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Understanding the nucleon spin structure in the regime 
where the strong interaction becomes truly strong poses a 
challenge to both experiment and theory. At energy scales 
below the nucleon mass of about 1 GeV, the intense interac-
tion among the quarks and gluons inside the nucleon makes 
them highly correlated. Their coherent behaviour causes the 
emergence of effective degrees of freedom, requiring the 
application of non-perturbative techniques such as chiral 
effective field theory1. Here we present measurements of 
the neutron’s generalized spin polarizabilities that quantify 
the neutron’s spin precession under electromagnetic fields 
at very low energy-momentum transfer squared down to 
0.035 GeV2. In this regime, chiral effective field theory cal-
culations2–4 are expected to be applicable. Our data, however, 
show a strong discrepancy with these predictions, present-
ing a challenge to the current description of the neutron’s 
spin properties.

The nucleon is the basic building block of nature, account-
ing for about 99% of the universe’s visible mass. Understanding 
its properties, for example, mass and spin, is therefore crucial. 
Those are mainly determined by the strong interaction, which 
is described by quantum chromodynamics (QCD) with quarks 
and gluons as the fundamental degrees of freedom. The nucleon 
structure is satisfactorily understood at high Q2 (short space–time 
scales; see Fig. 1 for the definition of kinematic variables), because 
there QCD is calculable using perturbation methods (perturba-
tive QCD) and tested by numerous experimental measurements. 
At lower Q2, the strong coupling αs becomes too large for per-
turbative QCD to be applicable5. Yet, calculations are critically 
needed because the strong interaction’s chiral symmetry breaks in 
this region. Chiral symmetry and its breaking is one of the most 
important properties of the strong interaction and is believed to 
lead to the emergence of the nucleon’s global properties. To under-
stand how the underlying structure leads to the emergence of 
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these global properties, non-perturbative methods must be used. 
A method using the fundamental quark and gluon degrees of free-
dom is lattice QCD. However, calculations from this method are 
often intractable for spin observables at low Q2 (ref. 6). Another 
solution is to employ effective theories. Chiral effective field 
theory (χEFT) capitalizes on QCD’s approximate chiral symme-
try and uses the emergent hadronic degrees of freedom. Therein 
lies χEFT’s strengths and challenges: although the nucleon and the 
pion are used for first-order calculations, this is often insufficient 
to describe the data, and heavier hadrons, such as the nucleon’s 
first excited state Δ(1232), become needed. This complicates χEFT 
calculations, and theorists are still seeking the best way to include 
the Δ(1232) in their calculations. It is therefore crucial to perform 
precision measurements at low enough Q2 to test χEFT calcula-
tions. Spin observables, among them the generalized spin polariz-
abilities that are reported here, provide an extensive set of tests to 
benchmark χEFT calculations6.

Polarizabilities describe how the components of an object 
collectively react to external electromagnetic fields. In particu-
lar, spin polarizabilities quantify the object’s spin precession 
under an electromagnetic field. The spin polarizabilities, initially 
defined with real photons, can be generalized to virtual pho-
tons such as those used to probe the neutron in our experiment. 
Accordingly, generalized spin polarizabilities are extracted by 
scattering polarized electrons off polarized nucleons and measur-
ing how the cross-section changes when the relative orientation 
between the electron and nucleon spins is varied (Fig. 1). The 
energy-momentum transferred between the electron and neutron 
is (ν, q), with Q2 = q2 − ν2 characterizing the space–time scale at 
which we probe the neutron. Whereas real photons (Q2 = 0) have 
only transverse polarizations, mediating virtual photons (Q2 ≠ 0) 
are transversely (T) or longitudinally (L) polarized. Thus, two 
contributions to the spin polarizability arise: one from the trans-
verse–transverse (TT) interference called the forward spin polar-
izability γ0(Q2), and the other from the longitudinal–transverse 
(LT) interference, called the longitudinal–transverse interference 
polarizability δLT(Q2), which is available only with virtual photons. 
The additional longitudinal polarization direction and the ensu-
ing interference term offer extra latitude to test theories describing 
the strong interaction.

