PDCunplugged: A Free Repository of Unplugged
Parallel & Distributed Computing Activities

Suzanne J. Matthews
Department of Electrical Engineering & Computer Science
United States Military Academy
West Point, USA
suzanne.matthews @ westpoint.edu

Abstract—Integrating parallel and distributed comput-
ing (PDC) topics in core computing courses is a topic of increasing
interest for educators. However, there is a question of how best
to introduce PDC to undergraduates. Several educators have
proposed the use of “unplugged activities”, such as role-playing
dramatizations and analogies, to introduce PDC concepts. Yet,
unplugged activities for PDC are widely-scattered and often
difficult to find, making it challenging for educators to create
and incorporate unplugged interventions in their classrooms. The
PDCunplugged project seeks to rectify these issues by providing
a free repository where educators can find and share unplugged
activities related to PDC. The existing curation contains nearly
forty unique unplugged activities collected from thirty years of
the PDC literature and from all over the Internet, and maps each
activity to relevant CS2013 PDC knowledge units and TCPP PDC
topic areas. Learn more about the project at pdcunplugged.org.

Index Terms—parallel and distributed computing, education,
unplugged, activity, repository

I. INTRODUCTION

Computer science educators increasingly look to integrate
parallel and distributed computing (PDC) topics into their un-
dergraduate computing courses. In 2012, the NSF/IEEE TCPP
Initiative on Parallel and Distributed Computing identified [1]]
and recommended over a hundred PDC topics with course
mappings to help CS undergraduates develop a capacity for
parallel thinking [1]. The ACM/IEEE Joint Task Force on
Computing Curricula supported TCPP’s findings, recommend-
ing in their 2013 Computing Curricula (CS2013) that every
CS program cover at least 15 hours of PDC. More recently,
ABET’s Computing Accreditation Commission required that
all undergraduate computer science students learn parallel and
distributed computing [2].

As faculty move toward integrating PDC topics into their
courses, many are unsure where to begin. Teaching PDC
can be challenging for those without prior knowledge. There
are also questions on the best way to introduce concepts,
especially to an increasingly diverse student population. “Un-
plugged” PDC activities — or dramatizations and analogies that
teach PDC without computers — are one potential solution. The
unplugged movement for teaching computing gained signficant
traction with the release of CS Unplugged [3[, a collection
of free unplugged activities for teaching computing concepts
to K-12 students. Unplugged activities are typically easy to

National Science Foundation (NSF) Grant DUE-1855761

implement, inexpensive, require few materials, encourage col-
laboration and often represent a “welcome break” for teachers
used to teaching in front of computer screens [3]], [4]. They are
also a great way to give a high-level overview to a topic before
getting into technical details. More importantly, unplugged
activities can promote equity in computing by removing the
expense and requirement of computers and by catering to in-
dividuals with unique needs. Specifically, unplugged activities
enable individuals who are disabled or who speak a foreign
language to engage with computing concepts with their other
senses [3]], [[6]. Faculty who employ unplugged activities to
teach computing concepts to college students generally agree
that the activities aid in student understanding (e.g. [7[]-[9]]).

While several educators (e.g [10]-[14]]) have developed
unplugged activities for teaching PDC, their contributions
are widely scattered and generally hard to find. Curating
unplugged materials into a centralized repository makes it
easier for educators to identify and adopt activities for their
classrooms. CS Unplugged is not an optimal choice for this
curation for several reasons. First, CS Unplugged focuses
on introducing general computing concepts to K-12 students.
Educators introducing PDC concepts to older populations may
therefore find the activities in CS Unplugged too “childish”
for their classrooms. Second, a repository designed specifically
for unplugged PDC activities can cater directly to the needs of
computing educators by mapping activities to well-established
PDC topic areas and learning outcomes. Lastly, a repository of
unplugged PDC activities allows activity creators to identify
existing activities and potential gap areas, preventing them
from inadvertently reinventing the wheel.

This paper presents PDCunplugged, a collection of un-
plugged PDC activities curated from the existing PDC litera-
ture and from across the Web. The curation enables educators
to quickly find existing unplugged activities to try out in
their classes, and allows them to augment activity entries
with assessments and experiences of their own. In creating
PDCunplugged, we set out to answer the following questions:

o What unplugged activities currently exist for PDC?

o How do existing activities cover TCPP Topic Areas and
CS2013 Knowledge Units?

o Where should educators concentrate on developing new
content?

As of writing, the curation identifies nearly forty unique
activities that span all the CS2013 knowledge units, the
TCPP topic areas, and core computing courses. Each activity
contains links to external materials (if available), summaries
of known assessment, and citations to source papers. Detailed
instructions are provided to allow future contributors to add
to the repository by initiating pull requests through GitHub
or (if they prefer) through e-mail. Lastly, we identify several
“holes” in the curation and identify opportunities for future
development of unplugged activities.

The rest of this paper is organized as follows. Section
discusses the PDCunplugged website, its features, use cases,
and how users can contribute. Section [[IIl covers the curation
process, summarizes the collection of identified PDC un-
plugged activities, and discusses lessons learned. We conclude
and discuss future work in Section [Vl

II. OVERVIEW OF PDCunplugged

The PDCunplugged website (pdcunplugged.org) is
built using the Hugo Static Site Generator [15] version 0.59.1,
an open-source website creation framework written in the Go
language. Hugo was chosen as the underlying web framework
due to its sophisticated taxonomy system (see Section [[I-B)),
fast build times, and seamless integration with GitHub.

