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Abstract. We develop a framework for designing simple and efficient policies for a family
of online allocation and pricing problems that includes online packing, budget-constrained
probing, dynamic pricing, and online contextual bandits with knapsacks. In each case, we
evaluate the performance of our policies in terms of their regret (i.e., additive gap) relative
to an offline controller that is endowed with more information than the online controller. Our
framework is based on Bellman inequalities, which decompose the loss of an algorithm into
two distinct sources of error: (1) arising from computational tractability issues, and (2) arising
from estimation/prediction of random trajectories. Balancing these errors guides the choice
of benchmarks, and leads to policies that are both tractable and have strong performance
guarantees. In particular, in all our examples, we demonstrate constant-regret policies that
only require resolving a linear program in each period, followed by a simple greedy
action-selection rule; thus, our policies are practical as well as provably near optimal.
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1. Introduction
Online decision making under uncertainty is widely
studied across a variety of fields, including operations
research, control, and computer science. A canonical
framework for such problems is that of Markov de-
cision processes (MDPs), with associated use of sto-
chastic dynamic programming for designing policies.
In complex settings, however, such approaches suffer
from the known curse of dimensionality; moreover,
they also fail to provide insights into structural prop-
erties of the problem: the performance of heuristics,
dependence on distributional information, and so on.
These challenges have inspired an alternate ap-
proach to designing approximate policies for MDPs
based on the use of benchmarks—proxies for the
value function that provide bounds for the optimal
policy and guide the design of heuristics. The per-
formance of any policy can be quantified by its ad-
ditive loss, or regret, relative to any such benchmark;
this consequently also bounds the additive optimality
gap, that is, performance against the optimal policy.
In this work, we develop new policies for online
resource-allocation problems: settings where a finite
set of resources is dynamically allocated to arriving

requests, with associated constraints and rewards/
costs. Our baseline problem is the online stochastic
knapsack problem (henceforth OnlineKnapsack): a
controller has initial inventory B, and requests ar-
rive sequentially over horizon T. Each request has a
random type corresponding to a resource requirement-
reward pair. Requests are generated from a known
stochastic process, and are revealed upon arrival; the
controller must then decide whether to accept/reject
each request in order to maximize rewards while satis-
fying budget constraints. We then consider three vari-
ants of this basic setting: (1) online probing, (2) dynamic
pricing, and (3) contextual bandits with knapsacks.
These are widely studied problems, each of which
augments the baseline OnlineKnapsack with additional
constraints/controls. The formal models for these set-
tings are presented in Section 2.

Instead of solving each problem in an ad hoc
manner, however, our policies are all derived from a
single underlying framework. In particular, our re-
sults can be summarized as follows:

Meta-Theorem. Given an online allocation problem, we
identify an appropriate offline benchmark, and give a simple
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online policy—based on solving a tractable optimization
problem in each period—that gets constant regret compared
with the benchmark (and thus, compared with the opti-
mal policy).

In more detail, our approach is based on adaptively
constructing a benchmark that has additional (but
not necessarily full) information about future ran-
domness. Next, in the spirit of online primal-dual
methods, we use our benchmark to construct a fea-
sible online policy. The centerpiece of our approach
are the Bellman inequalities, which characterize what
benchmarks are feasible and decompose the regret
of an online policy into two distinct terms. The first,
which we call the Bellman loss, arises from compu-
tational considerations, specifically, from requiring
that the benchmark is tractable (instead of a dynamic
program that may be intractable). The second, which
we call the information loss, accounts for unpredict-
ability across sample paths. Our policies trade off these
two losses to get strong performance guarantees.

Our framework allows flexibility in choosing bench-
marks. To understand why this is important, consider
two common benchmarks for dynamic pricing: a con-
troller has inventory B, and posts prices for T se-
quential customers, each of which has a random
valuation. One common benchmark, known as the
offline or prophet benchmark, considers a controller
with full information of all randomness. It is easy to
show that no online policy can get better than ((T)
regret against this benchmark. An alternate bench-
mark, known as the ex ante or fluid benchmark, cor-
responds to replacing all random quantities with their
expectations. Here again, no online policy can get
better than Q(VT) regret (Vera and Banerjee 2020).
Our approach, however, lets us identify benchmarks
that have O(1) regret for all our settings.

Prophet and fluid benchmarks are also widely used
in adversarial models of online allocation, leading to
algorithms with worst-case guarantees. In contrast,
we consider stochastic inputs, and consequently get
much stronger guarantees. In particular, all our guar-
antees are parametric and depend explicitly on the
distributions and problem primitives (i.e., constant
parameters defining the instance). All our policies,
however, have regret that is independent of the ho-
rizon and budgets.

2. Preliminaries and Overview

2.1. Problem Settings and Results

We illustrate our framework by developing low-

regret algorithms for the following problems:
Online stochastic knapsack. This serves as a baseline

for our other problems. The controller has an ini-

tial resource budget B, and items arrive sequentially

over T periods. Each item has a random type j,

which corresponds to a known resource requirement
(or weight) w; and a random reward R;. In period t =
T,T-1,...,1 (where t denotes the time-to-go), we
assume the arriving type is drawn from a finite set [1]
from some known distribution p = (p1,...,pn). At the
start of each period, the controller observes the type
of the arriving item, and must decide to accept or
reject the item. The expected reward from selecting a
type-j item is r; = E[R;].

Online probing. As before, an arriving type j has
known expected reward r;, but unknown realized re-
ward R;. Now the controller has the additional option
of probing each request to observe the realization, and
then accept/reject the item based on the revealed reward.
The controller can also choose to accept the item
without probing. In addition to the resource budget B,
the controller has an additional probing budget B,
that limits the number of arrivals that can be probed.
This introduces a trade-off between depleting the
resource budget B and probing budget B,. We assume
here that R; has finite support {rj}xepy of size m, and
define gj:=P[R;=r4] for ke[m]. Note this reduces to
OnlineKnapsack when either B, > T or B, = 0.

Dynamic pricing. The controller has an initial in-
ventory B € N* for d different resources. There are n
types of customers, where a customer of type j re-
quests a specific subset A; € {0,1} of resources, and
has private valuation R’ ~ F;. In each period t, the
controller observes the customer type j € [1], and if
sufficient resources are available, posts a price (fare) f
from a finite set {fj1,...,fjn}. The customer then pur-
chases iff R' > f. The vectors A; and valuation func-
tions (F; : j € [n]) are known, but otherwise arbitrary.
More generally, our technique handles probabilistic
customer-choice models, where a customer, when
presented with a price menu over bundles, picks a
random bundle via some known distribution (which
may depend on the menu).

Knapsack with distribution learning. We return to the
OnlineKnapsack setting where items of type j € [n]
have weight w; and random reward R;. Now, how-
ever, the controller is unaware of the distribution
of R;, and must learn it from observations. In period ¢,
the controller observes the arrival type j, and decides
to accept/reject based on observed rewards up to
time t. We consider two feedback models: full feedback,
where the controller observes R; regardless of whether
the item is accepted or rejected, and censored feedback,
where the controller only observes rewards of ac-
cepted items. For the latter (which is sometimes re-
ferred to as online contextual bandits with knap-
sacks), we assume the rewards R; have sub-Gaussian
tails (Boucheron et al. 2013, section 2.3).

Benchmarks and guarantees. Our framework, Rrabsl
(for resolve and act based on the Bellman inequal-
ities; see Section 3.2) is based on comparing two
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controllers: OrrLINE, which acts optimally given future
information; and a nonanticipative controller ONLINE,
which tries to follow OrrLINE. Both start in the same
initial state ST. We denote v° as the expected total
reward collected by OrrLINE acting optimally (i.e.,
according to a Bellman equation) given its information
structure. In contrast, ONLINE uses a nonanticipative
policy 7 that maps current states to actions, resulting
in a total expected reward v9".

Let mg denote the online policy produced by our
raBBI framework, and 7@ denote any nonanticipative
policy. Then the expected regret of 7ty relative to the
chosen offline benchmark is

E|Regret] := v — 02" > mjx[vﬁn

The last inequality, which follows from the fact that
vo" < v°ff for any pair of benchmark and online poli-
cies, emphasizes that the regret is a bound on the
additive gap with respect to (w.r.t.) the best
online policy.

For all of these problems, we use the rass! frame-
work to identify an appropriate benchmark with
respect to which we get the following guarantees.
First, for the OnlineKnapsack, we recover a result
proved in Arlotto and Gurvich (2019) and Vera and
Banerjee (2020).

Theorem 1 (Theorem 1 in Arlotto and Gurvich 2019). For
known reward distributions with finite mean, an online
policy based on the rasBl framework obtains regret that
depends only on the primitives (n,p,r,w), but is inde-
pendent of the horizon length T and resource budget B.

Theorem 1 builds intuition for using rass1 in more
complex settings. In particular, the benchmark used
in Theorem 1 is the full-information prophet, which
is too loose for obtaining constant regret in the
remaining settings (pricing, probing, and bandits;
see Example 1). This is where our framework helps in
guiding the choice of the right benchmark. In par-
ticular, we obtain the following results.

Theorem 2 (Online Probing). For reward distributions with
finite support of size m, an online-probing policy based on the
RABBI framework (Algorithm 2) obtains regret that depends
only on (n,m, q, p, ), but is independent of horizon length T,
resource budget B and probing budget By.

Theorem 3 (Dynamic Pricing). For any reward distribu-
tions (F; : j € [n]) and prices f, a pricing policy based on the
RABBI framework (Algorithm 3) obtains regret that depends
only on (A,£,Fy,...,F,), but is independent of horizon
length T and initial budget levels B € N°.

The result for dynamic pricing also extends natu-
rally to resource bundles and general customer-choice
models (see Section 5.5 and Theorem 6 therein).

For the bandit settings, we define a separation
parameter 6 = minjzy E[R;]/w; — E[R;]/wy; this is only
for our bounds, and is not known to the algorithm.

Theorem 4 (Knapsack with Distribution Learning). Assuming
the reward distributions are sub-Gaussian, in the full feedback
setting, a policy based on the rasBI framework (Algorithm 5)
obtains regret that depends only on the primitives (n, p,t, w, 0)
and is independent of the horizon length T and knapsack ca-
pacity B.

Thelast result can also be used as a black box for the
censored feedback setting to get an O(logT) regret
guarantee (see Corollary 1 in Section 6.3).

