

Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways

Ying Wang¹, Curt J. Zanelotti¹, Xiaoen Wang², Robert Kerr², Liyu Jin², Wang Hay Kan³, Theo J. Dingemans⁴, Maria Forsyth², and Louis A. Madsen^{1}*

5
6 1. Department of Chemistry and Macromolecules Innovation Institute
7 Virginia Polytechnic Institute and State University
8 Blacksburg, Virginia 24061, United States
9 E-mail: lmadsen@vt.edu
10 2. Institute for Frontier Materials and ARC Centre of Excellent for Electromaterials Science
11 Deakin University
12 Geelong, VIC 3216, Australia
13 3. China Spallation Neutron Source
14 Chinese Academy of Science
15 Dongguan, Guangzhou 523803, China
16 4. Department of Applied Physical Sciences
17 University of North Carolina at Chapel Hill
18 121 South Road, Chapel Hill, NC27599-3050, United States

20 **Abstract**

21 A critical challenge for next-generation lithium-based batteries lies in development of
22 electrolytes that enable thermal safety along with use of high-energy-density electrodes. We
23 describe molecular ionic composite (MIC) electrolytes based on an aligned liquid crystalline
24 polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and
25 non-flammable solid electrolyte possesses outstanding Li^+ conductivity ($1 \text{ mS}\cdot\text{cm}^{-1}$ at 25°C) and
26 electrochemical stability (5.6 V vs $\text{Li}|\text{Li}^+$) while suppressing dendrite growth and exhibiting low
27 interfacial resistance ($32 \Omega\cdot\text{cm}^2$) and overpotentials ($\leq 120 \text{ mV}$ @ $1 \text{ mA}\cdot\text{cm}^{-2}$) during Li
28 symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-
29 ion assembly to incorporate an inter-grain network filled with defective LiFSI & LiBF₄
30 nanocrystals, strongly enhancing Li^+ conduction. This modular material fabrication platform
31 shows promise for safe and high-energy-density energy storage and conversion applications,
32 incorporating the fast transport of ceramic-like conductors with the superior flexibility of
33 polymer electrolytes.

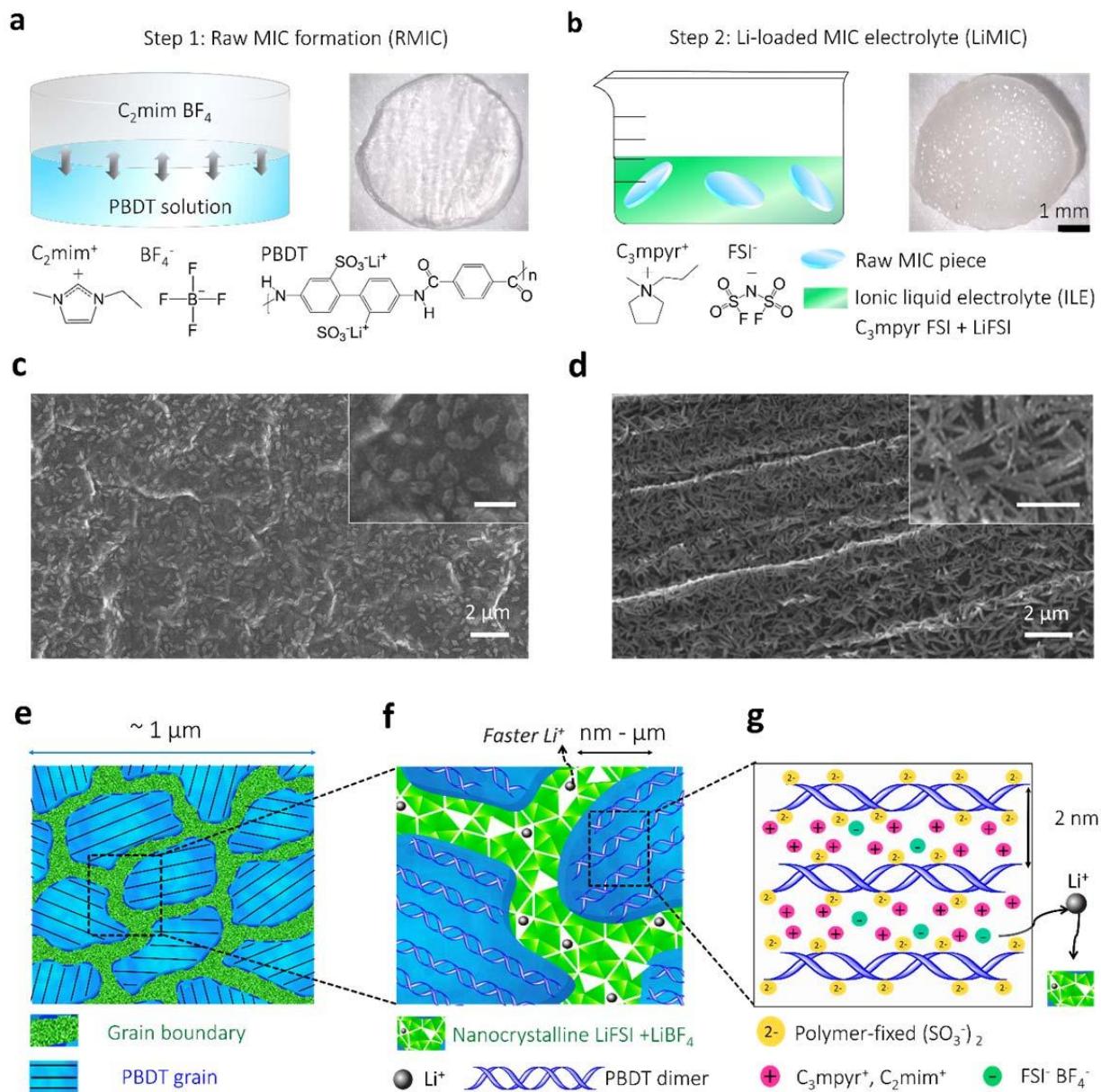
34

35

36

37 Solid-state polymer electrolytes (SPEs) have received great attention toward reviving high-
38 energy-density Li-based batteries.¹⁻⁴ While Li-ion batteries play an important role in the energy
39 storage landscape due to their relatively high specific energy and power density, they are
40 approaching theoretical limits ($\approx 400 \text{ Wh.kg}^{-1}$).^{5,6} In order to increase capacity of Li-based
41 batteries, researchers have largely focused on new electrode materials. Regarding cathodes, Li-
42 air and Li-sulfur batteries represent leading frontier candidates.^{3,7-9} At the anode, Li-metal can
43 replace graphite to increase anode energy density by ~ 10 fold.⁵⁻⁷ However, electrode
44 advancements require an enabling electrolyte to combat irreversible reactions and dendrite
45 growth during long-term charge/discharge cycling.^{7,10} To alleviate these issues, SPEs not only
46 provide mechanical stiffness to block dendrites, but deliver safer (non-flammable) operation
47 compared to liquid electrolytes.^{1,10-12} Herein, we describe a solid-state ***molecular ionic***
48 ***composite*** (MIC) electrolyte^{1,13-15} based on an extremely rigid double helical sulfonated aromatic
49 polyamide (similar to Kevlar®)^{16,17} combined with an ionic liquid (IL) and a Li salt. We can
50 adjust MIC properties widely by changing polymer content, IL type, and metal salt type and
51 loading. Thus, MICs represent a modular material platform with potential to resolve a range of
52 issues in electrolytic materials.

53 Previous researchers have developed a number of IL-based gel electrolytes (termed “ion gels”
54 or “ionogels”) that combine the non-flammability of ILs with a mechanically supporting
55 matrix.^{1,18-21} These electrolytes consist of either a polymer matrix embedded with a large volume
56 fraction of IL,^{1,22} or an IL inside an inorganic matrix such as SiO_2 and TiO_2 .^{19,20,23} Potential
57 applications of these gels for high-energy-density Li batteries have been substantially
58 explored.^{20,24,25} However, these gels only show practical Li-metal cycling performance when
59 doped with organic electrolytes,^{20,25} which improve conductivity but introduce a volatile liquid


60 that diminishes safety against overheating and fire.^{5,6} In this work, we describe solid-state MIC
61 electrolytes that contain no volatile solvents but exhibit high ionic conductivity, beneficial
62 electrode-electrolyte contact and high thermal stability, all while possessing sufficient modulus
63 to serve as the separator in Li-metal batteries. Loading electrolytes with Li salts serves to
64 increase Li-ion conductivity and supply Li⁺ for reactions at the electrodes.^{2,26-28} Maier et al. have
65 demonstrated that heterogeneous doping and interfacially controlled materials can be used to
66 increase Li⁺ conductivity in electrolytes.¹⁰ Christie et al. reported that the presence of the
67 irregularly shaped bis(trifluoromethanesulfonyl)imide (TFSI) anion disrupts the electrostatic
68 potential around Li⁺ thereby enhancing ionic conductivity in a manner analogous to inorganic
69 electrolytes such as AgBr_{1-x}I_x.² Recently, lithium bis(fluorosulfonyl)imide (LiFSI) has emerged
70 as a promising electrolyte component.²⁸⁻³⁰ Furthermore, the FSI⁻ anion can decompose upon
71 electroreduction to form a stable solid-electrolyte interphase (SEI) that enables reversible cycling
72 with a graphitic anode.³¹ In this project, we employ ionic liquid electrolytes (ILEs) containing *N*-
73 propyl-*N*-methylpyrrolidinium (C₃mpyr) FSI mixed with LiFSI (≤ 3.2 mol/kg), which have
74 previously shown Li-metal cycling at high rates.^{32,33} By incorporating this ILE into a solid MIC,
75 we demonstrate a highly lithium-dense solid-state electrolyte with potential to suppress Li
76 dendrite growth on Li-metal anodes, enable fast Li⁺ transport, and eliminate battery safety
77 concerns.

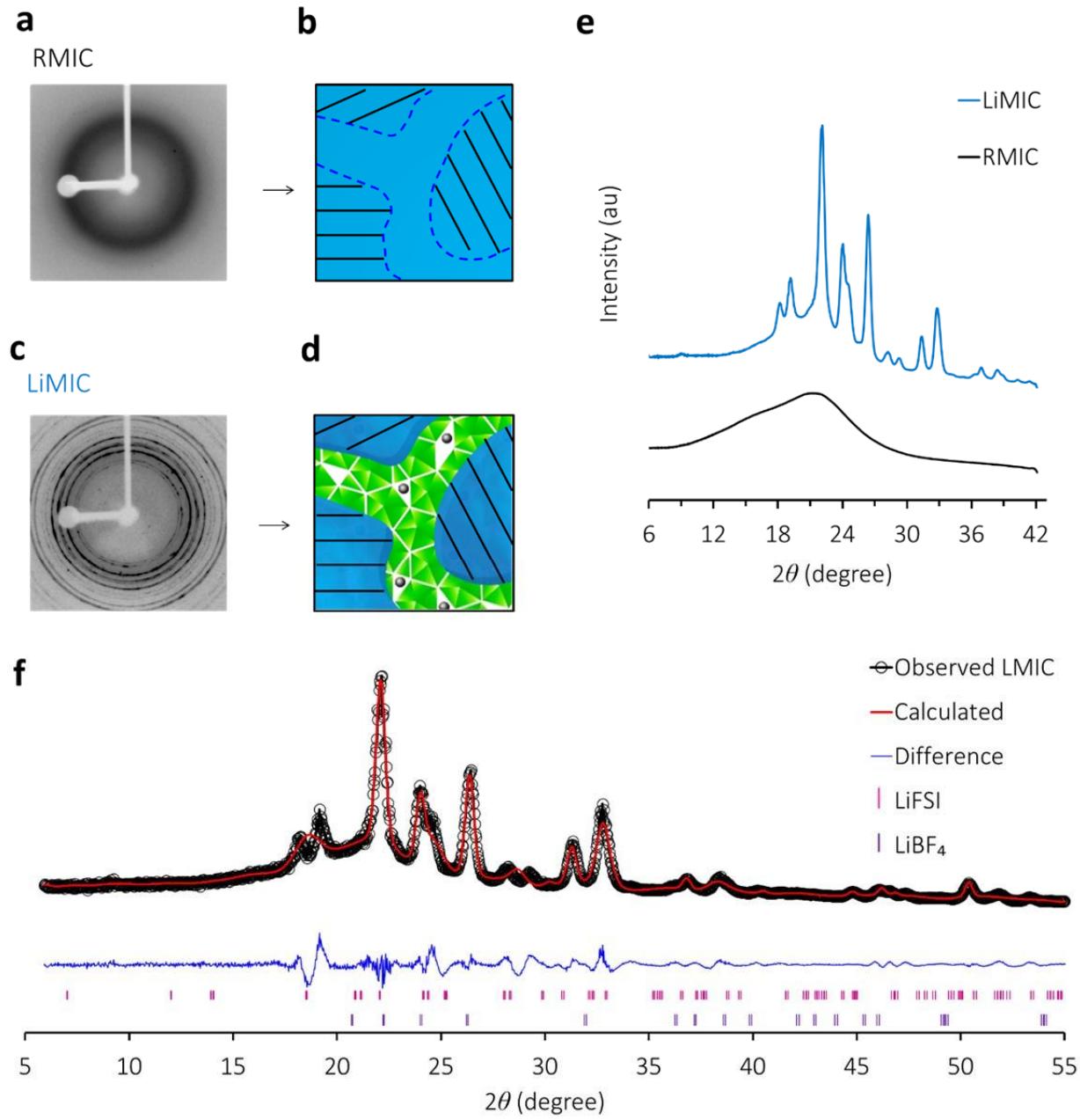
78 The Li-loaded MIC (LiMIC) fabrication process requires two steps: (1) Initial polymer-IL
79 network formation, followed by (2) ILE ion exchange to achieve high Li⁺ loading. As shown in
80 **Fig. 1a**, we obtain the raw MIC (RMIC), based on an interfacial ion-exchange process between a
81 sulfonated aromatic polyamide, poly-2,2'-disulfonyl-4,4'-benzidine terephthalamide (Li-form
82 PBDT) in H₂O solution and an IL, C₂mimBF₄ (1-ethyl-3-methylimidazolium tetrafluoroborate).¹

83 PBDT is water-miscible and forms a highly ordered lyotropic nematic liquid crystal (LC) phase
84 at concentrations > 2 wt%.^{16,17} The local parallel packing of charged PBDT rods serves as the
85 assembly template – not only offering mechanical integrity, but also endowing nanoscale
86 structuring in the composite. RMICs are denoted with RMIC-5 and RMIC-15, in which the
87 numbers denote PBDT weight percentage of 5% and 15%. In **Fig. 1b**, we immerse the rigorously
88 dried RMICs in the desired ILE, i.e., C₃mpyrFSI with 50 mol% LiFSI. This serves the dual
89 purposes of lowering the concentration of BF₄⁻ anions through ion-exchange while also
90 introducing Li⁺ ions into the polymer host matrix. By following this two-step fabrication method,
91 we obtain a solid-state MIC electrolyte, denoted LiMIC-5 and LiMIC-15. The key to *Step 1* is
92 that both the IL and LC polyelectrolyte dissolve in the same solvent. *Step 2* allows us to
93 exchange a wide range of IL and Li salt mixtures into the MIC matrix and tailor properties of the
94 product toward Li-metal batteries or other applications. The SEM images of RMICs (**Fig. 1c, d**)
95 show locally aligned PBDT LC grains (μm -scale) interspersed with interconnected grain
96 boundaries with a wide size distribution from nm - μm . This RMIC has mechanical cohesion
97 propagated by a collective “electrostatic network,” which effectively arises from templating of
98 the IL through the highly charged and rigid double helical PBDT rods.^{13,15} The RMICs are
99 macroscopically isotropic, but display local alignment originating from the rigid PBDT chains,
100 which can be verified using polarized optical microscopy (**Supplementary Fig. 1**).^{1,17}

101 **Fig. 1e-g** illustrates the concepts involved in multi-scale organization of the LiMICs. **Fig. 1e**
102 shows the μm -scale structure of this solid electrolyte, incorporating aligned PBDT grains
103 interleaved with a nanocrystalline ionic phase. These nanocrystalline grain boundaries serve as
104 an additional conductive network providing fast Li⁺ transport. As shown in **Fig. 1f**, we propose
105 that after ion exchange with ILE, the interconnected boundaries separating the individual PBDT

106 grains allow for higher Li^+ density and faster Li^+ transport as compared to within the grains. **Fig.**
 107 **1g** further illustrates the morphology and ion distribution in the internally aligned PBDT grains
 108 and the nanocrystalline component formed at the grain boundaries. We will illustrate this model
 109 in more detail in the following sections based on multi-modal material characterizations.

110


111 **Figure 1. Fabrication processes to form Li-loaded MIC electrolytes (LiMICs).** (a) **Step 1**
 112 shows fabrication of the raw MIC (RMIC). Mechanical cohesion in this RMIC arises via

113 electrostatic interactions,^{1,13,15} and we obtain this material based on an interfacial ion exchange
114 between a water-soluble IL (e.g., C₂mimBF₄) and an aqueous rigid-rod polyelectrolyte solution
115 (Li-form PBDT in H₂O). The photograph shows the sliced transparent RMIC sample. (b) **Step 2**
116 shows the second ion exchange process wherein we immerse a sliced section of the RMIC into
117 the ILE (C₃mpyrFSI with 50 mol% LiFSI). During the infiltration process, the cation C₃mpyr⁺ in
118 the ILE tends to segregate into the PBDT-rich phase,^{13,14} as the FSI⁻ and BF₄⁻ anions
119 preferentially associate with Li⁺ and precipitate out to form a nanoscale heterogeneous structure
120 in the grain boundaries. The photograph shows the sliced iridescent LiMIC sample. (c,d) SEM
121 images for RMIC-5(c) and RMIC-15(d). Higher magnification images are shown in the upper
122 right insets. The scale bar for the insets is 1 μ m. The interfaces between individual PBDT grains
123 form the grain boundaries (darker regions). Both the aligned PBDT grains and the grain
124 boundaries contain C₂mimBF₄. (e, f) After **Step 2**, the grain boundaries become predominantly
125 the condensed salt phase, which consists of nanocrystalline grains that form a conductive
126 network supporting fast Li⁺ transport. (g) The morphology of an aligned LC grain contains
127 PBDT double helical rods filled predominantly with mobile IL cations. The distance between
128 PBDT rods is \sim 2 nm.^{1,15}

129
130 To investigate the nanoscale morphology of these composites, we conducted powder X-ray
131 diffraction (XRD) experiments on the RMIC and LiMIC. As shown in **Fig. 2a**, we observe an
132 amorphous halo with scattering angle 2 θ from 12° to 30° for the RMIC, which we assign to the
133 amorphous C₂mimBF₄ in the RMIC. A schematic picture is shown in **Fig. 2b**, where the locally
134 aligned PBDT rods serve as the assembly template for the amorphous IL. The diffraction peaks
135 of the PBDT are overwhelmed by the large volume fraction of IL in the RMIC. By contrast, the
136 XRD of the LiMIC (**Fig. 2c**) shows a heterogeneous structure based on coexistence of the weak
137 amorphous halo and the sharp crystalline reflections. This pattern agrees with the schematic
138 picture shown in **Fig. 2d**, depicting a highly defective nanocrystalline domain formed in-situ
139 between the PBDT grains in the LiMICs. The extracted 1D spectra are shown in **Fig. 2e**. The

140 crystalline peaks (blue line), at first glance, appear to be superimposed diffraction patterns of
141 LiFSI and LiBF₄. We also notice that, compared to the amorphous phase, the crystalline phase is
142 the dominant component in the LiMIC, which supports the solid-state NMR (SSNMR)
143 integration results included in **Supplementary Table 1**, showing that ~ 80% anions (FSI⁻ and
144 BF₄⁻) in LiMIC are localized in the solid crystalline phase. We further use Le Bail refinement to
145 determine the cell parameters for the two potential crystals.³⁴ **Fig. 2f** shows the fitting results
146 with R-factor for the refinement $R_p = 6.87\%$, which indicates good alignment between the
147 observed diffraction patterns and the simulated phases of LiFSI and LiBF₄. The in-situ formed
148 defective crystals of LiFSI and LiBF₄ possess preferred orientations, which contribute to the high
149 density of vacancies that promote easier hopping of Li⁺ between crystallites. We use the Scherrer
150 equation³⁵ (**Supplementary Equation 1**) to determine the average crystallite size (19.4 nm)
151 formed in the LiMIC grain boundary regions from the FWHM of the peak at $2\theta = 26.363^\circ$ (012)
152 from the LiBF₄ phase. **Table 1** summarizes the Le Bail refinement with cell parameters for the
153 two defective crystals, and both belong to the trigonal crystal structure. These results provide
154 evidence that these nanocrystals are localized in the grain boundaries instead of within PBDT
155 grains, where the distance between PBDT chains is too small to accomodate the nanocrystals.^{1,15-}

156 ¹⁷

157

158 **Figure 2. X-ray diffraction patterns of RMIC and LiMIC.** (a) Powder XRD pattern for the

159 RMIC. (b) In the RMIC, PBDT LC grains and grain boundaries are filled with amorphous IL as

160 a result of **Step 1** of the fabrication process. (c) XRD pattern for the LiMIC. (d) In the LiMIC,

161 there exists an in-situ formed and highly defective nanocrystalline structure between PBDT LC

162 grains. (e) The extracted 1D spectra of the XRD images in (a) and (c). (f) Le Bail refinement

163 results for the LiMIC XRD pattern, which include the observed pattern, the calculated results and

164 the simulation of the in-situ formed nanocrystalline structure of LiFSI and LiBF₄.

