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The flux of energy between scales in turbulence can be cast as the result of the interaction
between a turbulent stress and a rate of strain. Efficient energy transfer requires that these
two tensors be oriented properly relative to each other, but previous work has shown that the
instantaneous alignment between them is poor. Here, we consider the temporal dynamics
of this alignment in a direct numerical simulation of isotropic turbulence. We show that the
orientation of the stress lags behind that of the strain rate, both at a single location and along
trajectories. However, the timescale of the reorientation of the stress in these cases does not
follow the expected dynamical scaling with length scale. To capture the proper dynamical
scaling, we reformulate the energy flux between scales using the right Cauchy-Green strain
tensor and the second Piola-Kirchhoff stress tensor. Our results highlight the key role
played by the deformation of fluid elements in the physics of the energy cascade, and
suggest that their irreversible deformation is a Lagrangian manifestation of the cascade’s
broken time-reversal symmetry.

DOLI: 10.1103/PhysRevFluids.5.114606

I. INTRODUCTION

The state of fluid flow that we know as “turbulence” is notoriously hard to define precisely,
leading many merely to describe its characteristics instead [1]. Turbulent flows are certainly un-
steady, rotational, strongly mixing, and dissipative; but not all flows that have these features should
be thought of as turbulent. An additional necessary criterion for turbulence is a net flux of energy
between interacting scales, from the scales at which it is injected into the flow to those where it
is dissipated. When the (three-dimensional) turbulence is fully developed, this flux organizes into
the classical Richardson-Kolmogorov energy cascade [2,3]. One of the consequences of the cascade
is that time-reversal symmetry remains broken even as the other symmetries of the Navier-Stokes
equations are (statistically) restored [4].

Although this broken time-reversal symmetry may seem trivial (after all, the flow is dissipa-
tive), detailed and specific manifestations of irreversibility are surprisingly difficult to pinpoint in
statistically stationary turbulence in the inertial range at scales far from the forcing or dissipation.
This challenge is particularly true in a Lagrangian framework considering individual fluid elements,
where typical scaling signatures of the cascade are difficult to detect [5,6]. A notable recent step
forward in this direction was the identification of the so-called “flight-crash” mechanism [7],
whereby individual fluid elements in stationary turbulence were found to accelerate slowly and
decelerate quickly, thus providing an indication of the arrow of time. But another class of Lagrangian
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signatures of time irreversibility can be found in the tendency of various geometric quantities to align
along fluid-element trajectories. For example, even though the extensional strain rate and vorticity
are surprisingly poorly aligned instantaneously [8—11], the vorticity at a given time aligns more
strongly with the strain rate experienced previously along Lagrangian trajectories [12]. A similar
but even stronger effect was seen when considering not the Eulerian strain but a fully Lagrangian
measure of stretching [13]. Since in both of these cases the direction of the vorticity lags behind
that of the extensional strain rate, the arrow of time is again revealed. However, the alignment of
the vorticity and the strain rate is not fully indicative of the energy cascade [14—16], particularly in
an instantaneous sense. Nevertheless, a similar asymmetric time lag in geometric alignment along
trajectories was found in two-dimensional turbulence for the scale-dependent turbulent stress and
strain rate that together drive the flux of energy between scales [17].

Here, we examine the dynamics of the geometric alignment between the scale-dependent turbu-
lent stress and strain rate, and therefore the efficiency of the energy flux between scales [17-19], in
a direct numerical simulation of homogeneous and isotropic three-dimensional turbulence. We find
that the stress lags behind the strain, both at fixed locations and along fluid-element trajectories.
This result both reveals the broken time-reversal symmetry and indicates the direction of the energy
cascade. However, the time it takes for these two Eulerian quantities to reach their peak alignment
does not follow the expected scaling with length scale, suggesting that comparing two Eulerian
quantities at different times is not reflective of the dynamics of turbulence. Thus, we introduce a
fully Lagrangian approach by rewriting the energy flux between scales in terms of the Cauchy-Green
strain tensor and the second Piola-Kirchhoff stress tensor. We find that these tensors also improve
their alignment as they evolve along trajectories, but now with a temporal scaling that obeys
the expected form. Our results shed light on how the Eulerian energy cascade is reflected in the
Lagrangian evolution of the flow, and in particular show that the local deformation of fluid elements
is a key component in addition to unsteadiness and advection. These findings may point to novel
directions for turbulence modeling.