2.2. Overview of Our Framework

We develop our framework in the full generality of
MDPs in Section 3. To give an overview and gain
insight into the general version, we use OnlineKnap-
sack as a warm-up. A schema for the framework is
provided in Figure 1.

In the OnlineKnapsack problem, at any time-to-go t,
let Z]t- € N denote the (random) number of type-j ar-
rivals in the remaining t periods. Recall rewards of
type j arrivals have expected value 7; := E[R;]. Define
OrrLINE to be a controller that knows Z! for all ¢ in
advance. The total reward collected by OrrLINE can be
written as an integer linear program:

V(t, bth) = max {r’x WX, <b,x, < Zt}

X, EN"

= max {r'x.: wx, <bx,+x =2} (1)
Xa, X €N

The function V(:|Z) is thus OrrLINE’s value function
(Figure 1), where the notation |Z' emphasizes that V
is conditioned on Z'. Moreover, for every j, the var-
iables x, j, x; j represent action summaries: the number
of type-j arrivals accepted and rejected, respectively.

The value V(+|Z') can also be represented via Bell-
man equations. Specifically, at time-to-go t, assuming

Figure 1. The rassr Framework

¢ based on problem structure

@

Offline Value Offline Controls

(TIT) (In)

Controls based on ¢ ¢ based on ¢

Online Policy

Notes. We first define OrrLINE’s value function by specifying access to
future information. Next, we identify a tractable relaxation ¢ for
OFrrLINE's value under this same information structure (step I). Finally,
we introduce a nonanticipative estimate ¢ for ¢, and use it to design
online controls (step II). The resulting online policy is evaluated
against OrrFLINE's value (step III).
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OrrLINE has budget b and the arriving type is ¢, the
value function obeys the Bellman equation:

V(t,blZ') = max“réf +V(E-1,b- wg|zt—1)]1wg, <b,

V(- 1,627, b

Next, consider the linear programming relaxation
for V(t,b):

ty .— / - _ 7t
qo(t, b|Z ) = xir/}(?;o {r Xa WX, <b,Xa+Xx, =2 }

It is clear that ¢ is more tractable than V, and that it
approximates V up to an integrality gap. However, ¢
does not obey a Bellman equation. To circumvent
this, we introduce the notion of Bellman inequalities,
wherein we require that ¢ satisfies Bellman-like con-
ditions for most sample paths. Formally, for some
random variables Lg, we want ¢ to satisfy

p(t,blZ") < maX{[réf +o(t-1,b- w£f|zt_1)]]1{wéf§b}/
@(t—1,01Z"")} + Lp(t, b).

Note that, if E[Lg(t, b)] is small, with expectation taken
over Z!, then ¢ almost satisfies the Bellman equations.
We henceforth refer to ¢ as a relaxed value for V and
Lg as the Bellman loss.

Establishing that actions derived from ¢ are nearly
optimal for OrrLINE accomplishes step (I) in Figure 1.
For step (II), we want to emulate OrrLINE by estimating
@ based on current information. A natural estimate
is obtained by taking expectations over future ran-
domness, to get the following:

&(t,b) := max {r’ya Wy, <by, +y, = ]E[Zt]}.
Yar¥:20

Note that ¢ does not approximate V or ¢ up to a
constant additive error (Vera and Banerjee 2020);
however, ¢ can be used as a predictor for the action
taken by OrrLINE. Specifically, at time t with current
budget b, rass first computes @(f,b) and then in-
terprets the solution y as a score for each action
(here, accept/reject). We show that taking the action
with the highest score (i.e., action arg max, ., ,,{ve1,u})
guarantees that ONLINE and OrrLINE play the same ac-
tion with high probability. Whenever OrrLiNE and
ONLINE play different actions, we incur a loss, which
werefer to as the information loss, as it quantifies how
having less information impacts ONLINE's actions. This
process of using ¢ to derive actions is represented as
step (IlI) in Figure 1.

2.2.1. Toward a General Framework. For all the prob-
lems in Section 2.1, our approach uses a similar three-
step process, wherein we choose an OrrLINE benchmark,

identify relaxed value ¢ via appropriate optimization
problem, and get an online policy based on estimate ¢.
Consequently, we refer to our framework as rassi,
which stands for resolve and act based on Bellman
inequalities.

Our work builds on constant-regret policies for mul-
tidimensional packing (Vera and Banerjee 2020), and
more general online optimization problems (Banerjee
and Freund 2020). The techniques developed in these
works, however, have two fundamental shortcom-
ings that prevent them from addressing the settings
we consider:

¢ Use of full-information benchmarks: Existing works
(Arlotto and Gurvich 2019, Banerjee and Freund 2020,
Vera and Banerjee 2020) use the full-information
benchmark, which is too loose for our settings. In-
deed, for probing/pricing/learning settings, no al-
gorithm can have constant regret compared with the
full-information benchmark (see Example 1).

e Explicit value function characterizations: The
optimization problem in Equation (1) has a closed-
form solution, which was used explicitly by Arlotto
and Gurvich (2019), Vera and Banerjee (2020), and
Banerjee and Freund (2020). This does not extend to
more complex settings.

Our framework in this work resolves these short-
comings in a structured way, allowing us to get
provably near-optimal algorithms for several canon-
ical resource-allocation problems. Moreover, we do so
via a generalized notion of information-augmented
benchmarks, and our decomposition of the regret into
the information loss (capturing randomness in inputs)
and Bellman loss (capturing limited computational
power). This flexibility helps greatly in the design of
our algorithms.

2.3. Related Work
Our approach has commonalities with two closely
related approaches:

Prophet inequalities and ex ante relaxations: A well-
studied framework for obtaining performance guar-
antees for heuristics policies is to compare against a
full-information agent, or prophet. This line of work
focuses on competitive-ratio bounds (see Kleinberg
and Weinberg 2012, Correa et al. 2017, Diietting
et al. 2017 for overviews of the area). In particular,
Correa et al. (2017) obtains a multiplicative guarantee
for dynamic posted pricing with a single item under
worst-case distribution. A related line of work con-
siders the use of ex ante linear program (LP) relaxa-
tions (Alaei2014, Buchbinder et al. 2014) for obtaining
worst-case competitive guarantees in online packing
problems. In contrast, we obtain an additive guar-
antee for multiple items in a parametric setting.

MDP dual relaxations: A standard way to get bounds
on MDPs is via information-relaxations, which at a
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high level, create benchmarks by endowing OFFLINE
with additional information, while forcing it to pay a
penalty for using this information. Brown et al. (2010)
and Balseiro and Brown (2019) use this in a dual-
fitting approach to construct performance bounds for
greedy algorithms in different problems. In contrast,
our framework is similar to a primal-dual approach:
we adaptively construct our relaxations, and derive
controls directly from them. We compare the two ap-
proaches in more detail in Online Appendix EC.5.
Moreover, the different problems we apply rasbI to
each have a large body of prior work.

2.3.1. Online Packing. There is a long line of work on
the baseline OnlineKnapsack and generalizations. A
notable work in this line is Jasin and Kumar (2012),
who gives a policy with constant expected regret
when the problem instance is far from a set of certain
nondegenerate instances. This inefficiency, though, is
fundamental, since they use the ex ante (or fluid)
benchmark, which has Q(\/T ) under nondegeneracy.
More recently, Bumpensanti and Wang (2020) par-
tially extend the result of Arlotto and Gurvich (2019)
for more general packing problems; however, their
policy only gives constant regret under independent
and identically distributed (i.i.d.) Poisson arrivals, and
requires the system to be scaled linearly (i.e., B grows
proportional to T). In contrast, Arlotto and Gurvich
(2019) (one dimension) and Vera and Banerjee (2020)
(multiple dimensions) provide constant-regret poli-
cies with no assumption on the scaling. The approach
in the latter is further generalized in Banerjee and
Freund (2020) to handle more complex problems
including bin packing and quality of service (QOS)
constraints. See Vera and Banerjee (2020), Banerjee
and Freund (2020) for more discussion and references.

2.3.2. Probing. Approximation algorithms have been
developed for offline probing problems, both under
budget constraints (Gupta and Nagarajan 2013) and
probing costs (Weitzman 1979, Singla 2018). Another
line of work pursues tractable nonadaptive constant-
factor competitive algorithms for this problem (Gupta
et al. 2016). In terms of online adaptive algorithms,
Chugg and Maehara (2019) introduce an algorithm
with bounded competitive ratio in an adversarial setting.

2.3.3. Dynamic Posted Pricing. This is a canonical
problem in operations management with a vast liter-
ature (see Talluri and Van Ryzin 2006 for an overview).
Much of this literature focuses on asymptotically optimal
policies in regimes where the inventory B and/or ho-
rizon T grow large. When B and T are scaled together
by a factor k, there are known algorithms with regret
that scales as O(Vk) or O(log(k)), depending on as-
sumptions on the primitives (e.g., smoothness of the

demand with price) (Jasin 2014). There is also vast
literature on pricing when the demand function is not
known and has to be learned (Chen et al. 2019). Fi-
nally, under adversarial arrivals, Babaioff et al. (2015)
provide a policy with O((BlogT)*?) regret under
adversarial inputs, as opposed to our O(1) guarantee
under stochastic inputs.

2.3.4. Knapsack with Learning. Multiarmed bandit
problems have been widely studied, and we refer to
Bubeck et al. (2012, 2013) for an overview. Bandit
problems with combinatorial constraints on the arms
are known as bandits with knapsacks (Badanidiyuru
et al. 2018), and the generalization where arms arrive
online is known as contextual bandits with knapsacks
(Badanidiyuru et al. 2014, Agrawal and Devanur
2016). Results in this literature typically study worst-
case distributions. We, in contrast, pursue parametric
regret bounds that explicitly depend on the (unknown)
discrete distribution. Closest to our work is Wu et al.
(2015), who provide a upper confidence bounds
(UCB)-based algorithm that gets O(VT) regret (in
contrast, we get O(log T) regret for the same setting).

3. Approximate Control Policies via

the Bellman Inequalities

In this section, we describe our general framework.
Before proceeding, we introduce some notation. We
work an underlying probability space (Q, X, P), and
for any event B C (3, we denote its complement by 5°.
We use boldface letters to indicate vector-valued
variables (e.g. p,w, etc.), and capital letters to de-
note matrices and/or random variables. For an op-
timization problem (P), we use P to denote its optimal
value. When using LP formulations with decision
variables x, we interchangeably use x;; = x(i, j) to de-
note the (i,j)th component of x.

