This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Coumarin (5,6-Benzo-2-pyrone) Trapping of an HDDA-Benzyne

Journal:	Organic Letters
Manuscript ID	ol-2021-00342q.R1
Manuscript Type:	Communication
Date Submitted by the Author:	n/a
Complete List of Authors:	Chinta, Bhavani Shankar; University of Minnesota Twin Cities, Department of Chemistry Lee, Daniel; University of Minnesota Twin Cities, Department of Chemistry Hoye, Thomas; University of Minnesota Twin Cities, Department of Chemistry

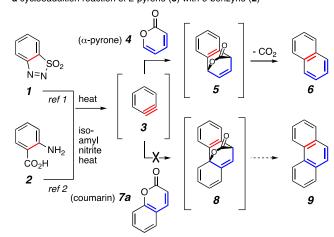
SCHOLARONE™ Manuscripts

Coumarin (5,6-Benzo-2-pyrone) Trapping of an HDDA-Benzyne

Bhavani Shankar Chinta,‡ Daniel Lee,‡ and Thomas R. Hoye*

Department of Chemistry, 207 Pleasant St. SE, University of Minnesota, Minneapolis, MN 55455

Supporting Information Placeholder


ABSTRACT: Although the parent 2-pyrone is known to react with simple *o*-benzynes to produce naphthalene derivatives, there appear to be no examples of the successful reaction of coumarin, a benzo-annulated 2-pyrone analog, with an aryne. We report such a process here using benzynes generated by the hexadehydro-Diels-Alder (HDDA) reaction to produce phenanthrene derivatives (i.e., benzo-annulated naphthalenes). DFT computations were used to help understand the difference in reactivity between 2-pyrone and the slower trapping agent, coumarin. Finally, the reaction of *o*-benzyne itself [from *o*-(trimethylsilyl)phenyl triflate and CsF] with coumarin was shown to be viable, although slow.

The reaction of pyrone (4) with *o*-benzyne (3) to produce naphthalene (6) was first described by Wittig and Hoffmann in 1962.¹ Heating the thiadiazole 1,1-dioxide 1 gave 6 in 36% yield, following ejection of CO₂ from the presumed Diels-Alder intermediate adduct 5. Over time, reactions of benzynes (or strained cycloalkynes) with a variety of pyrone-containing substructures have been reported.² Conspicuously absent from that body of work is a successful reaction or an aryne with coumarin [7a, 2H-chromen-2-one]. Indeed, in 1997, Guitián and coworkers reported reactions of substituted pyrones with 3, the latter produced from anthranilic acid (2).²i In that study, an attempt to effect an analogous reaction of 3 with

coumarin (7a) to produce phenanthrene (8) was unsuccessful. This was attributed to the lower reactivity of 7a as a diene because a greater loss in aromatic resonance stabilization vis-à-vis the analogous reaction with 4 itself would attend the formation of potential intermediate 8.

Many triynes such as 10 will cycloisomerize to benzynes 11 in a process now commonly referred to as the hexadehydro-Diels-Alder (HDDA) reaction.³ We describe here a variety of reactions between HDDA-benzynes 11 and coumarins. To our knowledge these are the first examples of trapping reactions of arynes using coumarin or coumarin derivatives.²

a cyclooaddition reaction of 2-pyrone (3) with o-benzyne (2)

 ${\bf b}$ here: reactions of HDDA benzynes (10) with coumarins 7 (and analogs)

$$\begin{array}{c|ccccc}
R^1 & \xrightarrow{A} & \xrightarrow{A} & & & \\
\hline
 & & & & \\
\hline
 &$$

Figure 1. a) Reaction of o-benzyne (3) with pyrone (4) to produce naphthalene (6), following loss of CO_2 from initial

adduct 5. b) Reactions of HDDA-benzynes 11 with coumarin derivatives 7a-e to give phenanthrenes 12.

