2276

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Optimal Adversarial Policies in the Multiplicative
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Abstract— We consider a learning system based on the con-
ventional multiplicative weight (MW) rule that combines experts’
advice to predict a sequence of true outcomes. It is assumed that
one of the experts is malicious and aims to impose the maximum
loss on the system. The system’s loss is naturally defined to be the
aggregate absolute difference between the sequence of predicted
outcomes and the true outcomes. We consider this problem under
both offline and online settings. In the offline setting where the
malicious expert must choose its entire sequence of decisions
a priori, we show somewhat surprisingly that a simple greedy
policy of always reporting false prediction is asymptotically

optimal with an approximation ratio of 1+ 0 (,/ %), where N is
the total number of prediction stages. In particular, we describe a
policy that closely resembles the structure of the optimal offline
policy. For the online setting where the malicious expert can
adaptively make its decisions, we show that the optimal online
policy can be efficiently computed by solving a dynamic program
in 0(N3). We also discuss a generalization of our model to
multi-expert settings. Our results provide a new direction for
vulnerability assessment of commonly-used learning algorithms
to internal adversarial attacks.

Index Terms— Adversarial learning, expert advice, Markov
decision process, dynamic programming, approximation ratio.

I. INTRODUCTION

HE focus of the vast literature on learning with expert

advice is coming up with good prediction rules for
the learning system even for the worst possible outcome
sequence [1]-[6]. However, the proposed algorithms are not
designed to be robust against malicious strategic experts.
Given the prevalence of machine learning algorithms and, as a
result, automated decision making in distributed settings in
many real-world applications, the effect of malicious experts
whose goal is to destroy the performance of the system by
injecting false predictions cannot be ignored. In this paper,
we address this issue by analyzing the performance of the
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multiplicative weighted (MW) learning algorithm [3], widely
used in collaborative filtering, in the presence of malicious
experts injecting false recommendations.

There are many motivating examples for considering the
effect of malicious experts in real-world learning systems.
To name a few, one can consider movie recommendation
systems such as IMDB or Netflix, where the system relies on
the users’ feedback (experts) to rate the quality of the movies.
However, the users do not always report the true ratings
due to various reasons such as manipulating the outcome
of the system toward their preferences [6], [7]. As another
example, one can consider sensor fusion in networks where
a malicious sensor can attack the system by injecting false
signals and cause the central decision-maker to reach incorrect
decisions [8]. Moreover, almost all cases of collaborative fil-
tering or distributed decision making are vulnerable to internal
attacks.

In this paper, we study the performance of the MW learning
algorithm against adversarial attacks where the adversary’s
goal is to attack the system without having control over
the system’s prediction rule. The MW update rule is one of
the most commonly used schemes for learning from expert
advice [1], [9], [10], in which after each stage of prediction,
when the true outcome is revealed, depending on whether
the experts were correct or wrong on that stage, the system
punishes or rewards the experts, respectively, by decreasing
or increasing their relative weights by a multiplicative factor.
Thus, learning with expert advice can be modeled in a mul-
tistage sequential decision-making framework where at each
stage, the recommendation system combines the predictions
of a set of experts about an unknown outcome with the aim
of accurately predicting that outcome.

The problem that we consider here was originally proposed
in [11] and subsequently studied in [8], where it was shown
that in the case of logarithmic loss function, the optimal online
policy for the malicious expert is a simple greedy policy. This,
however, is not very surprising as the malicious expert’s gain
by reporting false predictions dominates his credibility loss
due to the logarithmic nature of the loss function. As it was
shown using numerical analysis in [8], [11], characterizing the
optimal policy for the absolute loss function (which is the more
interesting case and commonly used in MW learning systems)
is much more challenging due to the strong coupling between
the gain in reporting false prediction and the loss in credibility.
In this work, we answer this question by showing that the
same simple greedy algorithm is asymptotically optimal in the
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offline setting. Moreover, we show that although the optimal
online policy can have a complicated structure, it can still be
computed efficiently using a reduced-size dynamic program.

The problem that we study in this paper also belongs to
the general family of many problems such as target tracking,
distributed detection under the byzantine attacks, Sybil attack,
and causative attack from the taxonomy of adversarial machine
learning where the attacker can modify the data in training or
during the operation in order to degrade the performance of a
machine learning algorithm [12]-[15]. Our work is also related
to [16]-[18] in which a learner plays against an adversary such
that at each step, the learner has to choose an expert from
a pool of experts to follow while the adversary adaptively
sets the gains for the experts to maximize the overall regret
incurred by the learner. The authors in [17] fully characterize
the optimal online policies for the learner and the adversary in
the case of 2 and 3 experts and provide some general insights
into how to design an optimal algorithm for the learner and
the adversary for an arbitrary number of experts. However, our
work is different from those in the sense that the experts in
our setting are themselves malicious and can act strategically.
Moreover, the performance guarantee in our setting is in terms
of the approximation factor rather than the notion of regret.

We consider the problem of learning with a malicious
strategic expert under both offline and online settings. More
specifically, we consider a system with two experts; one
honest and the other malicious. The honest expert predicts
the true outcome with some accuracy at each round, while
the malicious expert strategically provides a prediction to
maximize the loss incurred by the system. We assume that
the adversary knows the true outcome and prediction rule of
the learning system. For the offline setting, we assume that
the adversary reports his entire sequence of predictions at
the beginning of the horizon, while for the online setting,
the adversary is allowed to look at the past information up
to the current stage and then reports his next prediction. The
problem that we address in this paper is two-fold: From the
malicious expert’s point of view, we are interested in knowing
the optimal policy which imposes the maximum loss on the
learning system, while from the system designer’s point of
view, we are interested in knowing how the widely-applied
MW learning algorithm performs in the presence of a mali-
cious expert.

As one of our main results, we show that for the case of
the absolute loss function, the optimal offline policy can be

approximated within a factor 1 + O( h‘TN) of the one which
reports false predictions at all the stages, where N is the
total number of prediction stages. This can be viewed as a
counterpart to the conventional regret minimization bounds
obtained for the MW update rule. It is worth noting that
obtaining such an approximation ratio is more challenging
than obtaining regret bounds commonly used in expert advice
settings. The reason is that the space of feasible policies is
exponentially larger than the set of feasible actions. Therefore,
for the offline setting, we approximate the optimal offline
policy rather than the best action. We then extend our results
to the online setting and characterize the optimal online policy
using a dynamic program (DP). In particular, we show that the
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number of states of this dynamic program grows linearly in
terms of the number of stages, which allows us to compute
the optimal online policy in O(N?).

The paper is organized as follows: In Section II, we intro-
duce the model formally and discuss some of its salient
properties. In Section III, we provide our main results for the
case of offline malicious expert and absolute loss function.
In Section IV, we provide an efficient algorithm for computing
the optimal online policy for the case of two experts, with an
extension for the case of multiple honest experts. Simulation
results for offline and online adversaries are provided in
Section V. We conclude the paper by identifying some future
directions of research in Section VI.