165

166 **Table 1. Li crystals formed in the LiMIC (R_{wp} = 9.75%, R_p = 6.87%)**

LiMIC-15	Phase1 (LiFSI)	Phase2 (LiBF ₄)
Crystal structure	Trigonal	Trigonal
Space group	P -3	P 31 2 1
a (Å) (a)	8.513 (90°)	4.9511(90°)
b (Å) (β)	8.513(90°)	4.9511(90°)
c (Å) (γ)	12.610 (120°)	11.112 (120°)
Volume(Å³)	779.76	228.02
ICSD	415618	171375


167

168 To understand the ion transport and morphology in both RMIC and LiMIC, we first verify
 169 the chemical composition of the products, qualitatively and quantitatively, based on ¹H, ¹⁹F and
 170 ⁷Li NMR spectroscopy. **Fig. 3a, b, c** present key features of these NMR studies. **Fig. 3a** shows
 171 ¹H spectra for C₂mim⁺ in neat IL and C₃mpyr⁺ in ILE (bottom two spectra), and compares ¹H
 172 spectra in the RMIC to the LiMIC. The linewidth in the LiMIC (~ 1500 Hz) is much broader
 173 compared to the RMIC (~ 100 Hz), which means a factor of ~ 15 faster *T*₂ spin-spin relaxation,
 174 indicating slower motion of IL cations. **Supplementary Fig. 2** shows additional ¹H spectra for
 175 RMIC-5 and RMIC-15. SSNMR offers promise for studying the same chemical species in
 176 distinct phases, including the grain boundaries and the locally aligned PBDT grains in LiMICS.
 177 **Fig. 3b** shows ¹⁹F SSNMR spectra for LiMIC (blue line) along with spectra for the reference Li
 178 salts (LiFSI and LiBF₄). For the LiMIC, we observe a small percentage of mobile BF₄⁻ with a
 179 relatively narrow peak (light blue circle) at -150 ppm. The broad peak underneath (light green
 180 semicircle) refers to BF₄⁻ in the nanocrystalline grain boundaries. Due to its fast internal
 181 dynamics, FSI⁻ appears as only a singlet peak at 60 ppm, which we assign to the superposition of
 182 mobile FSI⁻ in aligned LC grains and solid FSI⁻ in nanocrystalline grain boundaries. The
 183 assignments, assumptions, and quantifications of different ionic species in the LiMICS are
 184 summarized in **Supplementary Fig. 3** and **Supplementary Table 1**. **Fig. 3c** compares ⁷Li

185 spectra between ILE and LiMIC. The widths and integration values of the peaks are displayed in
186 **Supplementary Fig. 4**. This single-component 3:4:3 splitting pattern indicates that Li^+ can only
187 exist in either the crystalline grain boundaries or in the PBDT LC grains.^{36,37} Based on the XRD,
188 we observe that the Li^+ mainly forms into crystalline phases of LiFSI and LiBF_4 in the grain
189 boundaries, thus demonstrating that Li^+ is the dominant cation in the solid nanocrystals, instead
190 of in PBDT LC grains.

191 Understanding and controlling ion transport, ion associations and Li^+ transport mechanisms
192 in electrolyte materials are critical for development of next-generation battery electrolytes. We
193 can extract the diffusive activation energy (E_a) of the ions present in RMIC and LiMIC
194 electrolytes based on the temperature dependencies of D_{Li}^+ , D_{cations} and D_{anions} obtained from
195 NMR diffusometry as shown in **Fig. 3d,e**.^{1,38-40} As indicated from the faster T_2 relaxation, we
196 observe that D values for the mobile IL ions in LiMICs are an order of magnitude smaller than
197 those in RMICs, as expected. **Fig. 3f** shows the extracted E_a values for cations and anions in
198 RMICs and LiMICs via the Arrhenius equation. The E_a values for C_2mim^+ and BF_4^- increase
199 with polymer content in the RMICs. This suggests that the density of the PBDT matrix
200 dominates the local energetic barriers that govern ion transport. In addition, compared to the
201 RMICs, the E_a values for cations in the LiMICs almost doubles, whereas E_a for anions show only
202 a slight increment with polymer content. This indicates that the PBDT matrix escalates the local
203 energetic barriers for cation transport in LiMICs, primarily because of stronger associations
204 between the SO_3^- on PBDT chains and C_3mpyr^+ . Correspondingly, the schematic picture for the
205 trapped cations within the aligned LC grain is shown in **Fig. 3g**. Conversely, the E_a values for Li^+
206 in the LiMIC (**Fig. 3h**) decrease with increasing polymer content, indicating smaller local
207 energetic barriers for Li^+ transport compared to the ILE.^{13,40} This indicates that a different Li^+

208 transport mechanism applies for LiMICs. As shown in **Supplementary Table 1**, the
209 concentration of mobile cations (C_2mim^+ , C_3mpyr^+) and anions (FSI^- , BF_4^-) in the LiMICs are ~
210 6 times lower compared to the RMICs. Meanwhile, LiMICs show an order of magnitude slower
211 diffusion coefficients for the same set of mobile cations and anions. Based on the Nernst–
212 Einstein equation, we suggest that the unexpectedly high conductivity observed in this solid
213 LiMIC electrolyte (see below, Fig. 4a) originates from a fast Li^+ hopping ion transport
214 mechanism in the solid nanocrystalline grain boundaries, as opposed to transport through a
215 liquid-like mobile phase in the PBDT LC grains.^{39,41,42} We further determine the Li^+ transference
216 number determined by diffusion ($t_{\text{Li}^+ \text{-NMR}}$) in LiMICs based on the **Supplementary Equation 2**
217 and include the results in **Supplementary Table 1**. **Fig. 3i** depicts the nanocrystalline anions
218 located in the grain boundaries, which we propose give rise to atypically fast Li^+ ion transport.

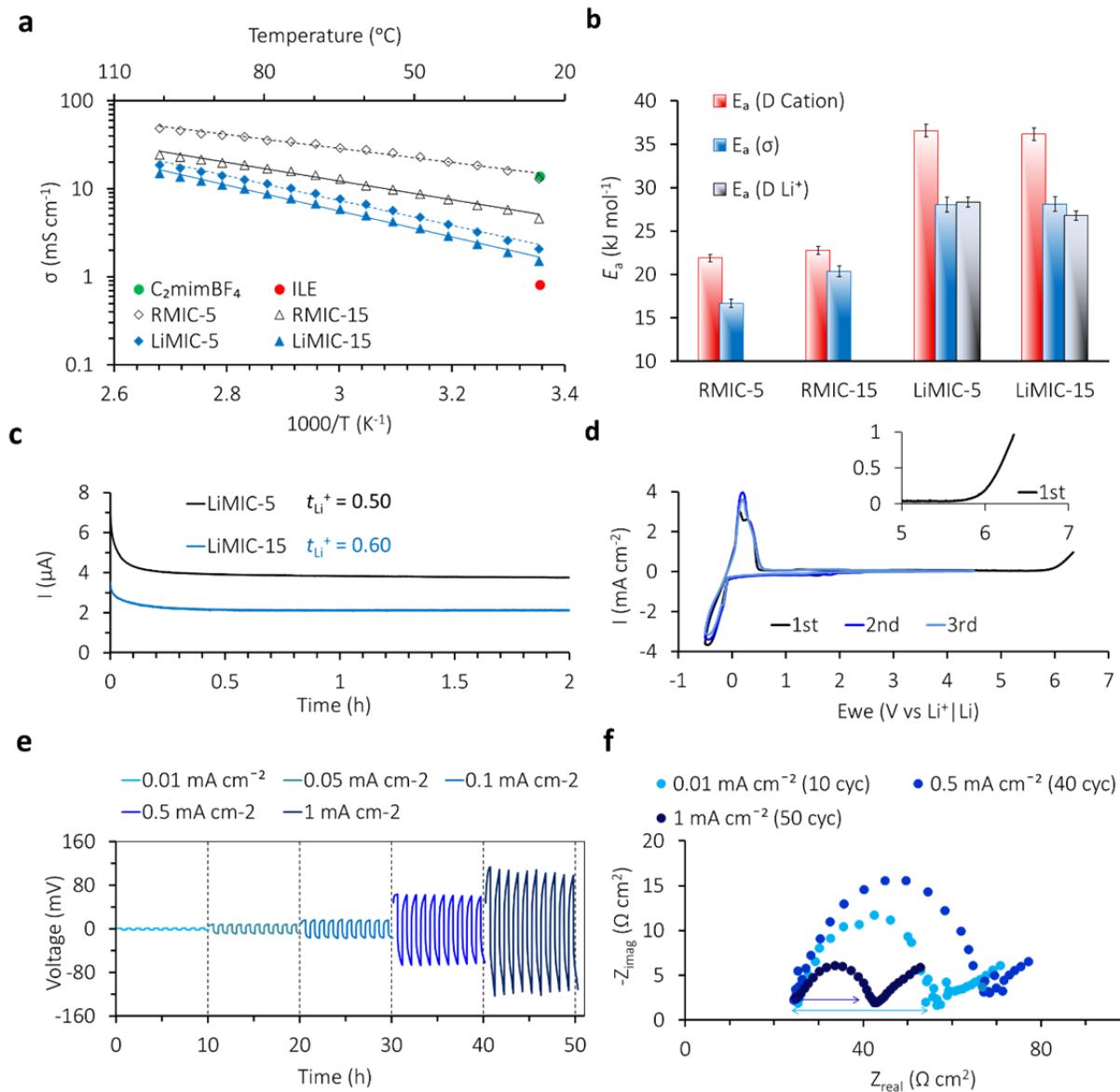
219
220 **Figure 3. Chemical identification, diffusion coefficients, activation energies and transport**
221 **mechanism in RMICs and LiMICs.** (a) ^1H NMR spectra of cations in neat IL (C_2mimBF_4), ILE
222 ($\text{C}_3\text{mpyrFSI}$ with 50 mol% LiFSI), RMIC and LiMIC. The peak in the LiMIC shows overlapping
223 C_3mpyr^+ and C_2mim^+ signals. (b) ^{19}F NMR spectra of solid LiFSI, solid LiBF_4 , RMIC and
224 LiMIC. (c) ^7Li spectra of liquid ILE and LiMIC. LiMIC shows single anisotropic environment
225 with relative integration values of each broad satellite component being 30% and the narrow

226 central component being 40% due to the quadrupole splitting of Li. (d) Temperature-dependent
227 D_{cations} and D_{anions} in the RMICs and LiMIC. For LiMICs, D_{cations} represents the average value for
228 C_3mpyr^+ and C_2mim^+ . The D_{anions} is the average value for mobile FSI^- and BF_4^- . D_{anions} is the
229 computed weighted average value for the anions based on the mole ratio of mobile FSI^- and BF_4^-
230 as quantified by ^{19}F NMR shown in **Supplementary Fig. 3** and **Supplementary Table 1**. (e)
231 Temperature-dependent D_{Li^+} in ILE and LiMICs. (f) E_a values for cations and anions obtained
232 from Arrhenius fitting of diffusion results. Uncertainties in diffusion are smaller than the marker
233 and uncertainties in E_a are $\approx \pm 0.5$ kJ/mol. (g) Schematic showing C_3mpyr^+ separations into
234 locally aligned LC grains. (h) E_a values for Li^+ obtained from Arrhenius fitting. The blue line
235 compares the measured $t_{\text{Li}^+ \text{-NMR}}$ in ILE to that in LiMICs. (i) Schematic of the electrolyte
236 structure showing the formation mechanism of nanocrystalline LiBF_4 and LiFSI in the grain
237 boundaries.

238

239 Building on the RMIC morphology,¹ we propose that the formation mechanism for the
240 heterogeneous structure in LiMICs lies in preferential associations and co-crystallization of
241 specific ions. SO_3^- and C_3mpyr^+ ions should have the weakest associations with other ions due to
242 their size and local charge distributions. Based on XRD and SSNMR results, we expect that FSI^-
243 and BF_4^- have a strong affinity with Li^+ to form a thermodynamically favorable crystalline phase.
244 These nanocrystals (20 nm) form within the grain boundaries when the concentration locally
245 exceeds the saturation point of LiBF_4 and LiFSI in the ILE. This leaves the exchanged C_3mpyr^+
246 and residual C_2mim^+ cations to neutralize predominantly the polymer-fixed SO_3^- anions within
247 the PBDT LC grains. The Li-rich nanocrystalline phase serves as a highly ion-conductive
248 network that can transport Li^+ . In these grain boundaries, the space-charge zone and nano-size
249 effects among the polycrystalline LiBF_4 , LiFSI and aligned crystalline PBDT grains should
250 enhance the vacancy density and conductivity of Li^+ , which is consistent with the decreasing E_a
251 of Li^+ obtained from NMR diffusometry. We also note that this nanocrystalline phase likely
252 exhibits features of plastic crystal behavior.^{39,43-45} Further investigation of transport mechanisms,

253 grain boundary heterogeneities, space-charge effects and ion interactions in this heterogeneous
254 structure will provide deeper understanding of these solid electrolytes for future materials design.

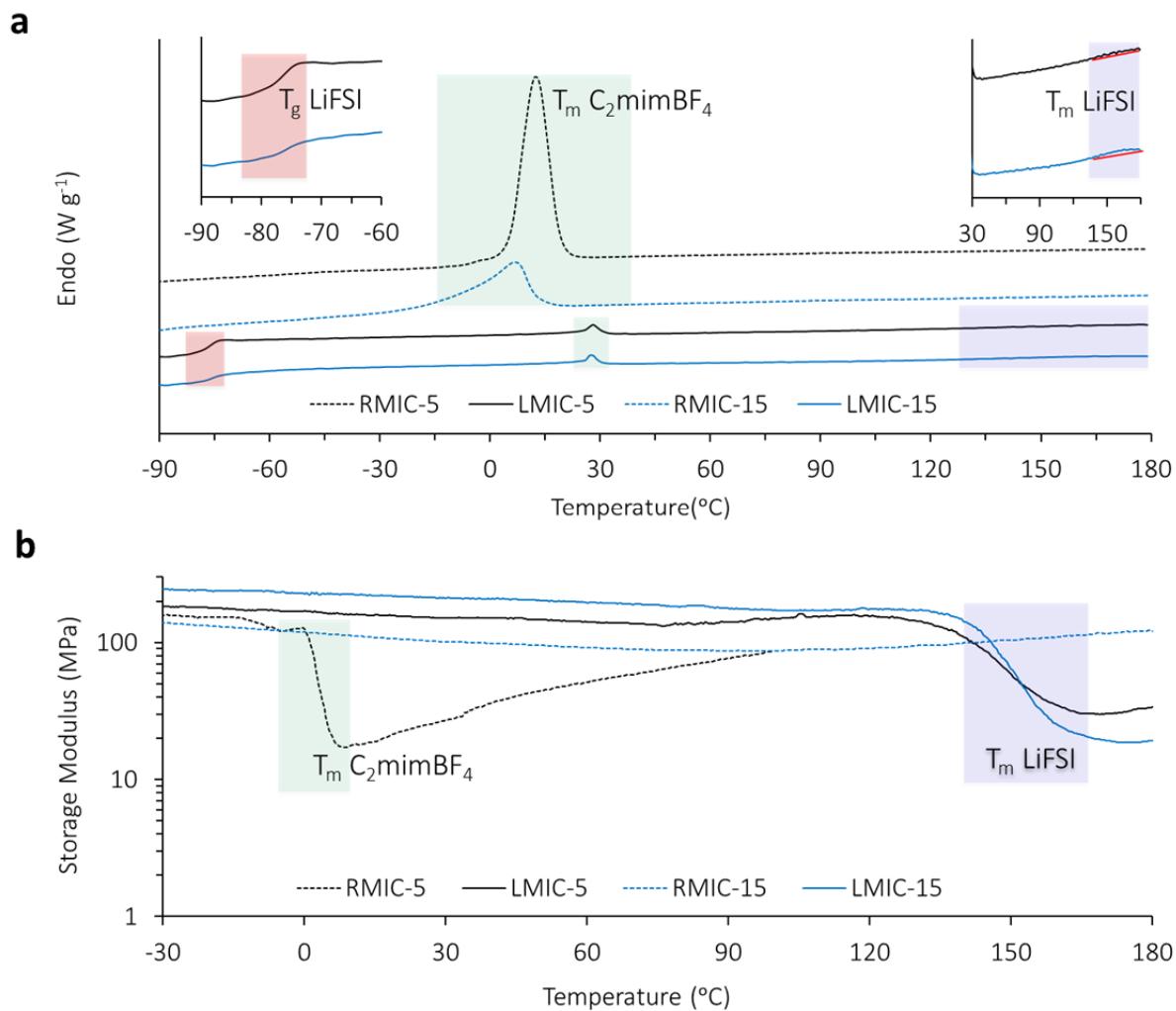

255 **Fig. 4a** shows ionic conductivities of LiMICs and RMICs as a function of temperature. The
256 exceedingly high σ of LiMIC-5 ($2.1 \text{ mS}\cdot\text{cm}^{-1}$) and LiMIC-15 ($1.5 \text{ mS}\cdot\text{cm}^{-1}$) at 25°C surpasses
257 that of state-of-the-art SPEs and even the liquid ILE ($0.82 \text{ mS}\cdot\text{cm}^{-1}$) we used for ion exchange in
258 *Step 2*.^{24,32} In terms of transport energy barriers, LiMICs show higher $E_a(\sigma)$ values compared to
259 RMICs (**Fig. 4b**), which again indicates a distinct transport mechanism in LiMICs. We notice
260 that E_a (Li^+ -NMR) in LiMIC is close to the $E_a(\sigma)$ obtained from conductivity. This further
261 indicates that the unexpectedly high conductivity in LiMICs originates from the nanocrystalline
262 conductive network with an ionic alloy (LiBF_4 and LiFSI) that forms at the boundaries between
263 individual grains. To supplement this demonstration, we determined the t_{Li}^+ based on the steady-
264 state current of the Li symmetric cell assembled with LiMICs as electrolyte and separator in **Fig.**
265 **4c**. The corresponding impedance spectra of the cells before polarization are shown in
266 **Supplementary Fig. 5**. The calculation details are included in **Supplementary Table 2** and
267 **Equation S3**. The determined t_{Li}^+ in LiMIC-15 (0.60) is much higher compared to the ILE ($t_{\text{Li}}^+ =$
268 0.18).³² One can then determine the fraction of conductivity due to Li^+ ($\sigma_{\text{Li}}^+ = 1 \text{ mS cm}^{-1}$) in
269 LiMICs by multiplying the overall conductivity by t_{Li}^+ .