We anticipate three main classes of users of PDCunplugged:
1.) Activity Authors who create and curate unplugged activ-
ities into the PDCunplugged repository; 2.) Educators who
implement PDCunplugged activities in their classrooms; and
3.) Assessors who evaluate the efficacy of particular activities
in a classroom. We anticipate visitors to PDCunplugged to
span several user categories, with some activity authors or
educators augmenting existing activities with variations and
assessments based on their own classroom experiences.

Contributors to PDCunplugged write activities in Mark-
down [16]], a lightweight text markup language that easily ren-
ders to HTML and other formats. Unlike HTML, Markdown
requires relatively little knowledge and enables contributors to
write in near plain-text. While installing Hugo is an optional
step, it is recommended for users who wish to locally view
how an activity renders on the PDCunplugged website.

A. Activity structure

Activities form the heart of PDCunplugged. In this con-
text, the term “activity” refers to a variety of interventions,
including kinesthetic learning activities, role-playing, and even
analogies. We choose to group all these interventions under the
common term ‘“‘activity”, as several analogies can be drama-
tized, and vice versa. Each activity exists in PDCunplugged
as a separate Markdown file containing all the information
that defines it. Suppose an contributor wishes to create a
new unplugged activity called example. The contributor
first copies the template shown in Fig. [I] into a text file
called example.md and either e-mails the curator with the
contents of this file, or initiates a GitHub pull request into

title:
date:
tags:

Original Author/link

CS2013 Knowledge Unit Coverage

TCPP Topics Coverage

Recommended Courses

Accessibility

Assessment

#4# Citations

Fig. 1. Activity Markdown Template

the content/activities folder. If the contributor has a
local installation of Hugo, they can instantiate a pre-populated
example.md file containing the contents of Fig. [I|by running
the command hugo new activities/example.md.

The first three lines in the Markdown file form the header
of the document and represents the activity title, date, and
associated tags (see Section [[I-B). There are seven sections
that form the body of the activity, with each section separated
by a horizontal rule (-—-):

a) Original Author/Link: The name of the activity author
along with any available on-line resources are listed first.
If for whatever reason the author does not have a public-
facing website containing the activity’s details, the note “No
external resources found. See details below” is included, and
a “Details” section (## Details) appears next.

b) Details: This optional section describes the activity
and all the relevant details needed for someone to adopt it in a
classroom. If the Details section is populated using information
from a proceeding or article, citations must be included to
ensure that the original source is properly attributed. The
Details section often takes the majority of the work in creating
an activity.

c) CS2013 Knowledge Unit Coverage / TCPP Topics
Coverage: The next two sections detail the CS2013 knowledge
units and TCPP topics coverage respectively. The CS2013
section enumerates each relevant knowledge unit and lists

the relevant learning outcomes. The TCPP section lists the
relevant topic areas and itemizes the associated topics covered
by the activity. Critically, the information in these two sections
are used to populate the tags and taxonomies described in
Section

d) Recommended Courses: This section lists any recom-
mended courses for the activity. We expect authors to populate
this section based on their own experiences or recommen-
dations for using the activity. For additional ideas, activity
authors should look at the TCPP recommendations (available
through the TCPP view, see below), which include a list of
recommended courses for each topic area.

e) Accessibility: This section discusses how the activity
can be presented to different audiences, and mentions if the
material may be challenging to certain groups. For example, if
an activity requires a lot of movement, a note is made that the
activity may be inappropriate for students with mobility issues.
Suggested variations to make an activity more accessible are
usually included in this section. Lastly, this section acts as a
gentle nudge to activity authors to think about inclusion when
designing activities.

f) Assessment: This section lists what (if any) assessment
exists for the activity in question. Educators who use particular
activities in their classroom are encouraged to augment this
section with their classroom experiences. Note that most
activities in the literature do not include assessment. This
section also gently nudges activity authors to think about
evaluation when presenting activities.

g) Citations: The citations section lists full citations to
all papers that reference the activity, and includes links to
websites containing supporting materials when applicable.

B. Taxonomies and Tagging

We chose Hugo as the platform for PDCunplugged pri-
marily due to its sophisticated support for taxonomies. Each
taxonomy consists of a series of terms, a subset of which are
listed on each entry. Hugo then automatically groups entries
together by their listed terms, making it possible to view all the
entries that share a common term. PDCunplugged leverages
Hugo’s taxonomy system to provide users with a number of
custom taxonomies to view and filter unplugged activities:

a) CS2013: The CS2013 taxonomy (cs2013) classi-
fies unplugged activities by their associated knowledge units
and learning outcomes as specified by CS2013. The terms
associated with this taxonomy are knowledge units. For ex-
ample, an activity with learning outcomes that match the
Parallel Decomposition and Parallel Algorithms knowledge
units would list the terms PD_ParallelDecomposition
and PD_ParallelAlgorithms.

b) TCPP: The TCPP taxonomy (tcpp) classifies un-
plugged activities by the topic areas outlined by the TCPP
Curriculum Initiative. The terms associated with this taxonomy
are the general topic areas outlined by the 2012 TCPP report.
For example, an activity that covers topics associated with the

TCPP Algorithms and Programming topic areas would list the
terms TCPP_Algorithms and TCPP_Programming.

c) Courses: The courses taxonomy (courses) classi-
fies unplugged activities by courses recommended for intro-
ducing the activity. College-level courses have separate terms
(e.g CS0, CS1, DSA) while K-12 activities are labeled with
the K_12 term.

d) Senses: The senses taxonomy (senses) classifies
activities by the sensory mediums primarily engaged by learn-
ers. The senses taxonomy attempts to improve accessibility
by aiding educators in identifying activities that best match
their particular classrooms. An activity that is primarily visual
and tactile would contain the terms visual and touch. A
general accessible term is included to denote activities
judged to be accessible to a diverse range of populations with
minimal modification.

