect the dynamics. Our mechanistic model
provides a framework through which therapeutic interventions
can be explored, such as cognitive behavioral therapy, often
recommended as a first intervention for many psychological
disorders.



Fig. 16. Starting from a diseased-state limit cycle, we show the final configurations in fText ; Iextg space for a ¼ 0:01 and eight values of the start time of the external stress
relative to the circadian drive /.

Fig. 17. Starting from a diseased-state limit cycle, we show the final configurations in fText ; Iextg space for a ¼ 0:02 and eight values of the start time of the external stress
relative to the circadian drive /.
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6. Appendix – Linearized model

To better study the dynamics of our specific problem we lin-
earize Eq. 12 by expanding e�boðyÞ ¼ pxþ q as a function of x. This
allows us to also formulate a more general system made of two
intersecting nullclines: a slow one, given by a vertical line, and a
fast one, given by a cubic curve. In this Appendix we study this
simplified system as it may serve as a new paradigm for slow-
fast bistable dynamical systems. To begin, we write Eqs. 12 and
13 as

dx
dt

¼ eðx1 � xÞ; ð56Þ

dy
dt

¼ I0x� 1
3
y3 � y�1 þ y�2

2
y2 þ y�1y

�
2y

� �
; ð57Þ

where eð1� pÞ ! e; ð�c1 þ qÞ=ð1� pÞ ! x1. We also rescale
fx; y; tg ! fu;v ; t0g and introduce �e;u1; c as follows
680
x ¼ 9
8I0

ðy�1 þ y�2Þ3u; ð58Þ

y ¼ 3
2
ðy�1 þ y�2Þv; ð59Þ

t ¼ 4
3
ðy�1 þ y�2Þ�2t0; ð60Þ

e ¼ 3
4
ðy�1 þ y�2Þ2�e; ð61Þ

x1 ¼ 9
8I0

ðy�1 þ y�2Þ3u1; ð62Þ

c ¼ 4
3
y�1y

�
2ðy�1 þ y�2Þ�2

: ð63Þ

We finally arrive at a fundamental form

du
dt

¼ �eðu1 � uÞ; ð64Þ
dv
dt

¼ u� v3 � v2 þ cv
� �

; ð65Þ



Fig. 18. Starting from a diseased-state limit cycle, we show the final configurations in fText ; Iextg space for a ¼ 0:03 and eight values of the start time of the external stress
relative to the circadian drive /.
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where we dropped the prime notation. The slow u, and fast v null-
clines respectively are

u ¼ u1; ð66Þ
u ¼ v3 � v2 þ cv: ð67Þ

The formulation in Eqs. 66 and 67 allows us to better study the
dynamics and to classify different behaviors. Along the fast v null-
cline the following holds

du
dv ¼ 3v2 � 2v þ c; ð68Þ

which implies that if c > 1=3, the v nullcline is an increasing func-
tion of v, and the intersection with the slow u nullcline will yield
only one stable fixed-point. Conversely, for c < 1=3, the fast v null-
cline will have two extrema, located at v1;2 ¼ ð1	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3c
p Þ=3and

corresponding to u1;2 ¼ ð2c� v1;2Þv1;2=3. The ðu1;v1Þ and ðu2;v2Þ
points also represent the turning points of the cubic equation. Note
that for c < 1=3, if v1 < v2, then u1 > u2, and that for c < 1=4;u2 is
negative. If u1 > u1 or u1 < u2 only one stable fixed-point will arise
from the intersection of the two nullclines, whereas if u2 < u1 < u1,
three intersections exist that yield two stable, fixed-points. We
denote these by ðu1;vþ