270 We also performed cyclic voltammetry to evaluate the Li plating (negative scan) and
271 stripping (positive scan) behavior in LiMICs. As shown in the 1st cycle in **Fig. 4d**, upon scanning
272 in the positive direction, the electrolyte shows no significant sign of electrochemical
273 decomposition up to 5.6 V vs $\text{Li}|\text{Li}^+$. In addition, this electrolyte displays excellent cathodic
274 stability for Li-metal cycling in the following cycles (2nd and 3rd cycles). In **Supplementary Fig.**
275 **6**, we observe that the columbic efficiency of LiMICs increases with cycle number, whereas the

276 ILE shows diminished performance, indicating more effective SEI formation on Li-metal anode
277 when using LiMICs.

278 Next, we prepared Li|Li symmetric cells and recorded the voltage response for stepped
279 current densities ranging from $0.01 \text{ mA}\cdot\text{cm}^{-2}$ to $1 \text{ mA}\cdot\text{cm}^{-2}$. **Fig. 4e** shows the voltage response
280 for LiMIC-15 electrolytes. We observe that LiMIC-15 exhibits stable cycling and can withstand
281 a current density (J) to $1 \text{ mA}\cdot\text{cm}^{-2}$. This represents state-of-the art performance for SPEs or IL-
282 based electrolyte materials.^{5,20} Overpotential is proportional to applied J (**Supplementary Fig. 7**),
283 which follows the Butler-Volmer equation, thus avoiding the possibility of soft shorts.^{5,33}

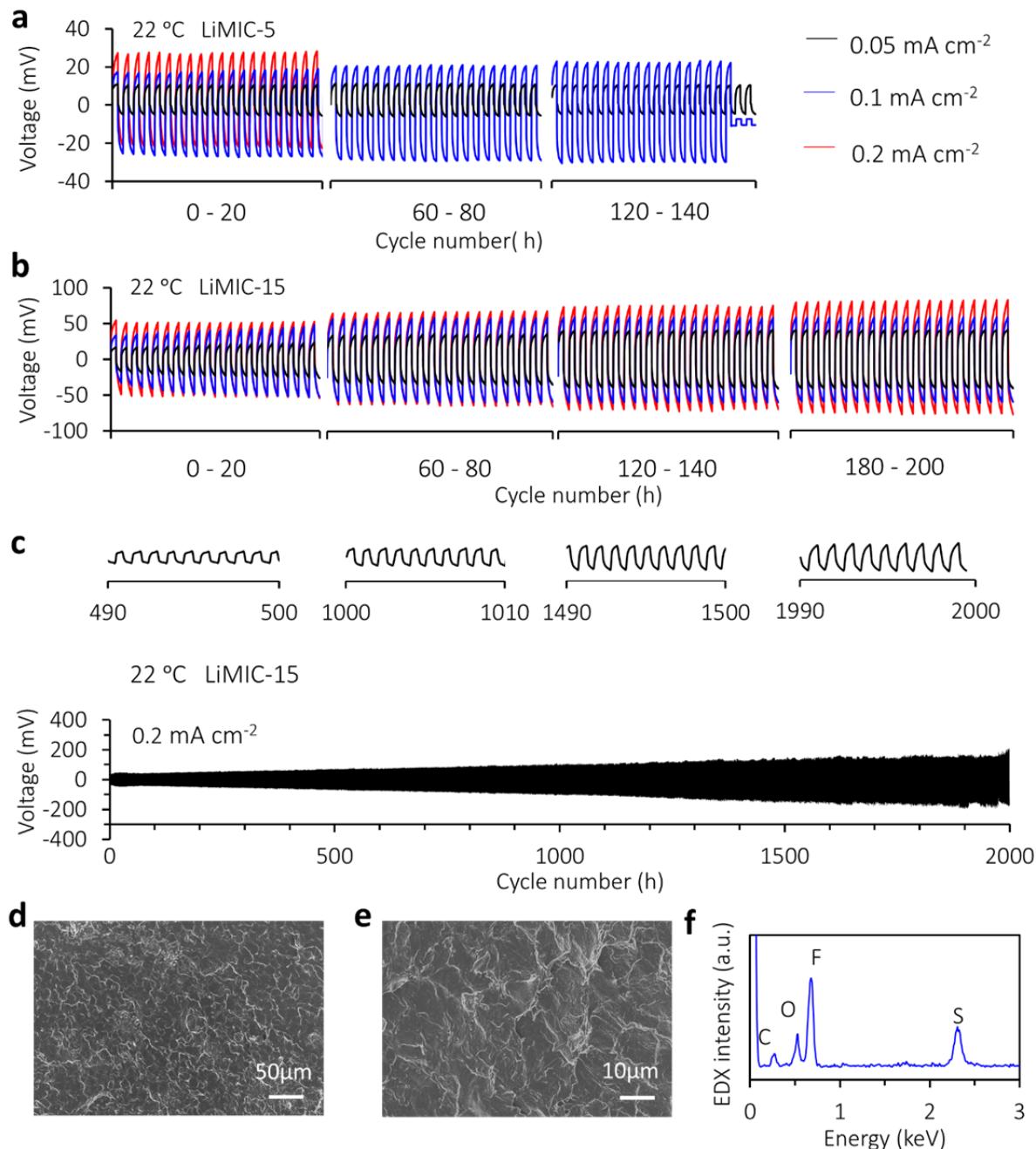
284 The LMIC electrolyte prepared with the ILE containing the highest concentration of LiFSI
285 (3.2 mol kg^{-1}) shows the most stable cycling performance (**Supplementary Fig. 8** and
286 **Supplementary Table 3**).^{32,33} EIS spectra shown in **Fig. 4f** indicate that the SEI resistance
287 increases over the first 40 cycles, then decreases upon further cycling and reduces below that of
288 the initial state at 50 cycles. This is generally associated with an improving SEI layer that forms
289 upon cycling and is commonly observed when cycling Li-metal in this ILE with high salt
290 concentration. Notably, the interfacial resistance for this LiMIC-15 is unusually small, both
291 before ($32 \Omega\cdot\text{cm}^{-2}$) and after ($17 \Omega\cdot\text{cm}^{-2}$) cycling, compared to other solid-state ion conductors,
292 thereby overcoming the poor electrolyte-electrode contact between Li-metal anode and solid-ion
293 conductor typically observed for, e.g., $\text{Li}_{10}\text{GeP}_2\text{S}_{12}$.⁴⁶


294
295 **Figure 4. Ionic conductivity, activation energy, Li^+ transference number, electrochemical**
296 **window, Li symmetric cell cycling performance, and interfacial charge-transfer resistance**
297 **in MICs.** (a) Arrhenius plot used to extract activation energies (E_a) for ionic conductivity within
298 RMICs and LiMICs. The green dot shows the conductivity (σ) of C_2mimBF_4 (25°C), used for
299 developing RMICs. The ionic conductivity value in ILE is indicated with red dots. (b) Comparison of E_a values obtained from the conductivity results to E_a values of cations and Li^+ based on Arrhenius fitting of NMR diffusometry. (c) Steady-state current in symmetric $\text{Li}|\text{Li}$ cell using LiMICs under 10 mV polarization. (d) Cyclic voltammetry curves for Li plating and stripping in LiMIC-15 at a sweep rate of 5 mV s^{-1} . Inset plot shows the enlarged view of the 1st cycle in the high voltage range. (e) Cell voltage versus time for a symmetric $\text{Li}|\text{Li}$ cell using

305 LiMIC-15 at current densities (J) from 0.01 to 1 $\text{mA} \cdot \text{cm}^{-2}$ (each cycle lasts 1 h) with changes in J
306 every 10 cycles. (f) Corresponding impedance spectra scanned before variation of J (10 cycles)
307 for the LiMIC-15. The frequency range used is 1Hz – 1MHz.

308

309 In addition to the high Li^+ conductivity achieved by LiMICs, we also performed DSC and
310 DMA to better understand their thermal and mechanical stability. As shown in **Fig. 5a**, DSC
311 curves show that C_2mimBF_4 has been mostly exchanged or replaced in LiMICs after *Step 2* of
312 ion exchange. In addition, we observe a glass transition ($T_g = -75^\circ\text{C}$) for LiFSI, which originates
313 from the LiFSI phase, as reported in this ILE previously.^{32,33} The enlarged view on the right
314 displays a broad melting transition (T_m) of LiFSI in LiMICs, consistent with the XRD results
315 showing that there exists a highly defective LiFSI crystalline phase in LiMICs. However, the T_m
316 is not obvious, possibly originating from an endothermic melting process that has been offset by
317 the exothermic degradation of LiFSI, as reported previously.⁴⁷ Meanwhile, we employed DMA
318 to investigate the mechanical properties of RMICs and LiMICs between -50°C to 180°C , as
319 shown in **Fig. 5b**. We observe that LiMIC-15 maintains high storage modulus (200 MPa)
320 between -50 to 140°C , which then drops above 140°C , near the T_m of LiFSI as well as the
321 degradation temperature for FSI.⁴⁷ During the heating process, the LiMIC modulus surpasses all
322 previous state-of-the-art SPEs, which usually show poor mechanical strength at temperatures
323 beyond the polymer T_g or T_m .⁴⁸ Flammability caused by formation of lithium dendrites represents
324 another key obstacle to safe operation of Li-metal batteries. We included flammability testing
325 results for RMIC in **Supplementary Fig. 9** and observe that RMICs are stable and cannot be
326 ignited under a methane/ O_2 flame. Additionally, we carried out nanoindentation experiments to
327 study the microscopic modulus of the MIC materials (**Supplementary Fig. 10**), where we
328 observe a large distribution of modulus values, reflecting the heterogeneous structure in LiMICs.


329 The median values shown in the boxplots indicate high consistency with macroscopic DMA
 330 results.

331
 332 **Figure 5. Thermal and mechanical properties of RMICs and LiMICS.** (a) DSC shows
 333 apparent differences between LiMICS and RMICs. RMICs display the melting (T_m) of IL
 334 C_2mimBF_4 at 17 $^{\circ}\text{C}$, whereas we only see a slight T_m peak for C_2mimBF_4 in LiMICS in
 335 agreement with the fact that C_2mimBF_4 has been largely exchanged out. According to peak
 336 integration analysis, only < 3% of C_2mimBF_4 remains in the LiMICS. Notably, we do not
 337 observe any apparent melting peaks belonging to $\text{C}_3\text{mpyrFSI}$ or $\text{C}_3\text{mpyrBF}_4$. The enlarged inset
 338 on the left shows the glass transition (T_g) at -75 $^{\circ}\text{C}$, which originates from the in-situ formed and
 339 defective LiFSI phase. The enlarged inset on the right displays the broad melting transition (T_m)
 340 of LiFSI in LiMICS. The T_m peak is not obvious, likely because of the opposing thermal
 341 transition processes of melting and degradation of LiFSI. (b) DMA shows the mechanical

342 properties of RMICs and LiMICs from -30 °C to 180 °C. RMIC-5 shows a melting drop around
343 the T_m of C_2mimBF_4 . LiMICs maintain high modulus (200 MPa) between -50 to 140 °C then
344 start dropping at 140 °C, which is near both the melting and degradation temperatures of LiFSI
345 (140 °C).⁴⁷

346 In addition to the cycling results in Fig. 4e, **Fig. 6a-b** shows long-term cycling performance
347 of the LiMICs as a function of polymer content and current density (J). Based on comparison
348 between LMIC-5 and LiMIC-15 at increasing J , (0.05, 0.1, 0.2 $mA \cdot cm^{-2}$), we observe that
349 LiMIC-15 (higher polymer content) shows longer cycling stability at all current densities. This
350 suggests that Li dendrite growth is better suppressed by increasing the rigid polymer content.
351 The discussion of short circuit behavior observed for LiMIC-5 is included in Note 10 of
352 supplementary information. **Fig. 6c** demonstrates the cycling stability of LiMIC-15 at $J = 0.2$
353 $mA \cdot cm^{-2}$. Here, we observe that the cell can cycle without short circuit for > 2000 cycles, which
354 corresponds to 2000 h cycling time and thus removal (and re-plating) of an accumulated total of
355 1 mm thickness from each Li-metal electrode. Based on the falciform (curved) potential
356 observed in the charging and discharging processes shown in the selected cycles across the long
357 period, we do not observe the unstable voltage profile that typically exists in organic electrolytes
358 at high rates.^{32,33} Though overpotential is increasing, we can expect changes to the SEI layer
359 formed on Li-metal during cycling, which is stable enough to suppress Li dendrite growth and
360 prevent short-circuit. Post-cycling SEM of the Li-metal electrode surface (**Fig. 6d, e**) shows a
361 smooth surface devoid of significant dendrites or ‘mossy’ lithium seen in typical organic
362 electrolyte systems. Peaks from the breakdown products of the FSI^- anion can be seen in the
363 EDX spectra (**Fig. 6f**), which are known to aid in chemically suppressing Li dendrites.³¹

364

365 **Figure 6. Voltage-time profiles for Li|Li symmetric cells incorporating LiMICs at ambient**
 366 **temperature.** 1 cycle = 1 h, or 30 min for each charge and discharge. (a) 0.05 mA·cm⁻², 0.1
 367 mA·cm⁻², 0.2 mA·cm⁻² for LiMIC-5, (b) for LiMIC-15. (c) Long-term cycling of LiMIC-15 at
 368 current density of 0.2 mA·cm⁻² with 1 h charge/discharge, insets are profiles for selected cycle
 369 numbers in the cycling period. (d, e) SEM images with different magnifications for the
 370 disassembled Li-metal electrode after 2000 h long-term cycling in (c) using LiMIC-15 as both
 371 electrolyte and separator. (f) EDX spectra of Li-metal surface after long-term cycling.

372 We have described materials development, mechanisms for ion transport, morphological
373 self-assembly, as well as thermal, mechanical, and electrochemical properties of a new Li-loaded
374 solid-state electrolyte. This inorganic/organic composite material shows immense potential to
375 serve as a next-generation electrolyte for a range of electrochemical devices, suited for frontier
376 battery technologies such as Li-metal, Li-S, or Na-based systems. The fabrication method
377 described enables generation of non-flammable and highly conductive electrolytes with tunable
378 modulus and with selectable metal ion type and varying concentrations. In addition to the initial
379 component IL (C_2mimBF_4) described here, we can also fabricate MICs based on different
380 combinations of ILs and PBDT. **Supplementary Table 4** summarizes the currently accessible
381 MIC fabrication parameter space. Beyond batteries, MICs represent a modular material platform
382 into which we can incorporate a wide range of ionic fluids and salts with an adjustable
383 concentration of the highly charged and rigid double helical PBDT polymer. Such compositional
384 freedom enables the fabrication of MICs with dramatic variations in chemical, mechanical,
385 conductive, electrolytic, and thermal properties to enable applications in the next generation of
386 safe and high-energy-density energy storage devices and beyond.

387 **Methods**

388 *Materials:* Poly 2,2'-disulfonyl-4,4'-benzidine terephthalamide (PBDT) was synthesized by
389 interfacial condensation polymerization as described previously.^{17,49} 1-ethyl-3-methyl
390 imidazolium tetrafluoroborate (C_2mimBF_4 , purity > 99%) was purchased from Solvent
391 Innovation GmbH (Cologne, Germany). N-propyl-N-methylpyrrolidinium
392 bis(fluorosulfonyl)imide ($C_3mpyrFSI$, purity > 99.9%) was purchased from Solvionic. Lithium
393 bis(fluorosulfonyl)imide (LiFSI, purity > 99.5%) was sourced from Suzhou Fluolyte Co., Ltd.,
394 China. Lithium metal was sourced from China Energy Lithium Co. Ltd. (purity > 99.9%). IL

395 electrolytes (ILEs) in this paper were prepared by adding the prescribed amount of LiFSI to
396 C₃mpyrFSI IL at room temperature in an Ar-filled glove box (< 0 ppm O₂ and < 10 ppm H₂O).

397 *Preparation of the RMIC:* C₂mimBF₄ with the same volume as the (Li-counterion) PBDT
398 seed aqueous solution was slowly pipetted on top of each solution. After 24 hours ion exchange,
399 the hydrated MIC gel was formed in the bottom polymer solution phase and the residual water/IL
400 supernatant was poured off. After vacuum drying the initially hydrated RMIC at 80 °C for more
401 than 24 hours, we obtained the RMIC electrolytes.

402 *Preparation of the Li-loaded MIC:* The RMICs were sliced by hand using a scalpel as thin as
403 possible, to obtain a thickness of 250 µm with a standard deviation of 20%. Performance results
404 will improve as we decrease/optimize the thickness of the electrolytes in future investigations.
405 The sliced RMICs were then immersed in the ILEs for > 24 h at room temperature. These
406 operations were completed in an Ar-filled glove box.