As an example, consider the “FindSmallestCard” activity
that was proposed by Bachelis er al. [[10]]. The activity contains
learning outcomes belonging to the Parallel Algorithms and
Parallel Decomposition CS2013 knowledge units, and topics
belonging to the TCPP Programming and TCPP Algorithms
topic areas. The activity is recommended for undergraduate
students in CS1, CS2, and DSA, and contains tactile and
visual elements. Therefore, the tags field in the header of
the activity is replaced with the following lines (Fig. [2):

title: "FindSmallestCard"

cs2013: ["PD_ParallelDecomposition", \
"PD_ParallelAlgorithms"]

tcpp: ["TCPP_Algorithms", "TCPP_Programming"]

courses: ["CS1", "CS2", "DSA"]

senses: ["touch", "visual"]
Fig. 2. Header for FindSmallestCard activity

FindSmallestCard
(70 aralleibeconposition | PD_parailelAlgorithns] 1Cop Algor-tims] 1CPP_Programning [Gs1Js2]
[F5A] Eovor] visua]

Fig. 3. Rendered Header for FindSmallestCard activity

The rendered version of this content is shown in Fig. [3|
and is available at https://www.pdcunplugged.org/
activities/findsmallestcard/. Each taxonomy is
assigned a different color, and the terms associated with each
taxonomy are listed under the activity title at the top of the
page. Furthermore, each term links to a separate page that
contains all the activities that share that term. The activity
header enables educators to quickly get a sense of what the
activity offers prior to reading the details, and helps them
identify activities with similar features.

e) Hidden Taxonomies: Not all available taxonomies are
visible in the activity header. PDCunplugged employs three

hidden taxonomies (cs2013details, tcppdetails and
medium), that enable an activity author a finer granularity of
classification. The cs2013details taxonomy enables an
author to specify the learning outcomes that are associated
with an activity. Likewise, the tcppdetails taxonomy
allows the specification of the Bloom taxonomy topics as-
sociated with an activity. The medium taxonomy allows an
activity author to indicate the communication medium (e.g.
analogy, paper, role-play) used in the activity.

Typically, the terms associated with the cs2013details
taxonomy consist of an abbreviation of the knowledge unit
followed by the corresponding learning outcome’s numeric
listing. For example, an activity that covers learning out-
comes 1 and 3 of the Parallel Decomposition knowledge
unit would have the terms PD_1 and PD_3 listed under
cs2013details. For the TCPP topics, each term lists the
Bloom taxonomy classification (“K” for “Know”, “C” for
“Comprehend” and “A” for “Apply”) followed by a word
that succinctly describes the topic area. Thus, an activity that
covers the TCPP programming topic “Comprehend Speedup”
will have the term C_Speedup listed under tcppdetails.

C. Activity Views

PDCunplugged uses the aforementioned taxonomy system
to create several “views” for browsing unplugged activities.
In addition to viewing a listing of all activities, visitors to
PDCunplugged can also browse activities by separate CS2013,
TCPP, Courses, and Accessibility views. The different views
allow visitors to quickly narrow in on unplugged activities that
meet their needs, and (in the case of activity authors) identify
gaps in coverage.

For instance, PDCunplugged uses the cs2013details
and tcppdetails hidden taxonomies to enumerate the
set of activities associated with particular CS2013 learning
outcomes and TCPP topics in the CS2013 and TCPP views
respectively. We anticipate that activity authors will use these
views to gauge the level of potential impact for their proposed
activity. For example, a new activity that covers learning
outcomes or topic areas not covered by existing activities in
the curation may be judged to have a larger impact than one
whose learning outcomes are well covered by other activities.
Likewise, educators looking for activities to match a particular
learning outcome or topic area can quickly focus on the
activities that best fit their needs.

The medium hidden taxonomy is used in tandem with
the senses taxonomy to build the Accessibility view. This
view enables visitors to PDCunplugged to search for activities
based on sensory perception or medium of communication. For
example, an educator wondering how to teach parallelism with
a deck of cards could select the “cards” term to view the list
of related activities. Likewise, someone looking to incorporate
tactile activities into their course can select the “touch” term
to view all activities that heavily involve touch. The Course
view is self-explanatory; activities are organized by the courses
recommended for their adoption. This last view is especially

useful for educators teaching a particular course who want to
see what unplugged activities are recommended for it.

III. CURATION AND RESULTS

One of the goals of this paper is to curate existing
unplugged activities into the PDCunplugged website. Note
that while a serious attempt was made to aggregate as many
unplugged activities as possible, we do not claim to have
identified all existing unplugged PDC activities. Readers cog-
nizant of any missing PDC activities are welcome to contact
us directly with the details or add the activity to the GitHub
repository themselves.

The ACM Digital Library, IEEE Xplore and Google Scholar
databases were primarily used to build the curation. We used
various search keywords, including “unplugged”, “analogy”,
“game”, “metaphor”, “parallel” and “concurrency”. Each rele-
vant paper’s list of references were searched to identify earlier
activities and build accurate citations profiles. Google Scholar
was also used to identify citing publications to further extend
the search. In some cases, full-texts of earlier papers were
not available. In other cases, several distinct papers described
a single activity (or an existing similar activity), sometimes
without referencing each other. In those cases, the descriptions
were listed as “variations” of a single activity, and collapsed
together under a single activity heading. We also note that
several papers listed multiple activities.

A. Existing Unplugged Activities for PDC

As of writing, the curation has identified nearly forty unique
activities gathered from the literature over the last thirty years.
The earliest paper to advocate for the use of unplugged
activities for teaching PDC concepts is a tutorial written
by Bachelis, James, Maxim and Stout in 1990 [17]]. While
the 1990 tutorial write-up does not extrapolate the specific
activities, a follow-up paper in 1994 [10] gives a detailed
listing, and a separate paper [11] by Kitchen, Schaller and
Tymann references the earlier tutorial and describes two of
the activities (which are also described in [10]).

