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Abstract

While magnetized turbulence is ubiquitous in many astrophysical and terrestrial systems, our understanding of
even the simplest physical description of this phenomena, ideal magnetohydrodynamic (MHD) turbulence, remains
substantially incomplete. In this work, we highlight the shortcomings of existing theoretical and phenomenological
descriptions of MHD turbulence that focus on the joint (kinetic and magnetic) energy fluxes and spectra by
demonstrating that treating these quantities separately enables fundamental insights into the dynamics of MHD
turbulence. This is accomplished through the analysis of the scale-wise energy transfer over time within an implicit
large eddy simulation of subsonic, super-Alfvénic MHD turbulence. Our key finding is that the kinetic energy
spectrum develops a scaling of approximately k−4/3 in the stationary regime as magnetic tension mediates large-
scale kinetic to magnetic energy conversion and significantly suppresses the kinetic energy cascade. This motivates
a reevaluation of existing MHD turbulence theories with respect to a more differentiated modeling of the energy
fluxes.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Magnetic fields (994);
Theoretical techniques (2093); Plasma astrophysics (1261); Magnetohydrodynamics (1964)

Supporting material: tar.gz file

1. Introduction

While our understanding of incompressible hydrodynamic
turbulence has significantly advanced over the past decades,
many critical questions in the realm of compressible magneto-
hydrodynamic (MHD) turbulence remain unanswered. This
regime is of particular interest in both astrophysics and in
terrestrial systems where processes on a huge variety of scales
are either governed or at least influenced by MHD turbulence.
Astrophysical examples include energy transport in the solar
convection zone (Canuto & Christensen-Dalsgaard 1998;
Miesch 2005), angular momentum transport and energy release
in accretion disks (Balbus & Hawley 1998), the core-collapse
supernova mechanism (Couch & Ott 2015; Mösta et al. 2015),
the interstellar medium with its star-forming molecular clouds
(Falgarone et al. 2015; Vázquez-Semadeni 2015; Klessen &
Glover 2016), and clusters of galaxies that can be used to
determine cosmological parameters (Brunetti & Jones 2015;
Brüggen & Vazza 2015). In the terrestrial context, this is of
interest for a range of plasma experiments, such as laser-
produced colliding plasma flows, Z-pinches, and tokamaks
(see, e.g., Mazzucato et al. 2009; Haines 2011; Ren et al. 2013;
Tzeferacos et al. 2018).

At the same time, MHD turbulence theory and phenomen-
ology also made significant progress from early isotropic
models (Iroshnikov 1964; Kraichnan 1965), to critically
balanced turbulence (Sridhar & Goldreich 1994; Goldreich &
Sridhar 1995), to dynamic alignment (Boldyrev 2006), but it is
still a highly debated topic—see, e.g., Galtier (2016),
Beresnyak (2019), and Verma (2019) for recent reviews.
Different theories make a variety of predictions for the scaling
of the energy spectra depending on the strength of the mean
magnetic field (either external or local), on the cross-helicity
(balanced versus unbalanced turbulence), and on the magnetic

helicity (encoding the topology of the magnetic field config-
uration). In the majority of cases, theoretical scaling predictions
are only concerned with the total energy spectrum
(E(k)= Ekin(k)+ Emag(k) with wavenumber k) and assume a
moderate or strong background field so that dynamics are
differentiated between parallel and perpendicular to the mean
field. Thus, in the context of these theories, there is no
differentiation between the scaling of kinetic (Ekin(k)) and
magnetic (Emag(k)) energy spectra. A complementary theor-
etical approach to modeling magnetohydrodynamic turbulence
is the use of shell models, which are a computationally
inexpensive semianalytical means of modeling turbulence.
Notable examples of this include Biskamp (1994), Frick &
Sokoloff (1998), and Plunian & Stepanov (2007), who also
observe, for example, flatter spectra, spectral breaks, and
different scaling behavior of the kinetic and magnetic energy
spectra. However, the behavior strongly depends on the
characteristics of the system being modeled (with, e.g., the
properties of the system such as a mean magnetic field, helicity,
and cross-helicity contributing significantly to the observed
outcomes, similarly to the locality of the interactions
considered). By contrast to predictions from analytic and
semianalytic modeling efforts, numerous computational studies
of magnetized turbulence have reported different scaling
behaviors of kinetic and magnetic energy spectra (Haugen
et al. 2004; Aluie & Eyink 2010; Moll et al. 2011; Teaca et al.
2011; Porter et al. 2015; Grete et al. 2017; Bian & Aluie 2019)
and, perhaps even more importantly, different scaling beha-
viors of kinetic and magnetic energy spectra have been reported
in observations of the solar wind (Boldyrev et al. 2011).
In order to gain a deeper insight into this discrepancy, we