407 *¹H, ¹⁹F and ⁷Li NMR spectroscopy and pulsed-field-gradient (PFG) NMR diffusometry:* A
408 Bruker Avance III widebore 400 MHz (9.4 T) NMR was equipped with a diff60 pulsed-field-
409 gradient diffusion probe having a maximum gradient value of 2000 G/cm (at 33 A) along the Z
410 axis and 5 mm ⁷Li and 8 mm ¹H/¹⁹F rf coils. The PGSTE sequence used a $\pi/2$ pulse, gradient
411 pulse duration δ of 1 - 2 ms, diffusion times Δ of 10 - 50 ms and the number of scans for each
412 step was adjusted from 16 - 1024 to ensure good signal-to-noise ratio (SNR). 16 gradient steps
413 were applied for each diffusion experiment. All parameters for the NMR diffusometry
414 experiments have been calibrated and optimized as reported earlier.⁵⁰ Solid-state NMR analysis
415 was performed for chemical identification of various samples. The LiMIC samples were
416 prepared in glove box and flame sealed without breaking vacuum in a 5 mm NMR tube to a
417 length of 3 cm filling the coil region of the probe completely. Water content of the samples were

418 examined using ^1H NMR to ensure the samples were dry as shown in **Supplementary Fig. 11**.
419 For solid-state NMR, a Bruker Avance III widebore 400 MHz (9.4 T) NMR was equipped with a
420 static High Power HX SSNMR Probe to allow for short high-power excitation pluses to ensure a
421 wide spectral excitation bandwidth. For ^{19}F spectra a single pulse with a $1.1\ \mu\text{s}$ duration at 200
422 W was used to achieve a tilt angle of 50° . ^{19}F spectra were collected using an acquisition time of
423 0.0204 s, relaxation delay of 4 s, pre-scan delay of $10\ \mu\text{s}$, and 64 scans. For the ^7Li spectra a
424 single pulse with a $2.8\ \mu\text{s}$ duration at 200 W was used to achieve a tilt angle of 90° . ^7Li spectra
425 were collected using an acquisition time of 0.0198 s, relaxation delay of 10 s, pre-scan delay of
426 $10\ \mu\text{s}$, and 128 scans. All parameters for the solid-state experiments have been calibrated and
427 optimized to ensure integration values of all spectra are precise. All solid-state NMR spectra
428 were conducted at 25°C .

429 *X-ray diffraction (XRD):* XRD experiments were carried out on a Rigaku Oxford Diffraction
430 Xcalibur Nova Single-Crystal Diffractometer equipped with an Onyx CCD detector and a Cu
431 microsource operating at 49.5 kV and 80 mA at room temperature. The RMIC was sliced to a
432 thickness ~ 1 mm and mounted on the edge of a steel pin, such that the gel extended above the
433 steel pin and into the X-ray beam. The sample-to-detector distance was 50 mm, giving data at
434 scattering angle 2θ from 5° to 42° . The sample was rotated 2° along the ϕ direction. For each
435 sample, a total of 6 images each with 30 s exposure time was collected and summed to increase
436 signal-to-noise ratio. The software CrysAlisPro (v1.171.37.35, Rigaku Oxford Diffraction, 2015,
437 Rigaku Corporation, Oxford, UK) was used for data collection and analysis.

438 *Cyclic voltammetry:* A stainless steel working electrode and a Li-metal foil counter electrode
439 were employed for cyclic voltammetry. The CV measurements were performed against $\text{Li}|\text{Li}^+$
440 redox potential.³³ All scans were performed at 25°C with $5\ \text{mV s}^{-1}$ scan rate using a Biologic SP-

441 200 controlled by EC-Lab (ver. 10.40) software.

442 *Symmetric lithium metal coin cells*: The coin cells were prepared with CR2032 cases with
443 two 3.2 mm (1/8 inch) diameter lithium electrodes in an Ar-filled glove box. The coin cells were
444 used for impedance spectroscopy and cycling measurements. A VMP3 (BioLogic) system and a
445 Neware system were used for battery testing.

446 *Ionic conductivity*: The ionic conductivity was measured via dielectric response over a 1 Hz –
447 1 MHz frequency range (to emphasize the electrode-electrolyte interfacial resistance) at an
448 amplitude of 20 mV. A temperature scan range 20 °C to 100 °C was selected, and the
449 temperature was controlled by a Eurotherm 2204 temperature controller. Conductivity of the
450 LiMIC was extracted using a value of electrical resistance obtained by fitting the data to an
451 equivalent circuit model using EC-Lab (ver. 10.40) software®. Two heating scans with 10 °C
452 intervals were conducted, and the data shown in this study were extracted from the second
453 heating scan.

454 *Li Transference Number (t_{Li}^+)*: The transference number was electrochemically determined
455 by direct current (DC) polarization. An AC impedance test was firstly performed over a 0.1 Hz
456 to 1 MHz range to obtain a total resistance R_{cell} . Then the polarization was carried out to obtain a
457 stable current. Cells were polarized at ambient temperature with a constant potential of 10 mV
458 for 2 h.

459 *Dynamic Mechanical Analysis (DMA)*: The mechanical properties of the composites were
460 investigated at 1Hz frequency using a DMA 8000 (PerkinElmer) from -50 to 200 °C. The sample
461 preparation was finished in a N₂-filled glovebox (H₂O < 100 ppm). The compression mode was
462 used to determine the storage modulus and loss modules of each electrolyte. The test sample was
463 first cooled to -50 °C and then heated to 200 °C at a heating rate of 2 °C/min.

464 *Differential scanning calorimetry (DSC):* A Netzsch DSC (214 polyma), calibrated with
465 cyclohexane, was used to investigate the thermal behaviour of the MICs. The heating and
466 cooling rate were 10 °C min⁻¹. Samples were cooled to -100 °C and then three heating scans
467 were followed.

468 *Nanoindentation* results were measured at room temperature using a hysitron triboindenter.

469 *Scanning electron microscopy* was performed using a JSM IT 300 series microscope and
470 energy dispersive X-ray spectroscopy was measured with an Oxford X-Max 50 mm² EDX
471 detector.

472 **References**

- 473 1 Wang, Y. *et al.* Highly Conductive and Thermally Stable Ion Gels with Tunable
474 Anisotropy and Modulus. *Adv Mater* **28**, 2571-+, doi:10.1002/adma.201505183 (2016).
- 475 2 Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the
476 conductivity of crystalline polymer electrolytes. *Nature* **433**, 50-53,
477 doi:10.1038/nature03186 (2005).
- 478 3 Famprakis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of
479 inorganic solid-state electrolytes for batteries. *Nature Materials* **18**, 1278-1291,
480 doi:10.1038/s41563-019-0431-3 (2019).
- 481 4 Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state
482 electrolytes. *Nature Reviews Materials* **2**, 16103, doi:10.1038/natrevmats.2016.103
483 (2017).
- 484 5 Lu, Y. Y., Tu, Z. Y. & Archer, L. A. Stable lithium electrodeposition in liquid and
485 nanoporous solid electrolytes. *Nature Materials* **13**, 961-969, doi:10.1038/NMAT4041
486 (2014).
- 487 6 Qian, J. F. *et al.* High rate and stable cycling of lithium metal anode. *Nat Commun* **6**,
488 doi:10.1038/Ncomms7362 (2015).
- 489 7 Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O₂ and Li-S
490 batteries with high energy storage (vol 11, pg 19, 2012). *Nature Materials* **11**,
491 doi:10.1038/NMAT3237 (2012).
- 492 8 Krause, A. *et al.* High Area Capacity Lithium-Sulfur Full-cell Battery with Prelithiated
493 Silicon Nanowire-Carbon Anodes for Long Cycling Stability. *Scientific Reports* **6**,
494 27982, doi:10.1038/srep27982 (2016).
- 495 9 Lu, J. *et al.* A lithium–oxygen battery based on lithium superoxide. *Nature* **529**, 377-382,
496 doi:10.1038/nature16484 (2016).
- 497 10 Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems.
498 *Nature Materials* **4**, 805-815, doi:10.1038/nmat1513 (2005).

499 11 Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide Solid Electrolyte with Favorable
500 Mechanical Property for All-Solid-State Lithium Battery. *Scientific Reports* **3**, 2261,
501 doi:10.1038/srep02261 (2013).

502 12 Elia, G. A. *et al.* An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based
503 Electrolyte. *Nano Letters* **14**, 6572-6577, doi:10.1021/nl5031985 (2014).

504 13 Bostwick, J. E. *et al.* Ion Transport and Mechanical Properties of Non-Crystallizable
505 Molecular Ionic Composite Electrolytes. *Macromolecules* **53**, 1405-1414,
506 doi:10.1021/acs.macromol.9b02125 (2020).

507 14 Fox, R. J. *et al.* Nanofibrillar Ionic Polymer Composites Enable High-Modulus Ion-
508 Conducting Membranes. *ACS Applied Materials & Interfaces* **11**, 40551-40563,
509 doi:10.1021/acsmami.9b10921 (2019).

510 15 Yu, Z., He, Y. D., Wang, Y., Madsen, L. A. & Qiao, R. Molecular Structure and
511 Dynamics of Ionic Liquids in a Rigid-Rod Polyanion-Based Ion Gel. *Langmuir* **33**, 322-
512 331, doi:10.1021/acs.langmuir.6b03798 (2017).

513 16 Wang, Y. *et al.* Double helical conformation and extreme rigidity in a rodlike
514 polyelectrolyte. *Nature Communications* **10**, 801, doi:10.1038/s41467-019-08756-3
515 (2019).

516 17 Wang, Y., Gao, J., Dingemans, T. J. & Madsen, L. A. Molecular Alignment and Ion
517 Transport in Rigid Rod Polyelectrolyte Solutions. *Macromolecules* **47**, 2984-2992,
518 doi:10.1021/ma500364t (2014).

519 18 Lodge, T. P. Materials science - A unique platform for materials design. *Science* **321**, 50-
520 51, doi:DOI 10.1126/science.1159652 (2008).

521 19 Lu, Y. Y., Korf, K., Kambe, Y., Tu, Z. Y. & Archer, L. A. Ionic-Liquid-Nanoparticle
522 Hybrid Electrolytes: Applications in Lithium Metal Batteries. *Angew Chem Int Edit* **53**,
523 488-492, doi:10.1002/anie.201307137 (2014).

524 20 Wu, F. *et al.* "Liquid-in-Solid" and "Solid-in-Liquid" Electrolytes with High Rate
525 Capacity and Long Cycling Life for Lithium-Ion Batteries. *Chem Mater* **28**, 848-856,
526 doi:10.1021/acs.chemmater.5b04278 (2016).

527 21 Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid
528 materials for the electrochemical challenges of the future. *Nature Materials* **8**, 621-629,
529 doi:Doi 10.1038/Nmat2448 (2009).

530 22 Ueki, T. & Watanabe, M. Macromolecules in ionic liquids: Progress, challenges, and
531 opportunities. *Macromolecules* **41**, 3739-3749, doi:Doi 10.1021/Ma800171k (2008).

532 23 Horowitz, A. I. & Panzer, M. J. High-performance, mechanically compliant silica-based
533 ionogels for electrical energy storage applications. *J Mater Chem* **22**, 16534-16539,
534 doi:10.1039/c2jm33496h (2012).

535 24 Lodge, T. P. & Ueki, T. Mechanically Tunable, Readily Processable Ion Gels by Self-
536 Assembly of Block Copolymers in Ionic Liquids. *Accounts Chem Res* **49**, 2107-2114,
537 doi:10.1021/acs.accounts.6b00308 (2016).

538 25 Le Bideau, J., Ducros, J. B., Soudan, P. & Guyomard, D. Solid-State Electrode Materials
539 with Ionic-Liquid Properties for Energy Storage: the Lithium Solid-State Ionic-Liquid
540 Concept. *Adv Funct Mater* **21**, 4073-4078, doi:DOI 10.1002/adfm.201100774 (2011).

541 26 Bhattacharyya, A. J., Dolle, M. & Maier, J. Improved Li-battery electrolytes by
542 heterogeneous doping of nonaqueous Li-salt solutions. *Electrochim Solid St* **7**, A432-
543 A434, doi:10.1149/1.1808113 (2004).

544 27 MacFarlane, D. R. & Forsyth, M. Plastic crystal electrolyte materials: New perspectives
545 on solid state ionics. *Adv Mater* **13**, 957-+, doi:Doi 10.1002/1521-
546 4095(200107)13:12/13<957::Aid-Adma957>3.0.Co;2-# (2001).

547 28 Alarco, P. J., Abu-Lebdeh, Y. & Armand, M. Highly conductive, organic plastic crystals
548 based on pyrazolium imides. *Solid State Ionics* **175**, 717-720,
549 doi:10.1016/j.ssi.2003.10.024 (2004).

550 29 Matsumoto, H. *et al.* Fast cycling of Li/LiCoO₂ cell with low-viscosity ionic liquids
551 based on bis(fluorosulfonyl)imide [FSI](-). *J Power Sources* **160**, 1308-1313,
552 doi:10.1016/j.jpowsour.2006.02.018 (2006).

553 30 Zaghib, K. *et al.* Safe Li-ion polymer batteries for HEV applications. *J Power Sources*
554 **134**, 124-129, doi:10.1016/j.jpowsour.2004.02.020 (2004).

555 31 Basile, A., Bhatt, A. I. & O'Mullane, A. P. Stabilizing lithium metal using ionic liquids
556 for long-lived batteries. *Nat Commun* **7**, doi:10.1038/Ncomms11794 (2016).

557 32 Yoon, H., Howlett, P. C., Best, A. S., Forsyth, M. & MacFarlane, D. R. Fast
558 Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte. *J Electrochem
559 Soc* **160**, A1629-A1637, doi:10.1149/2.022310jes (2013).

560 33 Yoon, H., Best, A. S., Forsyth, M., MacFarlane, D. R. & Howlett, P. C. Physical
561 properties of high Li-ion content N-propyl-N-methylpyrrolidinium
562 bis(fluorosulfonyl)imide based ionic liquid electrolytes. *Phys Chem Chem Phys* **17**, 4656-
563 4663, doi:10.1039/c4cp05333h (2015).

564 34 Kim, O., Kim, K., Choi, U. H. & Park, M. J. Tuning anhydrous proton conduction in
565 single-ion polymers by crystalline ion channels. *Nat Commun* **9**, 5029,
566 doi:10.1038/s41467-018-07503-4 (2018).

567 35 Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. *Physical
568 Review* **56**, 978-982, doi:10.1103/PhysRev.56.978 (1939).

569 36 Levitt, M. H. *Spin Dynamics: Basics of Nuclear Magnetic Resonance*. (Wiley, 2001).

570 37 Marple, M., Aitken, B., Kim, S. & Sen, S. Fast Li-ion dynamics in stoichiometric Li₂S-
571 Ga₂Se₃-GeSe₂ glasses. *Chem Mater* **29**, doi:10.1021/acs.chemmater.7b02858 (2017).

572 38 Kidd, B. E., Forbey, S. J., Steuber, F. W., Moore, R. B. & Madsen, L. A. Multiscale
573 Lithium and Counterion Transport in an Electrospun Polymer-Gel Electrolyte.
Macromolecules **48**, 4481-4490, doi:10.1021/acs.macromol.5b00573 (2015).

575 39 Kidd, B. E., Lingwood, M. D., Lee, M., Gibson, H. W. & Madsen, L. A. Cation and
576 Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion Conductor.
Journal of Physical Chemistry B **118**, 2176-2185, doi:10.1021/jp4084629 (2014).

578 40 Lingwood, M. D. *et al.* Unraveling the local energetics of transport in a polymer ion
579 conductor. *Chem Commun* **49**, 4283-4285, doi:10.1039/c2cc37173a (2013).

580 41 Hou, J. B., Zhang, Z. Y. & Madsen, L. A. Cation/Anion Associations in Ionic Liquids
581 Modulated by Hydration and Ionic Medium. *Journal of Physical Chemistry B* **115**, 4576-
582 4582, doi:10.1021/jp1110899 (2011).

583 42 Simons, T. J. *et al.* Influence of Zn²⁺ and Water on the Transport Properties of a
584 Pyrrolidinium Dicyanamide Ionic Liquid. *Journal of Physical Chemistry B* **118**, 4895-
585 4905, doi:10.1021/jp501665g (2014).

586 43 Jin, L. *et al.* Structure and Transport Properties of a Plastic Crystal Ion Conductor:
587 Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate. *Journal of the American
588 Chemical Society* **134**, 9688-9697, doi:10.1021/ja301175v (2012).

589 44 Zhu, H., MacFarlane, D. R., Pringle, J. M. & Forsyth, M. Organic Ionic Plastic Crystals
590 as Solid-State Electrolytes. *Trends in Chemistry* **1**, 126-140,
591 doi:10.1016/j.trechm.2019.01.002 (2019).

592 45 MacFarlane, D. R. *et al.* Ionic liquids and their solid-state analogues as materials for
593 energy generation and storage. *Nature Reviews Materials* **1**, 15005,
594 doi:10.1038/natrevmats.2015.5 (2016).

595 46 Han, X. *et al.* Negating interfacial impedance in garnet-based solid-state Li metal
596 batteries. *Nat Mater* **16**, 572-579, doi:10.1038/nmat4821 (2017).

597 47 Kerner, M., Plylahan, N., Scheers, J. & Johansson, P. Thermal stability and
598 decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. *RSC Advances* **6**, 23327-
599 23334, doi:10.1039/C5RA25048J (2016).

600 48 Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes
601 with in-built fast interfacial transport for secondary lithium batteries. *Nature Energy* **4**,
602 365-373, doi:10.1038/s41560-019-0349-7 (2019).

603 49 Gao, J. W. *et al.* Water and sodium transport and liquid crystalline alignment in a
604 sulfonated aramid membrane. *J Membrane Sci* **489**, 194-203,
605 doi:10.1016/j.memsci.2015.03.090 (2015).

606 50 Li, J., Park, J. K., Moore, R. B. & Madsen, L. A. Linear coupling of alignment with
607 transport in a polymer electrolyte membrane. *Nature Materials* **10**, 507-511, doi:10.1038/Nmat3048 (2011).

609 **Data availability**

610 All data generated and analyzed in this study are included in this published article and its
611 supplementary information file and are also available from the corresponding author on
612 reasonable request.

613 **Acknowledgements**

614 This work was supported primarily by the US National Science Foundation under awards DMR
615 1507764 and 1810194 and in part by the US Department of Energy under award EE0008860.
616 We also gratefully thank Prof. Carla Slebodnick at the Virginia Tech Crystallography Lab for
617 assistance with XRD analysis.

618 **Author contributions**

619 YW designed and executed all major experiments and composed and edited article drafts. XW,

620 RK, LJ, and MF performed and assisted with electrochemistry and impedance experiments and
621 contributed written sections and editing to the article. CJZ performed solid-state NMR
622 experiments and contributed written sections and editing to the article. WHK analyzed the XRD
623 data and contributed written sections to the article. TJD modified and supplied polymer,
624 conceived experiments and contributed written sections and editing to the article. LAM
625 conceived ideas, oversaw experiments, and composed and edited the article.

Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways

Ying Wang¹, Curt J. Zanelotti¹, Xiaoen Wang², Robert Kerr², Liyu Jin², Wang Hay Kan³, Theo J. Dingemans⁴, Maria Forsyth², and Louis A. Madsen^{1}*

1. Department of Chemistry and Macromolecules Innovation Institute
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061, United States
E-mail: lmadsen@vt.edu
2. Institute for Frontier Materials and ARC Centre of Excellent for Electromaterials Science
Deakin University
Geelong, VIC 3216, Australia
3. China Spallation Neutron Source
Chinese Academy of Science
Dongguan, Guangzhou 523803, China
4. Department of Applied Physical Sciences
University of North Carolina at Chapel Hill
121 South Road, Chapel Hill, NC27599-3050, United States

20 **Abstract**

21 A critical challenge for next-generation lithium-based batteries lies in development of
22 electrolytes that enable thermal safety along with use of high-energy-density electrodes. We
23 describe molecular ionic composite (MIC) electrolytes based on an aligned liquid crystalline
24 polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and
25 non-flammable solid electrolyte possesses outstanding Li^+ conductivity ($1 \text{ mS}\cdot\text{cm}^{-1}$ at 25°C) and
26 electrochemical stability (5.6 V vs $\text{Li}|\text{Li}^+$) while suppressing dendrite growth and exhibiting low
27 interfacial resistance ($32 \Omega\cdot\text{cm}^2$) and overpotentials ($\leq 120 \text{ mV} @ 1 \text{ mA}\cdot\text{cm}^{-2}$) during Li symmetric
28 cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-ion assembly
29 to incorporate an inter-grain network filled with defective $\text{LiFSI} \& \text{LiBF}_4$ nanocrystals, strongly
30 enhancing Li^+ conduction. This modular material fabrication platform shows promise for safe and
31 high-energy-density energy storage and conversion applications, incorporating the fast transport
32 of ceramic-like conductors with the superior flexibility of polymer electrolytes.