We begin below in Sec. II with a more thorough description of the context of our work, the
analysis tools we use, and some details of the numerical simulation used to produce our data. In
Sec. III, we describe an analysis of the alignment between the turbulent stress and strain rate in
Eulerian terms, introducing different kinds of time lags to partially account for the unsteadiness of
the flow. As the evidence we will present suggests that this analysis is not sufficient to capture the
full dynamics, in Sec. IV we introduce a fully Lagrangian formulation for the energy flux, and show
that it does appear to capture the complete dynamical nature of the cascade. Finally, in Sec. V, we
summarize our results and provide some concluding thoughts.

II. BACKGROUND AND METHODOLOGY

A. Stress and strain alignment and cascade efficiency

As is well known, the nonlinearity in the Navier-Stokes equations implies that different scales of
motion (as quantified by, say, Fourier modes) are coupled. Thus, even when energy or momentum is
introduced into a flow at a single scale, the flow can exhibit a broadband response. At a mathematical
level, the mechanism by which scales are coupled is straightforward to deduce. Suppose we define
an operator P that removes some of the scales of motion. Applying this operator to the Navier-
Stokes equations results in the appearance of the second-rank tensor

T = Puiu;) — Pu)P(u;), (D

where u; is a component of the velocity field. Here and throughout, we use tildes to indicate
quantities defined for the flow after P has been applied, so that, for instance, ii; = P(u;). Because
%;; is a symmetric second-rank tensor that appears in the projected momentum equation inside a
divergence, it is natural to interpret it as a stress—specifically, as the momentum coupling between
the scales of motion retained under P and those removed.
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This turbulent stress also appears in the projected energy equation, most importantly in a term
given by

M =—1%5;, 2

were §;; is the rate of strain for the projected velocity field (that is, the symmetric part of the projected
velocity gradient). Dimensionally, this term is an energy flux, and expresses the flow of energy
between the retained and removed scales. Moreover, as we have described previously [17-19],
because it is an inner product between a stress and a strain rate, this term can be interpreted as
the mechanical work done on the removed scales by the retained scales. This formulation in turn
points to the importance of the relative geometric alignment between these two tensors: if they are
orthogonal to each other (in the sense that their inner product vanishes), no work can be done and
the scale-to-scale energy flux will vanish regardless of the magnitudes of the two tensors.

Quantifying the alignment of the eigenframes of these two tensors is quite complex in three-
dimensional space [18], requiring the specification of at least three degrees of freedom such as Euler
or gimbal angles. Previously, however, we introduced a simple scalar measure I" of this alignment
that we have dubbed the cascade efficiency [17—19]. T is straightforwardly defined as the ratio of
the actual energy flux [T observed in the flow to the maximum energy flux that could occur if % j
and 3;; were optimally aligned. By definition, —1 < I < 1, where the sign conveys information
about whether the flux is in the expected direction (i.e., toward smaller scales for three-dimensional
turbulence) or not. Thus, I' = 1 implies a maximally vigorous cascade of energy to small scales,
while I" = —1 would imply a maximally vigorous inverse cascade to larger scales. Achieving I" = 1
requires perfect alignment between the stress and strain rate [19], which we can interpret as the case
when all of the turbulent stress goes to drive energy through the cascade. For any I < 1, turbulent
stresses are still active but are not optimally used for scale-to-scale energy flux. For this reason
(along with its boundedness), we refer to I" as the cascade efficiency.

As we have shown before, when computed instantaneously and averaged over space, this
efficiency is surprisingly low; we have found that (I") ~ 0.2-0.25 (where the angle brackets denote
a spatiotemporal average) in both three-dimensional and two-dimensional turbulence [17-19]. For
comparison, if the stress and strain rate were perfectly aligned as is assumed in, for example,
standard Boussinesq or Smagorinsky closures, we would have (I') = 1. Because [" scales out the
tensor magnitude, these low values are indicative of typically poor alignment between the stress and
strain rate, an observation we will make use of below.