II. PROBLEM FORMULATION

In this section, we first introduce the mathematical model
formally as in [11] and then provide some of its salient
properties, which will be used in our later analysis. In the
remainder of this paper, we shall refer to the ill-intent expert
as a malicious expert or an adversary, interchangeably.

Consider a learning system with two experts. At each round
k=0,1,2,..., expert i € {1,2} has a nonnegative weight
denoted by p,’; € [0, 1]. We assume that both experts start with
equal initial weight p(l) = p% = 1. We denote the prediction of
the ith expert at stage k by x; € {0, 1}, and the true outcome by
vk € {0, 1}. At stage k, the relative weight of expert i € {1, 2}
is defined to be

S Dk 1

Pk p/l n p,% (1)
In the kth stage, the learning system predicts the true outcome
Vi using a weighted average rule given by

Sk = Prxi + Pexis )

and updates the experts’ weights in the next time step depend-
ing on whether they were correct or wrong in the previ-
ous instance using the following multiplicative weight (MW)
update rule:
l 1 1
Phit = [pé‘e e 3)
P it xp = k.

Here € € (0, 1) is a fixed constant parameter set the learning
system and reflects its aggressiveness on punishing/rewarding
the experts. We note that the MW update rule (3) has been
extensively used in the past literature [3], [10], [19], [20].
In particular, the MW learning system serves as an indepen-
dent forecaster (executor). Unlike the adversary, the learning
system is neither strategic nor has access to the information
of the true outcomes: it merely takes the experts’ advice
and computes the prediction in each round using (2). After
the true outcome yi is revealed, the system incurs a loss
(k. y&) = O(IFx — ykl), where O(-) : [0, 1] — R= can be
some general nondecreasing function. In this paper, we shall
only focus on the absolute loss function Q(y) := vy, as it is
the most common loss function used in the literature for the
expert advice setting [3], [10].
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We assume that expert 2 is the honest expert who makes
a correct prediction with accuracy u, i.e., the one that agrees
with the true outcome with probability u:

2 Yk

it = W.p. 4,

I —yr wp. 1—pu.

Remark 1: For asymmetric accuracies {Ux}ke[n], one can
partition the horizon into epochs of a small constant length.
As the honest expert predictions are independent, one may
assume that the honest expert’s expected accuracy within each
epoch is close to its expected value denoted by u. Therefore,
our analysis can be viewed as a constant approximation of the
heterogeneous model in the stationary regime.

Expert 1 is the malicious expert (adversary) who aims
to impose the maximum loss on the system by taking the
best adversarial action at each stage. We assume that expert
1 knows the true outcome y; at time k € [N] :={1,..., N},
as well as the distribution of x,%, the prediction of expert 2.1
One of our main objectives in this paper is to evaluate the
robustness of the MW learning algorithm in the presence of
a malicious expert. For that reason, we evaluate the system’s
performance against an adverse scenario where the adversary
gets to know the true outcome one stage ahead of the honest
expert (e.g., due to some side information from the outside).
Another way to interpret such an adversarial model is to con-
sider an arbitrary sequence of outcomes and a “conservative”
adversary who attempts an attack only on the outcomes that it
has full information about them. Therefore, upon the arrival of
Yk, if the conservative adversary does not know that outcome,
it will mimic the honest expert’s response in order to keep
its credibility for future outcomes. Otherwise, the adversary
knows the true outcome yi, in which case we are governed
again by our adversarial model. We refer to Proposition 1 for
a weaker adversary with no information about an arbitrary
sequence of true outcomes.

Definition 1: A malicious expert is called an offline adver-
sary if he chooses his entire of sequence of predictions {x,i },’(V:1
at the beginning of the horizon and them commits to it.
A malicious expert is called an online adversary if the entire
history of predictions and true outcomes {ﬁ},x},x?, yg}lg;i
are available to him, and then he decides x,:.

Finally, the goal of the malicious expert (either offline or
online) is to produce a sequence of predictions {x,}},ivzl over
a fixed finite horizon N in order to maximize the expected
aggregate loss on the system given by:

N N

Ex%,...,x?v[zl@k’ i)l = ZEx%,---,xi UGk vyl
k=1 k=1

where the second expectation is taken over the past and

current actions of the honest agent xlz,...,x,f. In par-

ticular, an optimal policy for the offline/online malicious

expert is a sequence of decisions which maximizes the

objective function (4) with respect to its corresponding

INote that the assumption that the adversary knows the prediction accuracy
4 is not very restrictive as the adversary can always learn this distribution
using the empirical history of observed actions taken by the honest expert.
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information set, i.e., a solution to the maximization problem
max,) o 3l Ee el Gk vl

One of the major differences between the above model and
the conventional expert advice problem is that in the latter,
one assumes that all the experts are honest and report their
true recommendations. In particular, the goal is to devise
a learning scheme that intelligently combines the experts’
recommendations to accurately predict the unknown outcomes,
where it can be shown that the well-known MW learning
rule achieves the minimum regret bound. However, the above
adversarial model can be viewed as a dual to the expert
advice problem where the MW rule is fixed as the underlying
learning process, and the goal to evaluate how well this
learning rule will perform in the presence of a malicious
expert who strategically aims to maximize the loss of the
system.

A. Preliminary Results

Here, we describe some of the important properties of the
aforementioned adversarial model which will be used later
to establish our main results. First we note that using the
update rule (3) and the definition of relative weights (1),
we have

if x; =1-y,xt=w,
7) ifxl =yxi=1—y, 5
—1)e

ﬁ,l if x,: = x,%,

In particular, from (5) one can easily see that the adversary’s
relative weight changes only when his prediction is at odds
with the prediction of the honest agent (when both experts
predict the same, the adversary’s relative weight remains
unchanged). As the update rule in (5) plays an important
role in our analysis, we define a weight update function
g : (0,11 = (0,1] and its inverse g(_l) : (0,11 — (0,1]
by

1

1 1’
1+ (; - 1) !

1

—T N
1+ (; - 1) €
In fact, both g(p) and its inverse g(~"(p) are strictly increas-
ing functions and we have g(p) < p < g~ '(p),Vp € (0, 1].