present and analyze the evolution and stationary state of the
kinetic and magnetic energy spectra and fluxes separately in the
context of an implicit large eddy simulation of ideal MHD
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turbulence in its simplest configuration (vanishing mean field,
cross-helicity, and magnetic helicity). We confirm prior results
(Haugen et al. 2004; Aluie & Eyink 2010; Moll et al. 2011;
Teaca et al. 2011; Porter et al. 2015; Grete et al. 2017; Bian &
Aluie 2019) that the kinetic and magnetic energy spectra
exhibit different scaling behaviors. In particular, we find that
the kinetic energy spectrum exhibits a scaling close to
k−4/3

—i.e., it is shallower than the total energy spectra
predicted theoretically, which mostly range between k−3/2 and
k−5/3 (Iroshnikov 1964; Kraichnan 1965; Sridhar & Gold-
reich 1994; Goldreich & Sridhar 1995; Boldyrev 2006). We
further conclude, using a shell-to-shell energy transfer analysis,
that this “shallow” kinetic energy spectrum is associated with
magnetic tension, which acts to suppress the kinetic energy
cascade and provides the major contribution in the energy flux
from large to small scales. This result is in marked contrast with
incompressible hydrodynamic turbulence, where the conserva-
tive kinetic energy cascade is the only means of transferring
energy between scales. Under the assumption of self-similarity,
Kolmogorov famously showed that this cascade leads to the
emergence of a k−5/3 scaling in the kinetic energy spectrum
(Kolmogorov 1941). However, since then, it has been
established that there exist significant departures in the
assumed self-similarity giving rise to intermittency
(Frisch 1995). Moreover, it has been shown that cascades can
also exist for nonconserved quantities, e.g., in compressible
hydrodynamic turbulence (Aluie 2011; Aluie et al. 2012) and
in incompressible MHD (Bian & Aluie 2019).

Finally, departures from the expected Kolmogorov scaling in
hydrodynamic turbulence simulations and experiments have
been associated with the existence of “bottlenecks” (Falk-
ovich 1994; Schmidt et al. 2006; Frisch et al. 2008; Donzis &
Sreenivasan 2010; Küchler et al. 2019; Agrawal et al. 2020).
The results presented in the following demonstrate the rich
interactions that can operate even in the simplest MHD
scenarios (vanishing mean field, cross-helicity, and magnetic
helicity) where magnetic tension is dynamically important.
Moreover, the results further serve to highlight the necessary
ingredients that MHD turbulence theory and phenomenology
should incorporate in order to explain the scalings of kinetic
and magnetic energy observed in both simulation and
observation of magnetized turbulence.

The rest of this paper is structured as follows. In Section 2,
we introduce the simulation setup and summarize the energy
transfer analysis. In Section 3, we present the kinetic and
magnetic energy spectra, their temporal evolution, and scale-
dependent energy dynamics. Finally, in Section 4, we
summarize our results, the limitations of the simulations upon
which they are based, and discuss the implications for both
modeling of magnetohydrodynamic turbulence and astrophy-
sical systems.

2. Method

2.1. Simulation Setup

We use the open-source code, K-Athena(Grete et al.
2021), a performance portable implementation of Athena++
(Stone et al. 2020) based on Kokkos (Edwards et al. 2014), to
solve the ideal MHD equations.5 The second-order finite

volume scheme employed comprise a Van Leer integrator,
constrained transport MHD algorithm, piecewise-linear recon-
struction, and Roe Riemann solver (see Stone & Gardiner 2009
for more details on the numerical method). Given that no
explicit physical dissipative terms are present, dissipation is
purely numerical; as such, the simulations presented here
utilize the implicit large eddy simulation (ILES) technique
(Grinstein et al. 2007). Turbulent driving is accomplished
through a stochastic forcing approach described by Schmidt
et al. (2009), implemented within K-Athena using a
communication-avoiding algorithm for efficient large-scale
parallel simulations on GPUs.
We conduct a single simulation of a cubic domain with a