B. Simulation details

A direct numerical simulation of homogeneous isotropic turbulence provided the flow fields
for the analysis we present here. A standard pseudospectral method was used to simulate the
incompressible Navier-Stokes equations,

0 u; 0 u; 0 P 2

o0 T Max, T oy TV TS ©)
in a triply periodic domain, where p(X, ¢) is the pressure field that projects the velocity field update
at each time step to maintain V - u = 0. Time advancement was done using a second-order Adams-
Bashforth scheme, and 24/2/3 wave number truncation with phase-shift dealiasing was used [20].
The force, f, maintains constant kinetic energy in the lowest two wave number shells. The simulation
was initialized with a Gaussian velocity field having a model turbulent energy spectrum and was run
for over 10 large eddy turnover times, L/u’, until fully developed turbulence was established before
computing statistics. The main parameters of the simulation are given in Table I and the energy
spectrum of the simulation is shown in Fig. 1.

Lagrangian trajectories were computed from the Eulerian velocity fields by solving the equation
of motion for fluid elements (that is, X = u) using a second-order Runge-Kutta scheme. Note that
even when we considered the properties of filtered velocity fields (as described below), we always
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TABLE 1. Characteristics of the isotropic turbulence simulation used for the analysis. The root-mean-
square velocity fluctuation is u’ = ,/(u?), the dissipation rate is € = 2v(s;;s;;), and the integral length scale
is L =m/Qu”) [ E(k)/kdk.

N v At Knax u € L n T T, Re, kmaxn

256 1.2x1072%  5x107* 121 070 012 13 0010 19 0.10 160 1.3

compute trajectories using the full velocity field. Thus, the way that fluid elements sample the
velocity fields (which is the result of complicated dynamical processes involving all scales of motion
and the way they evolve in time) is always the same regardless of what scales of motion of the
velocity field we isolate.

C. Filtering and flux computation

To compute the energy flux defined in Eq. (2) in practice, we must make an explicit choice for
the projection operator P. Here, as in our previous work [19], we choose to use a low-pass filter
so that we can extract the interaction between nearby scales [21-28]. Operationally, we define, for
example, a component of the filtered velocity field i; as

Pui) = ii(x) = / G (x — xu;(x)dx, “4)

where G, is a filter kernel that suppresses components of the velocity field with spatial scales smaller
than r. Other filtered quantities are computed similarly. Our results are qualitatively insensitive to
the exact form of G, [18,24,29,30], particularly in terms of the trends of how quantities vary with
the filter scale r. Different types of filters can, however, lead to some quantitative variations. Here,
for computational efficiency, we used a simple top-hat filter computed about each point of interest
in the velocity fields. Note that because of differences in the amount of backscatter allowed by this
filter as compared with the smoothed filters we have used in our previous work [18,19], our average
efficiencies are somewhat larger here than we have reported previously. However, the trends we
report below for how the efficiencies vary with scale are not influenced by the filter shape.
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FIG. 1. The energy spectrum E (k), where k is a wave number, plotted both (a) raw and (b) premultiplied,
for the direct numerical simulation used for this analysis, with dashed lines showing the inertial range spectrum
E(k) = 1.6e?3k=/3,

114606-4



TEMPORAL DYNAMICS OF THE ALIGNMENT OF THE ...

Due to the approximate locality of the turbulent energy cascade and shape of the energy spectrum,
this definition of 7 allows us to interpret [T as the energy flux between scales just larger than r and
those just smaller than r [31-33]. Moreover, we note that under this definition, %;; is dominated
by the largest scales of the unresolved field (that is, the scales just smaller than r), while §;; is
dominated by the smallest scales of the resolved field (that is, the scales just larger than r). Finally,
note that since in incompressible flow the trace of the turbulent stress %;; does not contribute to the
energy flux in Eq. (2), we consider here only the deviatoric part of %;;.

