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ABSTRACT: The hexadehydro-Diels-Alder (HDDA) reaction is the thermal cyclization of an alkyne and a 1,3-diyne to generate a benzyne 
intermediate. This is then rapidly trapped, in situ, by a variety of species to yield highly functionalized benzenoid products. In contrast to 
nearly all other methods of aryne generation, no other reagents are required to produce a HDDA benzyne. The versatile and customizable 
nature of the process has attracted much attention due not only to its synthetic potential, but also because of the fundamental mechanistic 
insights the studies often afford. The authors have attempted to provide here a comprehensive compilation of publications appearing by 
mid-2020 that describe experimental results of HDDA reactions.
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1. INTRODUCTION 

1.1. Background: Dehydro-Diels-Alder Reactions (Figure 
1)

The Diels-Alder (DA) cycloaddition is one of the most widely 
known – and powerful – C–C bond forming reactions in organic 
chemistry.1 The reaction produces six-membered ring structures in 
an efficient, customizable, controllable, and predictable fashion, all 
grounded on a sound mechanistic foundation. The simplest DA 
reaction is the thermal [4+2] cycloaddition between ethylene (1a, 
the “dienophile”) and 1,3-butadiene (2a, the “diene”) to give 
cyclohexene (3a), as shown in Figure 1a. Variations involving 
progressively more highly oxidized substrates include the 
didehydro- and tetradehydro-Diels-Alder reactions.2,3,4 Of course, 
these result in more oxidized products, namely cyclohexadiene 
[3b, from ethyne (1b) and butadiene] and benzene [3c, from 
ethyne and 1,3-butenyne (2b)] through the intermediate strained 
allene 1,2,4-cyclohexatriene. The highest oxidized case – the 
hexadehydro variant – is exemplified by the reaction of ethyne with 
1,3-butadiyne (2c) to generate 1,2-dehydrobenzene (or o-
benzyne). This represents a special situation because benzyne is 
highly reactive and cannot unimolecularly reorganize to a stable, 
isolable entity. However, because benzynes (and arynes more 
broadly) represent one of the most versatile and useful of all 
reactive intermediates in organic chemistry, this variant offers 
special opportunity. 

A generic version of this triyne-to-benzyne cycloisomerization, 
now involving a tether linking the 1,3-diyne to a distal diynophile 
and rendering the reaction intramolecular in nature, is shown in 
Figure 1b. The resulting benzyne intermediate, I, is produced in 
the presence of suitable trapping agents (oval) that can be either 
part of substrate 4 (e.g., bonded to R2) or altogether separate from 
4. These processes lead to structurally complex, highly substituted 
and/or fused, benzenoid products 5 via intra- (cf. dashed arc in 5) 
or intermolecular processes, respectively. The overall 
transformation involves the initial rate-limiting cycloisomerization 
of the triyne (blue arrow) followed by rapid in situ trapping (red 
arrow). As demonstrated by the now many examples of published 
results, the highly customizable nature of both the hexadehydro-
Diels-Alder (HDDA) substrate and the trapping reagent(s) 
provides considerable versatility for the creation of structurally 
sophisticated benzenoid products. Reviews of the early 
developments in HDDA chemistry have appeared.5,6,7
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Figure 1. (a) The family of prototypical classical and various dehydro-
Diels-Alder reactions of increasing oxidation states. (b) The generic 
intramolecular hexadehydro-Diels-Alder (HDDA) cyclization and 
benzyne-trapping reaction.

1.2. Earliest Examples of Hexadehydro-Diels-Alder 
Reaction (Figure 2)

The first reports of cyclization of a multiyne to product(s) 
indicative of a benzyne intermediate came coincidentally and 
independently from the research groups of Ueda8 (Figure 2a) and 
Johnson9 (Figure 2b) in 1997. Tetrayne 6 was observed to cyclize 
at ambient temperature in the presence of added anthracene to 
produce the adduct 7 by way of a transition structure (TS) similar 
to that shown as II. A second minor isomer (not shown) arising 
from closure of the tetrayne substrate in the complementary sense 
(see dashed bonds in 6) was also isolated. This early example, 
proceeding even at ambient temperature, demonstrated the 
enhanced reactivity of tetraynes relative to analogous triynes as 
well as the issue of regioselectivity in the direction of ring closure 
in unsymmetrical tetraynes. In Johnson’s studies the 
minimalistically tethered triyne 8 was subjected to flash vacuum 
pyrolysis conditions, giving rise, via III, to a mixture of indane (9), 
indene (10), and “some soot” – a more or less balanced equation.9 
A dozen years later, the mixed bimetallic tetrayne complex 11 
(Figure 2c) was observed by researchers in the Sterenberg group 
to give rise to a doubly fused benzyne, which was captured by furan 
to form 12 via TS IV.10 Over a decade, Ueda and coworkers 
proceeded to study the cyclizations of a number of substrates 
related to 611,12,13,14,15,16,17,18 in efforts primarily motivated by their 
interest in using radical character in their o-benzyne intermediates 
to react with DNA12,18 in analogy to enediyne-derived 1,4-
diradicals19 (i.e., p-benzyne). That said, it is now recognized that o-
benzyne derivatives react overwhelmingly by polar processes 
wherein the strained alkyne behaves as a soft (i.e., polarizable) 
electrophile rather than via single-electron processes involving 
radical intermediates.
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Figure 2. Earliest reports of cyclization of a triyne to a benzyne intermediate. (a) Ueda and coworkers (1997): trapping of the benzyne II with 
anthracene gives the triptycene 7. (b) Johnson and coworkers (1997): high temperature (short time) cycloisomerization of 8 to 10 via III and 9. (c) 
Sterenberg and Tsui (2009): intra-annular cyclization of dinuclear complex 11 in the presence of furan gives the adduct 12 via IV.

It was not until 2012 that the substantially greater generality of 
this cycloisomerization transformation became recognized 
through a report of work done in the Hoye laboratories.20 It was 
also in this publication that the term “hexadehydro-Diels-Alder” 
(HDDA) was coined. The HDDA reaction offers certain 
advantages over classical methods for generation and trapping of 
arynes. First, because the initial cyclization event requires only 
heating, no additional reagents are required. This is in contrast to 
nearly all other methods of forming arynes, including the most 
commonly used Kobayashi method.21 The ability to access this 
class of reactive intermediate in a pristine environment (i.e., 
reagent- and byproduct-free) has led to the discovery of some new 
types of trapping reactions as well as the uncovering of certain 
mechanistic details that provide new fundamental understanding 
of aryne reactions. At a strategic level, the HDDA reaction 
constitutes a de novo construction of the aromatic ring from an 
acyclic substrate, which is entirely complementary to classical 
benzyne generation. The latter always starts with a preformed 
aromatic ring; accordingly, in traditional benzyne chemistry 
creation and trapping constitutes a net substitution reaction at two 
adjacent carbons of the benzenoid precursor.

1.3. Organization of this Review 

Here are some organizational and formatting details to help orient 
readers. Beyond those shown in Figure 2, examples of specific 
reactions are found in Sections 4 and 5. Those in subsections 4.1–
4.13 are categorized according to the types of the two new bonds 
that are formed at each of the benzyne carbon atoms as a result of 
the trapping reaction. The HDDA substrates (tethered triynes or 
tetraynes) and the final, isolated reaction products are designated 
by Arabic numbers. Intermediates or transition structures (TSs) 
that are helpful in rationalizing the overall outcome of each 
reaction are shown within brackets and are distinguished by 
Roman numerals. Some of these species are well supported by 
experimental and/or computational experiments, but others are 

offered by the researchers as their most reasonable rationale to 
account for the transformation. 

We have attempted to include (or at least comment on) at 
least one reaction from each of the published reports in the last 
decade in which experimental outcomes are described. Any 
omission or oversight in achieving that goal is unintentional. Many 
publications provide multiple examples, in some cases dozens, of 
the same type of transformation or of trapping reactions that fall 
into more than one class. The reactions selected for inclusion here 
are meant to be exemplary of all of the major types of reaction 
pathways, but by no means do they represent a full compilation of 
all known HDDA transformations. A Reaxys search of, minimally, 
a 1,3-diyne mapped to a benzenoid product shows >600 unique 
reactions. 

We typically have elected not to show the reaction solvent 
unless it explicitly participates in the trapping reaction (e.g., as a 
member of a 3-component reaction). Some solvents are essentially 
inert, but others (e.g., benzene or toluene) will, slowly, trap the 
benzyne if the other trapping processes are relatively slow. The 
rate of any trapping is a function of both i) the inherent reactivity 
of the trapping agent and ii) the concentration (or effective 
molarity) of that agent. The number of equivalents of an external 
trapping agent is also not shown, unless only a slight excess was 
used, implying that an agent of that type is particularly effective at 
capturing the benzyne. In most instances, trapping agents are 
trivially available, are used in excess, and the effect of using less has 
not been explicitly evaluated. The indicated yields are those of 
isolated material, often for single runs of relatively small-scale 
experiments; large error bars should be presumed.
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2. DIYNE-TO-DIYNOPHILE SUBSTRATE TETHERS 
(Figure 3) 

The tether or linker connects the diyne and diynophile portions of 
the HDDA substrate. Almost exclusively, tethers are composed of 
three atoms, which allows for optimum distancing and orientation 
of the two reacting moieties to enable the cyclization event. The 
linker atoms are most commonly second-row elements and can be 
either sp3- or sp2-like in geometry. Essentially all of the 3-atom 
tethers used to date in an HDDA substrate are portrayed in Figure 
3. Of these, the most common are of types 13a, 13k, and 13q. This 
choice is based, in part, on the ease of synthetic access to the triyne 
or tetrayne substrates. It is not uncommon for the substrates to be 
prepared by a sequence involving three to seven chemical 
reactions.