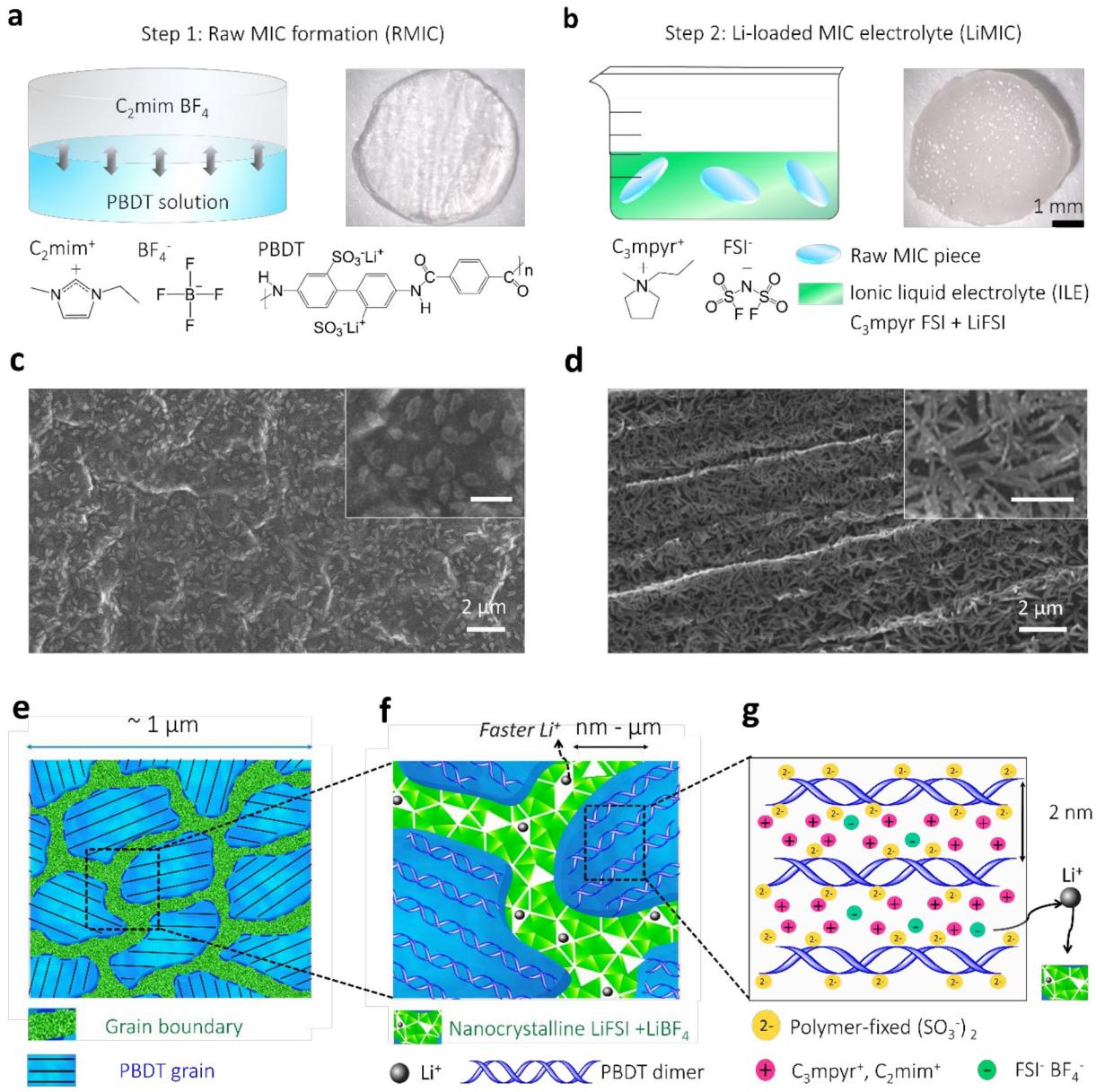
33

34

35

36 Solid-state polymer electrolytes (SPEs) have received great attention toward reviving high-
37 energy-density Li-based batteries.¹⁻⁴ While Li-ion batteries play an important role in the energy
38 storage landscape due to their relatively high specific energy and power density, they are
39 approaching theoretical limits (≈ 400 Wh.kg⁻¹).^{5,6} In order to increase capacity of Li-based
40 batteries, researchers have largely focused on new electrode materials. Regarding cathodes, Li-air
41 and Li-sulfur batteries represent leading frontier candidates.^{3,7-9} At the anode, Li-metal can replace
42 graphite to increase anode energy density by ~ 10 fold.⁵⁻⁷ However, electrode advancements
43 require an enabling electrolyte to combat irreversible reactions and dendrite growth during long-
44 term charge/discharge cycling.^{7,10} To alleviate these issues, SPEs not only provide mechanical
45 stiffness to block dendrites, but deliver safer (non-flammable) operation compared to liquid
46 electrolytes.^{1,10-12} Herein, we describe a solid-state ***molecular ionic composite*** (MIC)
47 electrolyte^{1,13-15} based on an extremely rigid double helical sulfonated aromatic polyamide (similar
48 to Kevlar®)^{16,17} combined with an ionic liquid (IL) and a Li salt. We can adjust MIC properties
49 widely by changing polymer content, IL type, and metal salt type and loading. Thus, MICs
50 represent a modular material platform with potential to resolve a range of issues in electrolytic
51 materials.

52 Previous researchers have developed a number of IL-based gel electrolytes (termed “ion gels”
53 or “ionogels”) that combine the non-flammability of ILs with a mechanically supporting
54 matrix.^{1,18-21} These electrolytes consist of either a polymer matrix embedded with a large volume
55 fraction of IL,^{1,22} or an IL inside an inorganic matrix such as SiO₂ and TiO₂.^{19,20,23} Potential
56 applications of these gels for high-energy-density Li batteries have been substantially
57 explored.^{20,24,25} However, these gels only show practical Li-metal cycling performance when
58 doped with organic electrolytes,^{20,25} which improve conductivity but introduce a volatile liquid


59 that diminishes safety against overheating and fire.^{5,6} In this work, we describe solid-state MIC
60 electrolytes that contain no volatile solvents but exhibit high ionic conductivity, beneficial
61 electrode-electrolyte contact and high thermal stability, all while possessing sufficient modulus to
62 serve as the separator in Li-metal batteries. Loading electrolytes with Li salts serves to increase
63 Li-ion conductivity and supply Li⁺ for reactions at the electrodes.^{2,26-28} Maier et al. have
64 demonstrated that heterogeneous doping and interfacially controlled materials can be used to
65 increase Li⁺ conductivity in electrolytes.¹⁰ Christie et al. reported that the presence of the
66 irregularly shaped bis(trifluoromethanesulfonyl)imide (TFSI⁻) anion disrupts the electrostatic
67 potential around Li⁺ thereby enhancing ionic conductivity in a manner analogous to inorganic
68 electrolytes such as AgBr_{1-x}I_x.² Recently, lithium bis(fluorosulfonyl)imide (LiFSI) has emerged as
69 a promising electrolyte component.²⁸⁻³⁰ Furthermore, the FSI⁻ anion can decompose upon
70 electroreduction to form a stable solid-electrolyte interphase (SEI) that enables reversible cycling
71 with a graphitic anode.³¹ In this project, we employ ionic liquid electrolytes (ILEs) containing *N*-
72 propyl-*N*-methylpyrrolidinium (C₃mpyr) FSI mixed with LiFSI (≤ 3.2 mol/kg), which have
73 previously shown Li-metal cycling at high rates.^{32,33} By incorporating this ILE into a solid MIC,
74 we demonstrate a highly lithium-dense solid-state electrolyte with potential to suppress Li dendrite
75 growth on Li-metal anodes, enable fast Li⁺ transport, and eliminate battery safety concerns.

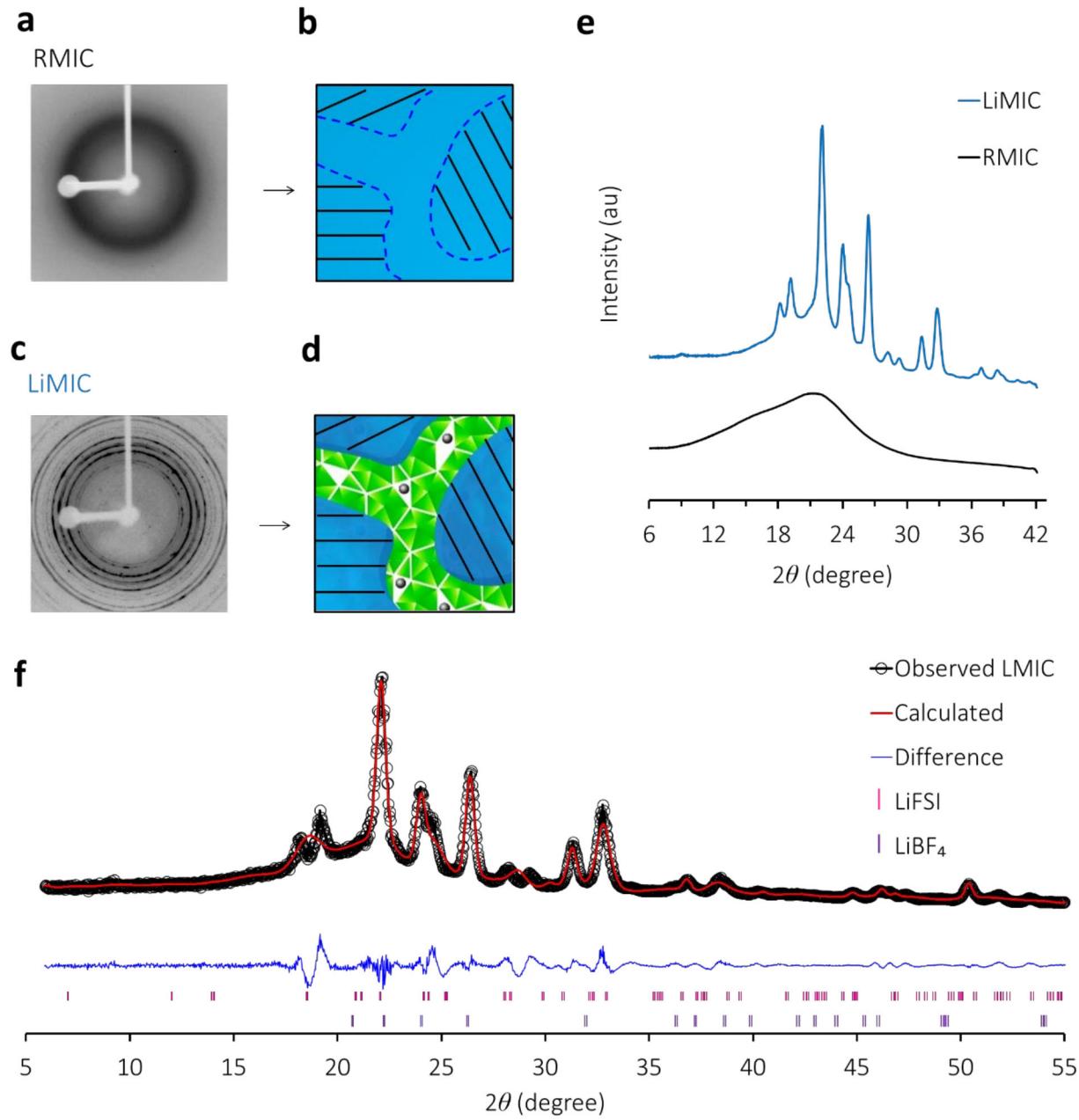
76 The Li-loaded MIC (LiMIC) fabrication process requires two steps: (1) Initial polymer-IL
77 network formation, followed by (2) ILE ion exchange to achieve high Li⁺ loading. As shown in
78 **Fig. 1a**, we obtain the raw MIC (RMIC), based on an interfacial ion-exchange process between a
79 sulfonated aromatic polyamide, poly-2,2'-disulfonyl-4,4'-benzidine terephthalamide (Li-form
80 PBDT) in H₂O solution and an IL, C₂mimBF₄ (1-ethyl-3-methylimidazolium tetrafluoroborate).¹
81 PBDT is water-miscible and forms a highly ordered lyotropic nematic liquid crystal (LC) phase at

82 concentrations > 2 wt%.^{16,17} The local parallel packing of charged PBDT rods serves as the
83 assembly template – not only offering mechanical integrity, but also endowing nanoscale
84 structuring in the composite. RMICs are denoted with RMIC-5 and RMIC-15, in which the
85 numbers denote PBDT weight percentage of 5% and 15%. In **Fig. 1b**, we immerse the rigorously
86 dried RMICs in the desired ILE, i.e., C₃mpyrFSI with 50 mol% LiFSI. This serves the dual
87 purposes of lowering the concentration of BF₄⁻ anions through ion-exchange while also
88 introducing Li⁺ ions into the polymer host matrix. By following this two-step fabrication method,
89 we obtain a solid-state MIC electrolyte, denoted LiMIC-5 and LiMIC-15. The key to *Step 1* is that
90 both the IL and LC polyelectrolyte dissolve in the same solvent. *Step 2* allows us to exchange a
91 wide range of IL and Li salt mixtures into the MIC matrix and tailor properties of the product
92 toward Li-metal batteries or other applications. The SEM images of RMICs (**Fig. 1c, d**) show
93 locally aligned PBDT LC grains (μm-scale) interspersed with interconnected grain boundaries
94 with a wide size distribution from nm - μm. This RMIC has mechanical cohesion propagated by a
95 collective “electrostatic network,” which effectively arises from templating of the IL through the
96 highly charged and rigid double helical PBDT rods.^{13,15} The RMICs are macroscopically isotropic,
97 but display local alignment originating from the rigid PBDT chains, which can be verified using
98 polarized optical microscopy (**Supplementary Fig. 1**).^{1,17}

99 **Fig. 1e-g** illustrates the concepts involved in multi-scale organization of the LiMICs. **Fig. 1e**
100 shows the μm-scale structure of this solid electrolyte, incorporating aligned PBDT grains
101 interleaved with a nanocrystalline ionic phase. These nanocrystalline grain boundaries serve as an
102 additional conductive network providing fast Li⁺ transport. As shown in **Fig. 1f**, we propose that
103 after ion exchange with ILE, the interconnected boundaries separating the individual PBDT grains
104 allow for higher Li⁺ density and faster Li⁺ transport as compared to within the grains. **Fig. 1g**

105 further illustrates the morphology and ion distribution in the internally aligned PBDT grains and
 106 the nanocrystalline component formed at the grain boundaries. We will illustrate this model in
 107 more detail in the following sections based on multi-modal material characterizations.

108


109 **Figure 1. Fabrication processes to form Li-loaded MIC electrolytes (LiMICs).** (a) *Step 1*
 110 shows fabrication of the raw MIC (RMIC). Mechanical cohesion in this RMIC arises via
 111 electrostatic interactions,^{1,13,15} and we obtain this material based on an interfacial ion exchange
 112 between a water-soluble IL (e.g., C_2mimBF_4) and an aqueous rigid-rod polyelectrolyte solution

113 (Li-form PBDT in H₂O). The photograph shows the sliced transparent RMIC sample. (b) **Step 2**
114 shows the second ion exchange process wherein we immerse a sliced section of the RMIC into the
115 ILE (C₃mpyrFSI with 50 mol% LiFSI). During the infiltration process, the cation C₃mpyr⁺ in the
116 ILE tends to segregate into the PBDT-rich phase,^{13,14} as the FSI⁻ and BF₄⁻ anions preferentially
117 associate with Li⁺ and precipitate out to form a nanoscale heterogeneous structure in the grain
118 boundaries. The photograph shows the sliced iridescent LiMIC sample. (c,d) SEM images for
119 RMIC-5(c) and RMIC-15(d). Higher magnification images are shown in the upper right insets.
120 The scale bar for the insets is 1 μ m. The interfaces between individual PBDT grains form the grain
121 boundaries (darker regions). Both the aligned PBDT grains and the grain boundaries contain
122 C₂mimBF₄. (e, f) After **Step 2**, the grain boundaries become predominantly the condensed salt
123 phase, which consists of nanocrystalline grains that form a conductive network supporting fast Li⁺
124 transport. (g) The morphology of an aligned LC grain contains PBDT double helical rods filled
125 predominantly with mobile IL cations. The distance between PBDT rods is \sim 2 nm.^{1,15}

126

127 To investigate the nanoscale morphology of these composites, we conducted powder X-ray
128 diffraction (XRD) experiments on the RMIC and LiMIC. As shown in **Fig. 2a**, we observe an
129 amorphous halo with scattering angle 2 θ from 12° to 30° for the RMIC, which we assign to the
130 amorphous C₂mimBF₄ in the RMIC. A schematic picture is shown in **Fig. 2b**, where the locally
131 aligned PBDT rods serve as the assembly template for the amorphous IL. The diffraction peaks of
132 the PBDT are overwhelmed by the large volume fraction of IL in the RMIC. By contrast, the XRD
133 of the LiMIC (**Fig. 2c**) shows a heterogeneous structure based on coexistence of the weak
134 amorphous halo and the sharp crystalline reflections. This pattern agrees with the schematic picture
135 shown in **Fig. 2d**, depicting a highly defective nanocrystalline domain formed in-situ between the
136 PBDT grains in the LiMICs. The extracted 1D spectra are shown in **Fig. 2e**. The crystalline peaks
137 (blue line), at first glance, appear to be superimposed diffraction patterns of LiFSI and LiBF₄. We
138 also notice that, compared to the amorphous phase, the crystalline phase is the dominant
139 component in the LiMIC, which supports the solid-state NMR (SSNMR) integration results