Sorting algorithms represent the most common set of un-
plugged PDC activities described in the literature. Bache-
lis et al. described a card sorting activity [[10] that later
researchers [14], [[18|] adapted. Adam Rifkin [12] discussed
activities that dramatize odd-even transposition sort (parallel
bubble sort) and parallel radix sort. Both activities were incor-
porated into a larger workshop by Sivilotti and Demirbas [[19]
and partially assessed. Sivilotti [20] helpfully provides a one-
page instructor write-up on the activities.

Several papers also present anologies for teaching PDC con-
cepts. For example, the Oklahoma Supercomputing Center for
Education and Research (OSCER) released a workshop series
entitled “Supercomputing in Plain English” [21] that utilizes
several analogies to introduce PDC concepts to non-computing
students and practitioners [[13]], including those for load balanc-
ing, resource contention, shared memory, distributed memory,
communication overhead and race conditions. Giacaman [22]
developed several analogies to introduce parallel computing

concepts to sophomore undergraduates. Bogaerts [23[], [24]]
also developed a series of analogies to introduce parallelism
in a CS1 course.

Many early papers discussing PDC unplugged activities did
not include assessment or only provided qualitative feedback
from students. However, recent research efforts [9]], [[14], [25],
[26] attempt to not only develop unplugged activities but also
assess their efficacy. For example, Ghafoor, Brown, Rogers
and Hines described two unplugged activities [[14] (with an
additional three listed at the iPDC modules website [27])
that were evaluated in a CS1 and CS2 course. Their prelim-
inary assesment suggested that the activities aided students
in learning PDC concepts. A separate paper by Chitra and
Ghafoor [9] incorporated an unplugged activity in a graduate
PDC course, as part of a larger effort to incorporate active
learning in the course. Their assessment revealed that students
who were taught with the active learning methodology earned
higher grades than students taught the material in a traditional
lecture-style format [9].

The curation also reveals differences in opinion about ped-
agogy and how students best learn. Early papers by Ben-Ari
and Kolikant [28]], [29] make the argument for constructivism,
which states that students learn by refining and extending the
knowledge that they already know. In their first paper [28]],
Ben-Ari and Kolikant use a scenario of robots concurrently
trying to sweeten a glass of juice to illustrate race condi-
tions and the need for mutual exclusion. In a later paper,
Kolikant [29]] presents two additional activities to illustrate
distributed systems, one involving concert tickets, and a second
involving gardening. The concert tickets activity was further
refined [30], [31] by Lewandowski ef al. in the development
of their “Commonsense Computing” program.

Most of the unplugged activities in the literature follow an
operational view of computing, where people act as processes
or processors (in the course of dramatazing algorithms) or as
memory (when illustrating the workings of data structures).
Sivilotti [32]], [33]] presents an alternative set of activities that
follow an assertional view of computing, where students focus
on what is true for all execution sequences through the iden-
tification of invariants. Sivilotti argues [32] that approaching
algorithms with assertional reasoning leads to less ambiguity
about how a concurrent algorithm works, and increases a
student’s ability to prove an algorithm’s correctness. Sivilotti
and Pike [32] developed three assertional PDC unplugged
activities, including a non-determinstic sorting activity, paral-
lel garbage collection, and stable leader election, all which
were used to introduce upper-level students to concurrent
algorithms. Sivilotti and Demirbas [19] also developed an
unplugged activity that introduced middle school girls to self-
stabilizing token rings for mutual exclusion. It remains to
be seen how effective assertional unplugged activities are for
introducing novices to PDC topics; this is perhaps an area of
interesting future research.

Less than half (41%) of the materials have some sort of
external resource (slides, handouts, etc.) associated with them;
the quality and utility of the external resources also varies

greatly. Older activities in the literature were less likely to have
associated external resources. In terms of course coverage,
there are 15 activities listed on PDCunplugged recommended
for K-12, 8 for CSO, 17 for CS1, 25 for CS2, 27 for DSA,
and 22 for Systems courses.

B. Coverage of CS2013 Topic Areas

Table [I| shows how the current set of unplugged activities
cover the various knowledge units and learning outcomes of
the PDC knowledge area described in CS2013 [34]]. For each
knowledge unit, CS2013 recommends coverage of all Tier 1
learning outcomes, at least 80% of Tier 2 learning outcomes,
and a “significant” amount of elective material [34f]. Thus,
Table [[] contains all the knowledge units, with purely elective
knowledge units marked with an E. For each knowledge unit,
we list the set of associated learning outcomes, the number of
learning outcomes with corresponding activities, and the total
number of activities associated with the knowledge unit.

TABLE I
CS2013 COVERAGE
Knowledge Num. Num. Percent Total Ac-
Unit Learning Covered Coverage | tivities
Outcomes Outcomes
Parallel Funda- | 3 2 66.67% 2
mentals
Parallel Decom- | 6 5 83.33% 21
position
Parallel 12 6 50.00% 9
Communication
and
Coordination
Parallel 11 6 54.54% 12
Algorithms,
Analysis, and
Programming
Parallel 8 7 87.50% 9
Architecture
Parallel Perfor- | 7 6 85.71% 10
mance (E)
Distributed Sys- | 9 1 11.11% 2
tems (E)
Cloud Comput- | 5 1 20.00% 3
ing (E)
Formal Models | 6 1 16.66% 1
and Semantics
(E)

The Parallel Decomposition knowledge unit has the largest
number of unplugged activities (21), followed by the Parallel
Algorithms (12) and the Parallel Performance (10) knowl-
edge units. Curiously, the Parallel Fundamentals knowledge
unit has among the least activities (2), despite having the
smallest number of learning outcomes. The reason becomes
clear upon closer inspection. The learning outcomes under
the Parallel Fundamentals knowledge unit ask students to
distinguish between two competing concepts. For example,
while there are several unplugged activities that discuss what
data races are, none distinguish them from ‘“higher level
races”. Likewise, while there are several unplugged activities
that discuss synchronization, only one [35] compares multiple

methods for synchronization. Likewise, only one unplugged
activity [25]], [26] distinguishes between “using computational
resources for a faster answer from managing efficient access
to a shared resource”.