side length of 1 (if not noted, otherwise all units are in code
units) and periodic boundary conditions on a 20483 grid. The
plasma is initially at rest (velocity u= 0) with uniform density
(ρ= 1) and thermal pressure (pth= 1). The initial magnetic
field configuration (B0=∇×A0 with A0= (0, 0, r0− r) for
r< r0 with ( ) ( )= - + -r x y0.5 0.52 2 ) is a cylinder with
its axis of symmetry in the z-direction and radius r0= 0.4 and
centered in the xy plane, i.e., there is no magnetic flux going
through any of the periodic boundaries. The initial magnetic
field strength is comparatively weak, with á ñ =E 0.00125mag

corresponding to a plasma beta (ratio of thermal to magnetic
pressure) of βp= 800. The plasma is kept approximately
isothermal using an adiabatic equation of state with an
adiabatic index of γ= 1.0001.
In order to reach a state of stationary turbulence, we employ

a large-scale mechanical driving force (having an inverse
parabolic shape, ( )µ -k k k2 f

2 2, with a peak at kf= 2, where k
is the normalized wavenumber). The driving field is purely
solenoidal and has an autocorrelation time of 1.0 so that no
artificial compressible modes are injected (Grete et al. 2018). In
the stationary regime, the integral length is
L= ∫Ekin(k)/kdk/∫Ekin(k)dk= 0.32 (i.e., slightly smaller than
the peak forcing scale at 0.5), the rms sonic Mach number is
Ms= 0.54, the resulting large eddy turnover time is
T= L/(Mscs)= 0.59, the rms Alfvènic Mach number is
Ma= 2.8, and the mean plasma beta is βp= 54.

2.2. Energy Transfer Analysis

For a detailed analysis of the energy dynamics, we apply the
shell-to-shell energy transfer analysis presented in Grete et al.
(2017), which is an extension of Alexakis et al. (2005) to the
compressible regime; see also Dar et al. (2001), Domaradzki
et al. (2010), Mininni (2011), Verma (2019), Yang (2019), and
references therein. The key idea is to separate energy transfers
by their source (some energy budget at some spatial scale Q),
sink (some budget at some scale K ), and a mediator. Given the
isothermal nature of the simulation, we focus on the kinetic and
magnetic energy budget only and ignore a detailed analysis of
the internal energy budget (see Schmidt & Grete 2019) or non-
isothermal statistics (Grete et al. 2020).
In general, the energy transfers are given by

( ) { } ( )Î Q K, with X, Y U, B , 1XY

expressing energy transfer (for > 0) from shell Q of energy
budget X to shell K of energy budget Y. U and B represent the
kinetic and magnetic energy budgets, respectively. More

5 K-Athena is available at https://gitlab.com/pgrete/kathena. Commit
e5faee49 was used to run the simulation, and the parameter file
(athinput.fmturb) is contained in the .tar.gz package with this paper.
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specifically, the energy transfers are

( ) · ( · ) · · ( )ò= -  +  w u w w w u xQ K d,
1

2
, 2UU

K Q K Q

( ) · ( · ) · · ( )ò= -  +  B u B B B u xQ K d,
1

2
, 3BB

K Q K Q

for kinetic-to-kinetic (and magnetic-to-magnetic) transfers via
advection and compression (typically associated with energy
cascades),

( ) · ( · ) ( )ò=  w v B xQ K, d , 4BUT
K

A
Q

( ) · · ( ) ( )ò=  Ä B v w xQ K, d , 5UBT
K

A
Q

for magnetic-to-kinetic (and kinetic-to-magnetic) energy trans-
fer via magnetic tension, and

( ) · ( · ) ( )ò r
= - 

w
B B xQ K,

2
d , 6BUP

K
Q

⎛
⎝⎜

⎞
⎠⎟( ) · · ( )ò r

= -  B B
w

xQ K,
2

d , 7UBP
K

Q

for magnetic-to-kinetic (and kinetic-to-magnetic) energy trans-
fer via magnetic pressure. Here, r=w u is a mass-weighted
velocity chosen so that the spectral kinetic energy density based
on w1