1Þ and ðu1; v�
1Þ, with vþ

1 > v�
1. Henceforth,

we assume to be in the bistable regime, u2 < u1 < u1. The fast
dynamics occurs along the following trajectory

du
dt

¼ 0; ð69Þ
dv
dt

¼ u� ðv3 � v2 þ cvÞ: ð70Þ

and thus, initially at least, the system evolves only along the v axis,
with u being fixed at its initial condition uð0Þ. By introducing s ¼ �et,
we can also write the equations that describe the slow dynamics

du
ds

¼ u1 � u ð71Þ

u ¼ v3 � v2 þ cv: ð72Þ
Since Eq. 71 can be solved analytically, the slow motion along

the u axis is
681
uðtÞ ¼ ðuð0Þ � u1Þe��et þ u1: ð73Þ
Upon inserting Eq. 73 in Eq. 72 we can implicitly determine the

slow dynamics of vðtÞ

v3 � v2 þ cv ¼ ðuð0Þ � u1Þe��et þ u1: ð74Þ
Although trajectories usually move quickly along the v direc-

tion, towards the fast v nullcline, for some initial conditions the
dynamics may evolve in more subtle ways and additional local
analyses may be required. One interesting case is if the initial
position is within a small neighborhood of the turning points
ðu1;2;v1;2Þ of the fast v nullcline. Without loss of generality we
focus on the ðu1;v1Þ turning point and assume uð0Þ ¼ u1þ
du1ð0Þ;vð0Þ ¼ v1 þ dv1ð0Þ, with du1ð0Þ a small perturbation from
u1; jdu1ð0Þj � u1, and similarly jdv1ð0Þj � v1. As per Eqs. 64 and
65, the dynamics is such that if du1ð0Þ; dv1ð0Þ > 0 the trajectory
will escape the initial neighborhood of the ðu1;v1Þ turning point
and reach the upper stable fixed-point at ðu1;vþ

1Þ. Similarly, if
du1ð0Þ; dv1ð0Þ < 0 the trajectory will reach the lower stable fixed-
point at ðu1;v�

1Þ. Determining the dynamics in other cases
depends on the amplitude of jdu1ð0Þj; jdv1ð0Þj. To be concrete, we
assume that du1ð0Þ > 0; dv1ð0Þ < 0. In this case, if vðtÞ reaches
v ¼ v1 before uðtÞ reaches u ¼ u1, the trajectory will reach the
upper stable fixed-point at ðu1;vþ

1Þ, whereas if the opposite is true,
the lower stable fixed-point at ðu1;v�

1Þ will be reached. This is
depicted in Fig. 19-20, where if the trajectory crosses the blue-
dashed boundary it will reach ðu1;v�

1Þ, while if it crosses the
red-dashed boundary it will reach ðu1;vþ

1Þ. For a given initial con-
dition uð0Þ ¼ u1 þ du1ð0Þ; vð0Þ ¼ v1 þ dv1ð0Þ we thus estimate the
time t�u it takes for uðt�uÞ ¼ u1, and the time t�v it takes for
vðt�v Þ ¼ v1, and compare the two to determine which basin of
attraction the initial condition belongs to. We begin by studying
the dynamics for the slow variable uðtÞ by writing the solution to
Eq. 64 as follows

uðtÞ ¼ u1 þ ½ðu1 þ du1ð0Þ � u1Þe��et þ u1 � u1�; ð75Þ

so that at t ¼ 0;uð0Þ ¼ u1 þ du1ð0Þ. Note that by writing
uðtÞ ¼ u1 þ duðtÞ Eq. 75 yields duðtÞ ¼ ðu1 þ du1ð0Þ � u1Þe��etþ
u1 � u1. We now pose vðtÞ ¼ v1 þ dv1ðtÞ and find the time evolu-



Fig. 19. Detail of the fast nullcline structure in fu; vg space near the lower turning
point ðu1; v1Þ. The dynamics of any starting point in the quadrant defined by
u > u1;v < v1 is determined by time t�v and t�u trajectories take to the horizontal or
vertical lines at v ¼ v1 or u ¼ u1, respectively. For the red initial condition at
ðu;vÞ ¼; tv < tu so the trajectory escapes the basin of attraction of the lower
equilibrium point at ðu1;v�

1Þ and eventually reaches the higher equilibrium point
at ðu1; vþ

1Þ. For the blue initial condition at ðu; vÞ=, tv > tu so the trajectory remains
in the basin of attraction of the lower equilibrium point and settles at ðu1;v�

1Þ.