An important feature of the functions g(p) and g~V (p) is
that for any integer j € Z™, we have

1

1 1’

1+ (; - 1) L

_ _ _ 1
g7 =gV 6TV p) = ————
— 1+ (— - 1) €

J times P

where g(/)(p) and g(=/)(p) denote the composition of g(p)

and gD (p) by themselves j times, respectively. In particular,
we note that g©@(p) = p.

glp): =

¢V : (6)

g0 =g(..(gp) =
—_——

Jj times

> (D
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III. OPTIMAL OFFLINE POLICY FOR THE ABSOLUTE LOSS

In this section, we analyze the optimal policy for the
offline adversary and postpone our analysis for the case of
the online adversary to Section IV. We recall that the offline
adversary is the one who chooses his entire sequence of
decisions (predictions) at the beginning of the horizon. More
precisely, the offline adversary aims to maximize the expected
loss of the learning system given by (4) over all the 2V feasible
sequences of the form {0, 1}"V. Note that although the space of
feasible solutions is exponentially large, we are only interested
in obtaining polynomial-time computable policies. Thus, our
goal is to approximate the optimal offline policy within only
a negligible additive error term in the overall objective cost.

Toward this end, we first establish a sequence of lemmas
to prove our main approximation result (Theorem 1). In fact,
many of these lemmas do not make any use of the specific
structure of the functions g(p) and Q(:), and we state them
in a more general form. Later, in order to provide more
closed-form approximation results, we specialize these lemmas
to the specific choice of g(p) given in (6) and linear loss
function Q(y) = y. It is worth noting that although we
assumed that the learning algorithm starts with equal initial
weight for both experts (i.e., the initial relative weight of the
adversary is 0.5), however, we state our results for an offline
adversary with generic initial relative weight p. The reason
for this choice would become apparent subsequently. Next,
we state the following lemma from [8, Lemma 1] whose proof
is by induction on the horizon length N.

Lemma 1: For a loss function [(y,y) = QO(|y — yl|), with
Q0 :[0,1] — RZ0, the expected loss given in (4) is fully
determined by the initial relative weight of the adversary p, his
policy ¥ := (xll, . ,x}v) € {0, 1}V, and the horizon length
N.

From Lemma 1 one can see that the adversary can take his
optimal actions by only adjusting them relative to the honest
expert’s actions. Henceforth, the expected loss in (4) for a
given policy ¥ = (x!, le, ..., x]) of the offline adversary can
be represented by V,]:F (p) =201 Ep2 X2 [{(Pk, yx)1, where
p denotes the initial relative weight of the adversary.

Definition 2: Assume the adversary’s initial weight is p and
the number of stages is n. An adversary’s policy is called a
false policy if he lies in all the stages, i.e., x,: =1—w,Vke
[n]. It is called a true policy if the adversary tells the truth
in all the stages, i.e., x,} = Yy, Vk € [n]. We let an(p) and
V!(p) denote the expected loss of the system if the adversary
follows the false policy and the true policy, respectively.

Using the above definition, we can obtain closed-form
relations for the expected loss of the false/true policies given
in the following lemma. We will use these expressions as
black-boxes in our approximation analysis.

Lemma 2: For a loss function 1(y, y) := Q(|y — y|), initial
adversary’s weight p, and n stages, we have

Vip) =n(l = o)+ D P(Z > )H0Y(p)),
j=0

Vip) = nuQ0) + D P(W > jo( — g (p)),

j=0
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where Z ~ Bin(n, u) and W ~ Bin(n, 1 — u) are Binomial
distributions with parameters y and 1 — u, respectively.
Proof: Let us fix the adversary’s policy to the false policy,
and we look at all the possible sample paths which can be
realized by predictions of the honest expert. Any sample-path
in which the honest expert predicts correctly i times and makes
a mistake n — i times will occur with the same probability
of u'(1 — u)"". There are (}) of such sample paths, and
for any of them, independent of what positions the honest
expert predicts correctly or wrongly, the incurred loss given
the fixed adversary’s false policy equals to (n —i)Q(1) +
zlj;lo 0(gY)(p)). The reason is that, for any of n — i false
predictions of the honest agent in this sample-path, the system
incurs a loss of Q(1) and by (5) the relative weight of the
adversary does not change. Moreover, for the remaining i
correct predictions and regardless of their order, the system
incurs a loss of zlj;lo 0(gY)(p)) (note that for i = 0 this
term equals to 0). Therefore, by taking an expectation over all

possible sample paths we have,
n

Vi =3 (7)uia =i =)

i=0
n i—1
+> (’l.l)ﬂi(l — )" >0V ()
i=0 j=0
n i—1
=n(l—W)Q()+>_>" (’Z)ﬂi(l—ﬂ)”iQ(g(j)(p))
i=0 j=0
n—1 n
=n(l-)QUHY D" ('Z)M(l—m”iQ@“)(p))

j=U=j+1
n

=n(l— O+ D P(Z > )0 (p)),
j=0

where in the last equality we have used the fact that
Z ~ Bin(n, u) and P(Z > n) = 0.

Similarly, to compute V\!(p) we can fix the adversary’s
policy to the true policy. Now for any sample-path realized
by the honest expert with i correct predictions, the system
incurs a loss of i - Q(0) + Z’};z)*l 0(1 — g (p)). Finally,
taking an expectation over all sample paths we get

n

Vi) = > ()@= i 00

i=0
n n—i—1
+3()wa- Y 0t - ¢
i—o \ j=0
n_]nijil n . . .
=npQOHY > (l.)ﬂl(l — 0" o—g"(p))
j=0 i=0

n
=nuQ@) + > P(W > )01 — g (p)),
j=0
where the second equality is by switching the order of sum-
mations, and the last equality is by W ~ Bin(n, 1 — x). O
Next, we note that every offline policy can be parti-
tioned into several blocks such that within each block,
the adversary follows either false or true policies. Thus we
can characterize any offline policy by simply determining
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the length of each of its sub-blocks. For this purpose, let
ny,mi,no,ma, ..., NHg, M, denote the partition of the entire
horizon N into some sub-horizons of integer length for some
positive integer k such that N = Zi‘{:l (n; +m;), and m;, n; €
77T (note that n; or my; can also be zero). We assume that
the adversary follows the false policy within each block of
length n;, and the true policy within each block of length
m;. Therefore, finding the optimal offline policy reduces to
maximizing the expected loss (4) over all such partitions.

Lemma 3: Given an adversary’s initial relative weight p,
the relative weight of the adversary after lying n times and
telling truth m times (in any arbitrary order) equals to
g XN (p), where X ~ Bin(n, u) and Y ~ Bin(m, 1 — u)
are independent Binomial random variables.