2
2 is a positive definite quantity (Kida & Orszag 1990)

and vA is the Alfvén velocity.6

The velocity wK and magnetic field BK in a shell K (or Q) are
obtained by a sharp spectral filter in Fourier space with
logarithmic spacing. The bounds are given by 1 and 2n/4+2 for
n ä {−1, 0, 1,K,36}. Shells (uppercase, e.g., K ) and
wavenumbers (lowercase, e.g., k) obey a direct mapping, i.e.,
K= 24 corresponds to k ä (22.6, 26.9].

Given the low sonic Mach number of the simulation (i.e.,
limited density variations), differences between the shell
filtered transfers and transfers obtained through a coarse-
graining approach (similar to the formalism employed in large
eddy simulations) are expected to be negligible (Aluie 2013;
Yang et al. 2016; Zhao & Aluie 2018).

3. Results

3.1. Emergence of a Power Law in Ekin(k)

In MHD turbulence simulations (independent of numerical
method, such as pseudo-spectral DNS, higher-order finite
difference, or finite volume ILES) without a strong mean field
(  á ñB u0 RMS) and magnetic Prandtl number Pm≈ 1, two
important features emerge in the kinetic and magnetic energy
spectra when plotted separately; see Figure 1 for a comparison
(Haugen et al. 2004; Aluie & Eyink 2010; Moll et al. 2011;
Teaca et al. 2011; Porter et al. 2015; Grete et al. 2017; Bian &
Aluie 2019). First, the turbulent dynamo amplifies magnetic
fields on all scales, resulting in Emag(k)> Ekin(k) on all scales
smaller than the forcing scales. Second, the kinetic energy
spectrum develops a power-law regime on the magnetically
dominated scales with a slope close to −4/3, i.e., shallower
than the Kolmogorov slope of −5/3.

We attribute the emergence of a flatter-than-Kolmogorov
slope to the effects of magnetic tension and illustrate this
conclusion with a detailed analysis of a single simulation in the
following sections.

3.2. Time Evolution of the Energy Power Spectra

Figure 2 illustrates the evolution of the mean magnetic and
kinetic energies and their ratio over time. First, the mean
kinetic energy reaches its peak value at time tA and roughly
marks the transition from the kinetic phase of the turbulent
dynamo to the nonlinear phase. The corresponding spectra7

(top panel in Figure 3) show that the kinetic energy on small

Figure 1. Kinetic (solid) and magnetic (dashed) energy spectra reported in the
literature from simulations with various numerical schemes, compensated by
k4/3: pseudo-spectral DNS of incompressible MHD with hyperdissipation
(Bian & Aluie 2019, Figure 8 in their supplementary material), ILES of
compressible, ideal MHD (Porter et al. 2015, Figure 3) similar to this work,
pseudo-spectral DNS of incompressible MHD (Aluie & Eyink 2010, Figure 1),
and higher-order finite difference DNS of compressible MHD with
hyperdissipation (Haugen et al. 2004, Figure 7). All spectra have in common
that magnetic energy dominates all scales smaller than the forcing scale and
that the kinetic energy spectrum exhibits a region with scaling close to k4/3.
(Lines are vertically offset for increased readability. Data sources: JHTDB for
Aluie & Eyink 2010 and original figures using WebPlotDigitizer for
other lines.)

Figure 2. Temporal evolution of the mean magnetic energy (orange dashed–
dotted line), mean kinetic energy (blue solid), and their ratio (green dashed).
The shaded gray area indicates the stationary regime. Specific times tA (peak
kinetic energy), tB (nonlinear dynamo), and tS (stationary) correspond to
snapshots that are analyzed in more detail.

6 This decomposition of the energy transfers is not unique; for details and
discussion of the physical interpretation, see Grete et al. (2017).

7 A movie of the temporal evolution of the energy spectra (Grete_et_al-
spectra_evol.mp4) is available in the .tar.gz package.
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scales (k 32) is lower than the stationary value (indicated by
the thin black lines), whereas the kinetic energy on large scales
is above the stationary value. The magnetic energy spectrum
crosses the kinetic energy spectrum at keq≈ 24 (where
Ekin(keq)≈ Emag(keq)) so that the magnetic field becomes
dynamically relevant on small scales.