As a prelude to introducing our experimental observations, we show in Figure 2 the results of DFT calculations of the reactions of the parent o-benzyne (3) with pyrone (4, panel a) as well as with coumarin (7a, panel b). As expected intuitively, the reaction to form the initial bicyclic adduct 5 is more exergonic than that leading to 8 because of the aforementioned increased loss of aromaticity that attends the addition to coumarin. Accordingly, the activation barrier through transition structure $TS_{coumarin}$ is also larger than that

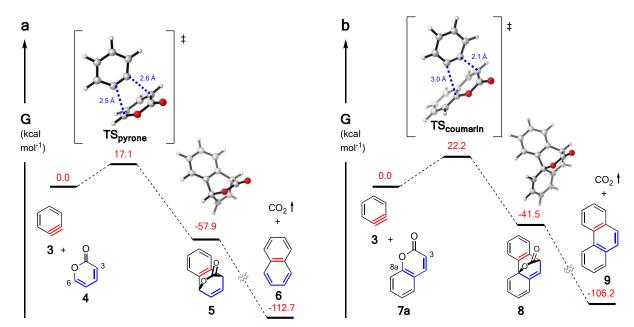


Figure 2. DFT calculations [SMD(CHCl₃)/B3LYP/6-311G+(d,p) at 298 K] of the reaction of o-benzyne (3) with a) pyrone (4) and b) coumarin (7a). Gibbs energies in kcal mol⁻¹.

through TS_{pyrone} . These data support the earlier assessment²ⁱ that coumarin is a less reactive 4π -diene than pyrone toward benzyne. It is interesting to note the difference in the extent of asynchroneity in the two TSs. In TS_{pyrone} the bond lengths of the two forming C-C bonds (labeled in blue) are nearly the same as is the deformation of the two carbon atoms of the pyrone moiety (7.5° and 9.4° of puckering at C3 and C6, respectively). In contrast, in $TS_{coumarin}$ the extent of bond-formation is considerably different (blue), as is the degree of puckering at C3 (16.6°) vs. C8a (5°). The reduced amount of rehybridization at C8a is a computational validation of the reluctance of the coumarin diene to sacrifice its benzenoid aromatic resonance stabilization.

In our first experiment (Figure 3a), a solution containing the triyne 13 and coumarin (7a, 3 equiv) in chloroform was warmed to 85 °C. Rate-limiting HDDA cycloisomerization gave the benzyne 14, which, following capture by 7a, lost CO₂ to produce the (red-colored) naphthofluorenone 16a-syn in 38% yield. Later scrutiny of the NMR spectrum of the crude product mixture, suggested the possible presence of a second isomeric product. When this reaction was then performed neat (1:10, 13:7a), both 16a-syn and 16a-anti were isolated in 28% and 5% yields, respectively. The constitution of the major product was established by the clear NOEs indicated in structures 16a-syn and 16a-anti. In addition, the proton resonance for i) the

aromatic methyl group was significantly deshielded in the anti-isomer and ii) the indicated aromatic protons showed diagnostic differences that reflected their relative extent of embeddedness in the bay region of the pentacycle [see Supporting Information (SI) for details].

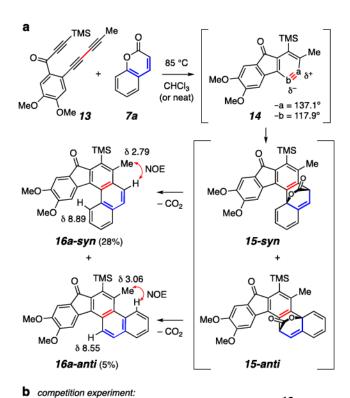


Figure 3. a) Reaction of triyne 13 with coumarin gives isomeric naphthofluorenones 16a-syn (minor) and 16a-anti (minor). b) Competition experiment showing that trapping by furan (2 equiv) is considerably faster than that by coumarin (7a, 10 equiv). (See SI for NMR spectrum of the crude product mixture in which 16-syn was detected.)

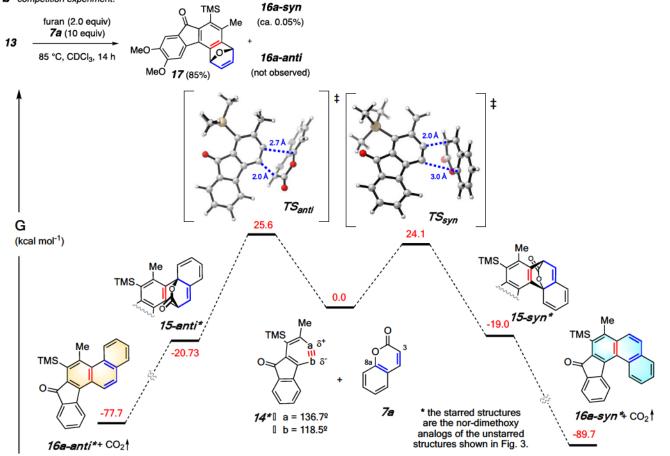
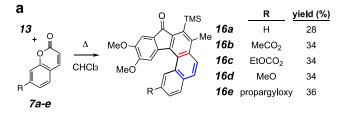


Figure 4. DFT calculations [SMD(CHCl₃)/B3LYP/6-311G+(d,p) at 358 K] for the reaction of benzyne 14 (the truncated normethoxy analog of the benzyne from triyne 13) with coumarin (7a). The small difference in TS energies are consistent with, in fact, remarkably close to, that reflected by the product ratio of 16a-syn:16a-anti (6:1).