Fig. 20. Periodic orbits in ðx; yÞ space driven by a circadian rhythm of amplitude a ¼ 0
solutions obtained from Eqs. 12 and 13; since xð1Þa ðtÞ ¼ 0, the blue curves represent analy
with yð1Þa ðtÞ given by Eq. 53; the yellow curves represent analytical approximations up to
curves typically approximate the exact, numerical solutions with higher accuracy.
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tion for dv1ðtÞ. Upon inserting Eq. 75 into Eq. 65 and expanding the
cubic around ðu1;v1Þ we find that dv1ðtÞ obeys the following

ddv1

dt
¼ ðu1 þ du1ð0Þ � u1Þe��et þ ð1� 3v1Þdv2

1 � ðu1 � u1Þ:
ð76Þ

The linear term in dv1 in Eq. 76 does not contribute to the
dynamics, since we are expanding around an extremum of
the cubic curve. Also note that 1� 3v1 > 0 and that
u1 � u1 > 0. We also neglect higher order dv3

1 terms. Eq. 76
defines a Riccati equation that can be solved by imposing

dv1ðtÞ ¼ �ð1� 3v1Þ�1f 0ðtÞ=f ðtÞ and deriving a second order dif-
ferential equation for f ðtÞ. After tedious but straightforward
algebra we find that f ðtÞ can be written as a linear combination
of Bessel functions and that dv1ðtÞ obeys

dv1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 þ du1ð0Þ � u1Þe��et

ð1� 3v1Þ

s
Y 0
mðnðtÞÞ � HJ0mðnðtÞÞ

YmðnðtÞÞ � HJmðnðtÞÞ
; ð77Þ

where m ¼ 2=�e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu1 � u1Þð1� 3v1Þ

p
and the argument nðtÞ of the Jm

and Ym Bessel functions is

nðtÞ ¼ 2
�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3v1Þðu1 þ du1ð0Þ � u1Þe��et

p
: ð78Þ

Finally, the prefactor H is

H ¼ dv1ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3v1

p
Ymðnð0ÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ du1ð0Þ � u1

p
Y 0
mðnð0ÞÞ

dv1ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3v1

p
Jmðnð0ÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ du1ð0Þ � u1

p
J0mðnð0ÞÞ

:

ð79Þ
:01; 0:02;0:03, from left to right. The green curves represent the exact, numerical
tical approximations up to second order in x with xð2Þa ðtÞ in Eq. 55 and first order in y
second order in y where yð2Þa ðtÞ given by Eq. 85 is further included. The second order
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The time t�u it takes for the trajectory to reach the vertical line at
u ¼ u1, from uð0Þ ¼ u1 þ du1ð0Þ is given by imposing du1ðt�uÞ ¼ 0.
From Eq. 75 we find

t�u ¼ 1
�e
log 1þ du1ð0Þ

u1 � u1

� �
: ð80Þ

Similarly, the time to reach the horizontal line at v ¼ v1, from
v1ð0Þ ¼ v1 þ dv1ð0Þ is given by imposing dv1ðt�v Þ ¼ 0. From Eq. 77
we find the implicit expression for t�v

Y 0
mðnðt�vÞÞ
J0mðnðt�vÞÞ

¼ H ð81Þ

Thus, if t�u < t�v the initial condition will belong to the basin of
attraction of the lower fixed-point at ðu1;v�

1Þ, whereas if t�u > t�v
the initial condition will equilibrate at the higher fixed-point at
ðu1; vþ

1Þ. Finally, the dynamics under initial conditions du1ð0Þ < 0
and dv1ð0Þ > 0depend on how dv1ð0Þ compares with vdu � v1,
where vdu is given by

u1 þ du1ð0Þ ¼ v3
du � v2

du þ cvdu: ð82Þ
If vdu > v1, and dv1ð0Þ < vdu � v1, the trajectory will equilibrate

at the lower stable fixed-point at ðu1;v�
1Þ. If dv1ð0Þ > vdu � v1, the

explicit time dependence of the trajectory must be evaluated.