3.1. Offline Benchmarks and Bellman Inequalities
We consider an online decision-making problem with
state space S and action space U, evolving over pe-
riods t=T,T—1,...,1; here T denotes the horizon,
and f is the time to-go. In any period t, the controller
first observes a random arrival &f € B, following which
it must choose an action u € Y. For system-states € S
at the beginning of period ¢, and random arrival £ € 5,
an action u € U results in a reward R(s,&,u), and
transition to the next state 7 (s, &, u). We assume both
reward and future state are random variables whose
realizations are determined for every u given &. This
assumption is for ease of exposition only; our results
can be extended to hold when rewards or transitions
are random given &.

The feasible actions for state s and input & corre-
spond to the set {u e U : R(s, &, u) > —oo}. We assume
that this feasible set is nonempty for alls € S, & € E,
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and that the maximum reward is bounded, that
iS, SUP,cs sez ey R(s, & 1) < 0.

The MDP described previously induces a natural fil-
tration F, with F; = 6({£" : 7 > t}); a nonanticipative
policy is one thatis adapted to F;. We allow OFrrLINE to
use a richer information filtration G, where G; 2 F;.
Note that since ¢ denotes the time-to-go, we have
Gi—1 2 Gi. Henceforth, to keep track of the information
structure, we use the notation f(:|G;) to clarify that a
function f is measurable with respect to the sigma
field G;.

Given any filtration G, OrrLINE is assumed to play
the optimal policy adapted to G, hence OrrLINE's value
function is given by the following Bellman equation:

V(t,s|G) = rileaux{R(s, &L u)
+E[V(t-1,T (s, &, u)lG)IG]}  (2)

with the boundary condition V(0,-) =0. We denote
the expected value as v°ff := E[V(T, ST|Gr)]. Note that
v°ff is an upper bound on the performance of the
optimal nonanticipative policy.

We present a specific class of filtration (generated
by augmenting the canonical filtration) that suffice
for our applications (see Figure 2 for an illustration
of the definition).

Definition 1 (Canonical Augmented Filtration). Let Gg :=
(Gg : O € ©) be a set of random variables. The canonical
filtration w.r.t. Gg is

Gi=o({e": 121U Ge) 2 7.

The richest augmented filtration is the full-information
filtration, wherein G; = F for all t, that is, the ca-
nonical filtration with Ge = (&' : t € [T]). As G; gets
coarser, the difference in performance between Ore-
LINE and ONLINE decreases. Indeed, when G = F, then
Equation (2) reduces to the Bellman equation for the
value function of an optimal nonanticipative policy:

Vit s|F1) = max{R(s, &', u)
+E[V(t-1,T (s, & u)lFa)]}, V(O,-,) =0,

where the expectation is taken with respect to the next
period’s input &1

Figure 2. Tllustration of Definition 1

Example 1 (Full Information Is Too Loose). Consider a
dynamic pricing instance with n=d =1, prices f =
(1,2), and valuation distribution P[R" =1 + ¢] = p and
P[R" =2+ ¢] =1—-p. When B =T, the optimal policy
always posts a price that maximizes (f-P[R' > f]).
If p > 1/2, then the optimal policy (DP) always posts
price f =1 and has expected reward T. On the other
hand, full information can post price R — ¢ at time  and
extract full surplus v°f = 3, E[R! — ¢] = T(2 - p). Thus,
the regret against full information must grow as Q(T).
This example is not pathological; the same behavior
persists even in random instances (see Section 5.4).

We are now ready to introduce the notion of relaxed
value ¢ and Bellman inequalities. Intuitively, ¢ is
almost defined by a dynamic-programming recur-
sion; quantitatively, whenever ¢ does not satisfy the
Bellman equation, we incur an additional loss Lg,
which we denote the Bellman loss.

Definition 2 (Bellman Inequalities). The family of ran-
dom variables {¢p(t,s)};, satisfies the Bellman in-
equalities w.r.t. filtration G and random variables
{Ls(t,s)}; if p(t,-) and Lg(t, -) are Gi-measurable for all
t and the following conditions hold:

1. Initial ordering: E[V(T, ST)|Gr] < (T, S*|Gr).

2. Monotonicity: Vs € S, t € [T],

¢t s1G:) < max{R(s, &', u)

+E[p(t -1, T (s, &, u)|Gi1)IG:]} + La(t, s).
3)

3. Terminal condition: ¢(0,s) =0Vs € S.

We refer to ¢ and Lp as the relaxed value and
Bellman loss pair with respect to G, and use |G; to
remind the reader that we need the information
contained in G; to evaluate ¢(t,s).

Given any ¢, monotonicity holds trivially with Lg=¢
(but leads to poor performance guarantees). On the
other hand, ¢ (which may be intractable) is the only
value function guaranteeing Lg = 0. The crux of our
approach is to identify a good ¢ balances the loss and
tractability.

A special case is when the Bellman loss is 0 over
sample paths in some chosen set.

~— G

J OO0 - 00

t+1

HNO)

t t—1 t—2

HNO)

Notes. In online probing (see Section 4), arrivals first reveal their public type, then the controller chooses an action (accept/probe/reject), and
then the private type (true reward) is revealed. Squares (respectively, circles) represent public (respectively, private) information. The filtration G
used by rasBl comprises of all public types, that is, Ge = (£? : &9 is a public type). At time t, OrrLINE knows all the information thus far (to the

left and including #), plus the future squares.
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Definition 3 (Exclusion Sets). A set B(t, s) is an exclusion
set if we can write the Bellman loss as Lp(t,s) = 7,131,
for some constant 7, > 0 and events B(t,s) C Q.

If the Bellman loss can be defined with exclusion
sets, then from Definition 2 (monotonicity), we ob-
tain the condition @(t, s|G;) < max,e {R(s, &, u) + E[p}
(t—1,7(s, &, u)|Gi-1)|G:], that is, monotonicity is sat-
isfied for all realizations w € Q except for those in the
exclusion set B(t, s).

To build intuition, we specify the Bellman in-
equalities for our baseline OnlineKnapsack. For this
end, we first need the following lemma characterizing
the sensitivity of LP solutions.

Lemma 1. Consider an LP (P[d]): max{r'x: Mx =d,
x > 0}, where M € R™" is an arbitrary constraint matrix.
If x solves (P[d]) and X; > 1 for some j, then P[d]=
T+ P[d - M]]

Proof. By assumption, the optimal value of (P[d]) remains
unchanged if we add the inequality x; > 1. Therefore, we
have P[d] = max{r'(x + e;) : M(x +e;) =d,x > 0}. O

Lemma 1 lets us divide P[d] into two summands:
the immediate reward r; and the future reward
P[d — M;]. This has the flavor of dynamic program-
ming we need for defining the Bellman loss.

Example 2 (Bellman Loss for Baseline Setting). For the
baseline OnlineKnapsack, discussed in Section 2.2, we
chose the full-information filtration G; = F; for all ¢ so
that @(t,b|Gr) := maxyso{t'Xa : WXa <b, X, +x, =Z'}. We
define the exclusion sets as

B(t,b) = {w € Q: Ax solving ¢(t,b) s.t.x(a, &) > 1
or x(r, &) > 1}.

By Lemma 1, outside the exclusion sets 5(t, b), mono-
tonicity holds with zero Bellman Loss, that is,

P(t,s|Gy) < IIEIE%{X{R(S, &L u)
+E[p(t—1,T (s, &, u)|Gi1)IG]} Vo ¢ Bt,s).

Moreover, for our choice of ¢, since the optimal so-
lution sorts items by 7;/w;, we have that the maxi-
mum loss outside the exclusion set is bounded by
ry < max;{w;r;/w; —r;}, which depends only on the
primitives. Thus, Definition 2 is satisfied with Bell-
man loss Lp(t, b) = 751 1p)-

To generalize this, we need two definitions. First,
we define the maximum Bellman loss as follows.

Definition 4 (Maximum Loss). For a given relaxation ¢,
the maximum loss is given by
Ty = max

_ t
- t,s,u:R(s,ét,u)>—00{(P(t, Slgt) (R(S/ 5 ’ u)

+ ]Ef[(p(f -1, T(S, &, ”)|gt—1)|gt])}-

Next, note that the optimal action in the right-hand
side (RHS) of Equation (3) need not be unique, and
indeed the inequality can be satisfied by multiple
actions. For given ¢ and Lp, we define the following.

Definition 5 (Satisfying Actions). Given a filtration G and
relaxed value ¢, we say that u is a satisfying action for
state s at time ¢ if

P(t,sIG) < R(s, & u) + Elp(t -1,
T (s, &, u)lGi-1)IGe]| + La(t, ). 4)
Atany time t and state s € S, any action in arg max,, .,
{R(s, & u) + E[p(t =1, T (s, &, u)|Gi-1)|G:]} is always a
satisfying action (see monotonicity in Definition 2).
Moreover, to identify a satisfying action, we must
know G;. We now have the following proposition.

Proposition 1. Consider a relaxation ¢ and Bellman loss Lg
that satisfy the Bellman inequalities w.r.t. filtration G. Let
(S',t € [T]) denote the state trajectory under a policy that,
at time t, takes any satisfying action U' = U'(S'|Gy). Then,

T T
DIR(S, &L U > La(t, sf|gt)l.
t=1

t=1

E[V(T,S"|Gr)| - E <E

Proof. From the monotonicity condition in the Bellman
inequalities (Definition 2), and the definition of a sat-
isfying action (Definition 5), we have, for all time ¢, that

o(t, S'1G) <E[R(S, &, U") + ot —1,57"|Gi1)
+Lp(t, S'1G1)|G: |

Iterating this inequality over t, we get ¢(T,
STIGr) < XL, E[R(S, &, U") + Lg(t, S'1Gy)|G:]. Finally,
by the initial ordering condition, we have E[V(T, ST)
Gr] < (T, S"|gr). ©

Proposition 1 shows that a policy that always plays
a satisfying action U’ approximates the performance of
OrrLINE up to an additive gap given by the total Bellman
loss E[ 2, La(t, S'|G:)|- More importantly, it suggests that
ONLINE should try to track OFfrLINE by guessing and
playing a satisfying action U' in each period. We next
illustrate how ONLINE can generate such guesses.