At time tB, which falls into the nonlinear phase of the
dynamo, the kinetic energy on small scales k 50 has reached
its stationary value (see the center panel in Figure 3).
Moreover, the kinetic energy spectrum shows a first indication
of a spectral break around k≈ 24 with the steeper slope on
large scales and a shallower slope on small scales. The
crossover of magnetic and kinetic energy has shifted toward
larger scales and now occurs around keq≈ 16.

Finally, the stationary regime is reached after≈8T with Emag

saturating at≈0.28Ekin. In the stationary regime (represented
by t= tS), the crossover has shifted to the largest scales
keq≈ 8—see bottom panel of Figure 3. Further growth is
inhibited due to the large-scale purely mechanical force, and
the magnetic energy is now dominant on all but the largest
scales. As a result, the kinetic energy spectrum has been
significantly flattened and now exhibits a limited range

16 k 64 with a shallower-than-Kolmogorov slope close
to≈−4/3.
In the following, we provide support for the assertion that

this flattening of the kinetic energy spectrum is tightly linked to
a suppression of the kinetic energy cascade by magnetic
tension.

3.3. Energy Dynamics

In the absence of explicit dissipation (and, thus, the explicit
mean dissipation rate), all energy transfer rates are normalized
using the mean total cross-scale flux at k = 26.9 in the
stationary regime as a proxy (see Figure 6). This choice has no
influence on the actual results but allows for an easier
comparison of relative magnitudes and with other results
reported in the literature.

3.3.1. Magnetic Tension

The role of magnetic tension in shaping the kinetic energy
spectrum becomes apparent in Figure 4. It shows the net rate of
change in kinetic energy (top row) and magnetic energy
(bottom row for the different mediators over time and for the

Figure 3. Kinetic (blue solid) and magnetic (orange dashed–dotted) energy
spectra at different times. The inset shows 8 < k < 64 compensated by k4/3 and
illustrates the flattening of the kinetic energy spectrum. The thin black lines in
each panel illustrate the stationary state (bottom panel) for reference. The gray
area at 22.6 < k � 26.9 (= =K 24) indicates the scale that is used in the more
detailed energy transfer analysis in Section 3.3.

Figure 4. Net rate of change in kinetic (top) and magnetic (bottom) energy at
k = 24 over time. Blue lines indicate energy transfer through advection, orange
through magnetic tension, and green through magnetic pressures. The pressure
dilatation and forcing term are not shown as their contribution is negligible.
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reference shell K= 24, i.e.,

( ) ( ) ( )å¶ = E K Q K, and 8t
Q

kin
XY

XY

( ) ( ) ( )å¶ = E K Q K, , 9t
Q

mag
XY

XY

with XY ä {UU,BUT,BUP} for the kinetic energy and XY ä
{BB,UBT,UBP} for the magnetic energy. In other words, this
is the net rate of change in energy at some scale K from all
other scales Q.

While at time tA the kinetic cascade (UU) is still contributing
to a net increase of kinetic energy on those scales, the rate of
change by magnetic tension BUT is negative, i.e., removing
kinetic energy from K= 24. The net effect remains positive. At
tB, the dynamics have changed. The kinetic cascade still
contributes to the growth in kinetic energy, but magnetic
tension now dominates so that the net effect is a removal of
kinetic energy from those scales. We interpret this transfer of
energy from the kinetic to the magnetic budget through
magnetic tensions as being tightly related to the flattening of
the kinetic energy spectrum.

In the stationary regime, the net rate of change in both
kinetic and magnetic energy fluctuates around 0 (otherwise, the
regime should not be considered stationary). This balance is
only maintained through energy transfers between the kinetic
and magnetic energy budgets. On average, the kinetic and
magnetic cascades remove energy from intermediate scales of
their respective budgets (blue lines are negative), and this
deficit is filled through transfers mediated by magnetic tension
between budgets (orange lines).