7. Appendix - Higher order solutions to the circadian problem

In this Appendix we find yð2Þa ðtÞ, the second order solution in a to
the circadian problem presented in Eqs. 12 and 13 as driven by Eq.
32. We thus solve Eq. 48 and, for simplicity, specifically seek peri-
odic solutions. To this end, we set the proper initial conditions so
that only oscillatory terms arise from Eq. 48. Upon inserting Eqs.

53 and 55 into Eq. 48, with xð1Þa ¼ 0, we obtain

dyð2Þa

dt
¼ �ryð2Þa þ B sinðxtÞ þ C cosðxtÞ þ D cosð2xtÞ þ E sinð2xtÞ þ F

ð83Þ
where

B ¼ I0Mxubo0ðyuÞe�boðyuÞ x
xðx2 þ r2Þ ;

C ¼ I0Mxubo0ðyuÞe�boðyuÞ r
xðx2 þ r2Þ ;

D ¼ �x2u yu �
y�1 þ y�2

2

� �
x2 � r2

2ðx2 þ r2Þ2
;

E ¼ x2u yu �
y�1 þ y�2

2

� �
2xr

2ðx2 þ r2Þ2
;

F ¼ I0xð2Þa ð0Þ � I0Mbo0ðyuÞe�boðyuÞ xur
xðx2 þ r2Þ

� yu �
y�1 þ y�2

2

� �
x2u

2ðx2 þ r2Þ :

ð84Þ

and where r ¼ ðyu � y�1Þðyu � y�2Þ. Thus,

yð2Þa ðtÞ ¼ yð2Þa ð0Þþ xB
x2þr2�

rC
x2þr2þ

2xE
4x2þr2�

rD
4x2þA2�

F
r

� �
e�rt

þ rC
x2þr2�

xB
x2þr2

� �
cosðxtÞþ rB

x2þr2þ
xC

x2þr2

� �
sinðxtÞ

þ rD
4x2þr2�

2xE
4x2þr2

� �
cosð2xtÞ

þ 2xD
4x2þr2þ

rE
4x2þr2

� �
sinð2xtÞþ F

r:

ð85Þ
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To obtain a purely oscillatory solution we impose that the e�rt

prefactor be zero, so that

yð2Þa ð0Þ ¼ � Bx
x2 þ r2 þ

rC
x2 þ r2 �

2xE
4x2 þ r2 þ

rD
4x2 þ r2 þ

F
r
:

ð86Þ
We also determine the value of xð2Þa ð0Þ that should be used as the

proper initial condition to Eq. 55 if one is seeking a pure oscillatory

solution to order a3. We thus derive the time dynamics for xð3Þa ðtÞ
dxð3Þa

dt
¼ �Mbo0ðyuÞe�boðyuÞyð2Þa

þM
2
e�boðyuÞ b2ðo0ðyuÞÞ2 � bo00ðyuÞ

	 

ðyð1Þa Þ2 �Mxð2Þa : ð87Þ

After inserting Eqs. 53, 55 and 85 with xð1Þa ¼ 0 into Eq. 87, we
set the resulting constant term in the right-hand side to zero, so

that upon integration of Eq. 87 there are no linear terms and xð3Þa

is purely periodic. After some algebraic manipulations we find

xð2Þa ð0Þ ¼ 1
reboðyuÞ þ bo0ðyuÞI0

x2ur
4ðx2 þ r2Þ b2ðo0ðyuÞÞ2 � bo00ðyuÞ

	 
�

þ M
xur2bo0ðyuÞ
xðx2 þ r2Þþ

xubo0ðyuÞ
xðx2 þ r2Þ I0Mbo0ðyuÞe�boðyuÞr

�

þ xuyux
2

� xuxðy�1 þ y�2Þ
4

Þ
�

ð88Þ
8. Appendix - Numerical comparisons between first and second
order approximations