3.2. From Relaxations to Online Policies

Suppose we are given an augmented canonical fil-
tration G; = o({& : 1>t} U Gg), and assume that the
relaxed value ¢ can be represented as a function of
the random variables {&':1>t} UGe as ¢(t,s|G;) =
o(t,s; ft(éT,. .., &1, Ge)). In particular, we henceforth
focus on a special case where ¢ is expressed as the
solution of an optimization problem:

p(tsifiET..., &, Co)) = max (h(xs f(cT,..., &, Go)).

g8, A(E7,..., &, Ge)) < 0}
©)
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The decision variables give action summaries: for
given state s and time t, x,, ¢ represents the number of
times action u is taken for input £ in remaining pe-
riods. We can also interpret x,, ¢ as a score for action u
when input & is presented. Now, to get a nonanticipative
policy, a natural projection of ¢(t, s|G;) on the filtration
F is given via the following optimization problem:

ot sIF) =@t sE[A(ET,..., & Go)lFt])
= max {h(y;s, B[ flF+]) : i(y:s B filF+]) < 0.

(6)

The solution of this optimization problem gives ac-
tion summaries (or scores) y. The main idea of the
raBBI algorithm is to play the action with the high-
est score.

Algorithm 1 RABBI (Resolve and Act Based on Bellman
Inequalities)

Input: Access to functions f; such that ¢(t,s|G;) =
oS fET.. & Ge).
Output: Sequence of decisions U’ for ONLINE.
1: Set ST as the given initial state
2: fort=T,...,1do
3:  Compute
¢(t,S") = p(t, SLE[fi(ET, ..., &, Go)lFi]) with
associated scores y = {yy, ¢ }yerq ez
4:  Given input &/, choose the action (0" with the
highest score y, s
5:  Collect reward R(S!, &, U); update state
g1 T(St, ét’ Ut)

Theorem 5. Let OrrLINE be defined by an augmented fil-
tration G; as in Definition 1. Assume the relaxation ¢(t,s)
satisfies the Bellman inequalities with loss Lg, and for all
(t,a) € [T] xS, let Q(t,s) € Q) denote the set of sample
paths where the action U' taken by rasBI is not a satisfying
action. If (S',t € [T]) denotes the state trajectory under
RABBI, then

E[Regret] <E Z(T‘(P]lg(trsr) + ]lQ(t/5t)CLB (t, St))
t

< Z(rq)IP’[Q(t, S| + E[Ls(t, S')))-

Remark 1 (Bellman and Information Loss). The bound in
Theorem 5 has two distinct summands: The informa-
tion loss > P[Q(t, S')] measures how often raBpI takes
a nonsatisfying action due to randomness in sample
paths; and the Bellman loss 3; E[Lg(t, S)]) quantifies
violations of the Bellman equations made under the
pseudo value function ¢.

The proof of Theorem 5 is based on the compen-
sated coupling approach introduced in Vera and
Banerjee (2020). The idea is to imagine simulating
controllers OrrLINE and ONLINE with identical random
inputs (&' : t € [T]), with ONLINE acting before OFFLINE.

Moreover, suppose at some time ¢, both controllers are
in the same state s. Recall that, for any given state s at
time ¢, an action u is satisfying if OrrLINE’s value does
not decrease when playing u (Definition 5). If ONLINE
chooses to play a satisfying action, then we can make
OrrLINE play the same action, and consequently both
move to the same state. On the other hand, if ONLINE
chooses an action that is not satisfying, then the two
trajectories may separate. We can avoid this, however, by
compensating OFrLINE so that it agrees to take the same
action as ONLINE. In particular, it is always sufficient to
compensate OrrLINE by the maximum loss 7, to ensure
its reward does not decrease by following ONLINE. As a
consequence, the (compensated) OrrLINE and ONLINE
take the same actions, and thus their trajectories
are coupled.

As an example, for OnlineKnapsack with budget
B =2, weightsw; = 1Vj,and horizon T = 5, consider a
sample path w € Q with rewards (&°,&*%, &3, &2, &) =
(5,7,2,7,2). The sample path comprises three differ-
ent types, and the sequence of actions (r,a,r,a,r)
(selecting the value 7 items) is optimal for OFFLINE,
with total reward of 14. Suppose ONLINE, in period
t =5, wants to accept the item with reward & =5;
then, OrrLINE is willing to follow this action if given a
compensation of 2 (in addition to collecting reward 5).
OrrLINE and ONLINE then start the next period t = 4 in
the same state with budget 1, hence remain coupled.

Proof of Theorem 5. Denoting OrrLINE's state as S,
we have via Proposition 1 that V

o(t, 581G, < E[R(S, &, U') + ¢(t - 1,57|Gi1)
+Lg(t, 5G]

Let us assume as the induction hypothesis that S = S'.
This holds for t = T by definition. At any time ¢ and
state S, if (I' isnota satisfying action for OFrLINE, then
we have from the definition of the maximum loss
(Definition 4) that:

ro > @(t, S'1G) - R(S', &, U)
+E[p(t - 1,57"Gi1)IG:])  almost surely.

Now to make OrruiNE take action ' so as to have the
same subsequent state as ONLINE, it is sufficient to
compensate OrrLINE with an additional reward of 7.
Specifically, we have

o(t,S'1G:) <E[R(S', &, T + p(t - 1,57"1Gi1)
+ T’(P]l o(t,5") + ILQ(t,S')CLB(t/ St)lgt]

Finally, as in Proposition 1, we can iterate over f to obtain

E|p(T,STIGr)| < E| > R(S', &, U).
t

+ 27 (rpllos) + LogsyLa(t S))|-
t
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The first sum on the right-hand side corresponds ex-
actly to ONLINE’s total reward using the rassI policy. By
the initial ordering property, E[V(T, ST)] < E[¢(T, S7)],
and we get the result. O

4. Online Probing

We now apply our framework to online probing.
Here, each arrival type j has an independent random
reward R; € {rj : k € [m]} drawn with probabilities
{gi}; r and q are known. We assume without loss
of generality (w.l.o.g.) that 1 <rp <... <7y and
7im > 0. For ease of exposition, we assume that all
arrivals have unit weights; our analysis however
extends to general weights w;. The controller may
accept (a), reject (r), or probe (p) the arrival. Accepting
a type-j item without probing results in expected
reward of 7; := Ye[m Tjxqj- Probing reveals the real-
ized reward, after which it can be accepted or rejected.
The controller has a resource budget B, € N and a
probing budget B, € N. When an arrival is accepted
(respectively, probed), we reduce B, (respectively, B,)
by one.

Formally, we view each time period t € {T, T - 1,...,1}
as comprising of a mini dynamic program with two
stages {t,t —1/2}, driven by external random inputs

t € [n] and &2 € [n] X [m]. In the first stage ¢, the
controller observes the arriving request &=j, and
chooses an action in {a,p,r}; in the second stage
t—1/2, the reward ry (or subtype &2 =(j k)€
[1n] X [m]) is drawn with probability g;, and the avail-
able actions are {a, r} if the first-stage action is p, and @
otherwise. We augment the state space with a variable
o that captures the first-stage decision (i.e., whether
we accept/reject without probing or probe). The
state space S of the controlled process is thus S =
{(by, by, ©) : by, by €N, 0 € {a,p,r,D}}, where by, b, are
the residual hiring and probing budgets. In first stage
of each period, we set o = @, and only collect rewards
in the second stage in each period. See Figure 3 for
an illustration.

4.1. Offline Benchmark and Online Policy for Probing
We now apply the rass1 framework for online probing.

4.1.1. Offline Benchmark. We define OrrLINE to be the
controller that knows the public types of all arrivals in
advance (i.e., it knows Z]t-, the number of type-j items
that will arrive in the last t periods), but does not
know the realization of the rewards (subtypes). For-
mally, OrrLINE is endowed with the canonical filtration
givenby © = [T]and Gy = &Y (see Definition 1): with ¢
steps to go, OrrLINE has the information filtration G; =
o({& e [T} U{&T : T > t}). Note that since OFFLINE
does not know the actual rewards, it still needs to
solve a dynamic program to decide whether to probe
an arrival.

Figure 3. Actions/Transitions in Online Probing in Periods
t,t—1/2, and t— 1, with Inputs & =j and &7V2 =R/

by, —1,b,,a T by, —1,b,, @

/ by —1,b,—1,2
/

by, by, @ ,' by, b, —1,p
by by, — 1,2

t t—1/2 t—1

Notes. Numbers below the arrows represent the reward of a tran-
sition. At t, available actions are {a,p,r} (i.e., accept, probe, reject;
from top to bottom). At t —1/2, if we chose to probe in the first stage
(i.e., are in the middle state), then available actions are {a, r}.

4.1.2. Relaxed Value Function. Since solving for Orr-
LINE's optimal actions may be nontrivial, we next
construct a relaxed value function ¢, using the fol-
lowing LP parametrized by (by, by, z) € N> X RZ:

(P{n, by, 2])

maximize: Z FikXjka + Z TiXja,
Zx]ka + ZX]a <by,
Z ij =
j

subject to:

Xja + Xjp + Xjr = Z;j V] S [11],
Xjka + Xjkr = qiXjp V] € [1] k € [m],
x> 0.

?)

Intuitively, P[by, by, z] can be understood as follows:
given current resource and probing budgets b and
future arrivals z, the decision variables x € R+
represent action summaries, where Xjas Xjr, Xjp afe the
total number of future type-j arrivals that are ac-
cepted without probing, rejected without probing,
and probed, respectively, and Xjr., Xjir are the num-
ber of probed future type-j arrivals that are revealed
to have reward rj, and then accepted/rejected, re-
spectively. The first two constraints implement the
resource budget and probing budget; the third en-
sures the number of type-j items accepted, probed, or
rejected equals arrivals of that type. Finally, the last
constraint guarantees that a gy fraction of probed
type-j items have subtype k (i.e., reward rj).