The importance of magnetic tension is similarly observed in
the cross-scale energy fluxes. These fluxes are obtained from
the individual transport terms via

( ) ( ) ( )å åP =
>

>
< 


k Q K, , 10

Q k K k
U
U

UU

( ) ( ) ( )å åP =
>

>
<




k Q K, , 11
Q k K k

B
U ,T

UBT

( ) ( ) ( )å åP =
>

>
<




k Q K, , 12
Q k K k

B
U ,P

UBP

for energy being transferred from the kinetic energy on all
scales� k to the kinetic and magnetic energies on scales
smaller than k by advection, magnetic tension, and magnetic
pressure, respectively. The same notation applies to transfers
from the large-scale magnetic energy with the U and B indices
exchanged.

Figure 5 illustrates the energy flux across k= 26.9 over time
from the large-scale kinetic energy (top panel) and large-scale
magnetic energy (bottom panel). Again, the cross-scale flux
initially increases in intensity for both of the advection-related
transfers (blue lines). While it peaks for P >

<

B
B at tB and then

remains at a constant value, it already peaks for P >
<

U
U at t= tA

and afterward declines again to 0. Transfers via magnetic
tension (orange lines) from both large kinetic and magnetic
scales steadily grow until t= tB. Similar to the advection
transfers, P >

<

U
B , T remains constant after the peak, whereas

P >
<

B
U , T declines, with the key difference that the decline is not to

zero but to a nonzero value. Moreover, it is the only remaining
contribution for the kinetic energy cross-scale flux (at that
scale) and, overall, the dominating cross-scale flux is

marginally (≈15%–20%) stronger than the combined fluxes
from the large-scale magnetic energy budget by advection and
tension. In other words, P >

<

U
U , which is the only cross-scale flux

in incompressible hydrodynamics, is completely suppressed
here, and the cross-scale energy transfer from the kinetic
energy budget is solely mediated by magnetic tension.

3.3.2. Large-scale Energy Conversion

While cross-scale fluxes allow for intra- (via advection) and
interbudget (via magnetic tension and pressure) transfers, only

Figure 5. Cross-scale energy transfer across k = 26.9 over time, i.e., the energy
from all budgets going from all larger scales (k < 26.9) to the small-scale
(k > 26.9) kinetic budget (top) and magnetic budget (bottom), respectively.

Figure 6. Cross-scale energy transfer across k from the kinetic budget (orange)
and magnetic budget (green), and cumulative energy conversion from kinetic to
magnetic energy on scales larger than k in the stationary regime.

5

The Astrophysical Journal, 909:148 (8pp), 2021 March 10 Grete, O’Shea, & Beckwith



the latter contributes to a conversion of energy between
budgets. Figure 6 illustrates the net cross-scale fluxes versus
scale in the stationary regime along with the cumulative large-
scale kinetic to magnetic energy conversion. The cumulative
large-scale conversion refers to the net energy transfer between
those two budgets on all scales larger than the reference scale k,

( ) ( ) ( ) ( )å= +  


k Q K Q K, , , 13
Q K k

UB

,
UBT UBP

and is analogous to the conversion term introduced in Bian &
Aluie (2019) (where the shell-to-shell analysis presented here
corresponds to using a sharp spectral kernel in their coarse-
graining framework). Note that the magnetic pressure contrib-
ution is negligible in the simulation presented here. The
cumulative energy conversion tightly follows the cross-scale
flux from the magnetic energy budget. On the largest scales
(k≈ 4), it is negligible. Here, the cross-scale flux is dominated
by the flux from the kinetic energy budget as expected in a
situation with a large-scale mechanical driving. From the large
to intermediate scales (k≈ 30), the contribution continuously
grows while the kinetic energy cross-scale flux contribution
decreases. Eventually, the kinetic and magnetic cross-scale
fluxes become approximately the same strength. Similarly, the
cumulative energy conversion reaches a constant value. This
implies that no significant net energy conversion occurs on
intermediate scales and is in agreement with Bian & Aluie
(2019), who analytically and numerically show that mean-field
line stretching is a predominantly large-scale process.