The nature of the tether influences the ease of the initial, rate-
determining thermal cycloisomerization event and, therefore, the 
temperature and time used for the HDDA reaction.22 A few 
substrates cyclize at ambient temperature (or even below), many 
react conveniently in the 70–140 °C range, and a few require even 
higher temperature. Other than these differences in the rate of 
cyclization to the corresponding benzyne, there are relatively few 
instances in which a given trapping reaction would not be expected 
to be compatible with a given tethering moiety. It also can be 
anticipated that additional designer tether substructures can be 
invented to give access to products having specific fused rings of 
interest in the setting of, e.g., studies of target-directed synthesis of 
natural products.23,24,25 The nature of the substituent at the remote 
terminus of the diyne or diynophile is also known to significantly 
influence the rate of the HDDA cyclization.26 Because of these 
multiple rate-influencing factors, it is difficult to rank the relative 
rates of cyclization, especially so given that in only a few studies 
have investigators reported the half-life of the initial, rate-limiting 
HDDA cyclization. More commonly, the reaction temperature, 
time, and isolated yield of product are given. However, even if such 
reactions have been carefully monitored by, e.g., tlc, there is 
considerable variance in when the observer chooses to stop the 
reaction. Did that happen after, say, 4, 10, or 20 half-lives? The 
short answer is that neither the researcher nor the reader can judge 
without more careful analysis. We would encourage the practice of 
determining and reporting the half-life of cyclization of a given 
substrate when possible. Not surprisingly, mechanistic aspects of 
these cycloisomerizations have also been examined 
computationally.27,28,29,30,31,32,33 
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Figure 3. The majority of the three-atom tethers present in 
reported HDDA polyyne substrates.
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3. BENZYNE TRAPPING AGENTS 

The trapping agent is the species that (rapidly) captures the 
reactive benzyne intermediate after the initial (rate-limiting) 
cyclization event. A wide variety of both inter- and intramolecular 
traps have been demonstrated. In many cases, the final product 
arises only after a series of intermediate events. Additionally, 
several reports have described the development of 
multicomponent reactions34 wherein more than one trapping 
agent has been engaged to produce structurally more complex 
products. One consideration for those using or designing new 
trapping reaction strategies is that the reagent itself cannot 
undergo reaction with the substrate polyyne faster than its rate of 
conversion to the HDDA-generated benzyne.35 Fortunately, such 
incompatibility is not a serious limitation, and that allows for 
substantial versatility in trapping strategy. 

4. TRAPPING REACTIONS LEADING TO PRODUCTS 
HAVING NEW TYPES OF ADJACENT -BONDS AT 
THE BENZYNE CARBONS

4.1. Introduction of C–C and C–C bonds 

4.1.1 Intramolecular Trap (Figure 4)

Reactions involving trapping agents that lead to the formation of 
two new carbon-carbon bonds are among the more common 
HDDA transformations. Representative variants of this process, all 
of an intramolecular nature, are displayed in Figure 4. Among the 
initial array of HDDA reactions20 was an intramolecular trapping 
of the pendant aromatic moiety present in substrate 14 by a DA 
reaction of the benzyne with that arene. This yielded adduct 15 via 
V (Figure 4a). It is worth noting that although DA cycloadditions 
of higher acenes are quite common, arynes comprise one of the 
very few dienophiles capable of dearomatizing simple benzenoid 
arenes.36,37 A similar trapping was observed with the furan-
containing substrates 16 and 18 via VI and VII, respectively 
(Figures 4b and 4c).38, This work demonstrated that a variety of 
ring sizes, including medium-sized cycles (cf. 17 and 19), could be 
formed by intramolecular trapping and that the trapping agent 
could be appended to an atom within the diyne-to-diynophile 
tether (cf. 18). 
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Figure 4. Intramolecular traps forming two C–C bonds.
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An interesting intramolecular formation of two C–C bonds by 
successive elementary mechanistic events was reported by Lee and 
coworkers, who showed that the toluenesulfonyl group in 
substrates such as 20 was not innocent, as is evident from the 
structure of the unusual product 21 (Figure 4d).39 This is 
explained through a complex sequence of events in which the 
benzyne VIIIa is proposed to first be captured by the remote, 
pendant alkene to yield the carbene VIIIb. This is sufficiently 
nucleophilic to engage the electron deficient toluenesulfonamide 
ring through an ipso attack. Fragmentation and proton transfer 
produces the dearomatized product 21 (cf. VIIIc and VIIId). This 
remarkable process constitutes capture of the benzyne by two 
separate intramolecular moieties and highlights the level of 
mechanistic complexity that can be observed in some types of 
trapping reactions.

Another example of sequential formation of two C–C bonds to 
the benzyne can be found in a recent report from Shibata et al.40 
The conversion of benzyne IXa (from 22, Figure 4e) to product 
23 proceeds via the strained allene IXb by way of a tetradehydro-
DA (TDDA) reaction. This result also demonstrates the viability 
of an unusual silicon-containing tether in substrate 22. Finally, see 
Figure 24a in the Addendum for an interesting intramolecular 
trapping of a naphthyne, itself generated by an HDDA reaction in 
which a classical benzyne functioned as the diynophile.

4.1.2 Intermolecular Trap (Figure 5)

There are numerous examples of processes involving 
intermolecular reactions with agents that produce two new C–C 
bonds (Figure 5). A number of these reactions are closely 
analogous to those shown above in Figure 4. For example 
intermolecular DA reactions with benzene;20 5-membered cyclic 
dienes (furans,41 pyrroles,41 thiophenes, and cyclopentadiene),42 
anthracenes,43 and isobenzofurans44 are quite common (cf. X–
XIII, Figure 5a-d). Furans are particularly reactive and efficient 
traps and are frequently used as probe molecules when examining 
new types of HDDA substrates. See Figure 24b in the Addendum 
for an example in which an imidazole was used as the trapping 
agent, giving, following oxidation, a fused isoindole-1,3-dione 
product.

Other processes are unique to intermolecular trappings. For 
example, HDDA-generated benzynes can be trapped with 
tetraphenylcyclopentadienone (28 to 31 via CO extrusion from 
the DA adduct XIV, Figure 5e)45 or perylenes (28 to 32 via H2 
extrusion from the DA adduct XV, Figure 5f46). Highly conjugated 
polycyclic products such as those formed here are of interest for 
potential application in organic electronic devices.45 Strained 
alkenes are known to add in a net [2+2] fashion to benzynes, 
consistent with what is observed for the HDDA product 33 from 
24 (cf. XVI, Figure 5g).20

Recently, researchers in the Lee lab reported a procedure for 
coupling two equivalents of an isonitrile with an HDDA aryne in 

the presence of a silver catalyst (e.g., 34 to 35; Figure 5h).47 This 
was rationalized as involving an initial nucleophilic attack on the 
aryne by the isonitrile to form XVIIa, after which a second 
molecule attacks the now-electrophilic carbon of that adduct. The 
intermediate XVIIb then cyclizes to form the interesting 
benzocyclobutene-1,2-diimine 35. This process was suitable for a 
variety of aryl (although not alkyl) isonitriles. 

Hu and coworkers coupled the HDDA benzyne with stabilized 
Wittig ylides to introduce adjacent methyl and ethoxycarbonyl 
groups onto the aryne (e.g., 28 to 36; Figure 5i).48 Following 
nucleophilic attack onto the benzyne XVIIIa by the ylide carbon 
atom, the intermediate XVIIIb was envisioned to cyclize to the 
tetrahedral intermediate XVIIIc. Opening of the strained ring to 
the new, stabilized ylide XVIIId and capture by water would then 
account for formation of 3 I note that the reviewers did not 
have A notable aspect of this transformation is its regioselectivity. 
Normally, nucleophiles would be expected to preferentially attack 
a fused benzyne such as XVIIIa at carbon atom “b” because of the 
distortion of the aryne ring. That is, DFT computations show that 
the internal bond angle at atom “b” is significantly larger than that 
at atom “a”. In accord with the distortion analysis of 
unsymmetrical aryne reactivity,31,49,50,51 the atom with larger 
internal angle is more electrophilic (greater p-character in its in-
plane -bond). In the case of addition of the ylide to XVIIIa, the 
large size of that nucleophile makes steric factors override the 
inherent electronic bias. Namely, the phenyl ring is effectively 
bulkier than the methylene carbon pinched back into the five-
membered ring, steering the attack to atom “a”.

In the absence of any other trapping agents in the reaction 
environment, HDDA polyyne substrates will often cannibalize 
themselves, producing intractable oligomeric product mixtures. 
However, in certain instances, the nature of the substrate polyyne 
is such that its reaction with its progenitor benzyne is selective, 
leading to dimeric products. For example (Figure 5j), the ester 
triyne 37 gave rise to the unsymmetrical dimer 38 in a process 
envisioned to proceed through a net [2+2] cycloaddition (cf. 
XIXa) to give the benzocyclobutadiene XIXb, which is then 
trapped intramolecularly by a pendant alkyne, giving rise to the 
penultimate Dewar naphthalene XIXc.52 As an extension of this 
process, it was found that the added external diyne 2,4-hexadiyne 
(Figure 5k) could effectively trap the benzyne generated from 28 
to produce the transient benzocyclobutadiene XXa.52 When a 
reactive DA dienophile such as N-phenylmaleimide was also 
present, the final three-component adduct 39 was formed via 
opening of the strained DA adduct XXb.

An interesting intra-annular cyclization of the cyclic triyne 40 
gave the dibenzopicene derivative 41 (Figure 5l).53 Use of furan as 
the trapping agent for benzyne XXI represents another example of 
how popular it is to employ that very efficient process to 
benchmark reactions that produce novel HDDA benzynes.
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Figure 5. (cont. on next page) 
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Figure 5 (cont. from previous page). Intermolecular traps forming two C–C bonds. 