To gain understanding of the sense of regioselectivity shown by the reaction of the benzyne 14 with coumarin (7a), we identified the optimized transition structures of the species leading to TS_{syn} vs. TS_{anti} by DFT calculations. We used the same functional, basis set, and solvation model as those for the reactions with benzyne itself (Figure 2). The results are summarized in Figure 4. The computed activation barrier leading to adduct 15-syn* is 1.5 kcal mol⁻¹ lower than that proceeding to 15-anti* in the competing pathway. This is remarkably consistent with the observed product ratio for the 16a-syn:16a-anti (5:1, ¹H NMR of the crude product mixture for the neat reaction at 85 °C).

This preference for the regioselective addition of the unsymmetrical benzyne dienophile to coumarin can be explained by a careful examination of the two TS geometries. As with o-benzyne itself, there is a significantly advanced degree of bond formation at C3 vs. C8a for each of the transition structures TS_{svn} and TS_{anti}, indicating substantially asynchronous reactions. The shorter distance of 2.0 Å is identical in both; curiously, the second partial bond is shorter in TS_{anti} (2.7 Å vs. 3.0 Å in **TS_{svn}**) even though **TS_{anti}** is slightly higher in energy. Subtle remote steric compressions are likely responsible for this seeming anomaly. The difference in puckering angle at the benzenoid carbon C8a in each is, again, informative; the slightly larger deformation in TS_{anti} (8.1°) (and 17.2° at C3) vs. that in $TS_{syn} = 5.5$ ° (and 17.5° at C3) reflects a greater degree of sacrifice in aromaticity. Finally, we note that an FMO analysis of this cycloaddition is not a meaningful approach for rationalizing the sense of regioselectivity. That is, the π -type orbital coefficients at C3 vs. C8a in the HOMO of coumarin are computed to be virtually identical (see SI for details).

The imperfect yield of this transformation implied that the rate of the trapping by coumarin was slow (although serviceable), again consistent with the earlier conclusion of Guitián et al.²ⁱError! Bookmark not defined. To further evaluate that point, consider the computed activation barriers for the reactions of coumarin vs. pyrone with *o*-benzyne (Figure 2). A competition experiment (Figure 3b) was performed in which 13 was heated in CDCl₃ in the presence of the excellent trapping reagent furan (2 equiv) and coumarin (10 equiv). Direct NMR analysis of this reaction mixture after 14 h showed quite clean conversion to the furan adduct 17 and that ca. 0.05% of 16a-syn was present (see SI for details). We conclude

that coumarin reacts >1000 more slowly with the benzyne than does furan.

Having established the ability of a HDDA-benzyne to engage coumarin itself, we explored a) several coumarin derivatives (7b-e) as well as b) several aryl-substituted triyne substrates (18a-e) to establish some of the generality of the process. The results are shown in Figure 5. In each instance, only the major syn-isomer of products 16 or 19 was isolated and characterized (although when the crude product mixture was analyzed, a second minor isomer was present).

Figure 5. a) Reactions of triyne **13** with coumarin derivatives (**7a-e**) to produce products **16a-e**. b) Reactions of triynes **18** with coumarin (**7a**) to produce products **19a-e**.

^aIn the case of **19e**, the reaction was performed on a 1 mmol scale and the minor anti-isomer was also isolated and characterized (see SI for details).

We also examined the reaction of a tricyclic coumarin derivative, namely, the benzocoumarin 20a and its brominated analog 20b. These were reacted with the triyne 13 to give the chrysene derivatives 21a-b by processes that closely paralleled those with coumarin itself. The bromo analog 21b readily afforded the phenyl-substituted chrysene 21c. The molecular skeleton of compounds 21 was established by a single crystal X-ray diffraction analysis, which also revealed the twisted⁴ nature of the polycylic indenochrysenone skeleton.

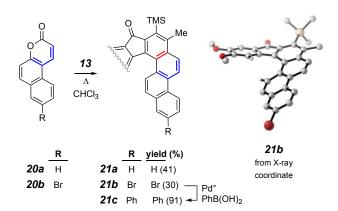


Figure 6. Reactions of triyne 13 with benzocoumarins 20ab to produce the indenochrysenones 21a-b.