The theoretical basis to measure δLT(Q2) originates from a work 
of Gell-Mann, Goldberger and Thirring7,8. This work led to relations 

between the cross-sections measured in polarized electron–nucleon 
scattering (Fig. 1) and the spin polarizabilities:

γ0(Q
2
) =

1
2π2

∫

∞

ν0

κγ

ν2
σTT(ν, Q2

)

ν2
dν, (1)

δLT(Q2
) =

(

1
2π2

)
∫

∞

ν0

κγ

νQ
σLT(ν, Q2

)

ν2
dν, (2)

where κγ = ν −

Q2

2M (ref. 9) is the photon flux factor, ν0 is the 
photo-production threshold and σTT and σLT are the TT and LT 
interference cross-sections, respectively. The cross-sections are 
obtained from6,10
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where Δσ∣∣ (Δσ⊥) is the difference between the cross-sections when 
the beam and target spin directions are parallel and antiparal-
lel (perpendicular), α is the electromagnetic coupling constant, 
ε = 1/[1+ 2(1+ Q2

4M2x2 )tan
2
(

θ
2 )] with x =

Q2

2mν
 the Bjorken scaling 

variable and θ the electron scattering angle in the laboratory frame, 
η =

εQ
(E−E′ε)

 and ζ =

η(1+ε)
2ε

. The σTT and σLT (Figs. 2 and 3) were 
integrated according to equations (1) and (2) to obtain γ0(Q2) and 
δLT(Q2). The unmeasured part of the integrals at large ν is often neg-
ligible owing to the ν weighting.

An outstanding feature of δLT(Q2) at low Q2 is that the Δ(1232) 
is not expected to contribute appreciably to the LT interference 
cross-section, because excitation of the Δ(1232) overwhelmingly 
involves transverse photons. This should alleviate the difficulty of 
including the Δ(1232) in χEFT calculations, making them more 
robust. However, the first measurement of δLT(Q2) from Jefferson 
Lab (JLab) experiment E94-010 (ref. 11) done at Q2 ≥ 0.1 GeV2 
strongly disagreed with χEFT calculations12,13. This surprising result, 
known as the ‘δLT puzzle’10, triggered improved χEFT calculations14 
that now explicitly include the Δ(1232) (ref. 2–4), and measurements 
of δLT at lower Q2 where χEFT can be best tested. New data of δLT on 
the neutron at very low Q2, which were taken during experiment 
JLab E97-110, are presented next.

Equation (2) allows the measurement of δnLT(Q2
) (where the 

superscript n indicates neutron quantities) by scattering polar-
ized electrons off polarized neutrons in 3He nuclei. The data were 
acquired in Hall A15 of JLab during experiment E97-110 (ref. 16). 
The probing virtual photons were produced by a longitudinally 
polarized electron beam during its scattering off a polarized 3He 
target15. The beam polarization, flipped pseudo-randomly at 
30 Hz and monitored by Møller and Compton polarimeters, was 
(75.0 ± 2.3)%. The beam energies ranged from 1.1 GeV to 4.4 GeV 
and the beam current was typically a few μA. As free neutrons are 
unstable, we used 3He nuclei as an effective polarized neutron tar-
get. To first order, polarized 3He nuclei can be treated as effective 
polarized neutrons together with unpolarized protons because 
the 3He nucleons (two protons and one neutron) are mostly in an 
S state, and so the Pauli exclusion principle dictates that in the S 
state the proton spins point oppositely, yielding no net contribu-
tion to the 3He spin. The gaseous (~12 atm) 3He was contained in a 
40-cm-long glass cylinder and polarized by spin-exchange optical 

Virtual photon
q μ = (ν, q)

Incident
electron

Scattered  
electron

k′μ = (E′, k′)

k μ = (E, k)

Target
neutron
P μ = (M, 0)