4.2. Introduction of C–C and C–O bonds (Figure 6) 

Trapping reactions that form both a C–C and C–O bond are rarer 
than the C–C and C–C counterparts discussed above. The most 
common motif in this category is the overall [4+2] trapping of the 
benzyne by an enal54 to produce a benzopyran derivative such as 
43,24 44,55 or 4656 (Figures 6a-c). The process begins with a net 
[2+2] cyclization of the aldehyde carbonyl group with the HDDA 
benzyne to produce a benzoxetene such as XXIIb, XXIIIa, or 
XIVa. It is likely that these benzoxetenes are not formed directly 
by a concerted [2+2] cycloaddition but by a stepwise process, 
proceeding through a zwitterionic intermediate, shown explicitly 
as XXIIa for the reaction of 42 with, for example, citral enroute to 
the benzopyran 43. Under the thermal reaction conditions, the 
strained oxetene ring undergoes a 4-electrocyclic ring opening to 
the dienone XXIIc, which, by a 6-electrocyclic ring closure, 
generates 43. Notably, this compound served as the penultimate 

intermediate in a chemical synthesis of the carbazole-based natural 
product mahanimbine.24 This demonstrates a complementary 
synthesis strategy for the preparation of complex molecules – 
namely, a de novo construction of the benzenoid core. The 
reaction of 45 to 46 shows trapping by an exocyclic enal, which 
produces a spirocyclic product (Figure 6c).56

In a related type of reaction, salicylaldehydes and 
salicylketones can be produced by trapping of the benzyne with 
tertiary amides (e.g., 47 to 48, Figure 6d). Initial zwitterion XXVa 
closes to XXVb, which is envisioned to be opened through attack 
by adventitious water to give the tetrahedral intermediate XXVc.57 
Note that this is another example in which the steric bulk of the 
aryl group ortho to the benzyne diverts the in-plane attack by the 
nucleophile, here the amide carbonyl oxygen, preferably to the 
carbon distal to the aryl (cf. Figure 5i).
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In an unusual (and unexpected) mode of reaction, the benzyne 
produced from 49 (Figure 6e) is thought to engage the natural 
product colchicine at its ketonic oxygen to generate the tropylium 
zwitterion XXVIa.58 This collapses to the cycloheptatriene 
XXVIb, which isomerizes to adduct 50 by a final [1.5] hydrogen 
atom migration to account for product formation.
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Figure 6. Trapping reactions forming a C–C and a C–O bond. (a-c) Reactions with enals begins with benzoxetene formation prior to 
electrocyclic opening and reclosure to produce benzopyrans. (d) Nucleophilic amides capture benzynes to product o-hydroxy aldehydes and 
ketones such as 48. (e) The cycloheptatrienone in colchicine captures an HDDA-produced benzyne to give the benzofuran derivative 50.  
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4.3. Introduction of C–C and C–N bonds (Figure 7)

A variety of traps lead to the formation of products containing new 
C–C and C–N bonds (Figure 7). Cyclization of 51 in the presence 
of phenanthridine leads to the relatively rare benzazete derivative 
52 (Figure 7a).59 The intermediate zwitterion XXVII is invoked. 
Such intermediates can be further exploited in three-component 
fashion, as demonstrated, for example, by the reaction of 51 in the 
presence of quinoline (or isoquinoline) and electrophiles such as 
phenylisocyanate (or reactive carbonyls, maleimides, dimethyl 
acetylene dicarboxylate, etc.) to give 53 (or analogous products, 
Figure 7b).59 This implies that the lifetime of the zwitterion 
XXVIIIa is sufficiently long that it can encounter the third 
component to produce the presumed penultimate precursor 
XXVIIIb.

HDDA benzynes are excellent 1,3-dipolarophiles, as 
exemplified by the reaction of 54 in the presence of ethyl 
diazoacetate (Figure 7c).60 The initially formed adduct XXIXb, 
formed via the cycloaddition portrayed in XXIXa, tautomerizes to 
the more stable benzopyrazole 55. This reaction is also notable 
because the cyclization of 54 (and related diarylated tetrayne 
substrates) can not only be induced thermally but, at much lower 
temperatures, by irradiation – a photo-HDDA reaction (discussed 
further in section 5.1 below).

Simple imines also trap the reactive benzynes. For example, the 
preparation of the acridine derivative 56 is shown in Figure 7d.61 
In this case the intermediate azetidine ring in XXXa is sufficiently 
fragile to undergo electrocyclic opening to XXXb, analogous to the 
benzoxetene openings shown in Figures 6a-c. Electrocyclization 
and rearomatization leads to 56.

Lee group researchers have shown that added Ag(I) salts can 
promote the three-component reactions of nitriles with HDDA 
benzynes. For example, triyne 57 incorporated two molecules of 
benzonitrile to give the quinazoline derivative 58 (Figure 7e).62 
Intermediate species like XXXIa and XXXIb were proposed to 
account for this mechanistically intriguing transformation. Even 
more interesting are reactions in which both a nitrile and an 
isonitrile are incorporated into a three-component product. For 
example, substrate 34 produced the unsymmetrical bis-imine 59 
(Figure 7f).47 The complementary and constitutionally isomeric 
nature of products 59, 58, and 35 (cf. Figure 5h) is particularly 
notable.

Hu and coworkers have recently reported a thorough 
examination of the trapping of HDDA benzynes with oxazolines. 
Three variants of this chemistry, each producing a novel product 
architecture, are shown in Figure 7g-i.63 The nature of the 
substituent at the 2-position of the oxazoline is the key factor in 
determining the reaction pathway. The conversion of 28 to 60 
(Figure 7g) shows that oxazolines bearing an alkyl substituent in 
their 2-position form azetidine and ring-opened o-quinomethide 
imines like XXXIIIa and XXXIIIb en route to product. In 
contrast, oxazolines unsubstituted at C2 add with reversed 
regiochemical orientation (cf. XXXIVa vs. XXXIIIa), and the 
resulting o-quinomethide XXXIVb is now sufficiently electrophilic 
to be captured by the pendent phenyl ring in Friedel-Crafts fashion 
to give the penultimate XXXIVc (Figure 7h). Finally, 2-arylated 
isoquinolines (Figure 7i) produce products that experience loss of 
formaldehyde (e.g., 63 from 28, suggested to proceed via XXXVa-
c).
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Figure 7. Trapping reactions forming a C–C and a C–N bond.
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4.4. Introduction of C–C and C–H bonds 

4.4.1 Intramolecular Trap (Figure 8)

Many reactions produce a C–C and a C–H bond. These again 
have been segregated into intra- and intermolecular categories 
(Figures 8 and 9, respectively). HDDA benzynes were used to 
establish the first high-yielding “aromatic ene” reactions.64 An 
example is given in Figure 8a. HDDA cyclization of 64, which 
bears a designed placement of a meta-alkylated aryl substituent, 
produces the enophilic benzyne, which abstracts a benzylic 
hydrogen atom (cf. XXXVIa) to yield the isotoluene derivative 
XXXVIb. Water-catalyzed proton shuttle, demonstrated by use of 
added D2O, rearomatizes this species to give the product 65a. 
Alternatively, under anhydrous conditions, an added enophile 
such as N-methylisatin captures the isotoluene in a bimolecular 
Alder-ene reaction as portrayed in XXXVIb to efficiently provide 
the adduct 65b. 

Lee and coworkers have provided numerous examples of 
thermal cyclization of substrates bearing pendant alkenes. For 
example, 66 produced a benzyne that then underwent an 
intramolecular Alder-ene reaction (cf. XXXVII) to produce 
product 67.65 Lee et al. have also exploited silver ion additives66,67 
to identify new modes of HDDA benzyne trapping reactions that 
lead to net C-H insertion (Figure 8c and 8d). In the case of 

tetrayne 68, it is envisioned that the pendant phenyl group is 
captured by an electrophilic carbon in the benzyne•Ag(I) complex 
XXXVIIIa to produce a phenonium ion XXXVIIIb en route to the 
product 69 (Figure 8c).68 Alternatively, electrophilic carbene 
character in the complex XXXIX is thought to enable insertion 
into a methyl C–H bond in the pendant n-propyl group to give 71 
(Figure 8d).69,70

An analogous overall C–H insertion process, this time 
mediated by boron trifluoride as the additive, was used to convert, 
for example, 72 into the cyclopentano- and 
cyclobutanofluorenone derivatives 73a and 73b (Figure 8e).71 
The different outcomes imposed by the TBS vs. t-Bu substituents 
in 72 are notable and suggest that differences in the extent of 
buttressing change the internal bond angles in XL in perhaps small 
but certainly important ways allowing for formation of the strained 
four-membered ring in product 73b. The carbene-like character 
suggested by structure XL is unprecedented for a boron-
containing species, which further highlights the unique reactivity 
that can be uncovered by studies of HDDA reactions. For an 
additional example that demonstrates how subtle structural 
changes can be exploited to change the course of outcome in a 
similar carbenoid C–H insertion reaction, see Figure 24c in the 
Addendum.
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Figure 8. (Intramolecular) trapping reactions forming a C–C and a C–H bond.
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4.4.2 Intermolecular Trap (Figure 9)

In the intermolecular mode of C–C and C–H bond-forming 
processes, some of the same reactivity patterns are observed. 
Bimolecular versions of the silver-catalyzed net electrophilic 
aromatic substitution (EAS) with an aromatic solvent molecule 
(74 to 75, Figure 9a)68 and the Alder ene reaction (76 to 77, 
Figure 9b)72,73 have both been demonstrated. Phenolic trapping 
agents capture HDDA benzynes at their ortho position (e.g., 49 to 
78, Figure 9c).74 This process is viewed as a phenol-ene reaction 
(cf. XLIIIa to XLIIIb) and is notable because this mode of phenol 
trapping is not observed for classically generated benzynes, where 
the presence of basic reagents typically promotes oxygen attack 
and formation of diaryl ethers. 