In this section we show the difference between lower (first)
and higher (second) order approximations to the limit cycles
in ðx; yÞ space driven by the circadian rhythm IcircðtÞ ¼ a sinðxtÞ
where a ¼ 0:01;0:02;0:03. In Fig. 20, the exact, numerical solu-
tions obtained from Eqs. 12 and 13 are shown in green; since

xð1Þa ðtÞ ¼ 0, second order approximations of xðtÞ upto xð2Þa ðtÞ from
Eq. 55 and first order approximations of yðtÞ upto yð1Þa ðtÞ from
Eq. 53 are depicted in blue, and second order approximations

both in x and y, with yð2Þa ðtÞ from Eq. 85 further included are plot-
ted in yellow. Second order curves typically approximate the
exact, numerical solutions with higher accuracy.

9. Appendix - Stored CRH dynamics as the smallest perturbation

We now explore numerical solutions for values of a > 0:03
where period-doubling, subharmonics, and chaotic behavior
emerge. Unless specified, all parameters are chosen as in Sec-
tion 3.1, 3.2 and Table 1 with initial conditions set at
ðxð0Þ; yð0ÞÞ ¼ ðxþ; yþÞ. Henceforth all of our numerical integration
will be performed using ode45 in MATLAB�. Before illustrating
our results, we note that the circadian version of Eqs. 12 and 13,
where I0 ! I0 þ a sinðxtÞ, is reminiscent of the well known Duffing
oscillator, characterized by a periodic forcing term and nonlinear
elasticity [80]. The Duffing oscillator displays period doubling,
other subharmonic responses, and chaos, as the amplitude of the
forcing term is varied. These features arise from the nonlinear elas-
ticity, so that a forcing term of period T may yield a response of
augmented period mT , where m is an integer. The case m ¼ 2 rep-
resents period-doubling. Other values of m are subharmonic
responses of order 1=m, whereas very large values of m are associ-
ated to chaos. Our circadian system is more complicated than the
Duffing oscillator, however, inertia, nonlinear terms and periodic
forcing are similarly present. One key parameter is a, the prefactor
of the circadian term and the equivalent of the amplitude of the



Fig. 21. Time series and phase portraits from Eqs. 12 and 13 driven by IðtÞ ¼ I0 þ a sinðxtÞ for a ¼ 0:033;0:034; 0:035. Other parameters are listed in Sect. 3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T ¼ 2p=x. Periods are T ða ¼ 0:033Þ, and 11T (a ¼ 0:034). Chaos emerges at a ¼ 0:035.
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Fig. 22. Time series and phase portraits from Eqs. 12 and 13 driven by IðtÞ ¼ I0 þ a sinðxtÞ for a ¼ 0:037;0:038; 0:039. Other parameters are listed in Sect. 3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T ¼ 2p=x. Chaotic trajectories arise for a ¼ 0:037; 0:038. For a ¼ 0:039, the period is 3T .
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Fig. 23. Time series and phase portraits from Eqs. 12 and 13 driven by IðtÞ ¼ I0 þ a sinðxtÞ for a ¼ 0:071; 0:072; 0:073. Other parameters are listed in Sect.,3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T ¼ 2p=x. Periods are 3T (a ¼ 0:071), 13T (a ¼ 0:072), and 2T (a ¼ 0:073).
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Fig. 24. Time series and phase portraits from Eqs. 12 and 13 driven by IðtÞ ¼ I0 þ a sinðxtÞ for a ¼ 0:075; 0:08;0:09. Other parameters are listed in Sect.,3.1, 3.2 and Table 1.
The red dots in the phase portraits indicate times that are integer multiples of T ¼ 2p=x. Periods are 2T (a ¼ 0:075), 2T (a ¼ 0:08), and T (a ¼ 0:09).
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forcing term in the Duffing oscillator. We find that increasing a
leads to the emergence of period-doubling bifurcations, subhar-
monics, and chaos in the circadian version of Eqs. 12 and 13, just
as for the Duffing oscillator.