Fig. 1 | Electron scattering off a neutron by the one-photon exchange 
process. The four-momenta of the incident and the scattered electrons 
are kμ = (E, k) and k′μ = (E′, k′), respectively, and that of the photon 
is qμ = (ν, q). The neutron, at rest in the laboratory frame, has a 
four-momentum Pμ = (M, 0). The arrows ↑↓ represent the spin direction 
of the incident electron and ⇑ that of the neutron. The generalized spin 
polarizabilities of the neutron can be measured when both the incident 
electron and the neutron are polarized.
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pumping of rubidium atoms. Helmholtz coils provided a longitu-
dinal or transverse 2.5 mT field used to maintain the polarization, 
to orient it longitudinally or transversely (in-plane) to the beam 
direction and to aid in performing polarimetry. The average tar-
get polarization in-beam was (39.0 ± 1.6)%. The scattered electrons 
from the reaction 3−→He(−→e , e′) were detected by a high-resolution 
spectrometer15 supplemented by a dipole magnet17, which allowed 
us to detect electrons scattered at angles down to 6°. Behind the 
high-resolution spectrometer, drift chambers provided particle 
tracking, scintillator planes enabled the data acquisition trigger, 
and a gas Cherenkov counter and electromagnetic calorimeters 
ensured the identification of the particle type.

The measured σTT (σLT) on 3He is shown in Fig. 2 (Fig. 3). Its 
values with their uncertainties are available in the Supplementary 
Information. Although polarized 3He nuclei are effectively polarized 
neutrons to good approximation, nuclear corrections are needed 
to obtain genuine neutron information. The prescription of ref. 18 
was used for the correction. The effect of the nuclear correction, 
which can be obtained from Supplementary Tables 1–3, is relatively 
small. In particular it does not appreciably affect the Q2 trend seen 
for the uncorrected 3He integrals. The relative uncertainty on this 
correction is estimated to be 6% to 14% relative to the correction, 
the higher uncertainties corresponding to our lowest Q2 values. The 
quasi-elastic contamination was corrected following the procedure 
described in ref. 16. The correction is small for δnLT but important 
for γn0, and was estimated using ref. 19. No calculation uncertainty 
is provided in ref. 19 and using another quasi-elastic calculation20 
may shift the lowest-Q2 γn0 data points by as much as our total sys-
tematic uncertainty. The other main systematic uncertainties come 
from the absolute cross-sections (3.5% to 4.5%), target and beam 
polarizations (3% to 5% and 3.5%, respectively) and radiative cor-
rections (3% to 7%).

Our δnLT(Q2
) data are shown in the left panel of Fig. 4. They agree 

with earlier data from E94-010 at larger Q2 (ref. 11) and reach much 
lower Q2 where the χEFT is expected to work well. The measure-
ment results can be compared to those of χEFT calculations2,4,12,13 
and of a model parameterization of the world photo-production 
and electro-production data called MAID21. Earlier χEFT calcula-
tions12,13 used different approaches (heavy baryon and relativistic 
baryon chiral perturbation theory, or HBχPT and RBχPT, respec-
tively), and furthermore they either neglected the Δ(1232) degrees 
of freedom or included it approximately. Newer calculations2–4, 
which are all fully relativistic, account for the Δ(1232) explicitly 
by using a perturbative expansion, but they differ in their choice 
of expansion parameter. Despite this theoretical improvement and 
the small-Q2 reach that places our data well in the validity domain 
of χEFT, our δnLT(Q2

) starkly disagrees with the predictions. This is 
even more surprising because the latest χEFT calculations of δnLT 
agree with each other, suggesting that calculations for this particular 
observable should be under control. However, our data reveal an 
opposite trend with Q2 to that of all the χEFT calculations.

This startling discrepancy demanded further scrutiny of our 
data. They are compatible with the E94-010 data where they over-
lap. This is also true for γn0(Q2

), which we measured concurrently 
and show in the right panel of Fig. 4. The measured γn0(Q2

) data also 
agree with data from experiment EG1 of the Continuous Electron 
Beam Accelerator Facility (CEBAF) large acceptance spectrometer 
(CLAS)22, for which a target and detectors were used that are very 
different from those of E97-110 and E94-010. Our γn0(Q2

) data gen-
erally disagree with χEFT calculations. As γ0(Q2) does not benefit 
from the suppression of the Δ(1232) contribution, and as γn0(Q2

) 
predictions do not reach a consensus, this disagreement is not 
entirely surprising, in contrast to the unexpected δnLT(Q2

) disagree-
ment. Interestingly, we can also study with our data the Schwinger 
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Fig. 2 | The transverse–transverse cross-section σTT(ν, Q2) for 3He. The data are displayed at the Q2 values at which they are integrated to form γ0 (equation 
(1)). The error bars, sometimes too small to be visible, represent the statistical uncertainties. The systematic uncertainty is indicated by the band at the 
bottom of each panel. The nuclear corrections providing the neutron information from the 3He data are applied after the integration. The prominent negative 
peak at small ν is the Δ(1232) contribution.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