Net trifluoromethane addition to the benzyne can be 
accomplished by use of the Prakash reagent (CF3TMS) in the 
presence of an equivalent of silver fluoride in acetonitrile solvent 
(e.g., 79 to 80, Figure 9d).75 This conversion is presumed to 

involve capture of the benzyne by in situ-generated 
trifluoromethylsilver (AgCF3) to produce XLIV. 

In another isonitrile-based multicomponent trapping scheme, 
substrate 34, when heated in the presence of both PhNC and 
acetic acid, gives the 1:1:1 adduct 81 (Figure 9e).76 The initial 
adduct XLVa is protonated and captured by acetate to produce the 
isoimide XLVb, which, finally, rearranges to the imide 81. 
Alcohols and sulfonamides were also shown to serve in the 
capacity of protic nucleophiles in analogous processes. 

A Cu(I)-catalyzed process for the hydroalkynylation of HDDA 
benzynes has been developed (e.g., 82 to 83, Figure 9f).77 Initial 
Cu-acetylide addition to the benzyne is proposed to form the 
adduct XLVI, which then disproportionates with another 
molecule of alkyne to continue the cycle. In another Cu(I)-
promoted reaction of a terminal alkyne, HDDA reactivity 
expressed itself in an unplanned way (Figure 9g).78 A mixture of 
substrates 84 and 85 produced the unusual HDDA substrate 
XLVIIa, which then cycloisomerized to XLVIIb and was captured 
by a third molecule of the terminal diyne 84.
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Figure 9. (Intermolecular) trapping reactions forming a C–C and a C–H bond.

4.5. Introduction of a C–C and a C–Br, C–S, C–Se, or C–Te 
bond (Figure 10)

Bromoalkynylation of the HDDA benzyne derived from 82 
(Figure 10a) is a complement to the hydroalkynylation shown 
above in Figure 9f. The Cu(III) species XLVIII is proposed to 
account, following reductive elimination, for the production of 
products such as 87. Cross-coupling of the aryl bromide in these 
products demonstrated the potential for using this transformation 
to access products having two different types of adjacent C–C 
bonds (cf. Section 4.1.2).

Thioamides react with HDDA benzynes to produce 
benzothiazine derivatives (Figure 10b).79 Initial [2+2] cyclization 

of the HDDA benzyne from 88 with the thioamide generates 
adduct XLIXb via zwitterion XLIXa. Opening of the four-
membered ring reveals the o-thioquinonemethide XLIXc. Proton 
transfer isomerizes this to the isomeric zwitterion XLIXe via 
XLIXd, which collapses to the thiazine ring in 89.

Hu and coworkers have reported some similarly complicated 
reaction pathways that produce dibenzo-thiophene, -selenophene, 
and -tellurophene derivatives (cf. 91, Figure 10c and 10d). In the 
first of these (Figure 10c)80 the benzyne from 90 is generated in 
the presence of diphenyl diselenide or diphenyl ditelluride, 
resulting in formation of 91 (X or Se or Te, respectively). It is 
proposed that the trapping involves addition of a PhX• radical to 
La to produce Lb, which then undergoes radical addition to the Ph 
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group. An alternative consideration is the dipolar process implied 
by intermediates LIa and LIb. The same type of products were 
formed with a substantially different trapping agent and 
mechanism when the tetrayne 28 was heated in the presence of 
triphenylphosphine sulfide or selenide (Figure 10d).81 Upon 
HDDA cyclization of the initial substrate, the P=Y moiety 

undergoes a [2+2] cyclization to LIIb, likely via the zwitterion 
LIIa. This then ring opens to species LIIc having zwitterionic 
character. An unusual ring-closing event then occurs wherein a 
phosphine phenyl group is engaged by the sulfur or selenium atom 
to yield the polycyclic intermediate LIId. Aromatization to LIIe 
and loss of diphenylphosphine then accounts for formation of 91.
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Figure 10. Trapping reactions forming a C–C and a C–Br, C–S, C–Se, or C–Te bond. 

4.6. Introduction of C–O and C–Si bonds (Figure 11)

Trapping processes that yield a C–O and a C–Si bond are not 
known for classically generated arynes. This is the type of reaction 
in the first (unplanned) HDDA cyclization observed in the Hoye 
laboratories that propelled investigations revealing the generality 
of these thermal cyclizations.20 A typical example is the conversion 
of 92 to 93 (Figure 11a). Intermediate zwitterion LIII, formed 
from trapping the initial benzyne by the oxygen atom of the 
pendant OTBS group, was envisioned to proceed via a retro-
Brook-like rearrangement. Interestingly, this reaction proceeded 
not only in solution22 but also reasonably cleanly as a neat sample 
in a differential scanning calorimetry pan during DSC monitoring 
of the onset of exothermic reaction of substrate 92.82 This is 
noteworthy because it shows that intramolecular trapping can be 
faster than competitive reaction of the benzyne with an alkyne in 
an additional molecule of the triyne substrate, even at the highest 
possible substrate concentration.

Computational and experimental studies of related substrates 
such as 94 suggested that in addition to a stepwise process via the 
zwitterion LIVb, a concerted insertion of the benzyne -bond into 
the O–Si bond in benzyne LIVa to provide 95 directly was 
energetically feasible (Figure 11b).83 This OTBS trapping strategy 
has often been employed when first probing the feasibility of a new 
class of HDDA substrate. For example, the carbazolyne derived 
from the diynamide 96 was converted to 97 via zwitterion LV or in 
the concerted alternative (Figure 11c).24 

A more unusual and remarkably efficient transformation is 
shown in Figure 11d.84 Substrate 98, bearing a pendant siloxyethyl 
substituent, presumably undergoes analogous cyclization and 
intramolecular nucleophilic attack to yield the initial, now strained, 
zwitterionic intermediate LVIa. Ring-opening, perhaps 
electrocyclic, of the four-membered ring leads to the dearomatized 
LVIb, poised for rapid transfer of the silicon group to provide the 
o-quinonemethide LVIc. Intramolecular proton transfer gives the 
phenolic product 99. 
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Figure 11. Trapping reactions forming a C–O and a C–Si bond.

4.7. Introduction of C–O and C–H bonds (Figure 12)

Although there are many examples of traps that form a C–O and a 
C–H bond, many proceed by the same basic reaction pathway. As 
an example, consider the cyclization of tetrayne 100 to the 
benzofuran derivative 101 (Figure 12a).20 It is tempting to 
envision a mechanism that begins in parallel with that for the silyl 
ether addition (cf. Figure 11a) – namely, initial formation of the 
zwitterion LVIIa. Because unimolecular proton transfer within 
this species would face a stereoelectronically imposed barrier, a 
proton shuttle mechanism via a transition structure conveyed by 
LVIIb was thought likely. 

A related, diironnonacarbonyl-promoted reaction is shown by 
the example of 102 to 103 (Figure 12b).85 A number of additional 
metal-based additives led to the same outcome. However, results 
from an important control experiment – that is, heating 102 at the 
same temperature in the absence of any additive – was not 
described. Because the same product, 103, would be expected to 
form at the same reaction temperature, the case for catalysis (cf. 
LVIIIa and LVIIIb) may not have been definitively established.

In 2008 Ueda and coworkers reported cyclization of the 
methyl ether-containing substrate 104, which produced the 
demethylated benzopyran derivative 105 (Figure 12c).86 This 
reaction is additionally notable because the starting material is a 
triyne that, upon conversion to the cyano analog LIXa (with 
CuCN), proceeded to undergo the HDDA isomerization to the 
benzyne LIXb. Nucleophilic attack by the methoxy oxygen gives 
the zwitterion LIXc, which proceeds through protonation and 
demethylation to 105. 

The tetrayne substrate 106 contains o-methoxyphenyl 
substituents. Upon being heated, it is converted to the 
benzopyranyl product 107 via initial formation of zwitterion LXa 
(Figure 12d).87 Protonation by chloroform solvent (or 
adventitious water) and demethylation can account for product 
formation and the fates of the electrophilic methyl group – MeCl, 
MeCCl3, MeOH, and MeOMe – were detected as byproducts by 
direct 1H NMR monitoring of the reaction mixture. In this study, it 
was also shown that the sulfides in products from these types of 
bis-diynylsulfide precursors serve as a traceless tether. That is, they 
could be reductively cleaved (Ra-Ni) to establish an overall 
process that is the equivalent of an otherwise unknown 
bimolecular HDDA reaction.87 

Bimolecular analogs of the unimolecular OH additions given 
in Figures 12a and 12b are also known (e.g., 108 to 109, Figure 
12e).20 Later studies,88 both computational and experimental, 
support the idea that bimolecular alcohol addition is a process 
involving alcohol dimers, as suggested by the TS LXI. This view is 
related to the six-atom TSs that can be envisioned for additions of 
carboxylic acids89 and 2-pyridone to the benzyne (cf. TSs LXII 
and LXIII), which can account for the conversion of, e.g., 76 to 
110 (Figure 12f90) and 111 to 112 (Figure 12g24). 