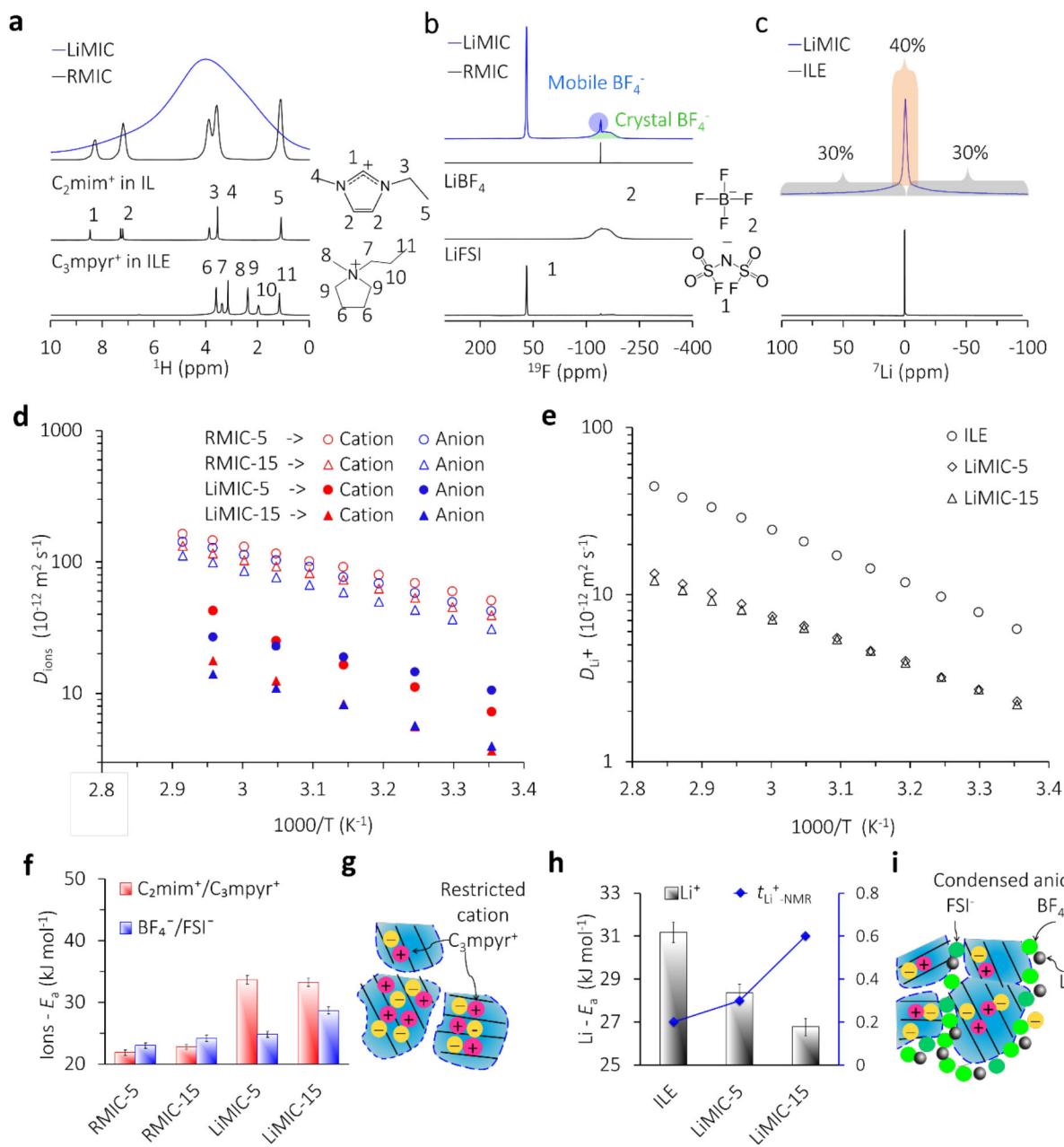
140 included in **Supplementary Table 1**, showing that $\sim 80\%$ anions (FSI^- and BF_4^-) in LiMIC are
141 localized in the solid crystalline phase. We further use Le Bail refinement to determine the cell
142 parameters for the two potential crystals.³⁴ **Fig. 2f** shows the fitting results with R-factor for the
143 refinement $R_p = 6.87\%$, which indicates good alignment between the observed diffraction patterns
144 and the simulated phases of LiFSI and LiBF₄. The in-situ formed defective crystals of LiFSI and
145 LiBF₄ possess preferred orientations, which contribute to the high density of vacancies that
146 promote easier hopping of Li^+ between crystallites. We use the Scherrer equation³⁵
147 (**Supplementary Equation 1**) to determine the average crystallite size (19.4 nm) formed in the
148 LiMIC grain boundary regions from the FWHM of the peak at $2\theta = 26.363^\circ$ (012) from the LiBF₄
149 phase. **Table 1** summarizes the Le Bail refinement with cell parameters for the two defective
150 crystals, and both belong to the trigonal crystal structure. These results provide evidence that these
151 nanocrystals are localized in the grain boundaries instead of within PBDT grains, where the
152 distance between PBDT chains is too small to accomodate the nanocrystals.^{1,15-17}

153 **Figure 2. X-ray diffraction patterns of RMIC and LiMIC.** (a) Powder XRD pattern for the
154 RMIC. (b) In the RMIC, PBDT LC grains and grain boundaries are filled with amorphous IL as a
155 result of **Step 1** of the fabrication process. (c) XRD pattern for the LiMIC. (d) In the LiMIC, there
156 exists an in-situ formed and highly defective nanocrystalline structure between PBDT LC grains.
157 (e) The extracted 1D spectra of the XRD images in (a) and (c). (f) Le Bail refinement results for
158 the LiMIC XRD pattern, which include the observed pattern, the calculated results and the
159 simulation of the in-situ formed nanocrystalline structure of LiFSI and LiBF₄.
160

161

162 **Table 1. Li crystals formed in the LiMIC (R_{wp} = 9.75%, R_p = 6.87%)**

LiMIC-15	Phase1 (LiFSI)	Phase2 (LiBF ₄)
Crystal structure	Trigonal	Trigonal
Space group	P -3	P 31 2 1
a (Å) (a)	8.513 (90°)	4.9511(90°)
b (Å) (β)	8.513(90°)	4.9511(90°)
c (Å) (γ)	12.610 (120°)	11.112 (120°)
Volume(Å³)	779.76	228.02
ICSD	415618	171375


163

164 To understand the ion transport and morphology in both RMIC and LiMIC, we first verify the
 165 chemical composition of the products, qualitatively and quantitatively, based on ¹H, ¹⁹F and ⁷Li
 166 NMR spectroscopy. **Fig. 3a, b, c** present key features of these NMR studies. **Fig. 3a** shows ¹H
 167 spectra for C₂mim⁺ in neat IL and C₃mpyr⁺ in ILE (bottom two spectra), and compares ¹H spectra
 168 in the RMIC to the LiMIC. The linewidth in the LiMIC (~ 1500 Hz) is much broader compared to
 169 the RMIC (~ 100 Hz), which means a factor of ~ 15 faster *T*₂ spin-spin relaxation, indicating slower
 170 motion of IL cations. **Supplementary Fig. 2** shows additional ¹H spectra for RMIC-5 and RMIC-
 171 15. SSNMR offers promise for studying the same chemical species in distinct phases, including
 172 the grain boundaries and the locally aligned PBDT grains in LiMICS. **Fig. 3b** shows ¹⁹F SSNMR
 173 spectra for LiMIC (blue line) along with spectra for the reference Li salts (LiFSI and LiBF₄). For
 174 the LiMIC, we observe a small percentage of mobile BF₄⁻ with a relatively narrow peak (light blue
 175 circle) at -150 ppm. The broad peak underneath (light green semicircle) refers to BF₄⁻ in the
 176 nanocrystalline grain boundaries. Due to its fast internal dynamics, FSI⁻ appears as only a singlet
 177 peak at 60 ppm, which we assign to the superposition of mobile FSI⁻ in aligned LC grains and solid
 178 FSI⁻ in nanocrystalline grain boundaries. The assignments, assumptions, and quantifications of
 179 different ionic species in the LiMICS are summarized in **Supplementary Fig. 3** and
 180 **Supplementary Table 1**. **Fig. 3c** compares ⁷Li spectra between ILE and LiMIC. The widths and

181 integration values of the peaks are displayed in **Supplementary Fig. 4**. This single-component
182 3:4:3 splitting pattern indicates that Li^+ can only exist in either the crystalline grain boundaries or
183 in the PBDT LC grains.^{36,37} Based on the XRD, we observe that the Li^+ mainly forms into
184 crystalline phases of LiFSI and LiBF_4 in the grain boundaries, thus demonstrating that Li^+ is the
185 dominant cation in the solid nanocrystals, instead of in PBDT LC grains.

186 Understanding and controlling ion transport, ion associations and Li^+ transport mechanisms in
187 electrolyte materials are critical for development of next-generation battery electrolytes. We can
188 extract the diffusive activation energy (E_a) of the ions present in RMIC and LiMIC electrolytes
189 based on the temperature dependencies of D_{Li^+} , D_{cations} and D_{anions} obtained from NMR
190 diffusometry as shown in **Fig. 3d,e**.^{1,38-40} As indicated from the faster T_2 relaxation, we observe
191 that D values for the mobile IL ions in LiMICs are an order of magnitude smaller than those in
192 RMICs, as expected. **Fig. 3f** shows the extracted E_a values for cations and anions in RMICs and
193 LiMICs via the Arrhenius equation. The E_a values for C_2mim^+ and BF_4^- increase with polymer
194 content in the RMICs. This suggests that the density of the PBDT matrix dominates the local
195 energetic barriers that govern ion transport. In addition, compared to the RMICs, the E_a values for
196 cations in the LiMICs almost doubles, whereas E_a for anions show only a slight increment with
197 polymer content. This indicates that the PBDT matrix escalates the local energetic barriers for
198 cation transport in LiMICs, primarily because of stronger associations between the SO_3^- on PBDT
199 chains and C_3mpyr^+ . Correspondingly, the schematic picture for the trapped cations within the
200 aligned LC grain is shown in **Fig. 3g**. Conversely, the E_a values for Li^+ in the LiMIC (**Fig. 3h**)
201 decrease with increasing polymer content, indicating smaller local energetic barriers for Li^+
202 transport compared to the ILE.^{13,40} This indicates that a different Li^+ transport mechanism applies
203 for LiMICs. As shown in **Supplementary Table 1**, the concentration of mobile cations (C_2mim^+ ,

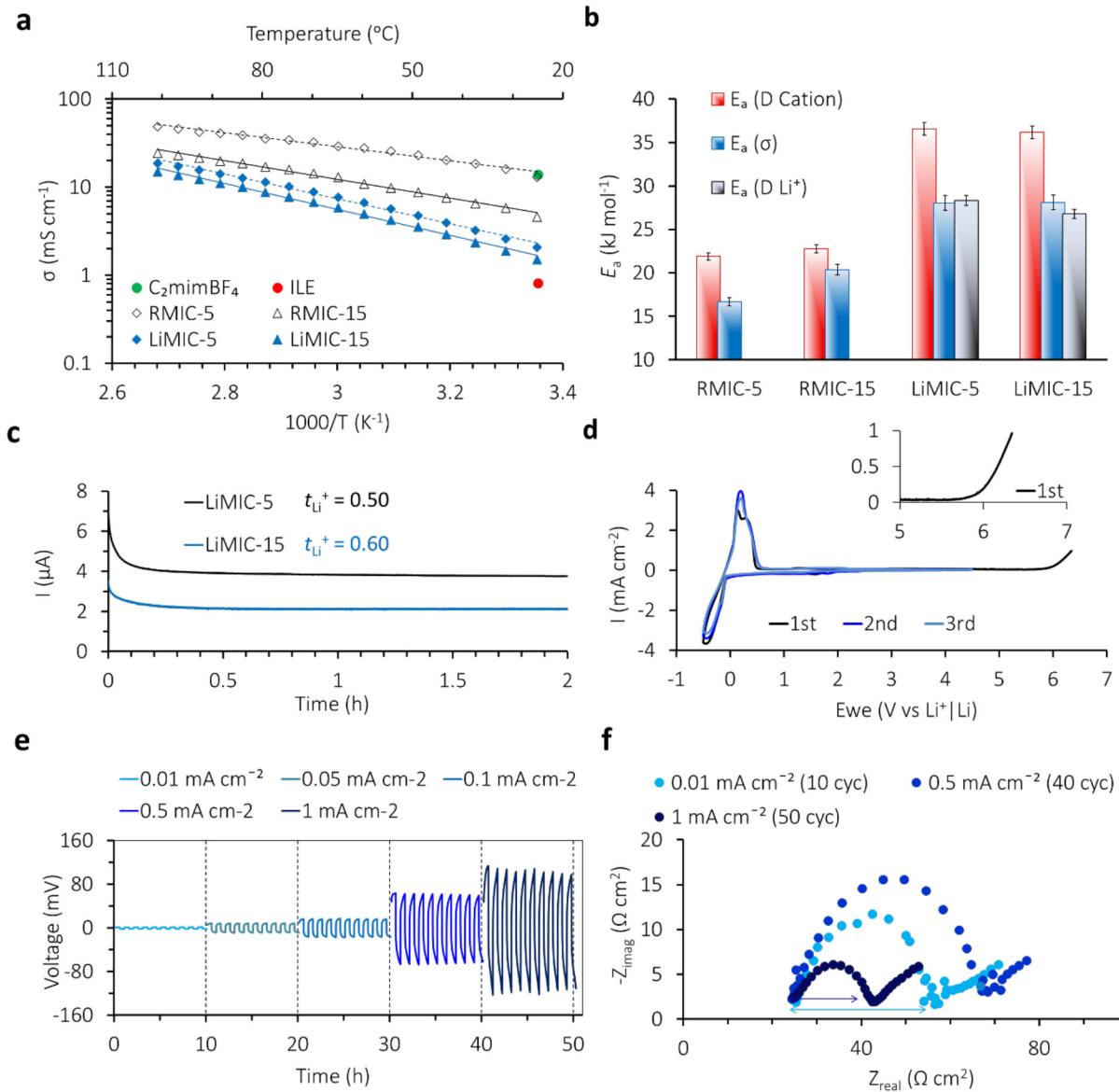
204 C_3mpyr^+) and anions (FSI^- , BF_4^-) in the LiMICs are ~ 6 times lower compared to the RMICs.
205 Meanwhile, LiMICs show an order of magnitude slower diffusion coefficients for the same set of
206 mobile cations and anions. Based on the Nernst–Einstein equation, we suggest that the
207 unexpectedly high conductivity observed in this solid LiMIC electrolyte (see below, Fig. 4a)
208 originates from a fast Li^+ hopping ion transport mechanism in the solid nanocrystalline grain
209 boundaries, as opposed to transport through a liquid-like mobile phase in the PBDT LC
210 grains.^{39,41,42} We further determine the Li^+ transference number determined by diffusion ($t_{\text{Li}^+\text{-NMR}}$)
211 in LiMICs based on the **Supplementary Equation 2** and include the results in **Supplementary**
212 **Table 1.** **Fig. 3i** depicts the nanocrystalline anions located in the grain boundaries, which we
213 propose give rise to atypically fast Li^+ ion transport.

221 being 40% due to the quadrupole splitting of Li. (d) Temperature-dependent D_{cations} and D_{anions} in
222 the RMICs and LiMIC. For LiMICs, D_{cations} represents the average value for C_3mpyr^+ and C_2mim^+ .
223 The D_{anions} is the average value for mobile FSI^- and BF_4^- . D_{anions} is the computed weighted average
224 value for the anions based on the mole ratio of mobile FSI^- and BF_4^- as quantified by ^{19}F NMR
225 shown in **Supplementary Fig. 3** and **Supplementary Table 1**. (e) Temperature-dependent D_{Li^+}
226 in ILE and LiMICs. (f) E_a values for cations and anions obtained from Arrhenius fitting of diffusion
227 results. Uncertainties in diffusion are smaller than the marker and uncertainties in E_a are $\approx \pm 0.5$
228 kJ/mol. (g) Schematic showing C_3mpyr^+ separations into locally aligned LC grains. (h) E_a values
229 for Li^+ obtained from Arrhenius fitting. The blue line compares the measured $t_{\text{Li}^+}\text{-NMR}$ in ILE to
230 that in LiMICs. (i) Schematic of the electrolyte structure showing the formation mechanism of
231 nanocrystalline LiBF_4 and LiFSI in the grain boundaries.

232

233 Building on the RMIC morphology,¹ we propose that the formation mechanism for the
234 heterogeneous structure in LiMICs lies in preferential associations and co-crystallization of
235 specific ions. SO_3^- and C_3mpyr^+ ions should have the weakest associations with other ions due to
236 their size and local charge distributions. Based on XRD and SSNMR results, we expect that FSI^-
237 and BF_4^- have a strong affinity with Li^+ to form a thermodynamically favorable crystalline phase.
238 These nanocrystals (20 nm) form within the grain boundaries when the concentration locally
239 exceeds the saturation point of LiBF_4 and LiFSI in the ILE. This leaves the exchanged C_3mpyr^+
240 and residual C_2mim^+ cations to neutralize predominantly the polymer-fixed SO_3^- anions within the
241 PBDT LC grains. The Li-rich nanocrystalline phase serves as a highly ion-conductive network that
242 can transport Li^+ . In these grain boundaries, the space-charge zone and nano-size effects among
243 the polycrystalline LiBF_4 , LiFSI and aligned crystalline PBDT grains should enhance the vacancy
244 density and conductivity of Li^+ , which is consistent with the decreasing E_a of Li^+ obtained from
245 NMR diffusometry. We also note that this nanocrystalline phase likely exhibits features of plastic
246 crystal behavior.^{39,43-45} Further investigation of transport mechanisms, grain boundary

247 heterogeneities, space-charge effects and ion interactions in this heterogeneous structure will
248 provide deeper understanding of these solid electrolytes for future materials design.