Letters Nature Physics

20 Q 2 = 0.035 GeV2

Q 2 = 0.079 GeV2

Q 2 = 0.150 GeV2

Q 2 = 0.057 GeV2

Q 2 = 0.100 GeV2

Q 2 = 0.200 GeV2

Systematic uncertainties

Q 2 = 0.240 GeV2

50

25

Ð25

σ LT
 (µ

b)
σ LT

 (µ
b)

σ LT
 (µ

b)
σ LT

 (µ
b) σLT (ν, Q 2)

20

Ð20

Ð10

500 1,000 1,500 2,000 2,500 3,000 500 1,000 1,500 2,000 2,500 3,000
ν (MeV) ν (MeV)

0

20

10

0

0

Ð20

Ð40

0

Fig. 3 | The longitudinal–transverse interference cross-section σLT(ν, Q2) for 3He. The data are displayed at the Q2 values at which they are integrated into 
δLT(Q2) (equation (2)) or ILT(Q2) (equation (5)). The error bars represent the statistical uncertainties. The systematic uncertainty is indicated by the band 
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curve), which is a fit to world resonance data. For the E97-110 data, the inner error bars, sometimes too small to be visible, represent the statistical 
uncertainties. The outer error bars show the combined statistical and uncorrelated systematic uncertainties. The correlated systematic uncertainty is 
indicated by the band at the bottom. For the other experimental data, the error bars show the statistical and systematic uncertainties added in quadrature. 
Right: the generalized forward spin polarizability γn0(Q2), using the same symbols as in the left panel. The asterisks represent the CLAS data22.
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relation23, which has a similar definition but without ν−2 weighting 
in its integrand:

ILT(Q2
) ≡

(

M2

απ2

)
∫
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ν0

[κγ
σLT(ν, Q2

)

Qν
]

Q=0
dν. (5)

Schwinger predicted that Q2
→ 0 ILT(Q2

)→ κet , with κ the anom-
alous magnetic moment of the target particle and et its electric 
charge. This prediction is general; for example, it does not use χEFT. 
ILT(Q2) has no ν−2 weighting, and therefore the large ν contribution 
to the integral is not negligible. As this contribution to the inte-
gral cannot be measured, a parameterization based on the model 
described in ref. 24 completed by a Regge-based parameterization25 
for the largest ν part was used to extrapolate it. Our measurement 
of InLT(Q2

) is shown in Fig. 5. Our measurement of InLT(Q2
) without 

the Regge-based parameterization25 for the large ν part (open sym-
bols), which is suppressed in δLT(Q2), displays a pattern similar to 
that of δnLT(Q2

). The Gerasimov–Drell–Hearn (GDH) relation26,27 
can be used to extrapolate our InLT(Q2

) to Q2 = 0; provided that the 
GDH relation is valid, which is widely expected and supported by 
dedicated experimental studies28, our data satisfy Schwinger’s pre-
diction that InLT(0) = 0 (ref. 23). Our trend contrasts with the MAID 
model and presumably the χEFT calculations, as MAID tracks 
those (Fig. 4). This suggests that the problem lies in the theoretical 
description of the neutron structure. The measured ILT(Q2) displays 
a Q2 behaviour similar to that of δLT, irrespective of the different ν 
weighting. Other integrals without ν−2 weighting that were formed 
using our data and reported in ref. 16 did not display the surpris-
ingly strong disagreement with the predictions seen here. The val-
ues of γn0, δnLT and InLT with their uncertainties are available in the 
Supplementary Information.

Our data indicate that both the TT and LT interferences of the 
electromagnetic field’s components induce a clear spin precession 
of the neutron. All calculations and models predicted that the LT 

term influence should intensify at small Q2, but our data reveal 
the opposite trend. This notable disagreement is perplexing as 
our measurements were done well into the domain where χEFT is 
expected to describe reliably the nucleon properties, especially the 
‘gold-plated’ δLT. Lattice QCD calculations of δLT(Q2) are possible29 
but not yet available. Our data motivate such calculations as the 
measured generalized spin polarizabilities underline a current lack 
of reliable quantitative descriptions of the strong interaction at the 
nucleon-size scale.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-021-01245-9.