In general, learning outcomes that ask students to distin-
guish between competing concepts, define metrics, or imple-
ment code had the lowest number of corresponding unplugged
activities. However, certain knowledge units are noticebly
sparse in the number of available activities. For example, in
the Cloud Computing knowledge unit, only three unplugged
activities exist (by Lloyd [36] and Kolikant [29]] respectively),
and both cover the same learning outcome. A similar story is
told in the Distributed Computing knowledge unit, with two
activities covering the same outcome. The Formal Models and
Semantics knowledge unit has the least coverage, with only
one activity covering a single outcome.

C. Coverage of TCPP Topic Areas

Table [l shows the coverage of the collected unplugged
activities over the PDC topic areas and topics listed in the
2012 TCPP PDC Curricula report [1]. For each topic area,
we enumerate the total number of corresponding topics, the
number of topics covered by unplugged materials, the percent
coverage, and the total unplugged activities corresponding to
that topic area. The TCPP report emphasizes the need for
parallelism covered in “core courses”: CS1, CS2, DSA or
Systems. Therefore, we focus specifically on the topics TCPP
suggests for core courses and exclude any topics that were
solely associated with advanced courses.

TABLE II
TCPP COVERAGE
Topic Area Num. Num. Percent Total Ac-
Topics | Covered | Coverage | tivities
Topics

Architecture 22 10 45.45% 9
Programming 37 19 51.35% 24
Algorithms 26 13 50.00% 22
Crosscutting and | 12 7 58.33% 8
Advanced Topics

The topic area with the lowest level of coverage is Architec-
ture at 45.45%. The Architecture topic area is subdivided into
the Classes, Memory Hierarchy, Floating-point representation
and Performance Metrics categories; of these, the Floating-
point Representation and Performance Metric categories have
no corresponding unplugged activities. The Algorithms topic
area has the next lowest level of coverage at 50%. The
Algorithms topic area can be further sub-divided into PD
Models/Complexity, Algorithmic Paradigms, and Algorithmic
Problems. Of these, the PD Models/Complexity topics have the
lowest coverage at 36.36%. We suspect that this is due to the
large number of topic areas that are very specific to a particular
model (e.g. PRAM) or involve theoretical definitions (e.g.
make/span, work, asymptotics). The Algorithmic Paradigms
category, despite its low coverage, has much promise for
future contribution. Specifically, there are activities missing

for the parallel aspects of recursion, reduction and barrier
synchronizations. The Algorithmic Problems category is fairly
well covered, though there are opportunities to add activities
that discuss communication constructs (e.g. scatter/gather,
broadcast and multicast).

The Programming topics area has the most number of
topics, and a coverage of 51.35%. The set of Programming
topics is further subdivided into three categories: Paradigms
and Notations, Correctness, and Performance. The Paradigms
and Notations category has the lowest level of coverage
(35.71%), largely due to the high specificity of some of the
topics for particular languages or libraries (process vector
extensions, OpenMP, TBB, etc.).

The curation of the literature also identified 8 activities that
correspond to Cross Cutting and Advanced topics. Together,
these activities cover 7 topics of the topics in the area (58.33%
coverage). Surprisingly, we were unable to identify any un-
plugged activities that explain how web-searches or peer-to-
peer computing work, or that discuss cloud/grid computing
or the concept of locality. Readers may also be surprised to
see the absence of any unplugged activity that corresponds
to the “know why and what is parallel/distributed computing”
PDC topic. However, this topic is overly broad, incorporating
history, different levels of parallelism, and common issues.

D. Accessibility

The curation includes 11 analogies and 11 role-playing
activities, and 4 activities that are labeled as “games”. Popular
activity mediums include paper (8), chalk-/white-board (6),
and cards (6). Other activities involve various categories of
objects, include pens (4), coins (2), food (4) and musical
instruments (1). Most activity authors did not appear to be
explicitly cognizant on how their activities or analogies would
appeal to a diverse array of students. The vast majority
(71.05%) of the identified unplugged materials have a strong
visual component. Approximately 38.84% involve movement.
Surprisingly, the sense of touch is only dominant in 26.32%
of the activities. Only two identified unplugged activities
incorporate sound. We note that 9 of the curated activities
appear generally accessible; that is, with minor modification
they can be presented to a wide variety of audiences.

For some students, analogies are a more preferable way
of communication than role-playing or other activities that
require motion or a strong visual component. However, it is
possible for analogies to become out of date. For example, the
“Long Distance Phone Call” analogy presented by Neeman et
al. [13] is likely incomprehensible to younger audiences with
unlimited cell phone plans, where the concepts of “connection
charges” and “per-minute charges” may be foreign. Likewise,
analogies that have culturally specific references may be
inaccessible to students from other cultural groups.

On the other hand, visual, tactile and kinesthetic activities
are preferable for specific populations. A highly-cited study [6]]
on non-native English speakers in university-based ESL pro-
grams found that ESL students preferred tactile and kinesthetic

communication methods. We therefore recommend that edu-
cators with a higher percentage of non-native speakers in their
classrooms consider incorporating activities that engage their
students’ others senses when introducing new concepts.