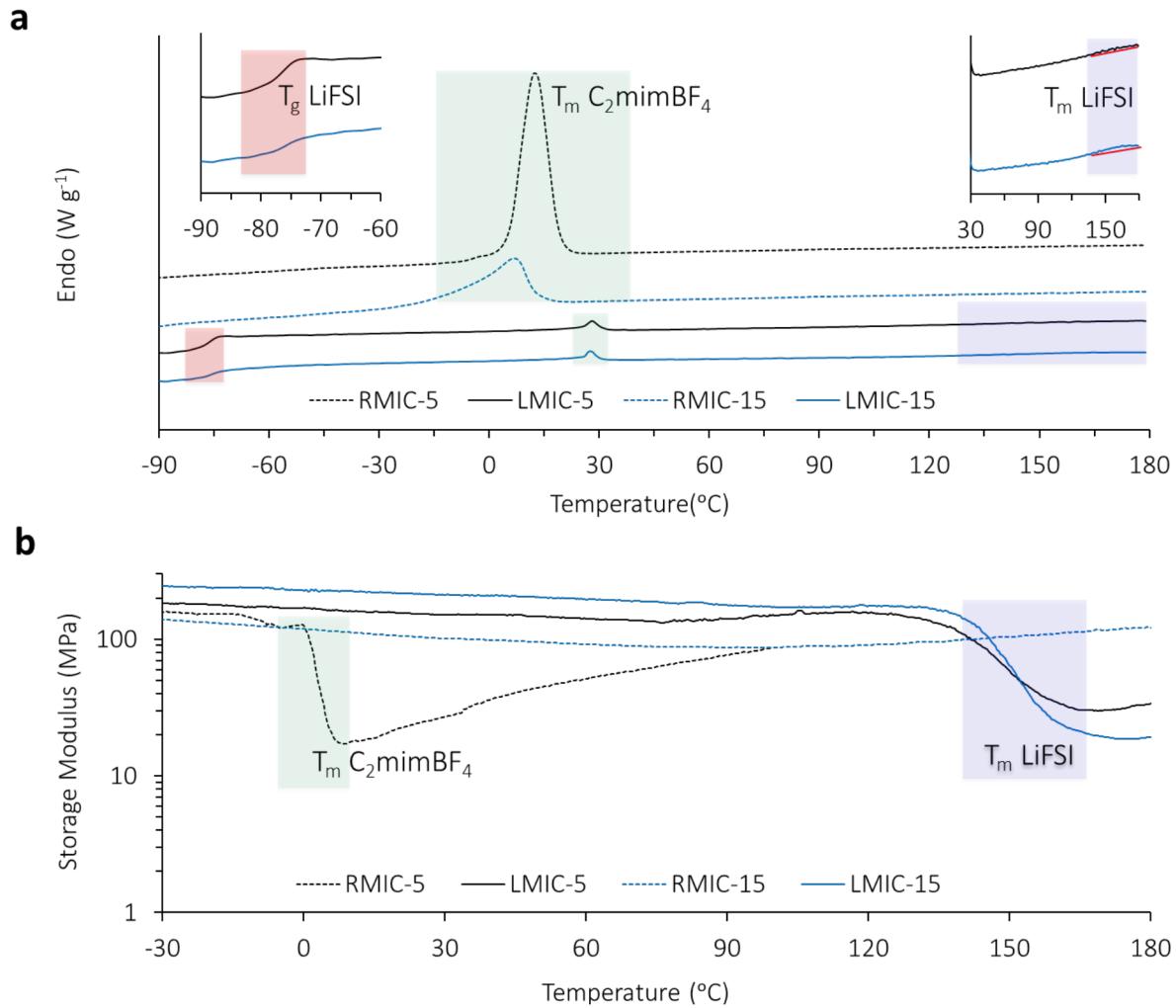

249 **Fig. 4a** shows ionic conductivities of LiMICs and RMICs as a function of temperature. The
250 exceedingly high σ of LiMIC-5 ($2.1 \text{ mS} \cdot \text{cm}^{-1}$) and LiMIC-15 ($1.5 \text{ mS} \cdot \text{cm}^{-1}$) at 25°C surpasses that
251 of state-of-the-art SPEs and even the liquid ILE ($0.82 \text{ mS} \cdot \text{cm}^{-1}$) we used for ion exchange in *Step*
252 2.^{24,32} In terms of transport energy barriers, LiMICs show higher $E_a(\sigma)$ values compared to RMICs
253 (**Fig. 4b**), which again indicates a distinct transport mechanism in LiMICs. We notice that $E_a(\text{Li}^+$ -
254 NMR) in LiMIC is close to the $E_a(\sigma)$ obtained from conductivity. This further indicates that the
255 unexpectedly high conductivity in LiMICs originates from the nanocrystalline conductive network
256 with an ionic alloy (LiBF₄ and LiFSI) that forms at the boundaries between individual grains. To
257 supplement this demonstration, we determined the t_{Li^+} based on the steady-state current of the Li
258 symmetric cell assembled with LiMICs as electrolyte and separator in **Fig. 4c**. The corresponding
259 impedance spectra of the cells before polarization are shown in **Supplementary Fig. 5**. The
260 calculation details are included in **Supplementary Table 2** and **Equation S3**. The determined t_{Li^+}
261 in LiMIC-15 (0.60) is much higher compared to the ILE ($t_{\text{Li}^+} = 0.18$).³² One can then determine
262 the fraction of conductivity due to Li^+ ($\sigma_{\text{Li}^+} = 1 \text{ mS cm}^{-1}$) in LiMICs by multiplying the overall
263 conductivity by t_{Li^+} .

264 We also performed cyclic voltammetry to evaluate the Li plating (negative scan) and stripping
265 (positive scan) behavior in LiMICs. As shown in the 1st cycle in **Fig. 4d**, upon scanning in the
266 positive direction, the electrolyte shows no significant sign of electrochemical decomposition up
267 to 5.6 V vs Li|Li⁺. In addition, this electrolyte displays excellent cathodic stability for Li-metal
268 cycling in the following cycles (2nd and 3rd cycles). In **Supplementary Fig. 6**, we observe that the

269 columbic efficiency of LiMICs increases with cycle number, whereas the ILE shows diminished
270 performance, indicating more effective SEI formation on Li-metal anode when using LiMICs.

271 Next, we prepared Li|Li symmetric cells and recorded the voltage response for stepped current
272 densities ranging from $0.01 \text{ mA} \cdot \text{cm}^{-2}$ to $1 \text{ mA} \cdot \text{cm}^{-2}$. **Fig. 4e** shows the voltage response for LiMIC-
273 15 electrolytes. We observe that LiMIC-15 exhibits stable cycling and can withstand a current
274 density (J) to $1 \text{ mA} \cdot \text{cm}^{-2}$. This represents state-of-the art performance for SPEs or IL-based
275 electrolyte materials.^{5,20} Overpotential is proportional to applied J (**Supplementary Fig. 7**), which
276 follows the Butler-Volmer equation, thus avoiding the possibility of soft shorts.^{5,33}

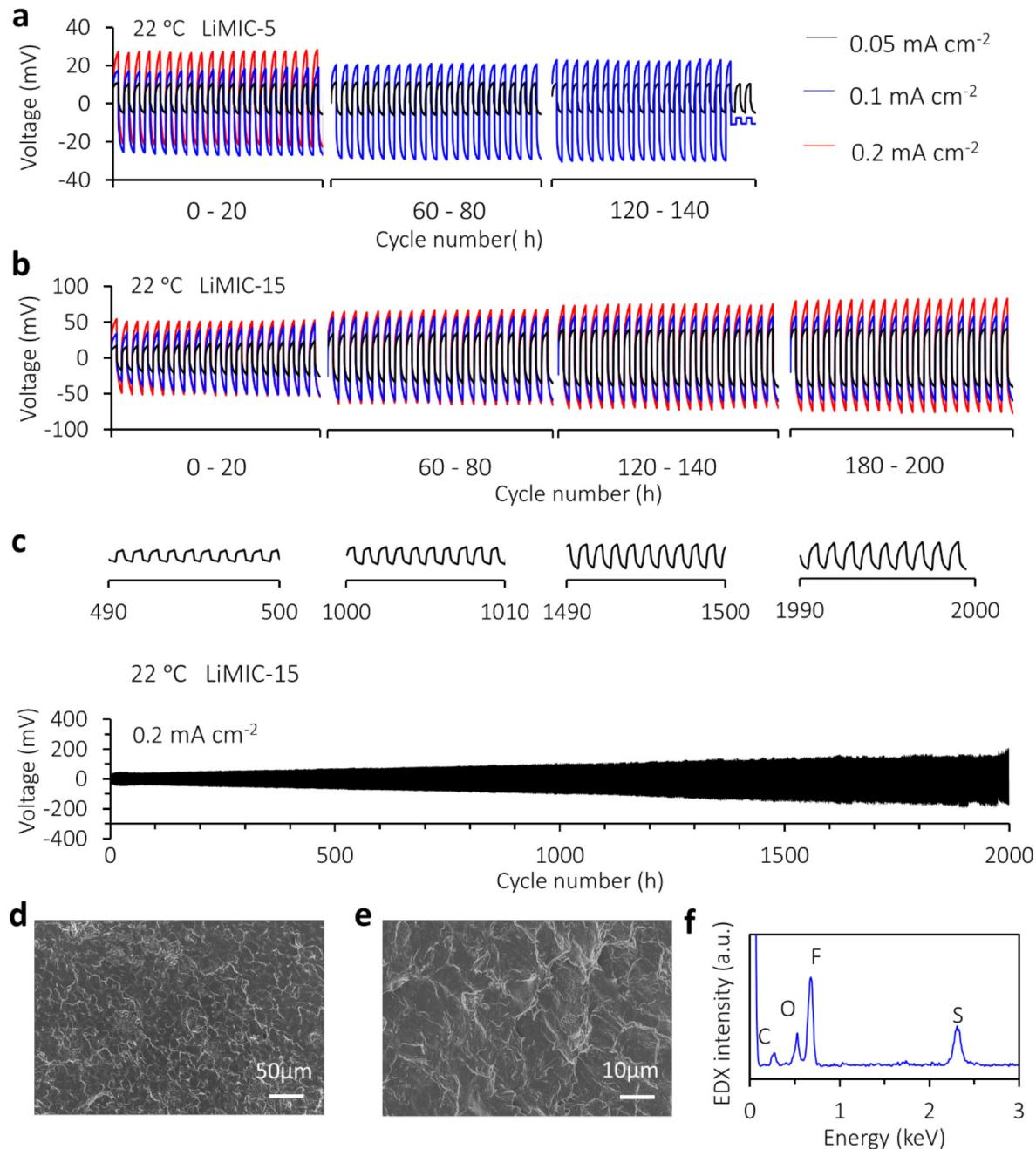
277 The LMIC electrolyte prepared with the ILE containing the highest concentration of LiFSI (3.2 mol kg^{-1}) shows the most stable cycling performance (**Supplementary Fig. 8** and **Supplementary**
278 **Table 3**).^{32,33} EIS spectra shown in **Fig. 4f** indicate that the SEI resistance increases over the first
279 40 cycles, then decreases upon further cycling and reduces below that of the initial state at 50
280 cycles. This is generally associated with an improving SEI layer that forms upon cycling and is
281 commonly observed when cycling Li-metal in this ILE with high salt concentration. Notably, the
282 interfacial resistance for this LiMIC-15 is unusually small, both before ($32 \Omega \cdot \text{cm}^{-2}$) and after ($17 \Omega \cdot \text{cm}^{-2}$)
283 cycling, compared to other solid-state ion conductors, thereby overcoming the poor
284 electrolyte-electrode contact between Li-metal anode and solid-ion conductor typically observed
285 for, e.g., $\text{Li}_{10}\text{GeP}_2\text{S}_{12}$.⁴⁶


287
288 **Figure 4. Ionic conductivity, activation energy, Li^+ transference number, electrochemical**
289 **window, Li symmetric cell cycling performance, and interfacial charge-transfer resistance**
290 **in MICs.** (a) Arrhenius plot used to extract activation energies (E_a) for ionic conductivity within
291 RMICs and LiMICs. The green dot shows the conductivity (σ) of C_2mimBF_4 (25°C), used for
292 developing RMICs. The ionic conductivity value in ILE is indicated with red dots. (b) Comparison
293 of E_a values obtained from the conductivity results to E_a values of cations and Li^+ based on
294 Arrhenius fitting of NMR diffusometry. (c) Steady-state current in symmetric $\text{Li}|\text{Li}$ cell using
295 LiMICs under 10 mV polarization. (d) Cyclic voltammetry curves for Li plating and stripping in
296 LiMIC-15 at a sweep rate of 5 mV s^{-1} . Inset plot shows the enlarged view of the 1st cycle in the
297 high voltage range. (e) Cell voltage versus time for a symmetric $\text{Li}|\text{Li}$ cell using LiMIC-15 at

298 current densities (J) from 0.01 to 1 $\text{mA}\cdot\text{cm}^{-2}$ (each cycle lasts 1 h) with changes in J every 10
299 cycles. (f) Corresponding impedance spectra scanned before variation of J (10 cycles) for the
300 LiMIC-15. The frequency range used is 1Hz – 1MHz.

301

302 In addition to the high Li^+ conductivity achieved by LiMICs, we also performed DSC and
303 DMA to better understand their thermal and mechanical stability. As shown in **Fig. 5a**, DSC curves
304 show that C_2mimBF_4 has been mostly exchanged or replaced in LiMICs after *Step 2* of ion
305 exchange. In addition, we observe a glass transition ($T_g = -75^\circ\text{C}$) for LiFSI, which originates from
306 the LiFSI phase, as reported in this ILE previously.^{32,33} The enlarged view on the right displays a
307 broad melting transition (T_m) of LiFSI in LiMICs, consistent with the XRD results showing that
308 there exists a highly defective LiFSI crystalline phase in LiMICs. However, the T_m is not obvious,
309 possibly originating from an endothermic melting process that has been offset by the exothermic
310 degradation of LiFSI, as reported previously.⁴⁷ Meanwhile, we employed DMA to investigate the
311 mechanical properties of RMICs and LiMICs between -50°C to 180°C , as shown in **Fig. 5b**. We
312 observe that LiMIC-15 maintains high storage modulus (200 MPa) between -50 to 140°C , which
313 then drops above 140°C , near the T_m of LiFSI as well as the degradation temperature for FSI.⁴⁷
314 During the heating process, the LiMIC modulus surpasses all previous state-of-the-art SPEs, which
315 usually show poor mechanical strength at temperatures beyond the polymer T_g or T_m .⁴⁸
316 Flammability caused by formation of lithium dendrites represents another key obstacle to safe
317 operation of Li-metal batteries. We included flammability testing results for RMIC in
318 **Supplementary Fig. 9** and observe that RMICs are stable and cannot be ignited under a
319 methane/ O_2 flame. Additionally, we carried out nanoindentation experiments to study the
320 microscopic modulus of the MIC materials (**Supplementary Fig. 10**), where we observe a large


321 distribution of modulus values, reflecting the heterogeneous structure in LiMICs. The median
 322 values shown in the boxplots indicate high consistency with macroscopic DMA results.

323
 324 **Figure 5. Thermal and mechanical properties of RMICs and LiMICs.** (a) DSC shows apparent
 325 differences between LiMICs and RMICs. RMICs display the melting (T_m) of IL C_2mimBF_4 at 17
 326 °C, whereas we only see a slight T_m peak for C_2mimBF_4 in LiMICs in agreement with the fact that
 327 C_2mimBF_4 has been largely exchanged out. According to peak integration analysis, only < 3% of
 328 C_2mimBF_4 remains in the LiMICs. Notably, we do not observe any apparent melting peaks
 329 belonging to $C_3mpyrFSI$ or $C_3mpyrBF_4$. The enlarged inset on the left shows the glass transition
 330 (T_g) at -75 °C, which originates from the in-situ formed and defective LiFSI phase. The enlarged
 331 inset on the right displays the broad melting transition (T_m) of LiFSI in LiMICs. The T_m peak is
 332 not obvious, likely because of the opposing thermal transition processes of melting and
 333 degradation of LiFSI. (b) DMA shows the mechanical properties of RMICs and LiMICs from -30

334 °C to 180 °C. RMIC-5 shows a melting drop around the T_m of C₂mimBF₄. LiMICs maintain high
335 modulus (200 MPa) between -50 to 140 °C then start dropping at 140 °C, which is near both the
336 melting and degradation temperatures of LiFSI (140 °C).⁴⁷

337 In addition to the cycling results in Fig. 4e, **Fig. 6a-b** shows long-term cycling performance of
338 the LiMICs as a function of polymer content and current density (J). Based on comparison between
339 LMIC-5 and LiMIC-15 at increasing J , (0.05, 0.1, 0.2 mA·cm⁻²), we observe that LiMIC-15
340 (higher polymer content) shows longer cycling stability at all current densities. This suggests that
341 Li dendrite growth is better suppressed by increasing the rigid polymer content. The discussion of
342 short circuit behavior observed for LiMIC-5 is included in Note 10 of supplementary information.
343 **Fig. 6c** demonstrates the cycling stability of LiMIC-15 at $J = 0.2$ mA·cm⁻². Here, we observe that
344 the cell can cycle without short circuit for > 2000 cycles, which corresponds to 2000 h cycling
345 time and thus removal (and re-plating) of an accumulated total of 1 mm thickness from each Li-
346 metal electrode. Based on the falciform (curved) potential observed in the charging and
347 discharging processes shown in the selected cycles across the long period, we do not observe the
348 unstable voltage profile that typically exists in organic electrolytes at high rates.^{32,33} Though
349 overpotential is increasing, we can expect changes to the SEI layer formed on Li-metal during
350 cycling, which is stable enough to suppress Li dendrite growth and prevent short-circuit. Post-
351 cycling SEM of the Li-metal electrode surface (**Fig. 6d, e**) shows a smooth surface devoid of
352 significant dendrites or ‘mossy’ lithium seen in typical organic electrolyte systems. Peaks from the
353 breakdown products of the FSI⁻ anion can be seen in the EDX spectra (**Fig. 6f**), which are known
354 to aid in chemically suppressing Li dendrites.³¹

355

356 **Figure 6. Voltage-time profiles for Li|Li symmetric cells incorporating LiMICs at ambient**

357 **temperature.** 1 cycle = 1 h, or 30 min for each charge and discharge. (a) 0.05 mA·cm⁻², 0.1

358 mA·cm⁻², 0.2 mA·cm⁻² for LiMIC-5, (b) for LiMIC-15. (c) Long-term cycling of LiMIC-15 at

359 current density of 0.2 mA·cm⁻² with 1 h charge/discharge, insets are profiles for selected cycle

360 numbers in the cycling period. (d, e) SEM images with different magnifications for the

361 disassembled Li-metal electrode after 2000 h long-term cycling in (c) using LiMIC-15 as both

362 electrolyte and separator. (f) EDX spectra of Li-metal surface after long-term cycling.

363 We have described materials development, mechanisms for ion transport, morphological
364 self-assembly, as well as thermal, mechanical, and electrochemical properties of a new Li-loaded
365 solid-state electrolyte. This inorganic/organic composite material shows immense potential to
366 serve as a next-generation electrolyte for a range of electrochemical devices, suited for frontier
367 battery technologies such as Li-metal, Li-S, or Na-based systems. The fabrication method
368 described enables generation of non-flammable and highly conductive electrolytes with tunable
369 modulus and with selectable metal ion type and varying concentrations. In addition to the initial
370 component IL (C_2mimBF_4) described here, we can also fabricate MICs based on different
371 combinations of ILs and PBDT. **Supplementary Table 4** summarizes the currently accessible
372 MIC fabrication parameter space. Beyond batteries, MICs represent a modular material platform
373 into which we can incorporate a wide range of ionic fluids and salts with an adjustable
374 concentration of the highly charged and rigid double helical PBDT polymer. Such compositional
375 freedom enables the fabrication of MICs with dramatic variations in chemical, mechanical,
376 conductive, electrolytic, and thermal properties to enable applications in the next generation of
377 safe and high-energy-density energy storage devices and beyond.

378 **Methods**

379 *Materials:* Poly 2,2'-disulfonyl-4,4'-benzidine terephthalamide (PBDT) was synthesized by
380 interfacial condensation polymerization as described previously.^{17,49} 1-ethyl-3-methyl
381 imidazolium tetrafluoroborate (C_2mimBF_4 , purity > 99%) was purchased from Solvent Innovation
382 GmbH (Cologne, Germany). N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide
383 ($C_3mpyrFSI$, purity > 99.9%) was purchased from Solvionic. Lithium bis(fluorosulfonyl)imide
384 (LiFSI, purity >99.5%) was sourced from Suzhou Fluolyte Co., Ltd., China. Lithium metal was
385 sourced from China Energy Lithium Co. Ltd. (purity > 99.9%). IL electrolytes (ILEs) in this paper

386 were prepared by adding the prescribed amount of LiFSI to C₃mpyrFSI IL at room temperature in
387 an Ar-filled glove box (< 0 ppm O₂ and < 10 ppm H₂O).

388 *Preparation of the RMIC:* C₂mimBF₄ with the same volume as the (Li-counterion) PBDT seed
389 aqueous solution was slowly pipetted on top of each solution. After 24 hours ion exchange, the
390 hydrated MIC gel was formed in the bottom polymer solution phase and the residual water/IL
391 supernatant was poured off. After vacuum drying the initially hydrated RMIC at 80 °C for more
392 than 24 hours, we obtained the RMIC electrolytes.