In another Ag(I)-promoted reaction, researchers in the Lee 
group showed that silver trifluoroacetate promoted addition of 
trifluoroacetic acid to the benzyne LXIVa derived from 113 
(Figure 12h).89 The labile aryl trifluoroacetate LXIVc, suggested 
to arise via LXIVb, was cleaved to the phenol 114 upon exposure 
to silica gel. 
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An example of a trapping reactions with a glycidol derivative is 
shown in Figure 12i.91 Trapping of the benzyne from 51 leads to 
products such as the ketone 115, from which it is clear that a 
carbon skeleton rearrangement has occurred. The zwitterion LXV, 

arising from attack by the epoxide oxygen, is poised to undergo a 
1,2-methyl migration to account for the outcome. Several 
additional rearrangement or cleavage pathways were uncovered 
for glycidols with various substitution patterns. 
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Figure 12 (cont. on next page). Trapping reactions forming a C–O and a C–H bond. 
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Figure 12 (cont. from previous page). Trapping reactions forming a C–O and a C–H bond.
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4.8. Introduction of a C–N and a C–N or a C–S bond 
(Figure 13)

Trapping reactions that create both a C–N and a C–N or a C–N 
and a C–S bond are rare. The only method for the formation of 
two C–N bonds is the 1,3-dipolar cycloaddition reaction of the 
HDDA benzyne with an azide, a reaction well known92 for 
classically generated21 arynes. For example, use of trimethylsilyl 
azide gives the benzotriazole 117 when used to trap the benzyne 
from 116 (cf. LXVI, Figure 13a).41 

Two methods for producing a C–N and a C–S bond have been 
described. The first involves intramolecular trapping by an aryl 
sulfonamide (118 to 119, Figure 13b).93 Nucleophilic attack of 
the benzyne by the pendant sulfonamide nitrogen gives the 
zwitterion LXVII. The sulfonyl group then migrates to the 

carbanionic center, a process involving a four-center reaction made 
possible by access to d-orbital space around the third-row sulfur 
atom. 

The second reaction exploits an  unprecedented pseudo-1,3-
dipolar cycloaddition of thioamides with HDDA benzyne. The 
conversion of 51 to the benzothiazoline 120 is exemplary (Figure 
13c).94 Initial nucleophilic attack by the sulfur atom forms the 
iminium zwitterion LXVIIIa. In an unusual elementary event, the 
positively charged nitrogen is suggested to then be attacked by the 
anionic arene carbon atom to yield the CF3-stabilzed nitrogen 
ylide LXVIIIb. All of the thioamides that participated in this 
pseudo-1,3-dipolar reaction contained an electron withdrawing 
substituent on the thiono carbon atom. Intramolecular proton 
transfer extrudes ethylene and accounts for the product 120. 
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Figure 13. Trapping reactions forming two C–N bonds or a C–N and a C–S bond.
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4.9. Introduction of C–N and C–H bonds (Figure 14)

In contrast to the above category, there is a wide variety of reaction 
types that make both a C–N and a C–H bond during a trapping 
reaction. The simple nucleophilic attack of a primary or secondary 
amine is very common. The examples shown in Figure 14a come 
from a report that examined in considerable depth the factors that 
impact the sense and extent of regioselectivity of the addition of 
amines. For example, n-butylamine adds to the benzyne produced 
from the tetrayne 76 to give the isomeric adducts 121a and 121b 
(R = nBu) in a 1:1.5 ratio.90 Isoindolinynes such as LXIX show 
relatively little distortion and often lead to mixtures of isomers 
arising from competitive attack at the Ca- vs. the Cb-benzyne 
atoms. Steric interactions between the attacking nucleophile and 
the substituents in the 3- and 6-positions ortho to the benzyne can 
then be more influential in directing the incoming trapping agent. 
When an analogous reaction was performed with  the TES-
substituted tetrayne 142,  the larger TES group in LXIX (R = 
TES) guided the attack more toward Ca to give the major product 
121a (R = TES). When 142 was trapped by the bulkier tertiary 
amine Et3N, the added steric bulk of that nucleophile directed the 
attack to Ca, giving, solely, the diethylamino analog of 121a (R = 
TES) and showing that the steric interactions can completely 
dominate over the electronic bias imposed by the silyl substituent 
in the benzyne. An additional directing effect in benzyne LXIX (R 
= TES) stems from the presence of a trialkylsilyl group adjacent to 
the benzyne, a substituent known to electronically enhance 
nucleophilic attack at the adjacent rather than remote benzyne 
carbon.95,96,97,98 As is often the case in evaluating selectivity of a 
given reaction outcome, whether before (prediction) or after 
(rationalization) the fact, when multiple opposing directing effects 
are in play90 – here steric vs. electronic vs. distortion – it is not 
possible to judge which combination will dominate without a 
more extensive and systematic evaluation of substrate substituent 
effects (e.g., here, changing the sizes of the trialkylsilyl group). 

The mechanism by which tertiary amines trap a HDDA 
benzyne has been investigated (Figure 14b).99 Shown here is the 
reaction of trioctylamine with the tetrayne substrate 122, which 
gives an ca. 1:1 mixture of products 123a and 124b. When 
performed in CDCl3 solution, these products are essentially fully 
deuterated, showing that a solvent molecule (and not a proton 
from the -position of one of the octyl groups) is the source of 
the hydrogen atom in the product (cf. LXXa to LXXb). The 
fate of the departed octyl group was also identified; 1-
chlorooctane was produced in nearly stoichiometric amount 
through dealkylation of LXXb [and the elimination product 1-
octene was not observed (in situ NMR or GCMS)]. 

In contrast to isoindolinynes such as LXIX , the indolinyne 
derived from the unsymmetrical tetrayne 4933 (not shown) 
engages the tertiary amine in quinidine highly regioselectively at its 
Ca to produce, following proton transfer from the adjacent 

hydroxyl group, the alkoxyammonium ion LXXI.58 Collapse to the 
epoxyamine leads to formation of 124. A large number of other 
reactions between HDDA-generated benzynes and 
multifunctional natural products100 were also revealed in this 
study, which, among other things, revealed a noteworthy high level 
of kinetic selectivity among multiple potential reaction types.58 

The conversion of tetrayne 125 to the acetanilide derivative 
126 (Figure 14d) is achieved by Ag(I)-catalyzed addition of 
acetonitrile, the solvent.101 This Ritter-like reaction is viewed to 
proceed through the nitrilium ion LXXIIa. Water in the reaction 
mixture then adds to furnish the amide enol LXXIIb before final 
tautomerization to the product.

Multicomponent trapping reactions offer an attractive route 
for introducing structural complexity into HDDA products, some 
of which involve creation of C–N and C–H bonds (e.g., Figures 
14e and 14f102). In the first, nucleophilic attack of the benzyne 
from 51 by aromatic heterocycles of the pyridine class, shown here 
with quinoline, produces the quinolinium-containing zwitterion 
LXXIIIa. The anionic character of this species is apparently 
sufficiently basic to deprotonate terminal alkynes also present in 
the reaction mixture as the third component. The resulting ion 
pair LXXIIIb then collapses to the product 127. In the second 
example, substrate 122, when heated in the presence of the cyclic 
tertiary amine N-phenylpiperidine and acetic acid, gives the 5-
acetoxypentylaniline derivative 128. This can be rationalized by 
initial formation of the ammonium zwitterion LXXIVa [faster, 
incidentally, than the addition of acetic acid (cf. Figure 12f)], 
which is then protonated by AcOH to give the ammonium acetate 
LXXIVb. Nucleophilic ring-opening then completes the formation 
of 128. A wide assortment of cyclic amines as well as other protic 
nucleophiles function in these capacities as well. 

The methanesulfonamide substrate 129 is an alkyl analog of 
the arylsulfonamide 118 shown above in Figure 13b. However, the 
fate of the Ms-containing zwitterion LXXV (Figure 14g) is 
different from that of the NTs analog.93 Rather than sulfonyl 
migration to the anionic center, LXXV apparently undergoes 
internal proton transfer with extrusion of sultene to produce the 
N-methylated tetrahydroquinoline derivative 130. 

Finally, an unusual trapping reaction between diaziridines and 
an HDDA benzyne has been reported (Figure 14h).103 Following 
the HDDA cyclization of, e.g., 122, a nucleophilic diaziridine 
nitrogen attacks the aryne to give adduct LXXVIa. Proton transfer 
and electrocyclic ring opening forms the new C–H bond and 
yields the hydrazone product 131a. Notably, the more hindered 
but more electron rich nitrogen of mono-N-alkylated diaziridines 
adds preferentially. This likely reflects the expectation that the 
distance between the nucleophilic nitrogen and electrophilic 
carbon atoms is quite long in the TS leading to zwitterions such as 
LXXVIa. Again, a mixture of regioisomeric adducts (cf., 131b) 
was formed from this class of benzyne intermediate. 
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Figure 14. Trapping reactions forming a C–N and a C–H bond. 
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4.10. Introduction of C–H and C–H bonds (Figure 15)

Reactions that create two C–H bonds amount to a net reduction 
of a benzyne to its benzene analog. Tetrahydrofuran was the first 
molecule observed to transfer two hydrogen atoms to a thermally 
generated benzyne; namely, the benzyne shown in IV in Figure 2c 
was reduced by gaining two hydrogens when it was created in 
THF solution.10 Viewed at the time as hydrogen atom abstraction 
events, the net redox reaction with THF was subsequently 
demonstrated to involve a concerted transfer of two hydrogen 
atoms as depicted in LXXVII (Figure 15a).104 One key 
experiment involved heating 24 in an equimolar mixture of THF-
d8 and THF-h8. Product 132 was formed as a 6:1 ratio of di-protio 
and di-deuterio isotopomers, but none of the mono-H/mono-D 
analog was detectable. This is consistent with a single-encounter 
event like that depicted in TS LXXVII; the relatively small kinetic 
isotope effect for simultaneous cleavage of two C–H bonds reflects 
the relatively early transition state for this highly exergonic (DFT) 
process.

Two vicinal hydrogen atoms will also transfer from a saturated, 
cyclic hydrocarbon, as depicted for the transformation of 133 to 
134 in Figure 15b. This key step in the Lee synthesis of 
selaginpulvilins C and D23 was carried out by oxidizing a 
precursor propargylic alcohol, which rapidly cyclized at ambient 
temperature in cyclooctane solvent. In competition 

experiments,104 cyclooctane (and cyclopentane) reduces HDDA 
benzynes faster than cyclohexane, consistent with the energetically 
easier access to the more closely eclipsed geometry computed for a 
concerted transition structure like that shown in LXXVIII.