Finally, we briefly re-examined the reaction of coumarin with *o*-benzyne (3) itself,²ⁱ here generated via the Kobayashi method.⁵ Most informative was an experiment performed in CD₃CN using the silylated phenyl triflate 22 and CsF in the presence of coumarin (7a, 3 equiv). Direct monitoring of the reaction by ¹H NMR spectroscopy (see SI for details) clearly showed the formation of, principally, phenanthrene (9) along

Figure 7. Reaction of coumarin (**7a**) and *o*-benzyne (**3**) affords phenanthrene (**9**) and biphenylene (**23**). The isolated yield of coeluting hydrocarbon products was 19%; analysis of the reaction mixture directly by ¹H NMR spectroscopy indicates that **9** and **23** were, by far, the major products produced (see SI).

with a lesser amount of the known benzyne dimer, biphenylene⁶ (23), in a ratio of 4.8:1. Thus, 7a is capable of trapping o-benzyne (3) itself, but the reaction rate is relatively slow, because dimerization of two molecules of 3 is competitive, even though the steady-state concentration of 3 is, of course, quite small.⁷

In conclusion, we have described a new mode of aryne reactivity with coumarins. Namely, coumarins and o-benzynes undergo a [4+2] cycloaddition, albeit slowly, followed by a cheletropic ejection of ${\rm CO_2}$ to afford conjugated polyaromatic scaffolds. DFT computations have provided additional mechanistic understanding of some of the elementary steps involved in this class of transformation.

The Supporting Information is available as one PDF and one .cif file free of charge at https://pubs.acs.org/doi/###.

Experimental procedures for preparation of and characterization data for all previously unknown compounds; computational details; copies of ¹H and ¹³C NMR spectra; .cif file for **21b**.

AUTHOR INFORMATION

Corresponding Author

Thomas R. Hoye – Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA; orcid.org/0000-0001-9318-1477

Email: hoye@umn.edu

Authors

Bhavani Shankar Chinta – Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA

Daniel Lee – Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455 USA; orcid.org/0000-0002-7322-1512

Author Contributions

‡These authors contributed equally.

Notes

The authors have no conflicting financial interests.

ACKNOWLEDGMENT

The contributions of Professor R. W. Hoffmann (University of Marburg) through both his Ph.D. thesis research in the laboratory of G. Wittig (e.g., ref 1) and his 1967 classic monograph on "dehydrobenzene" (ref 8) are acknowledged for providing a foundation that has guided an immense amount of ensuing advances in aryne chemistry. Support for this research was provided by the National Institutes of General Medical Sciences (R35 GM127097) and the National Science Foundation (CHE 1665389). Some of the NMR spectral data were recorded using instrumentation funded through the NIH Shared Instrumentation Grant program (S10OD011952). Some of the mass spectrometry data were collected at the Analytical Biochemistry Shared Resource in the Masonic Cancer Center at the University of Minnesota with instrumentation funded in part by a Cancer Center Support Grant (CA-77598).

REFERENCES

ASSOCIATED CONTENT

¹ Wittig, G.; Hoffmann, R. W. Dehydrobenzol aus 1.2.3-Benzothiadiazol-1.l-dioxyd. *Chem. Ber.* **1962**, *95*, 2718–2728.