III. TIME-LAGGED EULERIAN QUANTITIES

As remarked above, in general the turbulent stress and strain rate are relatively poorly aligned
throughout the inertial range [18,19] and in different types of turbulent flows [34]. These findings are
reminiscent of the similar surprising geometric misalignment between the extensional eigenvector
of the strain rate and the vorticity vector [8§—11]. Instead, the vorticity seems to align preferentially
with the intermediate strain-rate eigenvector [8]. Going back to Taylor, it has been suggested that
vortex stretching is a good candidate for a physical mechanism that could produce an energy cascade
in three-dimensional turbulence [1,35,36]. The idea behind this picture is that when extensional
strain stretches a vortex tube along its axis, conservation of angular momentum and of circulation
would suggest that the tube should simultaneously thin and increase its rotational speed, thereby
energizing smaller scales of motion. If this mechanism were to drive the cascade, one would expect
that there ought then to be an observed preferential alignment between the extensional strain-rate
eigenvector and the vorticity. Although the intermediate strain-rate eigenvalue is on average positive
in turbulence [8], the lack of support in either simulations or experiments for the more efficient
vortex stretching that would be produced by alignment with the most extensional eigenvector has
thus led to suggestions that vortex stretching is not in fact the principle driver of the energy cascade
and that instead processes such as strain self-amplification may play more dominant roles [14—16].
Nevertheless, other studies have found some support for a net alignment of strain rate and vorticity
by filtering the velocity field and considering the alignment of the vorticity with the large-scale
strain rate only [37] or by considering the different timescales on which these two quantities evolve
in turbulence and considering the alignment of the strain rate and vorticity measured at different
times [12,13].

Here, we consider a similar notion for the turbulent stress ;; and filtered strain rate 3;;. Instead of
computing simply %;;(xX, 1)3;;(x, ), where the two tensors are evaluated at the same spatial location
x and time ¢, we instead first compute the quantity

T (x, t + ADS;(x, 1). ®

That is, we measure the strain rate at a point X and at a time ¢ and the stress at the same point
at a later time ¢ + A¢. We then use this inner product in place of the instantaneous energy flux to
compute a cascade efficiency I", which will now be a function of the time lag At. In Fig. 2(a), we
show this in-place time-lagged efficiency averaged over x and ¢ for several different filter scales .
This efficiency is clearly a strong function of At for all . More interestingly, we find that these
curves are not symmetric about the origin; rather, they peak at positive values of At. Because the
efficiency scales out the magnitude of the stress and strain rate and considers only their alignment,
this result tells us that, on average, the orientation of the stress eigenframe follows that of the strain
rate with a time lag that depends on r. That is, we find that the stress is better aligned with the strain
rate in the past than it is with the strain rate at the present time. This asymmetry clearly reveals the
broken time-reversal symmetry in the inertial range, but we argue that it also indicates the direction
of the energy cascade. As we explained above, the filtered strain rate should be understood as a
property of the retained large scales, while the turbulent stress should be understood as a property
of the removed small scales. Because we find that the stress lags the strain rate, our results indicate
that the small scales follow behind changes in the large scales, just as one would expect. As another
point of evidence, we note that our result here is the opposite of what we observed previously in
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FIG. 2. (a) In-place, time-lagged mean efficiency, computed using the energy flux defined in Eq. (5), as a
function of the time lag Ar. Data are shown for filter scales r = 4.4n, 8.8, 17.6n, 35.2n, 70.4n, and 140.87,
and the peak efficiency monotonically increases with r. (b) The value of At at which the efficiency peaks as a
function of filter scale. The black dashed line is a reference > power law; the red line is a best-fit power law
with an exponent of 1.5.

two-dimensional turbulence, where the energy cascade reverses direction and drives energy from
small to large scales. In that case, we found instead that the strain rate lags behind the stress [17].

The data in Fig. 2(a) show that the peak time-lagged efficiency occurs at a time that grows
monotonically with the filter scale r. One might expect that rescaling times by the time at which
this peak occurs, which we denote by Afp.y, and efficiencies by I'(0) might collapse the curves in
Fig. 2(a). However, we find (both in this case and for the other cases studied below) that this is not
the case, since both the relative magnitude of the peak efficiency and the falloff of the efficiency
with time are not independent of scale. Instead, we examine how Aty itself behaves as a function
of r, which we plot in Fig. 2(b). Classical Kolmogorov theory would predict that Afy.x should
scale like #*/3. However, as shown in Fig. 2(b), this is not the scaling we observe. Instead, we find
that Atpa, ~ 1. Although the Reynolds number of our simulation is fairly low so that perfect
agreement with the expected asymptotic scaling should not be expected, the difference between
scaling exponents of 2/3 and 1.5 is very large—and because the spectrum (Fig. 1) has a reasonably
long —5/3 scaling range, we would expect the scaling exponent to be close to 2/3. Additionally, at
this Reynolds number and statistical order, this discrepancy is unlikely to be an intermittency effect.
Thus, we conclude that even though our results so far correctly display the broken time-reversal
symmetry and direction of the cascade, something is missing from our calculations so that our
results do not follow the expected dynamical scaling.