Another instance in which silver(I) has promoted unusual 
reactivity is shown in Figure 15c.70 The benzyne-silver complex 
LXXIXa is argued to be sufficiently electrophilic to accept hydride 
donation from one of the pendant n-propyl groups in substrate 
135 to produce the carbocation LXXIXb, stabilized by the β-
silicon atom. Water intervention and extrusion of propene results 
in the net-hydrogenated silanol product 136.

Alcohols are also capable of reducing benzynes in a process 
reminiscent of a Cannizzaro reaction (e.g., 137 to 138, Figure 
15d).88 A tandem experimental and computational study revealed 
the ability of primary and secondary alcohols to donate two H 
atoms in a concerted process similar to the cyclic hydrocarbons. 
Labeling studies using isomeric mono-deuterated cyclohexanols 
demonstrated that the process was both concerted and 
regiospecific, as shown in Figure 15d. Computation of TS 
geometries for addition of cyclohexanol to benzyne shows a 
geometry like that shown in LXXX. This is consistent with the 
deuterium labeling pattern in products 138-HD and 138-DH and 
indicates that the CH methine hydrogen atom is transferring as a 
hydride-like nucleophile and the OH as a proton-like electrophile.
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Figure 15. Trapping reactions forming two C–H bonds.
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4.11. Introduction of C–H and C–Halogen bonds (Figure 
16)

The use of a trapping reagent that produces both C–H and C–
halogen bonds yields products with useful handles for further 
synthetic manipulation. Perhaps the simplest way to accomplish 
this is through the net addition of a mineral acid. Although the use 
of HBr had been demonstrated in a number of publications, the 
reagents of choice here are ammonium halide salts. For example, 
triynes 24 or 140 give the bromides 139 or 141 when heated in 
the presence of primary or tertiary ammonium bromides (Figures 
16a20 or 16b24). The soft bromide ion nucleophilically adds to the 
HDDA benzyne LXXXIa or LXXXIIa and protonation of the ion 
pair LXXXIb or LXXXIIb leads to the product. The level of 
regioselectivity of nucleophilic addition to each of these benzynes 
is known to be high. 

In one of the Lee group’s earliest studies of Ag(I)-enabled 
chemistry, they developed a method for the net addition of HF 
across the benzyne using AgBF4 (Figure 16c).75 Addition of 

fluoride is a rare outcome for aryne chemistry – consider the 
thousands of reactions that use the Kobayashi fluoride-induced 
aryne generation21 in which F– does not further engage the 
reactive intermediate. Presumably this reflects the reluctance of 
the soft, polarizable aryne bond to accept a hard, compact 
nucleophile. The silver-benzyne complex LXXXIIIb, formed 
following generation of benzyne LXXXIIIa from 142, presumably 
accepts a fluoride ion from the (softer) BF4

– counterion. 
Protonation – perhaps occurring during workup – yields the 
product 143.

Reactions catalyzed by palladium (Figure 16d)105 and 
ruthenium (Figure 16e)25 that result in the net addition of HCl, 
HBr, and HI to an HDDA benzyne have been reported. In the 
conversion of, e.g., 47 to 144, allyl halides serve as the halogen 
source whereas in the reaction of, e.g., 76 to 145, dihalomethanes 
serve that role. In both reactions initial formation of an 
intermediate benzyne-metal complex (cf. LXXXIVa or 
LXXVa/LXXXVb) is proposed. In the Pd-variant, a water 
molecule was demonstrated (D2O) to be the proton source.
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Figure 16. Trapping reactions forming a C–H bond and a C–Hal bond.

4.12. Introduction of C–H and C–S bonds (Figure 17)

Sulfides, soft nucleophiles, are quite effective trapping agents. This 
often leads to products in which adjacent C–S and C–H bonds are 
introduced at the benzyne carbon atoms. The first example was in 
the intramolecular setting of the conversion of 146 to 147 (Figure 
17a).14 Intermediates LXXXVIa-c were invoked. Subsequent 
studies have made it clear that proton transfer from an alkyl group 
within an intermediate such as the zwitterion LXXXVIb often 
generates a sulfur ylide (examples below), likely involved in this 
reaction as well. An ylide intermediate is supported by a number of 
experiments, for example the labeling reaction shown in Figure 
17b.106 In the conversion of 148 to 149, the zwitterion LXXXVIIa 
gives the ylide LXXXVIIb, which is then protonated by AcOD also 
present in the reaction mixture. The acetate in the ion pair 
LXXXVIIc then produces the monodeuterio-methyl acetate, 

detected by in situ 1H NMR analysis. Notably, the soft sulfur in 
thioanisole adds to the benzyne in preference to the addition of 
acetic acid (cf. Figure 12f), even though the latter is a competent 
trapping agent. 

Diallyl sulfide adds to the benzyne from 148 to produce the 
zwitterion and ylide LXXXVIIIa and LXXXVIIIb, respectively 
(Figure 17c).106 A [2.3]-sigmatropic rearrangement produces the 
arylsulfide product 150. Use of cyclic sulfides allows for three-
component reactions (Figure 17d).106 For example, 82 gives 151 
when heated in the presence of thietane and various phenols. 
Intermediates LXXXIXa-c explain that outcome.

Finally, in another silver-catalyzed trapping of HDDA 
benzynes with a fluorine-containing reagent, the substrate 79 gives 
rise to the trifluoromethyl sulfide 152 when heated in the presence 
of AgSCF3 (Figure 17e).75 Intermediates XCa and XCb were 
offered as rationale.
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Fi g ur e 1 7. Tr a p pi n g r e a cti o ns t h at f or m a C – H b o n d a n d a C – S b o n d.  

4. 1 3. I ntr o d u cti o n of a C – H al a n d a C – H al or a C – O b o n d 
( Fi g ur e 1 8 )

Di h al o g e n ati o n r e pr es e nts a n e x a m pl e of a n H D D A tr a p pi n g 
r e a cti o n i n w hi c h c o m p ati bilit y of t h e p ol y y n e s u bstr at e wit h t h e 
tr a p pi n g r e a g e nt e n visi o n e d f or c a pt uri n g t h e b e nz y n e n e e ds t o b e 
t a k e n i nt o c o nsi d er ati o n. F or e x a m pl e, el e m e nt al di h al o g e ns 
w o ul d r e a ct wit h t h e al k y n es i n t h e s u bstr at e b ef or e t h er e w as a n y 
a p pr e ci a bl e f or m ati o n of a n H D D A b e nz y n e. Dilit hi u m 
t etr a c hl or o c u pr at e ( Li2 C u Cl 4 ) w as i d e ntifi e d as o n e s ol uti o n t o 
t his li mit ati o n.1 0 7  T h e t etr a y n e 1 4 2  g a v e t h e 1, 2- di c hl or o b e nz e n e 
d eri v ati v e 1 5 3  ( Fi g ur e 1 8 a ). A n ass o ci at e d m e c h a nisti c st u d y i n 
w hi c h t h e s u bstr at e c o nt ai n e d a t et h er e d tr a p pi n g m oi et y, w hi c h 
s er v e d as a n i nt er n al cl o c k r e a cti o n, all o w e d d et er mi n ati o n of t h e 
ki n eti c or d er of t h e p ost-r at e li miti n g tr a p pi n g st e p b y v ar yi n g t h e 
c o n c e ntr ati o n of Li 2 C u Cl 4 . T h e c a pt ur e is first or d er i n Li2 C u Cl 4 ; 
h o w e v er, t his l e a v es o p e n t h e q u esti o n of t h e d et ail e d m e c h a nis m 

of t h e r e a cti o n. A dir e ct tr a nsf er of b ot h c hl ori n e at o ms t hr o u g h a 
T S s u c h as X CI a  or a n i nt er m e di at e c hl or o c u pr at e s p e ci es s u c h as 
X CI b  w o ul d b ot h e x pl ai n t h e o ut c o m e. A r el at e d e x a m pl e 
pr o c e e ds t hr o u g h t h e c ar b az ol y n e X CII  (1 5 4  t o 1 5 5 , Fi g ur e 
1 8 b ). 2 4  

A d diti o n al v ari a nts of sil v er (I )- pr o m ot e d r e a cti o ns l e a d t o 
eit h er t h e fl u or o h al o b e nz e n e d eri v ati v es 1 5 6  ( Fi g ur e 1 8 c )7 5  or o -

h al otrifl at es s u c h as 1 5 8  ( Fi g ur e 1 8 d ).8 9  I n t h e first r e a cti o n (1 2 5  
t o 1 5 6 ), a st oi c hi o m etri c a m o u nt of A g B F 4  g a v e a d d u ct X CIII b  b y 
r e a cti o n wit h t h e i niti al b e nz y n e X CIII a . S u bs e q u e nt a d diti o n of 
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(fr o m X CI V a ) is h al o g e n at e d i n sit u.

a

b

X CI a

6 8 ° C
Ts N

1 4 2

n B u
Ts N

n B u

n B u C ≡ C n B u

1 5 3 ( 8 5 %)

Ts N

n B u

C ≡ C n B u

Cl

Cl

Li 2 C u Cl 4

X CI b

T s N

n B u

C ≡ C n B u

Cl
( or C u Cl3 • Li2 )

C u Cl 3 • Li2

( or Cl)

X CII

9 0 ° C
N
Ts

1 5 4

M e

N
Ts

M e

1 5 5 ( 9 4 %)

N
Ts

M e

Cl

Cl
Li 2 C u Cl 4

d

X CI V b

9 0 ° C

1 5 8
( 8 3 %, 2. 7: 1 mi xt ur e of i s o m er s)

O

1 5 7

n B u

n B u
A g O Tf

N B S

A g( L)

O Tf
Br( O Tf)

O Tf( Br)

n B u

C ≡ C n B u

OO

C ≡ C n B u
n B u

X CI V a

O

C ≡ C n B u
n B u

X CIII a

9 0 ° C

T s N

1 2 5

T M S

T s N

T M S

T M S
T M S

A g B F 4

A g( L)

1 5 6

Ts N

T M S

T M S

X

F
T s N

T M S

T M S

X CIII b

c

F

N X S

X = Br: ( 8 0 %)

X = Cl: ( 5 0 %)

X = I: ( 5 5 %)

Cl C u Cl 2 • Li2

Cl

or

‡

Fi g ur e 1 8. Tr a p pi n g r e a cti o ns t h at f or m a C – H al b o n d as w ell as a (s e c o n d ) C – H al or a C – O b o n d.  