To construct relaxed value ¢, recall that a state is of
the form s = (by, by, ©) with ¢ € {a, p, r, @}. For period t
(i.e., first stage, o = &), we define ¢(t, (by, by, D)|G;) :=
P[by, by, Z']. For t —1/2 (i.e., second-stage decisions),
we modify ¢ to incorporate the action (a, p, r) taken in
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the first stage. Overall, our relaxation is defined
as follows:

@(t—1/2, (by, by, ©)IGr)
re-ii2 + Pl (by, by), 2~ ] o=a
max{rg-12 + P(bp — 1, by), @®)
iy 2 onp
P65, 2 cox

4.1.3. Value Function Estimate and Online Policy.
Finally, we can use the relaxed value function ¢ in
Section 8 to construct an estimated value function ¢
by replacing Z' with Eg-12[Z']. Using this, we get our
online policy specified in Algorithm 2.

Algorithm 2 (Probing ragsl)
Input: Access to solutions of (P[b, z])
Output: Sequence of decisions for ONLINE.
1: Initialize budgets (BT, BI) « (By, B,)
2: for period t = .,1do
3:  Compute Xt an optnnal solution
to (P[B!, E[Z'])).
4:  Observe the arrival, say it is of type j, then take
action UI' € arg max,_ op r{ W
5 Ifll=rorI'=a: collect Zero or random R;,
respectively.
6: If U' = p: probe the arrival to observe Rj =7y,
then take action argmax,_, {X ] ku}
7:  Update budgets B! accordingly.

Remark 2 (Probing Cost). Our approach can also handle
a setting where the controller has no probing budget,
but instead incurs a penalty ¢; when probing a type-j
arrival. The only change to results and proofs is in the
definition of P[b,Z], where we drop the constraint
involving the probing budget, and modify the objective
to be max{ 3k kXjka + 2 TjXja — 2 CXjp}-

4.2. Regret Analysis for Online Probing

We now provide a brief outline of the proof of
Theorem 2, which guarantees that Algorithm 2 has a
regret that is independent of T, B, and B,. Complete
proofs are provided in online Appendix EC.2.

The main part of the proof involves showing that ¢
as defined in Equation (8) obeys the Bellman in-
equalities (Definition 2) with appropriately chosen
Bellman loss. The first ingredient for this is provided
by the following lemma, which establishes initial
ordering for our relaxed value ¢.

Lemma 2. For any by, by, €N, and arrivals Z, E[V(T,
(bn, bp)IGr)] < El@(T, (by, by, D)|Gr)]-

This follows from a standard argument, where we
argue that any offline policy induces action sum-
maries that satisfy the constraints defining ¢. The
proof is provided in online Appendix EC.2.

The bulk of the work is in establishing monoto-
nicity, which we do via the following lemma. Recall
the definitions of exclusion sets, satisfying actions
and maximum loss (Definitions 3, 4, and 5).

Lemma 3. Let X be a maximizer of (P[(by, by), Z']) for some
period t, and suppose &' = i. Then we have the following
implications for satisfying actions:

1. If X;5 21, then accepting at time t is a satisfy-
ing action.

2. If Xiz > 1, then rejecting at time t is a satisfy-
ing action.

3. If Xip>1, and Y2 =(i,k) is such that either Xy, > 1
or Xjkr > 1, then probing at time t, followed by accepting
(if Xita = 1) or rejecting (if Xikr > 1) at time t —1/2 is a
satisfying action.

Finally ¢ satisfies the Bellman inequalities with Bellman

loss Lg(t, (bn, bp)) = rpL5tp,p,), where Bare exclusion sets
defined as:

B(t, by, by) = {w € Q : AX solution to (P[(by, by), Z'])

s.t. (1) or (2) or (3) hold}.

The proof generalizes the argument in Example 2 for
OnlineKnapsack. We provide a brief outline here, and
defer the details to online Appendix EC.2. First, ob-
serve that the monotonicity condition in Definition 2
translates to the following condition in the online
probing setting:

o(t, (bn, by, D)G1)
< max {Em 12| @(t = 1/2, (S0, 0)Gi-172) |G|}

o€{a,p,r}
Vo ¢ B(t, by, by),

where the state s, = (b, —1,b,) if © = a, 5, = (by,, b, — 1)
if o =p, and s, = (b, by) if o =r. Moreover, given
&' =i, we have from Equation (8) that Eg12[@(t — 1/2,
(So, 0))|Qt_1/2)|gt] = P[(bh,bp), Zt_l] if o = r, and Tet-172 +
P[(by —1,by), Z"'] if © = a. Now for cases (1) and (2),
the claim in the lemma follows directly by invoking
Lemma 1. Finally, case (3) (where X;, > 1) also follows
from using Lemma 1, but in a somewhat more tech-
nical way (see online Appendix EC.2 for details).

Using Lemmas 2 and 3, we can complete the regret
analysis for Algorithm 2.

Proof of Theorem 2. By Theorem 5, we have that
Regret < 7y, 31(1p¢s) + Loes)). To bound this, we
proceed in two steps: bounding the measure of the
exclusion sets B, and the disagreement sets Q. We
conclude using the fact that r, < max;x rj.

To bound the measure of the exclusion sets 3, let X
be the solution to (P[b, Z]), and note that Lemma 3
guarantees that there is zero Bellman loss if (1)
max{Xj., Xj:} > 1,0r(2) X;, > 1and max{}_(jka,)_(jkr} >1.
The exclusion set B(t, b) comprises sample paths where
both (1) and (2) fail.
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Note that any feasible solution to (P[b,Z']) sat-
isfies Xja + Xjp + Xjr = Z! Vj and X, + Xjir = GXp V), k. If
Z; > 3, then one of the variables xj,, X, x;r must be at
least 1. On the other hand, we need gjx;, > 2 to guar-
antee that one of xji,, Xj. is at least 1. Thus we have

6
Bt DIEFY? = (i k an
P[B(t, )& = (j, k)| < P|Z{ < G
6
—P Z]t- — ,Uj(t) < _lllj(t) (1 - lu]-(t)%‘k)l‘
)

Restricting u;(t) >12/g;; to ensure the RHS of Equation (9)
is positive, we can use a standard Chernoff bound (see
Boucheron et al. 2013) to get P[B(t, b)|&2 = (j,k)] <

e 2P + 1 y<12(yq,y- Finally,

SUEB(EB)] < D3 pe )
t T
’ Z %: Pii s121(p))

<> 212
7P

To bound the information loss 3, P[Q(t,S')], recall
Q(t, 5" C Q is the event where ' is not satisfying.
Let X be a solution to (P[b, Z']), t a first stage, and let
j= &' We now have two cases depending on if ' €
{a,r} or U' = p. First, if U’ € {a,r}, then according to
Lemma 3, accepting or rejecting is satisfying when-
ever max{Xj,, X} > 1. Since X'(&/, (') = max{X' (&' u):}
u=aprand X]ta + X}, + Xj, = p(t), we have

PIX(j, ') < 1X'(j, U') = (/3]
< BlIX - X', > (53]
On the other hand, if (I = p, the error is bounded by

i(t
X]p <1or Xér 12, < 1‘ b > ‘u]:_g ) Xét 172
> Qé"l/;fu]'(t) <P HX _ Xt”ooz qé"”;flf(t) )

where u is the action with largest value between the
variables X!(&1/2,a), X{(&71/2, 1).

Thus, regardless of the action I, the probability
of choosing a nonsatisfying action is bounded by
P[||X — X'||, = ming g - pi(t)/6]. Moreover, standard
LP sensitivity results (Mangasarian and Shiau 1987,
theorem 2.4) imply that there exists ¥ depending
on q,n,m alone, such that || X — X'|| < «||Z* - u()),-
Finally, the measure of sets Q where ONLINE chooses a
nonsatisfying action is bounded by

S He )]
< |7 -

H(t)“12 mkinq;k - wj(t)/6%| < oco.

The summability follows arguments presented in
(Vera and Banerjee 2020), based on standard con-
centration bounds.

5. Dynamic Pricing

We now apply our framework to dynamic pricing. In
the basic setting, we have d resources and n customer
types. Each customer type has a private reward for a
set of resources. The controller observes the customer
type, and if the corresponding set of resources is
available, posts a price. The customer then purchases
iff the requested set is available and the posted price is
below the private reward. The resource consumption
is encoded in a matrix A € {0,1}**". In Section 5.5, we
generalize to settings where rather than requesting a
specific set of products, customers choose between
multiple substitute bundles of resources.

We consider the following formal model: at time ¢,
type j € [n] arrives with probability p;, is seen by the
controller, who then posts a price f; from a set of
available prices {fji, . . ., fiu}. The customer then draws
a private reward R’ ~ Fj, and a purchase occurs iff
Rl > fir- If the customer buys, f; is collected and the
inventory decreases by A;. On the other hand, if the
customer does not buy, the controller collects zero
and the inventory remains unchanged.

5.1. Offline Benchmark and Online Policy for
Dynamic Pricing

5.1.1. Offline Benchmark. Note that for each customer
type j, there are Z! arrivals, and hence Z! draws
from the distribution F;. We now define our bench-
mark by considering OFrLINE to be a controller that
knows the realized histogram of these draws, that is,
for each j, OrrLINE knows the empirical distribution of
the Z]-T rewards. Moreover, at the end of each period ¢,
OFrLINE also observes the realized valuation R! whether
there is a sale. Note that OrrLINE does not know the
exact sequence of these rewards, and so is not a full-
information benchmark. For example, say Z! =15
and we reveal that 10 arrivals type-1 have private
reward $1 and five arrivals type-1 have private re-
ward $2. Now, upon observing a type-1 arrival,
OrrLINE concludes that the reward is $2 with proba-
bility % Now if the arrival had value $1, then, the next
time OFrrLINE Observes a type-1, its belief is that the
reward is $2 with probability 2.

Formally, for each j, suppose the prices are or-
dered fji > fz > ... > fyu. Denote &' e[n] to be the
type of the arrival at time t. To define OrFrLINE, We
introduce a sequence of independent random vec-
tors {Y':t=T,T-1,...,1} where YI = Tig=jrish)
in other words, Y/ is the indicator of whether a
price f; or lower is accepted by the type-j at time t. We
define Qy(t) := Zi;Z’;zl Y} to be the fraction of type-j
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customers who accept price f; in the last t periods.
Observe that Q;(t) is a martingale with E[Q;(t)] =
t+1

Fi(f) and Qu(t) = - Qult +1) - £ Y3

OrrLINE’s information is now given by the filtra-
tion G; = 0({Q(7), Z" : T > t}), that is, at every time ¢,
OrrLINE knows the total demand Z! and the empirical
averages Q;(t), but not the sequence of rewards. This
coincides with the canonical filtration (Definition 1)
with variables (le(T),Z].T :j € [n],1 € [m]). The filtra-
tion G is strictly coarser than the full-information
filtration, which would correspond to revealing all
the variables YT, YT=1,..., Y1 instead of their empiri-
cal averages.