Proof: Let X; ~ Ber(u) and ¥; ~ Ber(1—u),i = 1,2, ...
be independent Bernoulli random variables, and p be the
initial weight of the adversary. Since at each stage the honest
expert predicts independently from the earlier stages, a simple
induction shows that if the adversary’s weight at the beginning
of the kth stage equals to g(Y)(p) for some random variable U,
then after the kth stage depending on whether he lies or tells
the truth, his weight will change to g+X0 (p) or g =10 (p),
respectively. Therefore, if we know that the adversary lies
exactly n times and tells the truth m times, his relative weight
at the end of this process will be equal to g&X—Y)(p), where
X is the sum of n independent Bernoulli random variables
of type X; ~ Ber(u), and Y is the sum of m independent
Bernoulli random variables of type ¥; ~ Ber(l — u). This
implies that X ~ Bin(n, 1) and Y ~ Bin(m, 1 — x), and that
X and Y are independent. (]

Lemma 3 indicates that the distribution of the adversary’s
relative weight, induced by following an offline policy ¥, only
depends on the total number of times that the adversary lies or
tells the truth, and not on the specific order of them. Note that
this property only holds for the relative weight distribution, but
not for the distribution of the accumulated loss at different
stages. In fact, it can be shown that the distribution of loss
depends critically on the order of the adversary’s actions, and
that is the main difficulty in the analysis of the optimal offline
policy. We circumvent this issue in the following theorem
by providing an approximation scheme that is asymptotically
optimal as the number of stages approaches infinity.

Theorem 1: For any € € (0, 1) and the absolute loss func-

0.5
tion 1(3,y) = VNf (é 5)) 14+ O(

where VI:,P "(0.5) and V{,(O.S) denote the expected loss by
following the optimal policy and the false policy, respectively.

Proof: For simplicity and without any loss of generality
we set € = % For general € € (0, 1), the only difference in
our analysis would be that the base of the natural logarithm
will change to % Using Lemma 2 specialized for the absolute
loss function Q(y) = y, we can write

/ 10gl/e )

|y — yl|, we have

Va(p) = (1 —wn+ D P(Z> j)gV(p),
j=0

Vilp) = (1= pn = > " P(W > (),  ®
j=0
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where Z ~ Bin(n, ) and W ~ Bin(n, 1
arbitrary but fixed p € (0, 1), let us define

f():=r—In(l+ae"),
€)= fr+1D—fir)—g"0p),

% — 1 and r € [0, 00). Now we can write,

— w). For any

where a :=

Vip) = (L= wn+ D P(Z > DIFG+ 1D = £() — €()]

j=0
= (1—pn—>Y P(Z> je())
j=0
+ D AP(Z > j— 1) =P(Z > DIF() — £0)
j=0
= (I1—wn— D P(Z > j)e(j) + ELf(2)] — £(0)
j=0

20— wn +ELF2)] - 1)

1 1
— P(Zz —
z ( >])(1+ae1+1 1+ae1)

j=0
©Q (1= wn +ELED1- £0)+8Qp) — Bl ()]
€ —En( + (= Del = In(p)
1
-E[——M—
+p ~ Bl - 7 )

where (a) is due to Lemma 4 (Appendix A) which shows that
e(r) = Mﬁ — 14_17, and (b) follows from (7) and the
definition of expectation. Finally, (¢) follows by substituting
the expressions for f(Z) and g()(p). Similarly, to obtain an
upper bound for V}!(p), let us define

h(r):=1In(a+e"),

o(r): = h(r +1) = h(r) — g (p).

Using identical steps as in the derivation of (9) and since by
Lemma 4, (r) < 1+ael_(,+,) — we get

1
14+ae=">

Vi(p) < (1 — pon — Enn((% — 1)+ "))~ Inp)

1
1+ (/% —De W

Next let us consider an arbitrary offline policy ¥ character-
ized by its false/true sub-block, i.e., ¥ :=ny,my, ..., ng, my.
Denote the expected loss under policy ¥ when the initial
weight of the adversary was 0.5 by VlP(O 5). Moreover, for
t=1,...,k let X; ~ Bin(ng, ) and Yg ~ Bin(mg, 1 —pu) be
pairwise 1ndependent Binomial distributions (i.e., for every i
and every j, X; and Y are mdependent) and define X, =
Zle X;, and Y, = lel Y;. Note that the pair X, and
Y, are independent Binomial distributions. By linearity of
expectation, and using Lemma 3 we can write,

Vi (0.5)
= V! (0.5) +E[Vr§” ¢X(0.5)
+E [v,fz (g(XI*“)(o.S))] +E [v,;z (g(Xle)(o.s))]
Y...+E [v,;k (g(xryk—ﬂ(o.S))] . (11)

—p +E[ I (10)
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Replacing gX¢-17Y-1(0.5) (or for brevity gXe-1=¥e-1)
from (7) instead of p in (9), and taking expectation we have

E I:Vrff (g(Xl—l—Yl—l)):I

1 VA
<E ng—E[ln 1+(m—l)e ):|:|

(s

_HEI:g(Xl—l—Y{—l) _ E[

1 il
U Cozerey — De?

1+ eXe— Y
=n/—E |:ln (71 s
1

+E[1 + eXe-1=Yr
where the equality follows by simplifying the terms and noting
that for the ¢-the false block Z := X, ~ Bin(n¢, u), which
is independent of_Xg,l and Yy_1. Similarly, since for the £-th
true block W := Yy ~ Bin(m¢, 1 — ), which is independent of
X¢ and Y;_1, by replacing gX¢~Y¢-1(0.5) instead of p into (10)
and taking expectation we get

E [V,;[ (g(Xf*Yf—l)(O.S))]
< (1= wyme —E[ln(

1
_HE[I T eXeYe | 4 eXe—Yeu ]

| (12)

T + eXe=Ye

eXe—Ye —i—ei/‘
14eXe=Yeu ):I
1

(13)
Finally, substituting (12) and (13) into (11), we can write

Vi (0.5)

k
<> e+ (1 = wme)

=1
Xe—Yr— }_’[ 1 Xe=Yr
2 (o) ()
= 1+ eXe=Ye 1+ eXe—1=Ye1
k
1 1
+2€Z;E[1+exfyf C1feXeYe ]

ko Xe—Yi Y,
e +e
=uM+ (1 —u)N-E [m (H T )}
4+O(WNInN)
14V Xk

= (1 - u)N +O(KNInN), (14)

where the first equality is due to Lemma 8 (Appendix A) and
noting that >5_ n; = M and 3°5_, m¢ = N — M. Moreover,
the second equality holds because Y; = Y, — Y;_; (which
causes telescopic cancellation of the product terms inside of
the natural logarithm) and noting that Xo = Yy = 0, E[Xx] =
wM. Using (8), the expected loss of the false policy is at least,

N
VE(0.5) = (1 — )N + > P(Z> j)g(0.5) = (1 — w)N.
=0
(Note that all the terms P(Z > j)g)(0.5) are nonnegative.)

MZHO( thN)' 0

This in view of (14) shows that VT 05)
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Remark 2: It is important to distinguish the difference
between the approximation ratio obtained in Theorem 1 and
the sub-linear regret bounds commonly derived in regret min-
imization analysis. Here we allow the offline malicious expert
to choose his policy over the entire horizon (i.e., an arbitrary
sequence of false/true predictions) and do not restrict him to
his best action (i.e., only select one action and commit to it
at all the stages). Interestingly, Theorem I shows that giving
such an extra power to the malicious expert does not give him
much advantage other than a negligible additive term.