4. Summary, Discussion, and Conclusions

Motivated by an apparent discrepancy between kinetic and
magnetic energy spectra scalings measured in simulations
(Haugen et al. 2004; Aluie & Eyink 2010; Moll et al. 2011;
Teaca et al. 2011; Porter et al. 2015; Grete et al. 2017; Bian &
Aluie 2019) and observations of the solar wind (Boldyrev et al.
2011) with expectations derived from analytic theory (Gal-
tier 2016; Beresnyak 2019), we presented shell-to-shell energy
transfer analysis of an implicit large eddy simulation of
approximately isothermal, subsonic, super-Alfvénic MHD
turbulence with vanishing background magnetic field, cross-
helicity, and magnetic helicity. In the context of this analysis,
we find that magnetic tension significantly suppresses the
kinetic energy cascade, resulting in a spectrum that is shallower
than predicted in various theories, e.g., E(k)∝ k−3/2 (Iroshni-
kov 1964; Kraichnan 1965) or ( ) µ^ ^

-E k k 3 2 (Boldyrev 2006).
Overall, the results presented here indicate that the energy flux
across scales is dominated by magnetic tension, and similarly,
the scale local energy balance in the stationary turbulence
regime is maintained by a constant energy transfer between the
kinetic and magnetic reservoirs mediated by magnetic tension.

The simulations on which the results are based are
necessarily limited. While a clear signature of an extended
range with a scaling close to k−4/3 is observed in the kinetic
energy power spectrum, no such range is observed in the
magnetic energy power spectrum (see Figure 1). We attribute
this to a combination of the simulation setup as well as a
limited dynamical range. More specifically, the mechanical
energy injection on the largest scales provides a barrier for the
large-scale magnetic field growth in the absence of a significant
(external) mean field. As a result, the magnetic field is strongest

on intermediate scales and gets weaker toward larger scales.
Similarly, in the limit of large Reynolds numbers, we expect
the ratio of Emag(k)/Ekin(k) to grow from the smallest
(nondissipative) scales toward larger scales until the growth
is inhibited by the forcing acting on the largest scales. This also
explains why extended scaling ranges are regularly observed in
reduced MHD simulations or in simulations with a significant
mean field (potentially stronger than the velocity field on the
forcing scales), where it, figuratively, provides a large-scale
anchor; see Beresnyak 2019).
In this study, we focus on simulations with magnetic Prandtl

numbers of Pm; 1—that is, calculations where the kinetic
viscosity and magnetic diffusivity are approximately the same.
We note that the results presented here appear to be generally
independent of the numerical method in the Pm≈ 1 regime. As
shown in Figure 1, the scaling in the kinetic energy spectrum
has been observed in pseudo-spectral, finite difference, and
finite volume simulations, and with or without explicit (hyper)
dissipative terms. While the relative behavior on the smallest
scales will depend on Pm, overall, it is expected that for

>Rm Re (i.e., Pm > 1), where magnetic diffusivity is very
low compared to kinetic viscosity, magnetic energy will be
amplified above the kinetic energy on all scales smaller than the
energy injection scale, with the opposite effect happening in the
Pm< 1 regime (Brandenburg 2014). While shell models
suggest that the magnetic field will continue to show the
behavior we have observed in the Pm? 1 regime, at Pm= 1 (
i.e., when the magnetic diffusion rate is high), it is likely that
there will be very little magnetic power at small scales,
although the precise details will likely depend on the nature of
the turbulent driving. Given that a wide range of magnetic
Prandtl numbers are relevant in both terrestrial and astro-
physical systems, further work exploring a wider range of Pm
is well motivated.
Further complexity arises when we consider variations in the

plasma regime. We are modeling a plasma using the ideal
MHD approximation—i.e., assuming that particles are highly
collisional, that the Debye length and electron and ion gyroradii
are small, and that the inverse of the electron and ion cyclotron
frequencies are short compared to the spatial and temporal
scales of interest. As these assumptions are relaxed—for
example, if the plasma is assumed to be weakly collisional and
thus viscosity and resistivity become significantly anisotropic
—this may impact the results we have observed. Such regimes
are important for both terrestrial and astrophysical systems, and
while they are beyond the scope of our current efforts, they are
worthy of consideration. This may require a substantially
different numerical approach, however. While some deviations
from the ideal MHD regime can be explored with extensions of
the MHD approximation (e.g., adding anisotropic terms as per
the Braginskii approximation; Braginskii 1965), it is likely that
a kinetic or hybrid fluid/kinetic approximation will be required
for some physical regimes.
The key finding of this work is that magnetic tension acts to

suppress cross-scale kinetic energy transfer, resulting in a
kinetic spectrum with a slope k−4/3, in contrast with theoretical
expectations regarding incompressible hydrodynamic turbu-
lence. Such a suppression of cross-scale kinetic energy transfer
is also observed in simulations of hydrodynamics turbulence,
where the “bottleneck effect” (a pileup of energy on the
smallest scales) results in a shallower than k−5/3 scaling in the
kinetic energy spectrum in hydrodynamic turbulence