5.1.2. Relaxed Value Function. Consider the following
LP, parameterized by (b, q, z):

DI
il

Zaijqjlle <b Vield]
il

(P[b,q,z]) maximize:
subject to:

Zxﬂ +x,=2z Vje[n]
i
x>0
(10)

We define the relaxed value as ¢(t, b|G;) := P[b, Q(t), Z],
and the corresponding estimated value as (¢, b) :=
P[b,q,tp], where g; = I_Tj(fﬂ). The resulting RraBBI
policy is presented in Algorithm 3.

Algorithm 3 (Pricing raBsi)
Input: Access to solutions of (P[b, q,z])
Output: Sequence of decisions for ONLINE.
1: Set BT « B as the given initial budget and
gj1 — F i(fin)
2: fort= ,1do
3 If the arrival is type j and A; £ B': not enough
resources, reject and gotot—1.
4:  Compute X', an optimal solution to
(P[B', q, tp]).
5: Letleargmax{Xt I=1,...,mrx}.Ifl=r,
reject and go tot 1. Else post price f;.
6: If R' > f;, collect fj and B! « B' - Aj;
else B! « B

To get some intuition into the LP (P[b, q, z]), note
that if g; = F;(fy), that is, the probability that price f;
is accepted by a type-j customer and z; is the number
of type-j arrivals, then (P[b, q,z]) can be interpreted
as follows: the variable x; represents the number of
times that price f; is offered, with X;;fg;x; the ex-
pected reward from the corresponding arrivals. Each
time price f; is offered, a;q; units of resource i are
consumed in expectation, and hence ¥;;a;4;x; is the
total expected consumption of resource i. Finally, at

most one price is offered per arrival, which is cap-
tured by X xj + xjr = z;, where x;; is the number of
rejected type-j customers.

5.2. Bellman Inequalities and Bellman Loss
We first argue that our choice of ¢ satisfies the Bell-
man inequalities.

Lemma 4. Let V(T, B|Gr) be the walue of OrrLINE's optimal
policy, and ¢(t,b|G;) = P[b, Q(t), Z'] be the relaxed value
with optimal solution X:

1. The relaxed value satisfies the initial ordering
condition: E[V(T, B|Gr)] < E[¢(T, B|Gr)].

2. If the arriving type is j and max{X;} =1, then
E[Lg(t,b)] < 0.

3. If the arriving type is j and
is a satisfying action.

Xj > 1, then posting fj

We omit the proof of the initial ordering in item (1),
as it is similar to that of Lemma 2. Next we present
the main ingredients for obtaining the monotonicity
property (items (2) and (3)). Complete details are
deferred to online Appendix EC.3. For ease of ex-
position, when the controller rejects, the controller
can equivalently post fi: = oo such that Fi(f;) = 0 with
the convention 0 x co = 0.

We start by recalling the monotonicity condition
(Definition 2). Denote E[-] = E[/|G;]. If the inventory
is b > A;, the random reward of posting price f; at ¢
is j}lY and the random new inventory is b — A; Y],,
thus monotom(:lty corresponds to:

@(t+1,b) < max {Em[; +fP(tb AYM)]}

le[m]u{x}
+ ]Et+l [LB(t + 1, b)]

Because Q is a martingale, we have E,[Y'] = Q(f), and

we can further simplify the condition to:

p(t+1,b) < max {fiQu(t+1)+ Bt b - A" |

+Eq[Lp(t+1,b)].
(11)

Define LB(t +1, b,j, l) = (p(i’ + 1,b) _flejl(t + 1) —Eiq
[p(t, b - A Y“’1 ], which corresponds to the loss in
Equation (11) when we assume a specific price fj is
posted. Recall we define ¢(t+1,b)=P[b,Q(t+1),
Z"1]. Moreover, for an arrival of type j and any so-
lution X of P[b, Q(t + 1), Z"*'], if X; > 1, then using
Lemma 1, we have P[b, Q(t + 1), Z"*'] = f3;Qu(t + 1)+
P[b — A;jQ;(t + 1), Q(t + 1), Z']. Thus, assuming X;; > 1,
we can write the loss in the Bellman inequality as

Ly(t+1,b,7,1) = P[b — A,Qu(t + 1), Q(t + 1), Z']
—IEHl[P[b AY;71,Q(t),zf]]. (12)
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Observe that Ls(t, b, j,[) is characterized by a random
LP that depends on Y*! (which is unknown at time
t+1), see Equation (12). To complete item (2) of
Lemma 4, it remains to prove that Lg(t,b,},I) char-
acterized in (12) satisfies E;[Lg(t, b,j,1)] <0. This is
proved in online Appendix EC.3 by arguing that the
term in (12) is upper bounded by a zero-mean ran-
dom variable.

We can then conclude that, for each [ with Xj; > 1,
Ei[Lp(t+1,b,7,1)] <0, so that ¢(t +1,b) < Eua[f1Qyi
(t+1) + @(t, b — A;Yjf1)], implying that posting price
fir is a satistying action, which is item (3) of Lemma 4.

5.3. Information Loss and Overall

Performance Guarantee
Next we study the disagreement sets Q(t, B') and
bound the information loss 3, P[Q(¢, BY)].

Proposition 2. Let X be a solution of (P[b,Q(t), Z]). If
Xj 2 1, then posting f; is a satisfying action. Furthermore,
the information loss is bounded by P[Q(t, B')] < 1/t for all
t > ¢, where c depends only on (f,p,A,Fi,...,Fp).

We now give an outline of this proof (for details,
refer to online Appendix EC.3). Recall that rassr
chooses [ as the maximum entry of the solution to
(P[b, E[Q(t)], E[Z]), which is a perturbed version of
the object of interest, thus ONLINE needs to guess [
such that Xj; > 1 without the knowledge of Q(t) and Z',
creating an information loss.

To build intuition, consider the case where d =1
and n = 1, that is, selling multiple copies of an item
to homogeneous customers. Since there is only one
type, we drop the index j. Recall fi >...>f, and
g1 <...<gm. It is easy to check that the solution
of P[b, q,t] is as follows: (i) if b < tg1, then x = (b/q1,
0,...,0); (i) ifb > tg,,, thenx = (0,...,0,t); (iii) otherwise,

if be(tq,tq.1], then xp =0 for ' #1,1+1, and x;=
(tqir1 = b) (G — q1),x101 = (b= tq1)(q1+1 — ). Figure 4 il-
lustrates this solution, and also shows that for raBsI’s
guess to be incorrect, Q(t) and E[Q(f)] must deviate
considerably, which the next lemma indicates is un-
likely. This intuition carries over to higher dimensions.

Lemma 5. For any j € [n], there is a constant c; depend-
ing on p; only such that, for any time t, P[max; Qu(t) —

E[Qi(1)] > 5] < &

Proof. From the DKW inequality (Massart 1990) for
empirical measures, we have

_9 127t
P ZH < 2e72Y%,

sup Qs(f) - F(fy) > A

Also for Z{ ~ Bin(t, pj), Ele %] = (1 —p + pe?)'. Set-
ting A = log(t)/t, we get

P sup Qu(t) — F(fn) >

t

log(t)}

<2(1-pi+pe®)  where 6 = 2log(t)/t.
Using the inequality e <1 -6 + 6%/2, an algebraic
check confirms the desired inequality. O

5.3.1. Stability of Left-Hand Side Perturbations. As
stated in Algorithm 3, ONLINE takes actions based on
P[b,E[Q(})], E[Z]], whereas OrrLINE uses P[b, Q(t), Z!].
Therefore, for fixed (f,b), we need to compare solu-
tions of P[b,q,z] to those of P[b,q+ Aq,z+ Az],
where A is the perturbation. Define q = E[Q(t)],
z = E[Z'], Aq = Q(t) - E[Q(t)], and Az = Z' — E[Z!].

Figure 4. (Color online) Solution to the Pricing LP in Equation (10) for the Case d = 1 and n = 1, Which Correspond to Selling

Multiple Copies of an Item to Homogeneous Customers
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Notes. If b/t € (q;,q1+1], the prices used by the LP are f},fi;1 and the amount of time we offer each is piecewise linear in the budget. For a
perturbation q of q, we superpose the solutions with the different parameters. Our guess is incorrect only when ¥, > 1 and x; < 1, which

necessitates a substantial perturbation of q.
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Lemma 6 (Selection Program). Let V; = P[b,q + Aq,z +
Az] and fix a component (j',I'). Then posting price f;; is
satisfying if Ps[Vy, q + Aq,z + Az] > 1, where

PS[V,}, q+Aqz+ Az]

= max{xﬂ, >\ filan + Agp)xp = Vi, x
il
feasible for P|b,q + Aq,z + Az]}.

In other words, Q(t,b,1) = {w € Q: Ps[V[w], Q(t),Z!] < 1}.

Proof. This problem selects, among all the solutions
of P[b, q + Aq, z + Az], one with the largest component
Xjpr. From Lemma 4, we know that if X, > 1, then
posting fy1 is satisfying. O

We have converted the condition “3X solving
Plv,q + Aq,z + Az] with X > 1”7 to an optimization
program. Let X be the solution to the proxy P[b, q, z]
and let v; be the objective value (recall that V; is the
value of P[b,q+ Aq,z+ Az]). Since the algorithm
picks the price with the largest component, assume
Xjr =max; Xy > 1. Inparticular, Ps[v;, q,z] > 1for this
fixed (j/,I'). We want to show that Ps[V,, q+ Aq,z +
Az] > 1 for that particular (j/,'). To that end, we need
tobound the difference between Ps[V}, q + Aq, z + Az]
and Ps[v;, q, z]. This difference depends on (i) v; — V,
(ii) A, and (iii) the dual variables of (Ps[V:, q+ Aq,
z + Az]). Observe that the quantities (i)—(iii) are ran-
dom. We state the result next. The proof is provided
in online Appendix EC.3.

Lemma 7. There is a constant c that depends only on (£, p,
A,Fy,...,Fy)such that, for all t > c, with probability 1 — c/#?,

Ps[V, Q(t), Z'] = Ps[vy, E[Q(H)], E[Z']] 2 —cy/t1og(t).