According to Theorem 1, the MW learning algorithm with
an absolute loss function is not very robust against the mali-
cious expert. The reason is that a naive malicious expert who
follows a simple false policy can be nearly as harmful as any
other highly strategic malicious expert. However, we should
emphasize that such a conclusion is only valid under the
adversarial model that we consider in this paper, i.e., when
the adversary has access to the true outcome before making
its decision at each stage. In fact, it would be interesting to
evaluate the performance of the MW learning algorithm for
less powerful adversarial models where the adversary has only
partial information about the true outcomes.

A. Beyond Asymptotic Optimality for the Offline Policy

Theorem 1 shows that the false policy asymptotically
achieves the same performance as the optimal offline policy.
However, the exact structure of the optimal offline policy for
a finite horizon N can be quite complex. Therefore, our goal
in this section is to take one step further and provide a policy
that closely resembles the structural patterns of the optimal
offline policy. As it was shown in the proof of Theorem 1 one
of the main reasons that there is a gap between the expected
loss of the optimal offline policy and that of the false policy
is the term:

K 1 |
B = ;E[l_’_eX[_YF B 1+6XF—Y€1:|

henceforth referred to as the bonus term. Here, X, ~
Bin(Ng, 1) and Yy ~ Bin(M¢, 1 — u) are independent Bino-
mial distributions where Ny = Zle n; and M; = Zle m;.
Therefore, it seems reasonable to expect the optimal offline
policy (or a policy close to optimal), to maximize B in order
to gain as much as possible from the bonus term. As such,
we search the optimal offline policy ¥* among policies ¥
that satisfy the following two criteria:

o i) ¥ imposes at least as much loss as the false policy on
the learning system, i.e., at least (1 — )N — o(1),
o i) ¥ maximizes the bonus gain B.
To maximize the bonus term, using Lemma 8 (Appendix A),
it is enough to maximize

k
M2t H20—1
> [oT0 —ec22)],

02(—
— 20-1

15)

where @ (-) is the CDF of the standard normal distribution and

73 = 1l = ) (Ne + My),
o1 =p(1—=u)(Ne+Me ).

e =Neu—Me(1 — p),
u2e—1=Nep—Me—1(1 — ),
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10 CDF for Gaussian of mean = 0.0 & std. deviation = 1.0
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Fig. 1. Mean and standard deviation adjustment for maximizing the bonus
term B using CDF of the standard normal distribution.

Now by adjusting the argument of @(-) in (15) to period-
ically switch around O (see Figure 1), we obtain a positive
gain from each of the summands in (15). This suggests that
a policy in which —22 =1, and —% = —1, would be a
good candidate for maximizing the bonus term. Note that here
the choice of 1 or —1 is not strict and it can be replaced by
any two points close to zero such that the difference of the
normal CDF evaluated at those points gives a sufficiently large
gain. Solving —’;—;ﬁ =1 and —% = —1, by substituting the
above expressions for uo¢, 02¢, 02¢, 02¢—1, We obtain a ratio
type policy in which the ratio of the false/true block lengths
%, ¢ =1,2,..., is proportional to 1__4ﬂ Therefore, to fulfill
both criteria (i) and (ii), we introduce the following offline
ratio policy:

Definition 3: Let a and b be the smallest positive integers
such that 3 = ﬁ.z We say that ¥ is a ratio policy if its block
representation is of the form (ny,my,...,mg_1,ng, my) =
(b,a,b,a,b,...,a,%,O), where for € = 1,2,...,k
the adversary lies in n¢-blocks and tells the truth in me-blocks.

To verify why the ratio policy is indeed a good offline
policy, let us denote the number of lies and truths in ¥ by
M and N — M, respectively. Due to Definition 3, ¥ has many
more lies than the truth in its structure (note that n; = %).
Thus a similar analysis as in Lemma 2 for the false policy
reveals that the expected loss in ¥ which is obtained from
its last block ny = % is almost the same as the false policy
minus a negligible constant which does not depend on N.
As a result, the expected loss of ¥ which is obtained due to
its heavy tail of false predictions, is at least (1 — u)N —o(1).
On the other hand, the ratio policy ¥ gains a bonus due to
its first % stages. To evaluate the bonus term B for the ration
policy ‘i—‘ we observe that due to Definition 3, uy, = 0, and

top—1 = ub, for all £ € [k]. Thus, for each ¢ € [k], we have

D(—

1) (2220 _ o) - o (-2 ) > 0.
o2¢ 02(—1 02¢—1

In other words, each of these terms contributes positively to
some constant amount to the bonus B. Since we chose a and
b as the smallest positive integers such that 7 = 1—_% this
assures that the number of summands k£ in the bonus term

2Here for simplicity we have assumed that l—% is a rational number,

otherwise, we can always find positive integers such that % = ﬁ
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B (which equals the number of switching between false/true
blocks) is maximized. That is why we defined our ratio policy
the way we did in Definition 3. This shows that the expected
loss of the ratio policy is at least as high as that for the false
policy (satisfying criterion (i)) with an additional bonus term
B (satisfying criterion (ii)).

IV. OPTIMAL ONLINE POLICY FOR THE ABSOLUTE LOSS

In this section, we consider the problem of finding the
optimal online policy for the malicious expert, where we recall
that the online adversary is the one who chooses his next action
adaptively based on all the past revealed information up to the
current stage. In order to be able to find the optimal online
policy, we first cast it as a dynamic program and then show
that it can be solved efficiently in O(N?).

For this purpose, let us assume again that the malicious
expert is expert 1 and the other expert is the honest one who
makes a correct prediction with probability . We assume that
at stage k, expert 1 knows the true outcome yy, the accuracy
u of the honest expert, and the entire history of predictions up
to stage k — 1, i.e., {p}, p2,x},x2, ye : Y€ € [k — 11}. Given
this information set, the goal of the online malicious expert
is to produce a sequence of predictions {x,l},iV:] over a fixed
finite horizon N to maximize the expected accumulated loss
of the system given by (4). Now let us define the state of the
system at stage k to be the relative weight of the adversary
at that stage, i.e., 15,1. Note that as 13,1 + 15,% = 1, Vk, knowing
ﬁ,l is sufficient to determine the relative weight of the honest
expert 13,%.