E. Lessons Learned

The curation reveals a rich assortment of unplugged activ-
ities for assisting students learning PDC concepts and topics.
Analogies are a quick and cost-free way to relate parallel
computing concepts in class. Kinesthetic, visual, and tactile ac-
tivities help students with unique needs interact and synthesize
various PDC concepts. Several researchers have successfully
used role-playing and other kinesthetic activities to introduce
PDC concepts in programming-intensive courses [9], [18],
[30], [33]. Unplugged activities are also a useful way to
introduce parallelism in outreach or workshop settings.

While the current curation of unplugged activities spans all
the TCPP topic areas and CS2013 PD knowledge units, the
distribution is not uniform, and there are several gaps in the
coverage. Perhaps most glaring is the lack of unplugged mate-
rials that cover concepts related to distributed systems, cloud
computing, and power consumption. There is also a distinct
lack of activities that engage learners in a tactile or auditory
fashion. Developing activities in these areas may help engage
a more diverse array of students. Lastly, assessing unplugged
activities appears to be a relatively recent trend. There is
value in assessing even well-established unplugged activities,
as assessments can guide educators who are interested in
incorporating specific materials into their own classrooms. We
challenge the PDC community to focus on these areas as they
continue to develop new unplugged materials, and welcome
their contributions to PDCunplugged.

IV. CONCLUSIONS

This paper introduces PDCunplugged, a free on-line repos-
itory for unplugged activities that focuses on parallel and
distributing computing topics. The repository, built using the
Hugo static site generator and hosted on GitHub, enables
activity authors to easily share and upload descriptions of ac-
tivities and classroom experiences, along with links to external
resources. Entries are written using Markdown, making it easy
for people unfamiliar with HTML to easily create content. A
key feature of PDCunplugged is its use of taxonomies to clas-
sify unplugged activities and analogies over a variety of areas,
including how they cover TCPP topics and CS2013 learning
outcomes related to PDC. PDCunplugged also enables activity
authors to make note of recommended courses, the senses
engaged, and the medium of communication employed.

The current curation consists of nearly forty unique ac-
tivities gathered from thirty years of PDC literature. Each
activity lists original authors, links to available materials,
known variations, available assessment, notes on accessibility
and recommended course, citations to external work, and tags
that map the activity to different TCPP topic areas, CS2013
knowledge units, particular courses, senses, and mediums. The

curation allows us to quantify the distribution of activities
over different PDC learning outcomes and topics, and identify
gaps in coverage. We believe that our analysis helps activity
authors focus on more impactful areas when creating new
unplugged activities. We also believe that PDCunplugged will
be an invaluable resource for educators looking for unplugged
interventions for their classrooms, or for designing PDC-
related workshops.

There are many avenues for future work. First, we plan
on continuing to round out the curation by looking at the
literature outside of PDC for related unplugged activities.
Other disciplines in computing, such as Architecture and
Networking, may have relevant unplugged activities that apply
to TCPP topic areas and CS2013 knowledge units. Secondly,
we plan to reach out to identified unplugged activity authors
to see if they would be willing to store related external
materials directly on the PDCunplugged website; currently,
PDCunplugged only includes links to external resources, and
not the external resources themselves. The inherent risk is
that external links can expire; several authors [[12]], [35], [37]]
cite external activities in their papers, but those links have
since been de-activated. Listing activity materials directly on
PDCunplugged ensures that a copy of the materials exist at
an independent location.

We anticipate that PDCunplugged will be an invaluable
resource for the PDC educational community; we encourage
everyone employing unplugged activities in their classrooms
to use and contribute to the repository. One way to ensure that
the repository remains updated is for journals and proceedings
in the PDC community to recommend or require that authors
submit educational materials to select repositories as part
of the regular publication process. Lastly, we believe the
existence and proliferation of specialized repositories like
PDCunplugged will ultimately make it easier for educators
to integrate PDC topics in their curricula.

ACKNOWLEDGMENT

Funding for this work is provided by the National Sci-
ence Foundation (NSF) Collaborative Research Grant DUE-
1855761. Special thanks to Joel Adams, Elizabeth Shoop and
Richard Brown of CSinParallel for offering advice as this work
was put together, and to Kevin Barlett for Hugo debugging
assistance. The views expressed in this article are those of the
author and do not reflect the official policy or position of the
Department of the Army, Department of Defense or the U.S.
Government.

REFERENCES

[1] S. K. Prasad, A. Y. Chtchelkanova, S. K. Das, F. Dehne, M. G. Gouda,
A. Gupta, J. Jaja, K. Kant, A. La Salle, R. LeBlanc et al., “Nsf/ieee-tcpp
curriculum initiative on parallel and distributed computing: core topics
for undergraduates,” in SIGCSE, vol. 11, 2011, pp. 617-618.

[2] A. C. A. Commission, Criteria For Accrediting Computing Programs
(2018-2019) version 2.0. Baltimore, MD, USA: ABET, 2017.

[3] T. Bell, J. Alexander, I. Freeman, and M. Grimley, “Computer science
unplugged: School students doing real computing without computers,”
The New Zealand Journal of Applied Computing and Information
Technology, vol. 13, no. 1, pp. 20-29, 2009.

[6]
[7]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

T. J. Cortina, “Reaching a broader population of students through
“unplugged” activities,” Commun. ACM, vol. 58, no. 3, pp. 25-27, Feb.
2015. [Online]. Available: http://doi.acm.org/10.1145/2723671

H. Manabe, S. Kanemune, M. Namiki, and Y. Nakano, “Cs unplugged
assisted by digital materials for handicapped people at schools,” in In-
ternational Conference on Informatics in Schools: Situation, Evolution,
and Perspectives. Springer, 2011, pp. 82-93.