Lemma 7 leads to the bound in Proposition 2. In-
deed, since the LP in Equation (10) has the constraint
Slefmufzy Xji = tp;, the maximum entry is guaranteed
to have a value of at least tp;/(m +1). Therefore,
by definition of the selection program, Ps[v;, E[Q(t)],
E[Z']] > tp;/(m +1). We know that posting fir is sat-
isfying whenever Ps[V};, Q(t), Z'] > 1 (see Lemma 6),
hence posting the maximum entry is satisfying pro-
vided that tp;/(m + 1) — c4/tlog(t) > 1, which holds for
all t large enough.

5.4. Numerical Simulations

We test our algorithm on two systems, henceforth the
small system and the large system. For each system,
we consider a sequence of instances with increasing
horizons and initial inventories.

The small system corresponds to the one-dimensional
problem (n = 1and d = 1). In this case, we can solve the
DP for small enough horizons and directly compute
the optimality gap. The large system corresponds to a

multidimensional problem with n =20, 4 =25, and
m = 3. The DP solution is intractable for the large
system, yet we can compute the offline benchmark
and compare our algorithm against it. The optimality
gap, recall, is bounded by the offline versus rassI gap.

For the small system, the kth instance has budget
B =6k and horizon T = 20k. For each scaling k, we
run 100,000 simulations. We consider the following
primitives: prices are (1,2,3) and the private reward
R' has an atomic distribution on (1,2, 3) with proba-
bilities (0.3,0.4,0.3). The instance is chosen such that
it is dual degenerate for (10), which is supposedly
the more difficult case (Jasin 2014). For the large
system, the parameters were generated randomly
and are reported in online Appendix EC.6. The kth
instance has horizon T = 100k and budgets B; = 10k
for all i € [25].

For the small system, we consider k small enough
(short horizon) so that we can compute the optimal
policy. This computation becomes intractable already
for moderate values of k (raBsr however scales grace-
fully with k as it only requires resolving an LP in
each period). In Figure 5 (left) we display the gap
between the optimal solution and both the rassr and
OrrLiNE’s value. We make two observations: (i) the
OrrLINE benchmark outperforms the optimal (as it
should), but by a rather small margin; and (ii) raBsr
has a constant regret (i.e., independent of k) relative
to OrrLiNE, and hence constant optimality gap. In
contrast, a full-information benchmark would out-
perform the optimal by too much to be useful.

In Figure 5 (right), we compare rabsi to the optimal
static pricing policy, which has regret Q(vk) (Gallego
and Van Ryzin 1997). In particular, if D(f) denotes
the demand at fare f, we choose the static price to
be the one that maximizes the revenue function
f+-D(f)=f-T-F(f), subject to the constraint D(f) < B.
The solution is the better of two prices: (i) the market
clearing price, that is, that satisfies D(f) = B, or (ii) the
monopoly price, which maximizes fD(f). We note
though that when a continuum of prices is allowed,
Jasin (2014) proposes an algorithm (which, like rABBI,
is based on resolving an optimization problem in
each period) that achieves a regret that is logarithmic
in k under certain nondegeneracy assumptions on
the optimization problem and differentiability as-
sumptions on the valuation distribution. In contrast,
our constant-regret guarantees hold under a finite
price menu.

In Figure 6, we display the results for the large
system. Here, since the DP is intractable, we use the
offline benchmark. The resulting regret is negligible
relative to the total value, as captured by the approxi-
mation factor on the right-hand side of the figure. We
also present the competitive ratio of OrrLINE against the
full-information benchmark (this upper bounds the
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Figure 5. (Color online) Regret in the Small System (n = 1 and d = 1), with Horizon T = 20k and Initial Budget B = 6k, Under

Scaling k = 1,10, 20, ...,340
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competitive ratio of any nonanticipatory policy) and
observe that is bounded away from 1, hence showing
that the full-information benchmark is ((T) away
from the DP in our randomly generated instance,
which confirms the need for our refined benchmark.

5.5. Posted Pricing with Customer Choice

We now consider settings where customers, rather
than requesting a specific product, choose between
multiple substitutes. As a concrete example, consider
a hardware store selling washers and dryers. The
store can set a separate price for a washer, a dryer, and
also for buying a washer-and-dryer bundle (i.e., one
of each). An incoming customer sees the prices and
chooses to buy each of the three options (or nothing
at all) with some probability depending on the price
menu. See Talluri and Van Ryzin (2006, chapter 7) for
details on such customer-choice models. For exposition,

we focus here on a single-customer type, with arbitrary
(but known) customer-choice model.

As before, the controller chooses a price to post for
each product and selling one unit of product j € [n]
depletes resources according to A; € {0, 1}%. Thereis a
discrete set of assortment menus, denoted by A. An
assortment a € A is associated with a vector of prices
(fias---,fua), one price per product. Setting f;, = oo
corresponds to not offering productj. Note that if each
product’s price is restricted to take one of m distinct
values, then there are at most A < m" different as-
sortments. The actual number of relevant assortments
might, however, be much smaller than this.

An arriving customer, when offered assortment «,
chooses to buy product j with a probability pj(a),
with X7, pi(a) =1 (where we use j=0 for the no-
purchase option). These probabilities might be de-
rived, for example, from a standard family such as

Figure 6. (Color online) Performance in the Large System (n = 20 and d = 25) with Horizon T = 100k and Initial Budgets

B; = 10k for i € [25], Under Scaling k =1,2,...,1,000
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benchmark is indeed too loose, as it is Q(T) away from the DP.
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the multinomial-logit model, nested logit model, and
so on; our results do not need any specific structure
on the choice probabilities (although assuming more
structure may lead to better regret scaling with re-
spect to the number of price menus and more efficient
ways of solving the resulting LP relaxation).

The process unfolds as follows: (i) at time ¢, the
controller posts an assortment a € A; (ii) with prob-
ability p;(a), the arriving customer buys one unit of
product j (with product 0 corresponding to no pur-
chase). Now given the choice probabilities, we can
simulate the choice model as follows: we assume w.lL.o.g.
that the customer arriving at time ¢ is endowed with an
iid. random variable &' ~ Uniform(0,1), and assert
that the customer buys product j if &' € [Z],_O pr(a),
Z] _opy(a)]. Note that the order of products here
is arbitrary.

Applying rass to this setting gives the follow-
ing result.

Theorem 6 (Dynamic Pricing with Customer Choice). For
any choice model with probabilities and prices (pj(a), fia :
j € [n], @ € A), raBbl obtains a regret that depends only on
(A,p,f), but is independent of the horizon length T and
initial budget levels B € N*,

5.5.1. Algorithm and Analysis. The following LP ex-
tends Equation (10) to incorporate consumer choice:

2 %a 2 fiatja

acA  je[n]

(P[b,q,z]) maximize:

subject to: > > ajgjaXa <bi Vi€ [d],
acAje[n]
Dixa=t
acA
x> 0.
(13)

Here, gj, stands for the fraction of customers that
would buy product j if presented with the price as-
sortment a. RABBI Te-solves, in each period, this LP with
the expected fraction g, = pj(@). In contrast, OFrLINE
knows Qju(t), the realized fraction of customers that,
given assortment a, would buy product j (formally,
OrrLINE is equipped with the canonical augmented
filtration with variables (Qj(T) :j € [n], @ € A)), and
solves Equation (13) with gj, = Qja(t), where:

1 t
Q]Dt(t) = _Z Y]ta

where Y {Zj by @<E<T]_py(a)}

With the (re)defined key ingredients—namely the LP
in Equation (13) and OrrLINE’s information structure—
it is evident that that the analysis of this expanded

model is identical to that of the basic (no-choice)
pricing setting with obvious changes. For example,
if assortment « is posted at time ¢, the random col-
lected reward is X; Y]t-a fia and the random inventory
at t—11is b— Z]-AjY]t»a. In turn, the Bellman loss in
Equation (12) takes on the following form:

Ly(t+1,b,a) =P

b— > AQu(t+1),Q(t+1),t
j

= Eq|P

P|b - ZA Yirl, Q(t), t”

(14)

Now we have a sum over products j, but the analysis
goes through via linearity of expectations.

5.5.2. Numerical Simulations. We demonstrate our
algorithm for the following simple choice model
with two resources (R1, R2), and three products ({R1},
{R2},{R1, R2}) (for example, a hardware store sell-
ing washers (R1), dryers (R2), or washer-and-dryer
combos {R1,R2}). The controller has initial invento-
ries of each resource, and can choose among one of
seven price assortments: high and low prices with/
without discounts for buying the bundle, and price
menus assuming stock-out of either or both resource.
The price menus and choice probabilities are detailed
in Table 1. We run rassi for this instance while scaling
the horizon and initial inventory (see Figure 7).

6. Online Knapsack with

Distribution Learning
Finally, we consider the distribution-agnostic online
knapsack setting. We study first the full feedback
setting, and in Section 6.3 extend to censored feed-
back. As in the baseline OnlineKnapsack, at each time t,
the arrival is of type j € [n] with known probability p;.
Type j has a known weight w; and random reward R;,
drawn from a distribution F;, with r; := E[R;]. Criti-
cally, we assume r; and F; are unknown to ONLINE.
The reward R; is revealed only after the decision to
accept/reject has been made. At the end of each pe-
riod, we observe the realization of both accepted and
rejected items. In contrast, OrrLINE has access to the
distribution F;, but not to the realizations. We assume
that, before the process starts, we are given one
sample of each type, and with t periods to go, define R]t.
to be the empirical average of the observed rewards
for type-j arrivals.
As in probing, we divide each period t e {T,T —
., 1} into two stages, t and t — 1/2. In the first stage
(i.e., period f), the input reveals the type j € [1], and
in second stages (i.e., period t —1/2), the reward is
revealed. The random inputs are given by &' € [n]
and &'71/2 € R. The state space is S = Ry X {9, 2, r},
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Table 1. Example with Seven Assortments

Parameter Products High High-discount Low Low-discount Only R2 Only R1 Stock-out

fia {R1} 5 5 3 3 0o 5 00
{R2} 5 5 3 3 5 co co
RLR2} 10 9 6 5 ) oo S

pi(a) {R1} 0.2 0.2 0.3 0.3 0 0.2 0
{R2} 0.2 0.2 0.3 0.3 0.2 0 0
{R1,R2} 0.1 0.15 0.2 0.25 0 0 0

Note. We consider high/low prices with and without bundling discount (i.e., buying {R1, R2} is cheaper
than buying each individually). The other assortments can be used if items sell out.

where the first component is the remaining knapsack
capacity. At a first stage, given a state of the form
s = (b,9), we choose action ¢ € {a, r}, reducing the
capacity if ¢ =a. At the second stage, the state is
of the form s = (b, o) with ¢ € {a,r}, and we collect
the reward only if ¢ = a. Formally, the rewards are
R((b,a), E7V2,0) = E712 and R((b, x), E7Y2,@) = 0.