Next let us define Cyl (ﬁ,l) to be the current loss that the
online adversary can impose on the system at stage k by taking
the action x,:, ie.,

¢, (BY) = E 2l 5k—yellxj]

I—ptupy ifxg =1-y,

16
(=) (1= Bl if x} = v, (10

where the second equality is by Lemma 1 specialized to

the absolute loss function Q(y) = y. We can then cast the

adversary’s online optimal policy as a solution to an MDP

in which the malicious expert’s action at stage k imposes a
~1

current loss of €yl (py) on the system and changes the state

from 15,1 to the next state 13,1 41+ In particular, the state transition
of this MDP is given by the update rule (5), that is,

g() it x! =1—w,x} =,
P =180GY if x) =y =1—y, (U7
P if x| =x}.

Now the solution to this MDP can be obtained using
dynamic programming, as shown in Algorithm 1. In this
algorithm Vk*+1 () denotes the optimal value function, i.e., the
optimally accumulated loss from time step k + 1 onward.
In particular, from Lemma 1, one can easily see that the
optimal value function does not depend on the sequence of true
outcomes and is only a function of the state and the number
of remaining stages. Now by substituting the closed-form
expressions of the current cost (16) and the state transition (17)
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Algorithm 1 DP Algorithm
Initialize: V3 (-) = cn () = 0.
For each step k = N — 1 downto 0, find the optimal action

xj o= argmax {e,1 (5}) + BIVEy, (5L )1},
Xk

and the optimal value function,

V(B = max {Cx,l () + BV (P D1} (19
Xk

Output: sequence xy,_,, Vy_; (), ..., xg, V5().

into the DP Algorithm 1, and letting p := ﬁ,i for brevity,
we obtain the following closed-form recursion for computing
the optimal value function:

V' (p) = max {1 —u+ up 4+ pVig () + (L= ) Vi, (p),

(A=m)(1=p) + A=V* () + uVin ()},
(18)

where the first term in the maximization (18) corresponds
to the adversary’s action at stage k being x,: =1—- y,
and the second term corresponds to the adversary’s action
being x,i = yk. Unfortunately, due to the nonlinear structure
of the transition functions g(p) and g(~"(p), as well as
their joint convex/concave structure, solving the recursion (18)
in a closed-form, seems to be a tedious task. Although at
each stage of the above recursion, one needs to consider
the maximum of two alternatives (so that the number of
alternatives will grow exponentially in terms of the number
of stages), however, in the following theorem, we show that
most of these alternatives collapse on each other so that the
optimal value function in (18) can be computed efficiently in
polynomial time.

Theorem 2: The optimal policy for the online malicious
expert can be found in O(N3), where N is the number of
stages.

Proof: Let us consider a decision tree with a root node
representing the initial relative weight of the adversary (i.e.,
p = 0.5) and such that the nodes in the k-th level of the tree
that are at distance k from the root represent all the possible
relative weights of the adversary after k stages (Figure 2).
The key observation is that due to the property of g(-) and
its inverse g(=1(), the size of this decision tree does not
grow exponentially such as a binary tree. In fact, a simple
induction shows that the nodes in the k-th level of the tree
can be grouped to form exactly 2k — 1 nodes representing
all possible relative weights of the adversary up to stage k,
given by g¢%(0.5), g¥tD(0.5), ..., g% (0.5), g®(0.5).3
Therefore, the total number of tree nodes by such grouping
(states in the DP) after N stages is at most Z,Iy:l(Zk —
1) = O(N?). As a result, solving the dynamic recursion (18)
backward by moving from the tree leaves toward the root,

3Using Lemma 3, one can even compute the distribution of the weights on
the reduced nodes efficiently using Binomial distributions.
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Fig. 2. Illustration of the first level (root) and the second level of the decision
tree. The top actions connecting the root to the intermediate black circles
correspond to the honest expert’s decisions. The bottom actions connecting
the black circles to the second level of the tree correspond to the decisions
of the malicious expert. Although the second level originally has four nodes,
two can be grouped and be reduced to only three states. The weights on the
dashed paths denote the loss of the system by following that path.

the number of computations to find the optimal online policy
using the DP recursion (18) is at most O(N x N?2). O
In fact, in a recent work [21], the authors have analyzed the
DP (18) in more detail by providing upper and lower bounds
on the optimal value function using the approximated dynamic
program’s viscosity solution. More precisely, it was shown
in [21] that for any online policy ¥ for the malicious expert:
b b
Yo (0-5) <1—u? 1imian°T0‘5) >

lim su
P N—o0

N—o0

1—pu.

A. A Generalization to Multiple Experts

Here we provide a generalization of the problem to the case
of many honest experts and one adversary. Without loss of
generality, we again assume that the malicious expert is expert
1 and that all the other experts i € {2, ..., K} are honest who
make a correct prediction with different probabilities u; (the
accuracy of expert 7). That is,

Yk w.p. Ui,

I —yr wp. 1 —pu.

We assume that at round &, expert 1 knows the true outcome
Yk, the accuracy of the honest experts, and the whole history
of predictions up to round k — 1, ie., {p;,x},y¢ : ¥ €
[k — 1], j € [K]}. Given this information set, the goal of the
online malicious expert is to produce a sequence of predictions
{x,i },’(V:1 over a fixed finite horizon N in order to maximize the
expected accumulated loss of the system,

i
Xk—

N
max. Ex,i,ke[N],i;él [zl@k’ o]
X{ s X =1
where the expectation is taken over the randomization of all
the honest experts’ predictions {x,’;,k e [N],i # 1}. We let
pr = (pt, pi, ..., pK) be the state or weight vector of all
experts at round k and ﬁk =( ﬁ,l, ceey ﬁf ) be the correspond-
Pi

ing normalized weight vector where 13,’; =5 i €[K]
ie[K] Fk
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Fig. 3. Performance comparison of the false, ratio and optimal online policies for different accuracies and initial relative weights. In all figures we set € = %.

is the normalized weight of expert i. Note that we always have
ZiE[K] Py = 1,Vk. Moreover, we let ¢X11 (Pr) be the state
transition at stage k given that the online malicious expert
takes the action x,l € {0, 1}, i.e.,

d 1 K
e (PO = (Prsrs -+ Pica)s

where p,ic = p,’;el(xi’yk). In addition, the learning algorithm
predicts Ji at time k by

~i i
DX

N il plicxli
o= e %

2 ielk] Pk ielK]

We note that for K = 2, this generalized setting coincides with
that given in Section II. Although characterizing the optimal
online policy structure in the generalized setting can be very
complicated, in the next section, we provide some numerical
experiments to study the behavior of the optimal policy with
multiple honest experts.

V. SIMULATIONS

Performance of the false, ratio, and optimal online poli-
cies has been simulated numerically and compared in Fig-
ure 3. In addition to offline and online policies, the case
of no adversary with two identical honest experts has also
been simulated to show the effect of an adversary in the
system.