² (a) Meier, H.; Molz, T.; Merkle, U.; Echter, T.; Lorch, M. Aromatensynthese aus 1,2,3-Selenadiazolen und α -Pyronen. *Liebigs* Ann. Chem. 1982, 914-923. (b) Moody, C. J. Diels-Alder reactivity of pyrano < 3,4-b > indol-3-ones, stable, synthetic equivalents of indole-2,3-quinodimethanes. J. Chem. Soc., Chem. Commun. 1984, 925-926. (c) Moody, C. J. Diels-Alder reactivity of pyrano<3,4-b>indol-3-ones, stable analogues of indole-2,3-quinodimethanes. J. Chem. Soc., Perkin Trans. 1, 1985, 2505–2508. (d) Jackson, P. M.; Moody, C. J. Diels-Alder reactions of 2,3-dimethylenepyrrole analogues; a new synthesis of indoles. J. Chem. Soc., Perkin Trans. 1, 1990, 2156-2158. (e) Pérez, D.; Guitián, E.; Castedo, L. A new approach to the synthesis of antitumor benzophenanthridine alkaloids. Formal synthesis of nitidine. J. Org. Chem. 1992, 57, 5911-5917. (f) Jackson, P. M.; Moody, C. J. Diels-Alder reactions of 1,5-dihydropyrano[3,4b]pyrrol-5(1H)-ones, pyrrole-2,3-quinodimethane analogues; a new synthesis of indoles. Tetrahedron 1992, 48, 7447-7466. (g) Martín, G.; Guitián, E.; Castedo, L.; Saá, J. M. Intermolecular benzyne cycloaddition (IBC), a versatile approach to benzophenanthridine antitumor alkaloids. Formal synthesis of nitidine and chelerythrine. J. Org. Chem. 1992, 57, 5907-5911. (h) Andrews, J. F. P.; Jackson, P. M.; Moody, C. J. Pyrrole-2,3-quinodimethane analogues in the synthesis of indoles. Part 2.1 Synthesis and Diels-Alder reactions of 1,6-dihydropyrano[4,3-b]pyrrol6(1H)-ones. Tetrahedron 1993, 49, 7353–7372. (i) Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. [4+2] Cycloadditions between 2-pyrones and benzyne. Application to the synthesis of binaphthyls. Tetrahedron Lett. 1997, 38, 5375-5378. (j) Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. A new convergent approach to the polycyclic framework of dynemicin A. J. Org. Chem. 1997, 62, 3028-3029. (k) Palacios, F.; Ochoa de Retana, A. M.; Martînez de Marigorta, E.; Manuel de los Santos, J. 2H-Azirines as synthetic tools in organic chemistry. Eur. J. Org. Chem. 2001, 13, 2401–2414. (I) Shah, T. K.; Medina, J. M.; Garg, N. K. Expanding the strained alkyne toolbox: Generation and utility of oxygen-containing strained alkynes. J. Am. Chem. Soc. 2016, 138, 4948-4954. (m) Darzi, E. R.; Barber, J. S.; Garg, N. K. Cyclic alkyne approach to heteroatom-containing polycyclic aromatic hydrocarbon scaffolds. Angew. Chem. Int. Ed. 2019, 58, 9419-9424. (n) Meguro, T.; Chen, S.; Kanemoto, K.; Yoshida, S.; Hosoya, T. Modular synthesis of unsymmetrical doubly-ring-fused benzene derivatives based on a sequential ring construction strategy using oxadiazinones as a platform molecule. Chem. Lett. 2019, 48, 582-585.

³ Fluegel, L. L.; Hoye, T. R. Hexadehydro-Diels-Alder reaction: Benzyne generation via cycloisomerization of tethered triynes. *Chem. Rev.* **2021**, ASAP, DOI: 10.1021/acs.chemrev.0c00825.

⁴ For reviews of helicenes, see: (a) Shen, Y.; Chen, C-F. Helicenes: Synthesis and applications. *Chem. Rev.* **2012**, *112*, 3, 1463–1535. (b) Wang, X-Y.; Yao, X.; Muellen, K. Polycyclic aromatic hydrocarbons in the graphene era. *Sci. China Chem.* **2019**, *62*, 1099–1144. (c) Mori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. *Chem. Rev.* **2021**, ASAP, DOI: 10.1021/acs.chemrev.0c01017.

 5 Himeshima, Y.; Sonoda, T.; Kobayashi, H. Fluoride-induced 1,2-elimination of o-(trimethylsilyl) phenyl triflate to benzyne under mild conditions. *Chem. Lett.* **1983**, *8*, 1211–1214.

⁶ (a) First observation of biphenylene (23) from o-benzyne: Wittig, G.; Pohmer, L. Über das intermediäre Auftreten von Dehydrobenzol. *Chem. Ber.* **1956**, *89*, 1334–1351. (b) Biphenylene (**23**) as a byproduct from (*o*-trimethylsilyl)phenyl triflate: Okuma, K.; Nojima, A.; Nakamura, Y.; Matsunaga, N.; Nagahora, N.; Shioji, K. Reaction of benzyne with formamides and acetylimidazole. *Bull. Chem. Soc. Jap.* **2011**, *84*, 328–332.

⁷ For a more general discussion of biphenylenes from benzynes, see: Takano, H.; Ito, T.; Kanyiva, K. S.; Shibata, T. Recent advances of biphenylene: Synthesis, reactions and uses. *Eur. J. Org. Chem.* **2019**, 2871–2883.

⁸ Hoffmann, R. W., *Dehydrobenzene and Cycloalkynes*, Organic Chemistry; a Series of Monographs 11; Academic Press, New York, 1067