6

The Astrophysical Journal, 909:148 (8pp), 2021 March 10 Grete, O’Shea, & Beckwith



(Falkovich 1994; Schmidt et al. 2006; Frisch et al. 2008;
Donzis & Sreenivasan 2010; Küchler et al. 2019; Agrawal et al.
2020). Recently, Gong et al. (2020) also attributed the

hydrodynamic bottleneck effect to the shallow kinetic energy
spectra they observe in their MHD simulations.

The results presented here demonstrate that, contrary to
Gong et al. (2020), the physical mechanism for the shallow
slope of the kinetic energy spectrum is fundamentally different
between hydrodynamics and magnetohydrodynamics due to
magnetic tension (which is naturally absent in hydrodynamics).
In addition, the results presented here suggest that the kinetic
cascade, P >

<

U
U , is practically absent on intermediate scales in the

analyzed simulation. This is in agreement with Brandenburg &
Rempel (2019), who find, in a comparable Pm≈ 1 regime, that
the main energy flow follows a path from large-scale kinetic to
large-scale magnetic energy, followed by large magnetic to
small-scale magnetic, and eventually small-scale magnetic to
small-scale kinetic energy. The large-scale energy conversion
is also in agreement with Bian & Aluie (2019), as detailed in
Section 3.3.2. However, the strongly suppressed kinetic
cascade we see in the simulation differs from the decoupled
cascade theory on intermediate scales brought forward by Bian
& Aluie (2019). While we still observe a significant energy flux
in the magnetic energy cascade, the balance in the kinetic
energy budget is maintained by magnetic tension. Thus, both
energy budgets remain coupled through dynamically significant
energy fluxes. Note, compared to the vastly extended
dynamical range in Bian & Aluie (2019; which comes from
the use of higher-order hyperdissipative terms), the dynamical
range in the simulation presented here is rather limited. While
the simulation presented here may not reach an (extended)
decoupled regime, Bian & Aluie (2019) also observe an
approximately k−4/3 scaling across the conversion and
decoupled scales; see Figure 1. Moreover, the ILES nature of
our simulation precludes an exact analysis of the dissipative
scales. Future simulations with a larger dynamical range and
explicit viscosity and resistivity will help to address the
conundrum between suppressed and coupled cascades.

With these caveats in mind, the results presented here have a
number of implications. First, they motivate a reevaluation of
MHD turbulence theories that commonly are only concerned
with the total (kinetic and magnetic) energy spectrum and
energy flux. In particular, the results presented here suggest that
flux-based models should differentiate between the intra- and
interbudget cross-scale fluxes, and consider energy budgets
separately. We note that the scaling of the total energy will be
dominated by the magnetic energy scaling on intermediate
scales, which is important in light of MHD turbulence theory
on scaling relations. Second, in the interpretation of observa-
tions and their derived spectra, special care is required in
inferring properties from one spectrum to another, as we see no
indication that kinetic and magnetic energy spectra follow the
same scaling laws, (see also Boldyrev et al. 2011). Third,
subgrid-scale modeling in the context of large eddy simulations
(Miesch et al. 2015; Grete et al. 2016) may become simpler as,
for example, one can ignore a purely kinetic cross-scale flux.
Finally, we note that in natural systems the effective, large-
scale driving mechanisms, e.g., a galaxy cluster merger
(Subramanian et al. 2006), provide an outer scale and limit
for the amplification of magnetic fields by the fluctuation
dynamo.

Finally, we note that the results presented here should also be
interpreted with care and not be overgeneralized. As mentioned
in the Introduction, the configuration space of MHD turbulence
is vast and this work covers only a single point. Additional data
from (even larger-scale) simulations, observations, and experi-
ments are required in order to get a complete picture of MHD
turbulence.
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