As seen in all plots, an adversary simply adopting the
false policy incurs extra loss compared to a system where
a malicious expert is not present. The ratio policy imposes
more loss than the false policy when the number of stages

is large. The optimal online policy imposes a strictly greater
loss than the optimal offline policy. Moreover, as the number
of stages increases, the gap between the loss of the optimal
online policy and offline policies also increases. Similarly,
the gain of the bonus term B, which is the difference between
the curves of the false policy and the ratio policy, increases
as the number of stages increases. It can be seen that the
ratio policy closely mimics the structure of the optimal offline
policy. For instance, in the middle subfigures of Figure 3,
the optimal offline expected loss for several values of N =
10, 12, 14, 16, 18, 20, 22, 24, 26 are plotted using black dots.
As these values are very close to the expected loss of the
ratio policy and even coincide in certain cases (e.g., N =
10, 14, 16), we believe that the optimal offline policy for finite
N belongs to the class of ratio policies, given that one could
properly round the block lengths using the CDF of normal
distribution.

Finally, using the generalization to multiple experts in
Section IV, a system with four honest experts and one adver-
sary is simulated and compared to a system with one honest
expert and one malicious expert. In the 5-expert model, all
experts have identical initial weights. In the 2-expert model,
the adversary’s initial relative weight is p = 0.2, which is the
same in the 5-expert model. The accuracy of the honest expert
in the 2-expert model is the mean of the four honest experts’
accuracy in the 5-expert model. Two cases are considered:
the homogeneous case (accuracies of all honest experts are
identical, uo = u3 = ur = pus = 0.5) and the heterogeneous
case (accuracies of honest experts are distinct, o = 0.3, u3 =
0.4, us = 0.6, us = 0.7). The mean of the accuracies of
honest experts is the same for the two cases. The expected
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Fig. 4. Comparison of the online policies for 2-expert and 5-expert models.
In the 2-expert model, # = 0.5, p = 0.2. In the homogeneous 5-expert model,
Ho = u3z = uy = u5 = 0.5, p = 0.2; in the heterogeneous 5-expert model,
fa =03, 13 =04, ug =06, 45 =07,p=02. € = L.

loss for the S-expert model is estimated as follows. In each
play, a sequence of actions {0, 1}"V is randomly generated for
each honest expert i € {2, 3,4, 5} according to his accuracy
Ui, and the adversary chooses his optimal policy against the
honest experts’ strategies. This process is repeated 100 times,
and the expected loss is approximated by the empirical mean
of the losses for all the 100 plays.

Numerical results are shown in Figure 4. As the curve
for the homogeneous 5-expert model is very close to that
for the 2-expert model, it suggests that the 2-expert model
can well approximate the system with multiple homogeneous
honest experts by replacing all honest experts with a single
one of combined relative weight and the same accuracy.
The difference between the curves for the 2-expert model
and the heterogeneous 5-expert model is greater, probably
because the optimal online policy in the generalized het-
erogeneous setting is difficult to be approximated by only
2-experts.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we considered an adversarial learning system
with two experts, of whom one is malicious. The malicious
expert aims to impose the maximum loss on the system
by strategically reporting false predictions. We analyzed the
optimal policy for the malicious expert under both offline
and online settings. In the offline setting, we showed that
finding the adversary’s optimal policy is a discrete optimiza-
tion problem whose solution can be approximated within a
negligible (sub-linear) additive term. In particular, we provided
a more refined policy that closely mimics the optimal offline
policy’s behavior. We then considered the optimal online
policy for the malicious expert and showed that it could
be computed efficiently for two experts using a dynamic
program. We also generalized the online setting to multiple
experts.

This work opens many exciting directions for future
research. It would be interesting to see whether the optimal
policy structure for the online adversary can be characterized
in a closed-form. One possible direction is to leverage the
dynamic recursion (18) to show that the optimal value function
possesses some nice properties such as convexity, which
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allows one to prove a class of optimal threshold policies
for the online adversary [22]. Another interesting direction is
to use learning schemes other than the MW algorithm (e.g.,
upper confidence bound algorithm) as the underlying learning
scheme and study their robustness against adversarial attacks.
When many experts in the system, can we use a mean-field
approximation to approximate the optimal policies? Finally,
it is interesting to study the game-theoretic version of this
work in which the MW learning system can be strategic and
not only penalizes the malicious expert but also detects and
eliminates it from the system.

APPENDIX A
AUXILIARY LEMMAS

Proposition 1: The optimal online strategy for an adversary
with no information about an arbitrary sequence of true
outcomes {yi} is to choose x,i € {0, 1} with probability %
and independently for every k € [N].

Proof: Let us fix an arbitrary stage k. The expected loss
incurred in stage k is the conditional expectation given the
entire history of outcomes and predictions up to stage k — 1
taken over the past and current actions of the honest expert:

Eo 2Oyl =Ega o[k, YOUBL x| xf, vili= .

As yr can be chosen arbitrarily, and the honest expert’s
prediction at stage k is independent of the previous stages,
the history of predictions up to stage k — 1 cannot give any
information to the adversary about y;. As a result, we have

By 2l Gk y0l = E2 Gk, yo)l- (20)

Therefore, in this case, the adversary becomes memoryless and
treats every stage as a new restart. Now for the absolute loss
function /(¥, y) = |9 — y|, one can compute the expected loss
in a closed form for stage k using (20). Let us assume that
the adversary chooses x,: = 0 with probability ¢ and chooses
X ,: = 1 with probability 1 —g. Depending on the true outcome
vk, the expected loss equals one of the following terms:

E2ll(k, yo)lyk =01 =1 =+ up — qp,
E2llGe yolyk =11=1—=u+pp = (10 =q)p,

where p denotes the relative weight of the adversary at the
beginning of stage k. Since the adversary has no information
about whether yy = 0 or y; = 1, it must choose ¢ to maximize
the minimum of the above two expressions. For ¢ = %,
the above equations coincide, which shows that predicting with
probability % at each stage is the optimal online strategy. [

Lemma 4: Let f(r) :=r —In(1 +ae"), h(r) :=1In(a +¢"),
€r):=fr+D—f0) -5
() =h(r+1) —h(r)— g (p).
Then for any r > 0 we have,

1 1
0> > — R
2 €l = 1+ ae+! 1+ae’1

0<d@r) =<

>

l+ae D 1 +aer

where we recall that a = % — 1, for some p € (0, 1).
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ae (ae’ —e+2)
(1+ae)?(1+ae+T)
root given by ¢’ = 62—2 by evaluating €(r) in the root of
its derivative as well as the boundary of its domain we get,

Proof:  Since j—re(r) = has only one

_2 _2
¢ —ln(e—1)<0 if o =%"%
a
_ 1
=114 a +1— if, r =0,
0 if = L

This shows that €(r) <0, Vr,a € [0, c0). On the other hand,
for every r > 0, using the Mean-value Theorem we have
fr+1)— f@) = f'(n), for some n, € [r,r + 1]. Since

() = Trae H_alw using (7) we can write,
)=+ =10)=5"0)
.0
Z T oot g (p)
. 1 1
1l 4aett 14ae
Similarly, 4 d Lo(r) = —ael(@—(e=2)a) " yhich has only one

(a+e")2(a+et1)’
root at ¢ = (e —2)a. Therefore by evaluating J(r) in the root

of its derivative as well as the boundary points one can easily
see that 6(r) > 0. Again, using the Mean-value Theorem, there
ex1sts & € r, r + 1] such that A(r + 1) — h(r) = h'(&) =
This shows that,

1+ae o = 1+ae (r+1D) *
1
N G ) |
o(r) < [T ae—0+D g " (p)
B 1 1
T l4aeth 14 ger’

O
Lemma 5: Let ml,mz, ..,my be positive integers and
define My = Z 1mj,

k] ¢ € [k], (by convention we let
Mo =0). Then > ;_, J_ = O(V/My In My,).