Received: 8 January 2021; Accepted: 9 April 2021;  
Published: xx xx xxxx

References
	1.	 Bernard, V., Kaiser, N. & Meissner, U.-G. Chiral dynamics in nucleons and 

nuclei. Int. J. Mod. Phys. E 4, 193–346 (1995).
	2.	 Bernard, V., Epelbaum, E., Krebs, H. & Meissner, U.-G. New insights into the 

spin structure of the nucleon. Phys. Rev. D 87, 054032 (2013).
	3.	 Lensky, V., Alarcón, J. M. & Pascalutsa, V. Moments of nucleon structure 

functions at next-to-leading order in baryon chiral perturbation theory. Phys. 
Rev. C 90, 055202 (2014).

	4.	 Alarcón, J. M., Hagelstein, F., Lensky, V. & Pascalutsa, V. Forward 
doubly-virtual Compton scattering off the nucleon in chiral perturbation 
theory. II. Spin polarizabilities and moments of polarized structure functions. 
Phys. Rev. D 102, 114026 (2020).

	5.	 Deur, A., Brodsky, S. J. & de Téramond, G. F. The QCD running coupling. 
Prog. Part. Nucl. Phys. 90, 1–74 (2016).

	6.	 Deur, A., Brodsky, S. J. & de Téramond, G. F. The spin structure of the 
nucleon. Rep. Prog. Phys. 82, 076201 (2019).

	7.	 Gell-Mann, M., Goldberger, M. L. & Thirring, W. E. Use of causality 
conditions in quantum theory. Phys. Rev. 95, 1612–1627 (1954).

	8.	 Guichon, P. A. M., Liu, G. Q. & Thomas, A. W. Virtual Compton  
scattering and generalized polarizabilities of the proton. Nucl. Phys. A 591, 
606–638 (1995).

	9.	 Hand, L. N. Experimental investigation of pion electroproduction. Phys. Rev. 
129, 1834–1846 (1963).

	10.	Chen, J.-P. Moments of spin structure functions: sum rules and 
polarizabilities. Int. J. Mod. Phys. E 19, 1893–1921 (2010).

	11.	Amarian, M. et al. Measurement of the generalized forward spin 
polarizabilities of the neutron. Phys. Rev. Lett. 93, 152301 (2004).

	12.	Bernard, V., Hemmert, T. R. & Meissner, U.-G. Spin structure of the nucleon 
at low-energies. Phys. Rev. D 67, 076008 (2003).

	13.	Kao, C. W., Spitzenberg, T. & Vanderhaeghen, M. Burkhardt-Cottingham sum 
rule and forward spin polarizabilities in heavy baryon chiral perturbation 
theory. Phys. Rev. D 67, 016001 (2003).

	14.	Hagelstein, F., Miskimen, R. & Pascalutsa, V. Nucleon polarizabilities:  
from Compton scattering to hydrogen atom. Prog. Part. Nucl. Phys. 88,  
29–97 (2016).

	15.	Alcorn, J. et al. Basic instrumentation for Hall A at Jefferson Lab. Nucl. 
Instrum. Methods Phys. Res. A 522, 294–346 (2004).

	16.	Sulkosky, V. et al. Measurement of the 3He spin-structure functions and of 
neutron (3He) spin-dependent sum rules at 0.035 ≤ Q2 ≤ 0.24 GeV2. Phys. Lett. 
B 805, 135428 (2020).

	17.	Garibaldi, F. et al. High-resolution hypernuclear spectroscopy at Jefferson 
Lab, Hall A. Phys. Rev. C 99, 054309 (2019).

	18.	Ciofi degli Atti, C. & Scopetta, S. On the extraction of the neutron spin 
structure functions and the Gerasimov–Drell–Hearn integral from 
3−→He(−→e , e′)X  data. Phys. Lett. B 404, 223–229 (1997).

	19.	Deltuva, A., Fonseca, A. C. & Sauer, P. U. Momentum-space treatment of 
Coulomb interaction in three-nucleon reactions with two protons. Phys. Rev. 
C 71, 054005 (2005).

	20.	Golak, J. et al. Proton polarizations in polarized 3He studied with the 3He (e, 
e-prime p) d and 3He (polarized-e, e-prime p) pn processes. Phys. Rev. C 72, 
054005 (2005).