J. M. Reid, “The learning style preferences of esl students,” TESOL
quarterly, vol. 21, no. 1, pp. 87-111, 1987.

A. Fleury, “Acting out algorithms: how and why it works,” The Journal
of Computing in Small Colleges, vol. 13, no. 2, pp. 83-90, 1997.

J. Eum and S. Sethumadhavan, “Teaching microarchitecture through
metaphors,” Columbia University, Tech. Rep. CUCS-006-14, June 2014.
P. Chitra and S. K. Ghafoor, “Activity based approach for teaching
parallel computing: An indian experience,” in 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2019, pp. 290-295.

G. F. Bachelis, B. R. Maxim, D. A. James, and Q. F. Stout, “Bringing
algorithms to life: Cooperative computing activities using students as
processors,” School Science and Mathematics, vol. 94, no. 4, pp. 176—
186, 1994.

A. T. Kitchen, N. C. Schaller, and P. T. Tymann, “Game playing
as a technique for teaching parallel computing concepts,” SIGCSE
Bull., vol. 24, no. 3, pp. 35-38, Sep. 1992. [Online]. Available:
http://doi.acm.org/10.1145/142040.142064

A. Rifkin, “Teaching parallel programming and software engineering
concepts to high school students,” SIGCSE Bull., vol. 26, no. 1,
pp. 26-30, Mar. 1994. [Online]. Available: http://doi.acm.org/10.1145/
191033.191044

H. Neeman, L. Lee, J. Mullen, and G. Newman, “Analogies
for teaching parallel computing to inexperienced programmers,” in
Working Group Reports on ITiCSE on Innovation and Technology
in Computer Science Education, ser. ITiCSE-WGR ’06. New
York, NY, USA: ACM, 2006, pp. 64-67. [Online]. Available:
http://doi.acm.org/10.1145/1189215.1189172

S. K. Ghafoor, D. W. Brown, M. Rogers, and T. Hines, “Unplugged
activities to introduce parallel computing in introductory programming
classes: An experience report,” in Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer Science
Education, ser. ITICSE "19. New York, NY, USA: ACM, 2019, pp. 309—
309. [Online]. Available: http://doi.acm.org/10.1145/3304221.3325573

S. Francia, B. E. Pedersen et al., “Hugo: The world’s fastest framework
for building websites,” internet Website, last accessed December 2,
2019. [Online]. Available: https://gohugo.io/

J. Gruber, “Markdown,” internet Website, last accessed December 2,
2019. [Online]. Available: https://daringfireball.net/projects/markdown/
B. R. Maxim, G. Bachelis, D. James, and Q. Stout, “Introducing
parallel algorithms in undergraduate computer science courses (tutorial
session),” in Proceedings of the Twenty-first SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’90.
New York, NY, USA: ACM, 1990, pp. 255-. [Online]. Available:
http://doi.acm.org/10.1145/323410.323415

M. Moore, “Introducing parallel processing concepts,” J. Comput. Sci.
Coll., vol. 15, no. 3, pp. 173-180, Mar. 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1852563.1852589

P. A. G. Sivilotti and M. Demirbas, “Introducing middle school girls to
fault tolerant computing,” in Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’03. New
York, NY, USA: ACM, 2003, pp. 327-331, http://web.cse.ohio-
state.edu/ sivilotti.1/outreach/FESC02/. [Online]. Available: |http://do1.
acm.org/10.1145/611892.611999

P. A. Sivilotti, “Parallel programming: Parallel programs are fast,” last
accessed Oct 16, 2019. [Online]. Available: http://web.cse.ohio-state.
edu/~sivilotti. 1/outreach/FESCO2/parallel.pdf

H. Neeman, H. Severini, and D. Wu, “Supercomputing in plain
english: Teaching cyberinfrastructure to computing novices,” SIGCSE
Bull., vol. 40, no. 2, pp. 27-30, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1383602.1383628

N. Giacaman, “Teaching by example: Using analogies and live
coding demonstrations to teach parallel computing concepts to
undergraduate students,” in Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, ser. IPDPSW ’12. Washington, DC, USA: IEEE

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

Computer Society, 2012, pp. 1295-1298. [Online]. Available: http:
//dx.doi.org/10.1109/IPDPSW.2012.158

S. A. Bogaerts, “Limited time and experience: Parallelism in csl,” in
2014 IEEE International Parallel Distributed Processing Symposium
Workshops, May 2014, pp. 1071-1078.

S. A. Bogaerts, “One step at a time: Parallelism in an introductory pro-
gramming course,” Journal of Parallel and Distributed Computing, vol.
105, pp. 4 — 17, 2017, keeping up with Technology: Teaching Parallel,
Distributed and High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/p1i/S0743731517300023
M. Smith and S. Srivastava, “Evaluating student engagement towards
integrating parallel and distributed computing (pdc) topics in
undergraduate level computer science curriculum,” in Proceedings of
the 50th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE °19. New York, NY, USA: ACM, 2019, pp. 1269-1269.
[Online]. Available: http://doi.acm.org/10.1145/3287324.3293854

S. Srivastava, M. Smith, A. Ghimire, and S. Gao, “Assessing the
integration of parallel and distributed computing in early undergraduate
computer science curriculum using unplugged activities,” in Proceedings
of the Workshop on Education for High Performance Computing, ser.
EduHPC °19, 2019, to appear. [Online]. Available: https://tcpp.cs.gsu.
edu/curriculum/sites/default/files/ws_eduhpcp110s2-filel.pdf]