Proof:  Starting from the left-hand side and using
Cauchy-Schwarz inequality, we have,

k
Z}: % = i /M X \/T/]z[ = M\/Zé‘zl i 2D
Next for every £, we can write
me 1 1 1
Me ™~ met Mo +m€+M€—1 " +m€+M€—1
! mg times
= 14+Mp—q +2+M€—1 * +m‘
Summing the above relation for all £ =1,..., k, we get
Kome &S 1 1
;_[ = ; 1+M,- 1+2+M€—1 " +m€+M€—1
My
= ; <1+ In M.

1

~.
I

Using this relation into (21) we get the desired bound. U
Lemma 6 Berry-Esseen Theorem [23]: Letr V; be inde-
pendent random variables with mean a; and variance s , and
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define S; = Z§=1 Vi. Then there exists an absolute constant
co such that for all t the CDF of S;, denoted by F;(x), satisfies

(ElXi—ai?
_ Z;Zl ai)‘ S co max; { 57 }
Py iis]
Lemma 7: Let X ~ Bin(n, ) and Y ~ Bin(m, (1 — u))
be two independent Binomial distributions. Then, there exists
(I)(—g) < § where
v=nu—(1—pym, 6> = pu(l —u)(n+m), and ®(.) is the
CDF of the standard normal distribution.
Proof: Let p(y) and F(y) denote the pmf and CDF of
the random variable X — Y, respectively. Then,

Fi(x) — cp(x

sup
X

a constant ¢ such that }IE[IJr —

FO) Bl 1| = [Ft-¥ < 0Bl
= iioo p(i)—i_ioo 11:52,-
- i f(;z) - i 1pf()et
= 2 f(+je) +§ lp-f(-if)zl
< ZP( e +2p(l)e ’
< 2pmaXZe—l = —pmax, (22)

where pmax = max;{p(@)}. Next, using Berry-Esseen The-
orem (Lemma 6), and noting that X and Y can be written
as sum of n and m independent Bernoulli random variables
Ber(u) and Ber(1 — u), respectively, we get

v)’ - cow? + (1= 1))

sup |F(7) — o1 _ (23)
Y

Now for every i we can write,

P(i)ZF(l)—F(l—l)

—1—v_ 2co(u?+ (A — u)?
- (D( )+ o(u”+ (1= u)9)
' 71 200(% + (1 p)?)
-V —1—-v c -
§d>(n)X( . )+ s “
o o o
12 1 2c0(u®+(1—p)?)
= e 2X—+
2T 0'2 g’
1 2 1—
- N cow +A =) _«a 24)
V2o o o

where ¢] 1= ﬁ + 2co(u? + (1 — p)?). The first inequality
is due to (23) and the second inequality is by Mean-value

Theorem for some 7 € [F}Tﬂ’ "j?”]. As a result, pmax < fT—I
Substituting (24) into (22), we have

2ecy
eX— Y]‘ “(e— 1o
Finally, adding (25) with (23) when y = 0, and using the
triangle inequality, we get

1 v co(u?+(1—p)?) ¢
e -0l =

“(e—1)o o o’

‘F(O) Bl (25)

2ecy

g
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where ¢ = ii—cll + co(u® + (1 — w)?) is a positive
constant. U
Lemma 8: Let X¢ ~ Bin(Ng, u), Yo ~ Bin(Mg, 1 — u),
{ € [k], be mutually independent (i.e., for every i # j, X;
and Y; are independent). Moreover, assume N¢ = > . n;
and My = Zf_l m;, where n;,m; € Z+, and Ny + My = N.
Then B : Zf—l |:1+exf 7 H_exf Yoo ,] O(VNInN).

Proof: Forany £ =1,...,k, define
pae: = Nep—Me(1—p), 03y := pu(l— ) (Ne+ M),
poe-1: = Nep—Me (1 —p), 05, = u(l—w)(Ne+Mey),
(26)

where My, = Zle m; and Ny = Zle n; (recall that m; and
n; denote, respectively, the lengths of the ith true and false
blocks in an offline policy ¥). Using Lemma 7 we can write

k
@ 1 1
B%2Z[ _Hay gt 1)+C(_+ )}
021 o2 021

=1
k
b) -
522[ /125 (D(_#Z{’ 1)]
pa 0201

1
+
\//1(1— Z( V2t —1 )
k 2k
o( Har L M2e-1 2c 1
52;[ ) o 021 ]er/u(l—u) 0 ﬁdx
k
© u2e U261 N
23 | o(-E5 — @ (- +4c | ————,
= 5_1[ ( ( 25—1)] Vul—p
(27)

where (a) is due to Lemma 7, and (b) holds because
Ny + My = Zle(n,- + m;) is the sum of 2¢ positive
integers, and thus o2y > 2u(1 — u) (similarly opp—1 >
Ju(l — u)(2€ — 1)). Finally (c¢) holds because 2k < N.

We proceed by showing a sub-linear upper bound on
25:1 [@(—42)— D (—L2=L)]. Let B be a constant defined by

a2¢ 020—1
- 1 _ i
b= m.z Using the Mean-Value Theorem and since

O'(x)= e 7 <

Vx, we can write,

== T
k
M2 H2e-1
> [o-25H - o250
o o2 o201
- Zk: 1 (ﬂ25—1 @)
o V2m \o—1 ou
k
ny (Né’ﬂ_Mfl(l_ﬂ) B Né’ﬂ_Mé’(l_ﬂ))
= v Ne+ M- N Ne + M,
< ﬁz —Mp— My )
TS \UNe+ M N+ Mg
k k
cpS M Mr g5 e
o VNe+ M = VNe+ M,
k
me
=B, 7=
o VM

2287

Finally, using Lemma 5 and noting that ng:l m¢ < N,
we obtain
£ H2 H2
Z[cp(——" o (-1 ] ONInN). (28)
i1 02¢
This together with (27) completes the proof. 0
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