P a g e 2 6 of 4 0

A C S P ar a g o n Pl u s E n vir o n m e nt

S u b mitt e d t o C h e mi c al R e vi e w s

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
6 0



4.14. Introduction of miscellaneous bond pairs (Figure 19)

In this last subsection, several “one-off” examples of some unusual 
transformations, each fueled by the high potential energy of the 
reactive benzyne intermediate, are presented. The first of these is a 
net hydroboration of the HDDA benzyne resulting in the 
conversion of 159 to 160 (Figure 19a).108 As with the dihalogens 
discussed above, hydroboranes as trapping agents would be 
expected to rapidly consume the substrate alkynes, precluding 
benzyne formation. In contrast, the indicated carbene-borane 
complex effects this net hydroboration transformation. The 
mechanism of this reaction is not obvious. The sense of the 
(complete) regioselectivity observed for this reaction suggests that 
the process involves a step in which nucleophilic attack by hydride 
leads the way. A concerted TS such as XCV can be formulated, 

although it is not clear if the boron atom can sustain this type of 
bonding and bond reorganization. 

The creation of two C–P bonds has been achieved with 
tetraphenyl diphosphane (142 to 161, Figure 19b).109 A DFT 
analysis suggested that the intermediate XCVIa can progress 
directly to the bis-phosphine XCVIb in a concerted event. A 
similar reaction with a diaryldisulfane gives the bis-sulfide 162 
(Figure 19c).60 The contrasting behavior between this reagent, 
which presumably produces the zwitterion XCVII, and that of the 
analogous higher chalcogenides of selenium and tellurium (cf. 
Figure 10c) is notable. Finally, note that in this instance the 
substrate 54 was cyclized photochemically, a process discussed in 
more detail next in section 5.1. 
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Figure 19. Trapping reactions that form (a) a C–H and a C–B bond, (b) two C–P bonds, and (c) two C–S bonds. 
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5. STRATEGY-LEVEL DEVELOPMENTS FOR THE 
HDDA REACTION 

There have been several notable conceptual developments that 
demonstrate important new dimensions of HDDA chemistry. The 
specific transformations that demonstrate these new strategic 
advances draw largely from the same pool of substrate tethers and 
trapping reactions described in Sections 2–4 above. An overview 
of each development with illustrative examples is presented in 
Sections 5.1–5.4. 

5.1 The Photochemical HDDA Reaction (Figure 20)

The photochemical HDDA reaction, reported in 2017, uses a 
photon rather than thermal energy to initiate the HDDA 
cyclization.60 To date the only class of substrate reported to 
undergo this transformation is a series of tetraynes bearing two 
terminal aromatic substituents, as seen from each of the examples 
in Figure 20. Not surprisingly, substrate 54 can be trapped with a 
furan derivative to produce 163 (via XCVIII, Figure 20a). More 
informative are the reactions in Figures 20b and 20c in which the 
intermediate [4+2] adducts were not isolated but lost carbon 
monoxide (cf. XCIX) and dihydrogen (cf. C) to give the 
naphthalene and naphthoperylene derivatives 164 and 165, 
respectively. These examples show that those finishing events 
occur even at ambient temperature, a fact not discernable from the 
thermal variant of these types of HDDA trapping reactions. 

Although most reactions were performed, out of convenience, 
at ambient temperature, in the case of the substrate 166, bearing 
an internal trapping moiety in the form of the o-methoxyphenyl 
substituent, the reaction was shown to proceed also at ca. -70 °C to 
give 167 (Figure 20d). In this experiment the byproduct methanol 

was observed, suggesting that a small amount of water in the 
reaction mixture was providing the proton to zwitterion CIb (from 
cyclization of CIa) as well as the nucleophile to subsequently 
accept the electrophilic methyl group. 

Electron rich aryls (cf. 166, 168, and 169) also can be cyclized 
photochemically. The last two (Figure 20e) are demonstrated by 
the oft-used furan trapping (cf. CII) to produce 170 or 171, 
respectively. The latter, where 2,5-dimethylfuran was the trapping 
agent, was observed by NMR analysis to be a mixture of 
atropisomers because of hindered biaryl rotation on the NMR 
time scale. 

Finally, important mechanistic information was obtained from 
study of the reaction of the unsymmetrically substituted tetrayne 
substrate 172 (Figure 20f). This can be cyclized either thermally 
(half-life of 12 hours at 75 °C) or photochemically. Under thermal 
conditions, two isomeric benzynes, CIII’a and CIII’b, are formed 
and give rise to products 173a and 173b in a 2.1:1 ratio, 
respectively. The trapping agent here was cyclooctane (cf. Figure 
15b), which made the products easily discernable by NOE 
experiments. When the same reaction was performed 
photochemically, the same ratio (within error) of products was 
observed. This result suggests that the mechanisms leading to 
formation of the isomeric benzynes converge through a common 
intermediate, regardless of the means of energization. This is 
consistent with the view that benzyne formation occurs by a 
stepwise pathway through a common biradical similar to CIII, 
which then bifurcates during ring closure to either CIII’a or 
CIII’b.24,28,30,32 Further, it suggests that the electronic spin 
characteristics of this biradical are the same, whether formed by 
initial thermal or photochemical activation.
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Figure 20. Examples of the photochemical HDDA (hv-HDDA) reaction.

Page 29 of 40

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5.2 The Domino HDDA Reaction (Figure 21)

If one is good, two (or more) is (often) better. That idea led 
researchers to hypothesize that an appropriate linear array of 
multiple tethered diynes would support not one but a series of 
intramolecular cyclizations wherein each successive aryne would 
become the diynophile for the next diyne in line – a domino 
HDDA process.13 In short, this process initially generates one 
benzyne that then undergoes subsequent intramolecular HDDA 
cyclizations with tethered diynes to produce increasingly large 
members of the acyne family. 

The concept was first demonstrated using the pentayne 174 
(Figure 21a).110 This was designed to include a three-atom tether 
between the first diynophile (the top ynoate) and its proximal 1,3-
diyne but with only two atoms (CH2CH2 in 174) separating the 
pair of 1,3-diynes. As planned, the initial cyclization produced the 
benzyne CIVa, which proceeded to engage the second diyne, now 
five atoms away from the proximal benzyne carbon, to give the 
naphthyne CIVb. This was trapped by in situ 2,5-dimethylfuran to 
give essentially nothing but the adduct 175. Numerous examples 
of naphthyne trapping were shown to be effective. 

The results shown in Figure 21b demonstrate that the process 
is sequential. That is, the intermediate benzyne CVa, produced by 
initial cycloisomerization of the central tetrayne in substrate 176, 
has a finite lifetime. This benzyne is trapped relatively efficiently 
when the reaction is performed in furan as solvent. As the 
concentration of furan is systematically lowered, there is a longer 
lifetime for CVa, giving ample opportunity for the second 
cyclization to occur to produce the naphthyne CVb as revealed by 
the formation of increasing amounts of the naphthalene product 
177b.

The conversion of heptayne 178 to the anthracene derivative 
179 (Figure 21c) shows that the two-atom linker between 
adjacent pairs of diynes also can be a 1,2-disubstituted arene 
moiety. This particular transformation involves three successive 
HDDA cyclizations, the last (step iii) converting the naphthyne 
CVIa to the anthracyne CVIb. 

The most complex substrate examined was the nonayne 180 
(Figure 21d). This proceeded through four consecutive events to 
the tetracyne CVII, which was trapped with several agents; shown 
here is the use of the cyclopentadienone derivative 181. The initial 
adduct was desilylated and heated to 180 °C to eject carbon 
monoxide and produce the dibenzohexacene derivative 182. This 
was shown to have a significantly twisted architecture. The highly 
conjugated molecules available from these domino HDDA 
cyclizations have interesting photonic and electronic properties, 
potentially valuable for use in various electronic devices. 

Finally, the domino strategy can be exported into other 
settings. This was demonstrated by the reaction shown in Figure 
21e.111 As shown by researchers in the Li lab, reactant 183 serves 
as the equivalent of 1,2-bisbenzyne.112 When exposed to carbonate 
and an appropriate nucleophile, this initially forms the benzyne 
CVIIIa, which then engages the nucleophile, here the conjugate 
base of the triflamide 184. Net Sn2’ displacement of the tosylate 
leaving group in CVIIIb gives the second benzyne CVIIIc. This 
now engages the pendant 1,3-diyne in the HDDA event to give the 
penultimate intermediate, the naphthyne CVIIId. Internal 
trapping with the tethered TBS ether produces 185, completing 
this cascade that marries classical Kobayashi-like with HDDA 
benzyne formation.