6.1. Offline Benchmark and Online Policy for
Distribution-Agnostic Online Knapsack

To define OrrLINE, @ and @, consider the following LP

parametrized by (b,y,z) € Ryo X R" x RY:

(P[b,y,z]) maximize: Zy]-xj
j
subject to: Z wixja < b,
j

x]'a +x]'r = Z]'
x > 0.

vjeln],

(15)

Note that if the average rewards r were known, then
setting y = r, we get the LP relaxation of Equation (1)
for the baseline OnlineKnapsack. Moreover, for any r,
the optimal LP solution sorts types by their “bang
for the buck” ratios r;/w;, and accepts them greedily.

In particular, the solution only requires knowing the
ranking induced by r.

6.1.1. Offline Benchmark and Relaxed Value Function.
In this setting, we define OrrLINE as the controller
that knows the number of arrivals Z! for each j, and
also knows the ranking of the types (i.e., knows
r]-/w,- V] S [1’1])

Formally, OrrLINE is defined via the filtration Gy =
o({& :t€[T]}U{&" : T > t}). This is a canonical fil-
tration (see Definition 1) with variables (Gg : 6 € ©) =
(& : t € [T]). Observe that the future rewards, corre-
sponding to times t — 1/2, are not revealed. Moreover,
the relaxed value is defined as ¢(t, s|G;) = P[b, r, Z'] for
first stages and

Plb,r, 2] o=r

Q(t—1/2,5|Gy) = {gt—l/Z + P[b, 1, Zt—l] o=a (16)

Remark 3 (MDP Relaxations for Distribution-Agnostic
Settings). We note here that the underlying problem
in this setting does not directly admit an MDP, as the
distribution of rewards is unknown. However, once
we reveal the arrivals to OrrLINE, the relaxation does
admit a well-defined MDP. By benchmarking against
OrrLINE, we bypass the need to explicitly formulate

Figure 7. (Color online) Performance of Pricing rabbi with Customer Choice (See Table 1)
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Notes. We set the horizon as T = 10k and the inventory as (R1, R2) = (3k, 2k), and vary scaling parameter k = 1,...,1,000. (Left) Regret against
OrrLNg, with 90% confidence intervals. (Right) Approximation ratio of rassI against DP.
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an ONLINE control problem with distribution learning
in this setting.

6.1.2. Value Function Estimate and Online Policy.
Recall we define R! to be the empirical average of
the observed rewards for type-j with f periods to go.
We define the estimated value as ¢ = P[B!, R', E[Z']],
resulting in the corresponding online policy given
in Algorithm 4.

Algorithm 4 (Learning raBsl)
Input: Access to solutions of (P[b,y, z])
Output: Sequence of decisions for ONLINE.
1: Set BT « Bas the given initial state and R” as the
single sample of each j.
2: forte{T, T-1,...,1} do
3:  Compute X', an optimal solution to
(P[B, R, E[Z"]]).
4:  Observe the arrival type (context), say &' = j,
and take any action e argmax,,_ ar{ e
5 IfU = a, collect random reward R; and reduce
the budget B! « B' — w;. Else, B! «— B
6: Update empirical averages R'"! based on R
and the observation R;.

6.2. Regret Analysis for Distribution-Agnostic
Online Knapsack

As in the earlier sections, we first demonstrate that ¢

satisfies the Bellman inequalities.

Lemma 8. The relaxation ¢ defined in (16) satisfies the
Bellman inequalities with the following exclusion sets:
B(t,b) = {w € Q : BX solving (P[b,,Z'])
st. Xgto 21 0r Xgtyp > 1}

Proof. The initial ordering in Definition 2 follows from
an argument identical to that of Lemma 2. The
monotonicity property follows from Proposition EC.1
in the online appendix. O

To complete the proof of Theorem 4, we need to
characterize the information loss under Algorithm 4.
The relaxation relies on the knowledge of r (the true
expectation) and Z'. The natural estimators are the
empirical averages R' and expectation pu(t) = E[Z!],
respectively. Specifically, we use maximizers X' of
(P[b, R, u(t)]) to guess those of (P[b, 1, Z']).

The overall regret bound is r,(Regret, + Regret,),
where Regret, and Regret, are two specific sources
of error. When the estimators R’ of r are accurate
enough, the error is Regret, and is attributed to the
incorrect guess of a satisfying action, that is, Regret, is
an algorithmic regret. The second term, Regret,, is
the error that arises from insufficient accuracy of R,
that is, Regret, is the learning regret. The maximum

loss satisfies r, < max;{w;rj/w; — r;} and we can

show that

wmax/wj)2

P]

and

Regret, <2 Z

<16 Z 72 .

7 pi(wo)

In sum, the regret is bounded by (max;{w;r;/w; —1;})-
(wmax/w')z 1

Regret,

Remark 4 (Non-i.i.d Arrival Processes). We used the
ii.d. arrival structure to bound two quantities in the
proof of Theorem 4: (1) P[ [||z" - E[Z"]]| > cE[Z']], and
(2) E[e™¢ ] where, recall, N! is the number of type-j
observations. The result holds for other arrival processes
that admit these tail bounds.

6.3. Censored Feedback

We consider now the case where only accepted ar-
rivals reveal their reward. We retain the assumption
of Theorem 4 that there is aseparation 6 > 0:7; — 7y > 6
for all j # j/, where 7; = E[R;]/w;.

In the absence of full feedback, we will introduce
a unified approach to obtaining the optimal regret
(up to constant factors), that takes the learning method
as a plug-in. The learning algorithm will decide be-
tween explore or exploit actions. Examples of learn-
ing algorithms that also give bounds that are explicit
in f include modifications of UCB (Wu et al. 2015),
e-greedy or simply to set apart some time for ex-
ploration (see Corollary 1).

Recall that o : [n] — [n] is the ordering of [n] w.r.t.
the ratios 7; = r;/w; and 6" : [n] — [n] is the ordering
w.r.t. ratios R} =R//w;. The discrepancy P[o # ']
depends on the plug-in learning algorithm (hence-
forth Banpirs). Banpits receives as inputs the current
state S' (remaining capacity), time, and the natural
filtration F;. The output of Banpits is an action in
{explore,exploit}. If the action is explore, we ac-
cept the current arrival in order to gather information,
otherwise we call our algorithm to decide, as sum-
marized in Algorithm 5. Note that F, has information
only on the observed rewards, that is, accepted items.

Algorithm 5. Bandits raBBI
Input: Access to Banpits and Algorithm 4.
Output: Sequence of decisions for ONLINE.
1: Set ST as the given initial state
2: fort= ,1do
3: Observe 1nput &' and let U « Banprrs(T,t, S, Fy).
4: If U = explore, accept the arrival.
5:  If U = exploit, take the action given by
Algorithm 4.
6: Update state S"! « S' —wy if accept or S «
St if reject.
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Theorem 7. Let Regret, be the regret of Algorithm 4, as
given in Theorem 4. Define the indicators explore;, exploit,
which denote the output of BaNDITS at time t. The regret of
Algorithm 5 is at most r,M, where

M = Regret, + E| > explore;| + E
T

t

> Plo# 6t]exploittl.

The expected regret of Algorithm 5 is thus bounded
by the regret of Algorithm 4 in the full feedback
setting, plus a quantity controlled by Banpits. In the
periods where Banpits says explore (which, in par-
ticular, implies accepting the item), the decision might
be the wrong one (i.e., different from OrrLINE'S). We
upper bound this by the number of exploration pe-
riods. This is the second term in M. The decision might
also be wrong if Banbirs says exploit (in which case
we call Algorithm 4), but the (learned) ranking at
timet, 6!, is different from o’. This is the last term in M.
Finally, even if the learned ranking is correct, exploit
can lead to the wrong guess by Algorithm 4 because
the arrival process is uncertain. This is the first term
in M.

Corollary 1 uses a naive Banpits, which explores
until obtaining (logT) samples and achieves the
optimal (i.e., logarithmic) regret scaling. The con-
stants may be improved by changing the Banpirs
module we use. Any such algorithm has the guar-
antee given by Theorem 7. With the naive Banbrrs, the
bound follows from a generalization of coupon col-
lector (Shank and Yang 2013).

Corollary 1. If we first obtain —8

(w/‘s)z

type j, then we can obtain O(log T) regret, which is optimal

log T samples of every

up to constant factors.

7. Concluding Remarks

We developed a framework that provides rigorous
support to the use of simple optimization problems
as a basis for online resolving algorithms. The frame-
work is based on using a carefully chosen offline
benchmark, which guides the online algorithm. The
regret bounds then follow from our use of Bellman
inequalities and a useful distinction between Bellman
loss and information loss.

As is often the case in approximate dynamic pro-
gramming, the identification of a function ¢ satisfy-
ing the Bellman inequalities requires some ad hoc
creativity but, as our examples illustrate, is often
rather intuitive. In online Appendix EC.1, we pro-
vide sufficient conditions, applicable to cases where
¢ has a natural linear representation, to verify the
Bellman inequalities. These conditions are intuitive
and likely to hold for a variety of resource-allocation
problems. Importantly, once such a function is iden-
tified, our raBsI framework provides a way of obtaining

online policies from ¢, and corresponding re-
gret bounds.

We illustrate our framework on three settings.
First, we consider online probing, which serves as an
instance of a larger family of two-stage decision
problems, wherein there is an inherent trade-off be-
tween getting refined information, and the cost of
obtaining it. Next, we consider dynamic pricing,
which is a well-studied problem, and is representa-
tive of settings where rewards and transitions are
random. Finally, our study of online contextual ban-
dits with knapsacks showcases a separation of the
underlying combinatorial problem from the param-
eter estimation problem.

It is our hope that this structured framework will
be useful in developing online algorithms for other
problems, whether these are extensions of those we
studied here or completely different.
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