393 *Preparation of the Li-loaded MIC:* The RMICs were sliced by hand using a scalpel as thin as
394 possible, to obtain a thickness of 250 μ m with a standard deviation of 20%. Performance results
395 will improve as we decrease/optimize the thickness of the electrolytes in future investigations. The
396 sliced RMICs were then immersed in the ILEs for > 24 h at room temperature. These operations
397 were completed in an Ar-filled glove box.

398 *¹H, ¹⁹F and ⁷Li NMR spectroscopy and pulsed-field-gradient (PFG) NMR diffusometry:* A
399 Bruker Avance III widebore 400 MHz (9.4 T) NMR was equipped with a diff60 pulsed-field-
400 gradient diffusion probe having a maximum gradient value of 2000 G/cm (at 33 A) along the Z
401 axis and 5 mm ⁷Li and 8 mm ¹H/¹⁹F rf coils. The PGSTE sequence used a $\pi/2$ pulse, gradient pulse
402 duration δ of 1 - 2 ms, diffusion times Δ of 10 - 50 ms and the number of scans for each step was
403 adjusted from 16 - 1024 to ensure good signal-to-noise ratio (SNR). 16 gradient steps were applied
404 for each diffusion experiment. All parameters for the NMR diffusometry experiments have been
405 calibrated and optimized as reported earlier.⁵⁰ Solid-state NMR analysis was performed for
406 chemical identification of various samples. The LiMIC samples were prepared in glove box and
407 flame sealed without breaking vacuum in a 5 mm NMR tube to a length of 3 cm filling the coil
408 region of the probe completely. Water content of the samples were examined using ¹H NMR to

409 ensure the samples were dry as shown in **Supplementary Fig. 11**. For solid-state NMR, a Bruker
410 Avance III widebore 400 MHz (9.4 T) NMR was equipped with a static High Power HX SSNMR
411 Probe to allow for short high-power excitation pluses to ensure a wide spectral excitation
412 bandwidth. For ¹⁹F spectra a single pulse with a 1.1 μ s duration at 200 W was used to achieve a
413 tilt angle of 50°. ¹⁹F spectra were collected using an acquisition time of 0.0204 s, relaxation delay
414 of 4 s, pre-scan delay of 10 μ s, and 64 scans. For the ⁷Li spectra a single pulse with a 2.8 μ s
415 duration at 200 W was used to achieve a tilt angle of 90°. ⁷Li spectra were collected using an
416 acquisition time of 0.0198 s, relaxation delay of 10 s, pre-scan delay of 10 μ s, and 128 scans. All
417 parameters for the solid-state experiments have been calibrated and optimized to ensure integration
418 values of all spectra are precise. All solid-state NMR spectra were conducted at 25 °C.

419 *X-ray diffraction (XRD)*: XRD experiments were carried out on a Rigaku Oxford Diffraction
420 Xcalibur Nova Single-Crystal Diffractometer equipped with an Onyx CCD detector and a Cu
421 microsource operating at 49.5 kV and 80 mA at room temperature. The RMIC was sliced to a
422 thickness ~ 1 mm and mounted on the edge of a steel pin, such that the gel extended above the
423 steel pin and into the X-ray beam. The sample-to-detector distance was 50 mm, giving data at
424 scattering angle 2θ from 5° to 42°. The sample was rotated 2° along the ϕ direction. For each sample,
425 a total of 6 images each with 30 s exposure time was collected and summed to increase signal-to-
426 noise ratio. The software CrysAlisPro (v1.171.37.35, Rigaku Oxford Diffraction, 2015, Rigaku
427 Corporation, Oxford, UK) was used for data collection and analysis.

428 *Cyclic voltammetry*: A stainless steel working electrode and a Li-metal foil counter electrode
429 were employed for cyclic voltammetry. The CV measurements were performed against Li|Li⁺
430 redox potential.³³ All scans were performed at 25°C with 5 mV s⁻¹ scan rate using a Biologic SP-
431 200 controlled by EC-Lab (ver. 10.40) software.

432 *Symmetric lithium metal coin cells:* The coin cells were prepared with CR2032 cases with two
433 3.2 mm (1/8 inch) diameter lithium electrodes in an Ar-filled glove box. The coin cells were used
434 for impedance spectroscopy and cycling measurements. A VMP3 (BioLogic) system and a Neware
435 system were used for battery testing.

436 *Ionic conductivity:* The ionic conductivity was measured via dielectric response over a 1 Hz –
437 1 MHz frequency range (to emphasize the electrode-electrolyte interfacial resistance) at an
438 amplitude of 20 mV. A temperature scan range 20 °C to 100 °C was selected, and the temperature
439 was controlled by a Eurotherm 2204 temperature controller. Conductivity of the LiMIC was
440 extracted using a value of electrical resistance obtained by fitting the data to an equivalent circuit
441 model using EC-Lab (ver. 10.40) software®. Two heating scans with 10 °C intervals were
442 conducted, and the data shown in this study were extracted from the second heating scan.

443 *Li Transference Number (t_{Li}^+):* The transference number was electrochemically determined by
444 direct current (DC) polarization. An AC impedance test was firstly performed over a 0.1 Hz to 1
445 MHz range to obtain a total resistance R_{cell} . Then the polarization was carried out to obtain a stable
446 current. Cells were polarized at ambient temperature with a constant potential of 10 mV for 2 h.

447 *Dynamic Mechanical Analysis (DMA):* The mechanical properties of the composites were
448 investigated at 1Hz frequency using a DMA 8000 (PerkinElmer) from -50 to 200 °C. The sample
449 preparation was finished in a N₂-filled glovebox (H₂O < 100 ppm). The compression mode was
450 used to determine the storage modulus and loss modules of each electrolyte. The test sample was
451 first cooled to -50 °C and then heated to 200 °C at a heating rate of 2 °C/min.

452 *Differential scanning calorimetry (DSC):* A Netzsch DSC (214 polyma), calibrated with
453 cyclohexane, was used to investigate the thermal behaviour of the MICs. The heating and cooling
454 rate were 10 °C min⁻¹. Samples were cooled to -100 °C and then three heating scans were followed.

455 *Nanoindentation* results were measured at room temperature using a hysitron triboindenter.
456 *Scanning electron microscopy* was performed using a JSM IT 300 series microscope and
457 energy dispersive X-ray spectroscopy was measured with an Oxford X-Max 50 mm² EDX detector.

458 **References**

- 459 1 Wang, Y. *et al.* Highly Conductive and Thermally Stable Ion Gels with Tunable
460 Anisotropy and Modulus. *Adv Mater* **28**, 2571-+, doi:10.1002/adma.201505183 (2016).
- 461 2 Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the
462 conductivity of crystalline polymer electrolytes. *Nature* **433**, 50-53,
463 doi:10.1038/nature03186 (2005).
- 464 3 Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of
465 inorganic solid-state electrolytes for batteries. *Nature Materials* **18**, 1278-1291,
466 doi:10.1038/s41563-019-0431-3 (2019).
- 467 4 Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state
468 electrolytes. *Nature Reviews Materials* **2**, 16103, doi:10.1038/natrevmats.2016.103
469 (2017).
- 470 5 Lu, Y. Y., Tu, Z. Y. & Archer, L. A. Stable lithium electrodeposition in liquid and
471 nanoporous solid electrolytes. *Nature Materials* **13**, 961-969, doi:10.1038/NMAT4041
472 (2014).
- 473 6 Qian, J. F. *et al.* High rate and stable cycling of lithium metal anode. *Nat Commun* **6**,
474 doi:10.1038/Ncomms7362 (2015).
- 475 7 Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O₂ and Li-S
476 batteries with high energy storage (vol 11, pg 19, 2012). *Nature Materials* **11**,
477 doi:10.1038/NMAT3237 (2012).
- 478 8 Krause, A. *et al.* High Area Capacity Lithium-Sulfur Full-cell Battery with Prelithiated
479 Silicon Nanowire-Carbon Anodes for Long Cycling Stability. *Scientific Reports* **6**,
480 27982, doi:10.1038/srep27982 (2016).
- 481 9 Lu, J. *et al.* A lithium–oxygen battery based on lithium superoxide. *Nature* **529**, 377-382,
482 doi:10.1038/nature16484 (2016).
- 483 10 Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems.
484 *Nature Materials* **4**, 805-815, doi:10.1038/nmat1513 (2005).
- 485 11 Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide Solid Electrolyte with Favorable
486 Mechanical Property for All-Solid-State Lithium Battery. *Scientific Reports* **3**, 2261,
487 doi:10.1038/srep02261 (2013).
- 488 12 Elia, G. A. *et al.* An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based
489 Electrolyte. *Nano Letters* **14**, 6572-6577, doi:10.1021/nl5031985 (2014).
- 490 13 Bostwick, J. E. *et al.* Ion Transport and Mechanical Properties of Non-Crystallizable
491 Molecular Ionic Composite Electrolytes. *Macromolecules* **53**, 1405-1414,
492 doi:10.1021/acs.macromol.9b02125 (2020).
- 493 14 Fox, R. J. *et al.* Nanofibrillar Ionic Polymer Composites Enable High-Modulus Ion-
494 Conducting Membranes. *ACS Applied Materials & Interfaces* **11**, 40551-40563,
495 doi:10.1021/acsami.9b10921 (2019).

496 15 Yu, Z., He, Y. D., Wang, Y., Madsen, L. A. & Qiao, R. Molecular Structure and
497 Dynamics of Ionic Liquids in a Rigid-Rod Polyanion-Based Ion Gel. *Langmuir* **33**, 322-
498 331, doi:10.1021/acs.langmuir.6b03798 (2017).

499 16 Wang, Y. *et al.* Double helical conformation and extreme rigidity in a rodlike
500 polyelectrolyte. *Nature Communications* **10**, 801, doi:10.1038/s41467-019-08756-3
501 (2019).

502 17 Wang, Y., Gao, J., Dingemans, T. J. & Madsen, L. A. Molecular Alignment and Ion
503 Transport in Rigid Rod Polyelectrolyte Solutions. *Macromolecules* **47**, 2984-2992,
504 doi:10.1021/ma500364t (2014).

505 18 Lodge, T. P. Materials science - A unique platform for materials design. *Science* **321**, 50-
506 51, doi:DOI 10.1126/science.1159652 (2008).

507 19 Lu, Y. Y., Korf, K., Kambe, Y., Tu, Z. Y. & Archer, L. A. Ionic-Liquid-Nanoparticle
508 Hybrid Electrolytes: Applications in Lithium Metal Batteries. *Angew Chem Int Edit* **53**,
509 488-492, doi:10.1002/anie.201307137 (2014).

510 20 Wu, F. *et al.* "Liquid-in-Solid" and "Solid-in-Liquid" Electrolytes with High Rate
511 Capacity and Long Cycling Life for Lithium-Ion Batteries. *Chem Mater* **28**, 848-856,
512 doi:10.1021/acs.chemmater.5b04278 (2016).

513 21 Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid
514 materials for the electrochemical challenges of the future. *Nature Materials* **8**, 621-629,
515 doi:Doi 10.1038/Nmat2448 (2009).

516 22 Ueki, T. & Watanabe, M. Macromolecules in ionic liquids: Progress, challenges, and
517 opportunities. *Macromolecules* **41**, 3739-3749, doi:Doi 10.1021/Ma800171k (2008).

518 23 Horowitz, A. I. & Panzer, M. J. High-performance, mechanically compliant silica-based
519 ionogels for electrical energy storage applications. *J Mater Chem* **22**, 16534-16539,
520 doi:10.1039/c2jm33496h (2012).

521 24 Lodge, T. P. & Ueki, T. Mechanically Tunable, Readily Processable Ion Gels by Self-
522 Assembly of Block Copolymers in Ionic Liquids. *Accounts Chem Res* **49**, 2107-2114,
523 doi:10.1021/acs.accounts.6b00308 (2016).

524 25 Le Bideau, J., Ducros, J. B., Soudan, P. & Guyomard, D. Solid-State Electrode Materials
525 with Ionic-Liquid Properties for Energy Storage: the Lithium Solid-State Ionic-Liquid
526 Concept. *Adv Funct Mater* **21**, 4073-4078, doi:DOI 10.1002/adfm.201100774 (2011).

527 26 Bhattacharyya, A. J., Dolle, M. & Maier, J. Improved Li-battery electrolytes by
528 heterogeneous doping of nonaqueous Li-salt solutions. *Electrochim Solid St* **7**, A432-
529 A434, doi:10.1149/1.1808113 (2004).

530 27 MacFarlane, D. R. & Forsyth, M. Plastic crystal electrolyte materials: New perspectives
531 on solid state ionics. *Adv Mater* **13**, 957-+, doi:Doi 10.1002/1521-
532 4095(200107)13:12/13<957::Aid-Adma957>3.0.Co;2-# (2001).

533 28 Alarco, P. J., Abu-Lebdeh, Y. & Armand, M. Highly conductive, organic plastic crystals
534 based on pyrazolium imides. *Solid State Ionics* **175**, 717-720,
535 doi:10.1016/j.ssi.2003.10.024 (2004).

536 29 Matsumoto, H. *et al.* Fast cycling of Li/LiCoO₂ cell with low-viscosity ionic liquids
537 based on bis(fluorosulfonyl)imide [FSI](-). *J Power Sources* **160**, 1308-1313,
538 doi:10.1016/j.jpowsour.2006.02.018 (2006).

539 30 Zaghib, K. *et al.* Safe Li-ion polymer batteries for HEV applications. *J Power Sources*
540 **134**, 124-129, doi:10.1016/j.jpowsour.2004.02.020 (2004).

541 31 Basile, A., Bhatt, A. I. & O'Mullane, A. P. Stabilizing lithium metal using ionic liquids
542 for long-lived batteries. *Nat Commun* **7**, doi:10.1038/Ncomms11794 (2016).

543 32 Yoon, H., Howlett, P. C., Best, A. S., Forsyth, M. & MacFarlane, D. R. Fast
544 Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte. *J Electrochem
545 Soc* **160**, A1629-A1637, doi:10.1149/2.022310jes (2013).

546 33 Yoon, H., Best, A. S., Forsyth, M., MacFarlane, D. R. & Howlett, P. C. Physical
547 properties of high Li-ion content N-propyl-N-methylpyrrolidinium
548 bis(fluorosulfonyl)imide based ionic liquid electrolytes. *Phys Chem Chem Phys* **17**, 4656-
549 4663, doi:10.1039/c4cp05333h (2015).

550 34 Kim, O., Kim, K., Choi, U. H. & Park, M. J. Tuning anhydrous proton conduction in
551 single-ion polymers by crystalline ion channels. *Nat Commun* **9**, 5029,
552 doi:10.1038/s41467-018-07503-4 (2018).

553 35 Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. *Physical
554 Review* **56**, 978-982, doi:10.1103/PhysRev.56.978 (1939).

555 36 Levitt, M. H. *Spin Dynamics: Basics of Nuclear Magnetic Resonance*. (Wiley, 2001).

556 37 Marple, M., Aitken, B., Kim, S. & Sen, S. Fast Li-ion dynamics in stoichiometric Li₂S-
557 Ga₂Se₃-GeSe₂ glasses. *Chem Mater* **29**, doi:10.1021/acs.chemmater.7b02858 (2017).

558 38 Kidd, B. E., Forbey, S. J., Steuber, F. W., Moore, R. B. & Madsen, L. A. Multiscale
559 Lithium and Counterion Transport in an Electrospun Polymer-Gel Electrolyte.
560 *Macromolecules* **48**, 4481-4490, doi:10.1021/acs.macromol.5b00573 (2015).

561 39 Kidd, B. E., Lingwood, M. D., Lee, M., Gibson, H. W. & Madsen, L. A. Cation and
562 Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion Conductor.
563 *Journal of Physical Chemistry B* **118**, 2176-2185, doi:10.1021/jp4084629 (2014).

564 40 Lingwood, M. D. *et al.* Unraveling the local energetics of transport in a polymer ion
565 conductor. *Chem Commun* **49**, 4283-4285, doi:10.1039/c2cc37173a (2013).

566 41 Hou, J. B., Zhang, Z. Y. & Madsen, L. A. Cation/Anion Associations in Ionic Liquids
567 Modulated by Hydration and Ionic Medium. *Journal of Physical Chemistry B* **115**, 4576-
568 4582, doi:10.1021/jp1110899 (2011).

569 42 Simons, T. J. *et al.* Influence of Zn²⁺ and Water on the Transport Properties of a
570 Pyrrolidinium Dicyanamide Ionic Liquid. *Journal of Physical Chemistry B* **118**, 4895-
571 4905, doi:10.1021/jp501665g (2014).

572 43 Jin, L. *et al.* Structure and Transport Properties of a Plastic Crystal Ion Conductor:
573 Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate. *Journal of the American
574 Chemical Society* **134**, 9688-9697, doi:10.1021/ja301175v (2012).

575 44 Zhu, H., MacFarlane, D. R., Pringle, J. M. & Forsyth, M. Organic Ionic Plastic Crystals
576 as Solid-State Electrolytes. *Trends in Chemistry* **1**, 126-140,
577 doi:10.1016/j.trechm.2019.01.002 (2019).

578 45 MacFarlane, D. R. *et al.* Ionic liquids and their solid-state analogues as materials for
579 energy generation and storage. *Nature Reviews Materials* **1**, 15005,
580 doi:10.1038/natrevmats.2015.5 (2016).

581 46 Han, X. *et al.* Negating interfacial impedance in garnet-based solid-state Li metal
582 batteries. *Nat Mater* **16**, 572-579, doi:10.1038/nmat4821 (2017).

583 47 Kerner, M., Plylahan, N., Scheers, J. & Johansson, P. Thermal stability and
584 decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. *RSC Advances* **6**, 23327-
585 23334, doi:10.1039/C5RA25048J (2016).

586 48 Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes
587 with in-built fast interfacial transport for secondary lithium batteries. *Nature Energy* **4**,
588 365-373, doi:10.1038/s41560-019-0349-7 (2019).

589 49 Gao, J. W. *et al.* Water and sodium transport and liquid crystalline alignment in a
590 sulfonated aramid membrane. *J Membrane Sci* **489**, 194-203,
591 doi:10.1016/j.memsci.2015.03.090 (2015).

592 50 Li, J., Park, J. K., Moore, R. B. & Madsen, L. A. Linear coupling of alignment with
593 transport in a polymer electrolyte membrane. *Nature Materials* **10**, 507-511, doi:10.1038/Nmat3048 (2011).

595 **Data availability**

596 All data generated and analyzed in this study are included in this published article and its
597 supplementary information file and are also available from the corresponding author on reasonable
598 request.

599 **Acknowledgements**

600 This work was supported primarily by the US National Science Foundation under awards DMR
601 1507764 and 1810194 and in part by the US Department of Energy under award EE0008860. We
602 also gratefully thank Prof. Carla Slebodnick at the Virginia Tech Crystallography Lab for
603 assistance with XRD analysis.

604 **Author contributions**

605 YW designed and executed all major experiments and composed and edited article drafts. XW,
606 RK, LJ, and MF performed and assisted with electrochemistry and impedance experiments and
607 contributed written sections and editing to the article. CJZ performed solid-state NMR experiments
608 and contributed written sections and editing to the article. WHK analyzed the XRD data and
609 contributed written sections to the article. TJD modified and supplied polymer, conceived
610 experiments and contributed written sections and editing to the article. LAM conceived ideas,
611 oversaw experiments, and composed and edited the article.