Page 30 of 40

ACS Paragon Plus Environment

Submitted to Chemical Reviews

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 21. Examples of the domino HDDA reaction. (a) Benzyne to naphthyne. (b) Evidence for the intermediacy of a benzyne. (c) 
Benzyne to naphthyne to anthracyne. (d) Benzyne to naphthyne to anthracyne to tetracyne. (e) A domino cascade involving benzynes 
generated by both classical and HDDA processes.
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5.3 The Aza-HDDA Reaction (Figure 22)

Replacement of one of the two terminal carbon atoms in a triyne 
substrate with a nitrogen atom opens the possibility to effect an 
analogous cycloisomerization to form a pyridyne intermediate. 
This aza-HDDA reaction has been recently reduced to practice 
(Figure 22).113 This represents a fundamentally novel approach 
towards the construction of highly functionalized pyridines from 
acyclic precursors. Based on the original location of the nitrile, 
either a 3,4-pyridyne (CIXa to CIXb, Figure 22a) or a 2,3-
pyridyne (CXa to CXb, Figure 22b) is formed. 

DFT studies of these types of isomeric pyridynes indicate that 
they have dramatically different levels of geometric distortion. 
This was shown experimentally by comparing the behavior of 
these isomeric pyridynes, which exhibit quite different selectivity 
upon reaction with a nucleophilic trapping agent. For example, 
substrate 186, having the nitrile as a diynophile, gives the dienone 
187, but as a mixture of both 187a and 187b via the relatively 
undistorted pyridyne CXI (Figure 22c). In contrast, 188, having 

an aza-diyne and the precursor to the 2,3-pyridiyne CXIIa, reacts 
with, for example, tropinone (189) to give the amine-trapped 
product 190 (via zwitterion CXIIb, Figure 22d). This was the only 
regioisomer observed; eight other trapping reactions of 2,3-
pyridiynes also showed complete regioselectivity, including one 
with 2,4,6-trimethylphenol. 

In many respects the aza-HDDA reaction behaves analogously 
to the all-carbon HDDA transformation – many of the same traps 
and tethers can be used. However, the aza variant has several 
limitations. The aza-HDDA cycloisomerization reaction is 
considerably slower, with some substrates requiring a reaction 
temperature in excess of 200 °C. This is consistent with the fact 
that the bond energy of a C–N triple bond is considerably higher 
than that of a C–C triple bond. Moreover, product yields of many 
examples are below 50% and substrate synthesis is not as 
straightforward as for analogous triynes. Despite a more limited 
scope, the aza-HDDA variant still represents a novel and 
potentially useful process for creating certain highly substituted 
pyridine derivatives. 

Figure 22. Aza-HDDA reactions. (a) Generic formation of a 3,4-pyridyne. (b) Generic formation of a 2,3-pyridyne. (c) A relatively 
unselective trapping of a 3,4-pyridyne. (d) A highly selective trapping of a 2,3-pyridyne. 
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5.4. Reagent-induced Net HDDA Reactions (Figure 23) 

Several reactions have been reported to give products that are 
HDDA-like, but that do not proceed by way of a benzyne. 
These are shown in Figure 23. In the first example, the tetrayne 
191 was observed to react at ambient temperature in the 
presence of secondary amines such as morpholine to produce 
the isoindoline product 192.114 Mechanistic studies revealed 
that the process proceeds by an initial, base-catalyzed 
isomerization to the allenyne CXIIIa that then cyclizes to the 
strained allene CXIIIb. This analog of the known, parent ,3-
dehydrotoluene115 is then captured by the amine.116 This 
process was dubbed the pentadehydro-Diels-Alder (PDDA) 
reaction, signifying that the cyclization occurs via an acyclic 
intermediate, CXIIIa, in which five, not six, of the atoms are sp-
hybridized. 

In a related reaction, the cyanodiyne 193 was converted to 
the pyridine derivative 194 under the action of DBU in 
deuterochloroform (Figure 23b). This was the first instance in 
which the energetically more demanding cyano group 

participated in an HDDA-related cyclization. This aza-PDDA 
reaction likely proceeds via intermediates CXIVa-c.

As shown earlier in Figure 5l, the cyclic triyne 40 requires 
heating for many hours at 70 °C to generate the benzyne XXI. 
Shown in Figure 23c is the reaction of 40 with bromine, which 
rapidly (<1 h) at room temperature generates the dibrominated 
product 195.53 This strongly suggests that XXI is not involved in 
this “bromine-induced transannular cyclization.”53

Finally, the hydrometallation product 198 was generated 
highly efficiently (accompanied by a small amount of the isomeric 
rhodacycle 199) when the potential HDDA tetrayne substrate 
196 was exposed to a stoichiometric amount of the Rh(I) complex 
197.117 Based on the known rate of reaction of tetraynes 
structurally very similar to 196 [e.g., 172 (cf. Figure 20f) cyclizes 
thermally with a half-life of ca. 4 h at 90 °C60], it can be expected 
that 196 would require elevated temperature to cyclize to the 
HDDA benzyne CXV at any reasonable rate. Therefore, it is most 
probable that Rh(I) is inducing cyclization leading, ultimately, to 
the new benzenoid ring in 198 by a pathway that does not include 
the free benzyne as an intermediate.
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Figure 23. Reactions of polyyne substrates that proceed under conditions that would not promote appreciable levels of HDDA benzynes, 
indicating that the co-reactant is promoting cyclization by engaging the substrate prior to the thermal HDDA cycloisomerization. 
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6. ADDITIONS MADE DURING MANUSCRIPT 
REVISION (Figure 24) 

Several additions, including a summary of recently published 
reports, are presented in Figure 24. In a few instances where 
relevant, these have been referred to (called out) by a comment at 
an appropriate location in earlier discussion. 

Yoshida, Hosoya, and coworkers devised the interesting 
cascade reaction shown in Figure 24a.118 This involves initial 
generation of the benzyne CXVIa from substrate 200, which then 
functions as the diynophile to engage the tethered diyne. The 
resulting naphthyne CXVIb is then trapped by the tethered furan 
to produce the polycyclic structure 201. Hu et al. have described 
trapping reactions with a series of N-substituted imidazoles 
(Figure 24b).119 For example, the benzyne CXVIIa from tetrayne 
28 adds to 1-methylimidazole in the presence of oxygen to give the 
imide 202. The exact sequence of HCN extrusion and oxidation of 
the suggested initial Diels-Alder adduct CXVIIb was not 
delineated. Xia, Lee, and their coworkers reported the cyclization 
of 203 to give the strained benzocyclobutene derivative 204 
(Figure 24c).120 This demonstrates how even subtle changes in 
structure can impact reaction outcomes. The alcohol-containing 
substrate 203 gave a higher yield of Alder-ene product than any of 
a series of similar substrates that lacked a hydroxyl group. The 
hydrogen bond in the benzyne CXVIII is argued to induce bond-
angle strain, increasing the proximity of the alkene and benzyne in 
CXVIII. This is an example of a phenomenon that the purely 
thermal HDDA reaction rendered detectable; it likely would be 
invisible, if not inoperative, in the presence of the reagents present 
in virtually all of the methods for generating benzynes by classical 
methods. 

In recent work, researchers in the Yao and Tan labs have 
described the reaction between HDDA benzynes and the 
thiolactam 205 (Figure 24d).121 For example, heating 142 with 

this oxindole analog gave the thioimino ether product 206 via a 
process that can be rationalized by the transition structure CXIX. 

As mentioned earlier, it is often the case that if no trapping 
agent is present when an HDDA benzyne is formed, an intractable 
array of products is often formed. However, certain substrate 
polyynes are exceptional; instead they form structurally complex, 
unsymmetrical dimers (cf. Figure 5j).52 Researchers in the Engels 
and Marder groups have reported an interesting example of this 
dimerization process. As shown in Figure 24e, the tetrayne 207, 
when heated in toluene solution, gave the naphthalene derivative 
210 as the major product.122 It is notable that the initial benzyne 
CXXa was trapped by Diels-Alder reaction with a toluene solvent 
molecule when the initial concentration of 207 was ca. 0.012 M. 
Increasing the [207]0 to 0.16 M allowed for a more competitive 
intervention of a second molecule of the tetrayne to proceed, via 
benzocyclobutadiene CXXb and Dewar naphthalene CXXc, to the 
dimer adduct 208. This study also demonstrates another feature 
common to a number of HDDA reactions. The identification of 
additional minor products (not shown here) allowed several other 
energetically viable pathways to be delineated. It is often the case 
that the practice of ‘digging through’ minor products, while of 
arguable preparative value, expands our awareness and 
understanding of entirely new mechanistic pathways. 

Finally, capitalizing on the photo-HDDA60 reaction, 
investigators in the Marder, Mitric, and Brixner labs have recently 
reported their use of femtosecond transient absorption 
spectroscopy to provide the first direct evidence for the 
intermediacy of a benzyne in an HDDA reaction.123 A body of data 
from the excitation and decay of species produced by irradiation of 
a solution of substrate 207 was interpreted to support the 
existence of a steady state concentration of the benzyne CXXa in 
this fundamentally important study. 
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Figure 24. Reactions identified during manuscript review or published since initial submission. 

7. CONCLUSION

In conclusion, the hexadehydro-Diels-Alder reaction provides a 
valuable (and intriguing) route for the preparation of complex 
benzenoids by way of a benzyne intermediate. A wide variety of 
structurally diverse species are accessible due to the large number 
of tethers and trapping agents that are compatible with the purely 
thermal reaction conditions (i.e., in the absence of other reagents). 
Examples of new tethers and new trapping reagents or reactions 
will continue to emerge as increasing numbers of investigators 
contemplate the opportunities provided by this approach to 
forming benzynes by a protocol that is quite complementary to 
and distinct from other aryne-generating methods. Studies of 
HDDA reactions have also provided new mechanistic 
understanding and insights about benzyne reactivity, and many 
additional such results are embedded in the primary publications 
cited here. Finally, new avenues are also being opened by strategic 
developments such as the domino-, photochemical-, and aza-

HDDA reactions, which adds further versatility to the synthetic 
utility. Future new strategic advances can also be anticipated. 
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