In Figs. 21–24 we plot the time series xðtÞ and yðtÞ and the phase
portraits ðx; yÞ as derived from Eqs. 12 and 13 with
I0 ! I0 þ a sinðxtÞ, for increasing values of a > 0:03. All trajecto-
ries are initiated at the steady state ðxu; yuÞ ¼ ðxþ; yþÞ of the
reduced model Eqs. 12 and 13 without the circadian term. We let
the system run for t ¼ 200T and then reset the clock, following
the dynamics for a further t ¼ 40T period. Since we are interested
in the long term dynamics, we only plot the trajectories during the
final t ¼ 40T period and do not show the initial t ¼ 200T transient.
The sole exceptions are the chaotic cases a ¼ 0:035;0:037;0:038 in
Figs. 21 and 22 where the transient is set at t ¼ 500T . The red dots
in Figs. 21–24 represent the Poincaré section, the discrete set of
points in phase space at times t ¼ mT. If the response is a simple
periodic orbit the Poincaré section is a single point; after a
period-doubling bifurcation, the Poincaré section consists of two
points, representing doubling of the periodicity. For a subharmonic
response of order 1=m, the Poincaré section consists of m points,
indicating that the period is increased by a factor m with respect
to the circadian term. Chaos leads to a richer set of points in the
Fig. 25. Phase portraits in ðx; yÞ space arising from Eqs. 12 and 13 driven by IðtÞ ¼ I0
evaluations are carried out up to 10,000T. Each red dot represents times that are intege
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Poincaré section. Chaotic behavior arises for 0:035 6 a 6 0:038 as
can be seen in Figs. 21 and 22. In Fig. 23 we find a 1=3 subhar-
monic with period 3T for a ¼ 0:071. The limit cycle passes in
the vicinity of both ðx�; y�Þ and ðxþ; yþÞ and crosses itself. A
slight increase to a ¼ 0:072 leads to a 1=13 subharmonic with
period 13T , yet further increases to a ¼ 0:073 result in
period-doubling with the emergence of limit cycle of period
2T. Finally, in Fig. 24 we observe the limit cycle acquiring sim-
pler periodic forms from a ¼ 0:075 to a ¼ 0:09. In Appendix 10
we show chaotic phase portraits for 0:035 6 a 6 0:038 over a
much longer time frame, up to t ¼ 10;000T . We also tested
both lower accuracy (ode23) and higher accuracy (smaller
time step-sizes and stricter tolerances for absolute and
relative errors) methods to verify that chaotic behavior is an
intrinsic feature of the dynamics and not an artifact of our
numerical computation.

10. Appendix – Chaotic phase portraits

In Fig. 25 we show the chaotic phase portraits and the Poincaré
maps arising from Eqs. 12 and 13 driven by the circadian term
I0 þ a sinðxtÞ for 0:035 6 a 6 0:038. All other parameters are cho-
sen as in Sect. 3.2, Appendix 9 and Table 1. The initial condition is
þ a sinðxtÞ for 0:035 6 a 6 0:038. The initial transient is not shown. Numerical
r multiples of T ¼ 2p=x indicating chaotic behavior.
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set at ðxu; yuÞ ¼ ðxþ; yþÞ of the reduced problem Eqs. 12 and 13
without the circadian drive. As described in Appendix 9 we let
the system run for t ¼ 500T and then reset the clock, following
the dynamics for an additional t ¼ 10;000T . We do not show the
initial t ¼ 500T transient in any of the panels in Fig. 25 but follow
the dynamics over the subsequent t ¼ 10;000T. There is no limit-
ing period over the t ¼ 10;000T timeframe.
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