S. K. Ghafoor, M. Rogers, D. Brown, and A. Haynes, “ipdc
modules (unplugged),” last accessed Oct 16, 2019. [Online]. Available:
csc.tntech.edu/pdcincs/index.php/ipdc-modules/

M. Ben-Ari and Y. B.-D. Kolikant, “Thinking parallel: The
process of learning concurrency,” in Proceedings of the 4th
Annual SIGCSE/SIGCUE ITiCSE Conference on Innovation and
Technology in Computer Science Education, ser. ITiCSE '99. New
York, NY, USA: ACM, 1999, pp. 13-16. [Online]. Available:
http://doi.acm.org/10.1145/305786.305831

Y. B.-D. Kolikant, “Gardeners and cinema tickets: High school
students’ preconceptions of concurrency,” Computer Science Education,
vol. 11, no. 3, pp. 221-245, 2001. [Online]. Available: https:
/ldoi.org/10.1076/csed.11.3.221.3831

G. Lewandowski, D. J. Bouvier, R. McCartney, K. Sanders, and
B. Simon, “Commonsense computing (episode 3): Concurrency
and concert tickets,” in Proceedings of the Third International
Workshop on Computing Education Research, ser. ICER ’07. New
York, NY, USA: ACM, 2007, pp. 133-144. [Online]. Available:
http://doi.acm.org/10.1145/1288580.1288598

G. Lewandowski, D. J. Bouvier, T.-Y. Chen, R. McCartney, K. Sanders,
B. Simon, and T. VanDeGrift, “Commonsense understanding of
concurrency: Computing students and concert tickets,” Commun.
ACM, vol. 53, no. 7, pp. 60-70, Jul. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1785414.1785438

P. A. G. Sivilotti and S. M. Pike, “The suitability of kinesthetic learning
activities for teaching distributed algorithms,” in Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education,
ser. SIGCSE ’07. New York, NY, USA: ACM, 2007, pp. 362-366.
[Online]. Available: http://doi.acm.org/10.1145/1227310.1227438

P. A. G. Sivilotti, “Kinesthetic learning activities in an upper-division
computer science course,” in National Academy of Engineering Frontiers
of Engineering Education symposium, 2010, poster; http://web.cse.ohio-
state.edu/ sivilotti. l/research/publications/nae-fee2010_poster.pdf.

A. f. C. M. A. Joint Task Force on Computing Curricula and I. C.
Society, Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. New York, NY,
USA: Association for Computing Machinery, 2013.

R. A. Chesebrough and I. Turner, “Parallel computing: At the interface
of high school and industry,” in Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, ser. SIGCSE "10. New
York, NY, USA: ACM, 2010, pp. 280-284. [Online]. Available:
http://doi.acm.org/10.1145/1734263.1734361

W. S. Lloyd, “Exploring the byzantine generals problem with beginning
computer science students,” SIGCSE Bull., vol. 26, no. 4, pp. 21-24,
Dec. 1994. [Online]. Available: http://doi.acm.org/10.1145/190650.
190656

S. K. Andrianoff and D. B. Levine, “Role playing in an object-oriented
world,” in Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education, ser. SIGCSE ’02. New York, NY, USA:
Association for Computing Machinery, 2002, p. 121-125. [Online].
Available: https://doi.org/10.1145/563340.563386

http://doi.acm.org/10.1145/2723671
http://doi.acm.org/10.1145/142040.142064
http://doi.acm.org/10.1145/191033.191044
http://doi.acm.org/10.1145/191033.191044
http://doi.acm.org/10.1145/1189215.1189172
http://doi.acm.org/10.1145/3304221.3325573
https://gohugo.io/
https://daringfireball.net/projects/markdown/
http://doi.acm.org/10.1145/323410.323415
http://dl.acm.org/citation.cfm?id=1852563.1852589
http://doi.acm.org/10.1145/611892.611999
http://doi.acm.org/10.1145/611892.611999
http://web.cse.ohio-state.edu/~sivilotti.1/outreach/FESC02/parallel.pdf
http://web.cse.ohio-state.edu/~sivilotti.1/outreach/FESC02/parallel.pdf
http://doi.acm.org/10.1145/1383602.1383628
http://dx.doi.org/10.1109/IPDPSW.2012.158
http://dx.doi.org/10.1109/IPDPSW.2012.158
http://www.sciencedirect.com/science/article/pii/S0743731517300023
http://doi.acm.org/10.1145/3287324.3293854
https://tcpp.cs.gsu.edu/curriculum/sites/default/files/ws_eduhpcp110s2-file1.pdf
https://tcpp.cs.gsu.edu/curriculum/sites/default/files/ws_eduhpcp110s2-file1.pdf
csc.tntech.edu/pdcincs/index.php/ipdc-modules/
http://doi.acm.org/10.1145/305786.305831
https://doi.org/10.1076/csed.11.3.221.3831
https://doi.org/10.1076/csed.11.3.221.3831
http://doi.acm.org/10.1145/1288580.1288598
http://doi.acm.org/10.1145/1785414.1785438
http://doi.acm.org/10.1145/1227310.1227438
http://doi.acm.org/10.1145/1734263.1734361
http://doi.acm.org/10.1145/190650.190656
http://doi.acm.org/10.1145/190650.190656
https://doi.org/10.1145/563340.563386

	Introduction
	Overview of PDCunplugged
	Activity structure
	Taxonomies and Tagging
	Activity Views

	Curation and Results
	Existing Unplugged Activities for PDC
	Coverage of CS2013 Topic Areas
	Coverage of TCPP Topic Areas
	Accessibility
	Lessons Learned

	Conclusions
	References