	21.	Drechsel, D., Hanstein, O., Kamalov, S. S. & Tiator, L. A unitary isobar model 
for pion photo- and electroproduction on the proton up to 1 GeV. Nucl. Phys. 
A 645, 145–174 (1999).

Q2 (GeV2)

0 0.1 0.2 0.3

In LT
 (
Q

2 )

–2

−1

0

1

2

E97-110 resonance

MAID 2007

E97-110 total

GDH Γ1 + FF param.

Schwinger

relation

Fig. 5 | The Schwinger integral InLT(Q
2). The open symbols are our results 

without the large ν part of ILT. The filled blue circles are our results for 
the full ILT, using an estimate for the large ν contribution. The inner error 
bars represent the statistical uncertainties. The outer error bars show 
the combined statistical and uncorrelated systematic uncertainties. The 
correlated systematic uncertainty is indicated by the band. The Schwinger 
relation23 for the neutron predicts that InLT(0) = 0 at Q2 = 0. The solid line 
shows the MAID model21, which is a fit to world resonance data (to be 
compared to the open symbols). The dashed line uses the GDH (Γ1)26,27 
and Burkhardt–Cottingham30 relations, together with an elastic form factor 
parameterization (FF param.)31, to obtain InLT(Q2) for Q2 → 0.

Nature Physics | www.nature.com/naturephysics

https://doi.org/10.1038/s41567-021-01245-9
https://doi.org/10.1038/s41567-021-01245-9
http://www.nature.com/naturephysics


Letters Nature Physics

1William & Mary, Williamsburg, VA, USA. 2Thomas Jefferson National Accelerator Facility, Newport News, VA, USA. 3University of Virginia, Charlottesville, 
VA, USA. 4Duke University and Triangle Universities Nuclear Laboratory, Durham, NC, USA. 5Argonne National Laboratory, Lemont, IL, USA. 6Yerevan 
Physics Institute, Yerevan, Armenia. 7California State University, Los Angeles, Los Angeles, CA, USA. 8Massachusetts Institute of Technology, Cambridge, 
MA, USA. 9LPC Clermont-Ferrand, Université Blaise Pascal, CNRS/IN2P3, Aubière, France. 10Temple University, Philadelphia, PA, USA. 11Florida 
International University, Miami, FL, USA. 12University of Maryland, College Park, MD, USA. 13Istituto Nazionale di Fisica Nucleare, Rome, Italy. 14Istituto 
Nazionale di Fisica Nucleare, Sezione di Bari and University of Bari, Bari, Italy. 15Longwood University, Farmville, VA, USA. 16University of Kentucky, 
Lexington, KY, USA. 17Istituto Superiore di Sanità, Rome, Italy. 18Rutgers, The State University of New Jersey, Piscataway, NJ, USA. 19Kharkov Institute 
of Physics and Technology, Kharkov, Ukraine. 20Old Dominion University, Norfolk, VA, USA. 21University of New Hampshire, Durham, NH, USA. 22Cairo 
University, Giza, Egypt. 23University of Massachusetts Amherst, Amherst, MA, USA. 24Kyungpook National University, Daegu, South Korea. 25University 
of Saskatchewan, Saskatoon, SK, Canada. 26DAPHNIA/SPhN, CEA Saclay, Gif-sur-Yvette, France. 27Department of Modern Physics, University of Science 
and Technology of China, Hefei, China. 28Randolph–Macon College, Ashland, VA, USA. 29Jožef Stefan Institute, University of Ljubljana, Ljubljana, Slovenia. 
30Norfolk State University, Norfolk, VA, USA. 31Florida State University, Tallahassee, FL, USA. 32Faculty of Mathematics and Physics, University of Ljubljana, 
Ljubljana, Slovenia. 33Kent State University, Kent, OH, USA. 34LPSC, Université Joseph Fourier, CNRS/IN2P3, INPG, Grenoble, France. 35Deceased: John M. 
Finn, Cornelis W. de Jager, Salvatore Frullani, Milan Potokar, Arun Saha, Patricia Solvignon, Ramesh Subedi. ✉e-mail: deurpam@jlab.org

	28.	Helbing, K. The Gerasimov–Drell–Hearn sum rule. Prog. Part. Nucl. Phys. 57, 
405–469 (2006).

	29.	Chambers, A. J. et al. Nucleon structure functions from  
operator product expansion on the lattice. Phys. Rev. Lett. 118,  
242001 (2017).

	30.	Burkhardt, H. & Cottingham, W. N. Sum rules for forward virtual Compton 
scattering. Ann. Phys. 56, 453–463 (1970).

	31.	Ye, Z., Arrington, J., Hill, R. J. & Lee, G. Proton and neutron electromagnetic 
form factors and uncertainties. Phys. Lett. B 777, 8–15 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

	22.	Guler, N. et al. Precise determination of the deuteron spin structure at low to 
moderate Q2 with CLAS and extraction of the neutron contribution. Phys. 
Rev. C 92, 055201 (2015).

	23.	Schwinger, J. S. Source theory viewpoints in deep inelastic scattering. Proc. 
Natl Acad. Sci. USA 72, 1–5 (1975).

	24.	Adhikari, K. P. et al. Measurement of the Q2 dependence of the deuteron spin 
structure function g1 and its moments at low Q2 with CLAS. Phys. Rev. Lett. 
120, 062501 (2018).

	25.	Bass, S. D., Skurzok, M. & Moskal, P. Updating spin-dependent Regge 
intercepts. Phys. Rev. C 98, 025209 (2018).

	26.	Gerasimov, S. B. A sum rule for magnetic moments and the damping of the 
nucleon magnetic moment in nuclei. Sov. J. Nucl. Phys. 2, 430–433 (1966).

	27.	Drell, S. D. & Hearn, A. C. Exact sum rule for nucleon magnetic moments. 
Phys. Rev. Lett. 16, 908–911 (1966).

Nature Physics | www.nature.com/naturephysics

mailto:deurpam@jlab.org
http://www.nature.com/naturephysics


LettersNature Physics

Data availability
All experimental data that support the findings of this study are provided in the 
Supplementary Information or are available from J.P.C. (jpchen@jlab.org), A.D. 
(deurpam@jlab.org), C.P. (cpeng@jlab.org) or V.S. (vasulk@jlab.org) upon request.

Code availability
The computer codes that support the plots within this paper and the findings of this 
study are available from J.P.C. (jpchen@jlab.org), A.D. (deurpam@jlab.org), C.P. (cpeng@
jlab.org) or V.S. (vasulk@jlab.org) upon request.

Acknowledgements
All authors are members of The Jefferson Lab E97-110 Collaboration. We acknowledge 
the outstanding support of the Jefferson Lab Hall A technical staff and the Physics and 
Accelerator Divisions that made this work possible. We thank A. Deltuva, J. Golak, F. 
Hagelstein, H. Krebs, V. Lensky, U.-G. Meißner, V. Pascalutsa, G. Salmè, S. Scopetta 
and M. Vanderhaeghen for useful discussions and for sharing their calculations. We are 
grateful to V. Pascalutsa and M. Vanderhaeghen for suggesting a comparison of the data 
to the Schwinger relation. This material is based upon work supported by the United 
States Department of Energy, Office of Science, Office of Nuclear Physics under contract 

DE-AC05-06OR23177 and by the United States National Science Foundation under 
grant PHY-0099557.

Author contributions
The members of the Jefferson Lab E97-110 Collaboration constructed and operated the 
experimental equipment used in this experiment. All authors contributed to the data 
collection, experiment design and commissioning, data processing, data analysis or 
Monte Carlo simulations. The following authors especially contributed to the main data 
analysis: J.P.C., A.D., C.P. and V.S.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41567-021-01245-9.

Correspondence and requests for materials should be addressed to A.D.

Peer review information Nature Physics thanks Mohammad Ahmed, Jan Friedrich and 
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Physics | www.nature.com/naturephysics

https://doi.org/10.1038/s41567-021-01245-9
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region

	Online content

	Fig. 1 Electron scattering off a neutron by the one-photon exchange process.
	Fig. 2 The transverse–transverse cross-section σTT(ν, Q2) for 3He.
	Fig. 3 The longitudinal–transverse interference cross-section σLT(ν, Q2) for 3He.
	Fig. 4 The generalized spin polarizabilities and .
	Fig. 5 The Schwinger integral .