A prime candidate for the missing dynamics is advection: in our calculations so far, even though
we have computed the stress and strain rate at different times, we have considered only a single
spatial point. In reality, however, over the time Az, the turbulence will sweep past the point x. Thus,
it is likely more appropriate to consider

T (X(1 + A, t + A3 (X(1), 1), ©

where X(¢) is the (Lagrangian) position of a single fluid element at time ¢. This computation con-
siders the time-lagged stress and strain rate along Lagrangian trajectories, much as was previously
done for the vorticity and strain rate [12,13]. Unlike what we computed above, which accounts for
the unsteadiness of the flow in only a fairly crude way, tracking the evolution of the stress and strain
rate along trajectories captures the local structure of advection.
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FIG. 3. (a) Time-lagged mean efficiency computed along Lagrangian trajectories using the energy flux
defined in Eq. (6), as a function of the time lag A¢. Data are again shown for filter scales r = 4.47, 8.8n, 17.67,
35.2n, 70.4n, and 140.87, and the peak efficiency monotonically increases with r. (b) The value of Ar at which
the efficiency peaks as a function of filter scale. The black dashed line is a reference %/* power law; the red
line is a best-fit power law with an exponent of 0.4.

In Fig. 3(a), we show the mean efficiency (averaged over an ensemble of fluid elements)
computed using the inner product defined in Eq. (6) as a function of At and for several filter scales.
Note that as described above, we always compute the trajectories themselves using the full velocity
field (that is, with no filtering) even when considering filtered stresses and strain rates. As with
the in-place time-lagged efficiency, we find that these curves are asymmetric about the origin, with
the stress again lagging the strain rate, and that the time Afp,, at which the peak efficiency occurs
increases with scale. But even though it does not qualitatively change our results, accounting for
the local nature advection does change them quantitatively. First, we note that the improvement of
the efficiency as At increases in Fig. 3(a) is in general (aside from the largest filter scale) stronger
than what is shown in Fig. 2(a). This makes sense, since both the stress and the strain rate are swept
along with the flow as they evolve; thus, the strain rate that the stress is rotating to align with is no
longer in the same spatial location after a time At has passed. We also find that the scaling of At
with r changes when we compute it along trajectories. As shown in Fig. 3(b), for this case we find
that Aty ~ r%4. Although this scaling is closer to the expected dimensional scaling of r%/3, it still
does not match. As we argue below, this continued discrepancy is a signal that there is a part of the
flow dynamics we are still not properly capturing in this formulation.

IV. LAGRANGIAN APPROACH

In addition to being swept along with the flow as time evolves, a fluid element will also
experience local straining and rotation such that it may locally deform in addition to being trans-
ported. Simply considering statistics along trajectories does not capture this physics. Instead, a fully
Lagrangian approach is needed. We note that in many cases, simple advection along trajectories
may be sufficient; in this case, however, since we are explicitly interested in stresses and strains that
must be referenced to a particular material configuration, we cannot ignore the full dynamics of the
flow.

The inner product between the stress and strain rate defined in Eq. (2) is sometimes known
as a stress power, and we can use fundamental results in continuum mechanics to rewrite it in a
Lagrangian formulation referenced to a given fluid element. To do so, we introduce the deformation
gradient tensor F;;, defined as dX;(t)/0x;, where again X;(¢) is the Lagrangian position of a fluid
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element at time ¢t and x; = X;(0) is a reference position at r+ = 0. Physically, it expresses the
deformation of a fluid element relative to some initial, reference state. The deformation gradient
tensor can then be used to write various types of Lagrangian stresses and strain rates. Here, we will
make use of the right Cauchy-Green strain rate and the second Piola-Kirchhoff stress tensor. The
right Cauchy-Green strain tensor is defined as

E? = FuFy;. (7

The corresponding strain rate is given by its time derivative, which can be written in terms of the
deformation gradient tensor and the Eulerian strain rate as

E,‘(J‘Z) = FmismnFnj (8)

(where we have omitted a tilde on the Eulerian strain rate s;; as this is a general relation). The
second Piola-Kirchhoff stress tensor can similarly be written in terms of the deformation gradient
tensor and the Eulerian stress as
S = TF T F" 9)
where J is the determinant of the deformation gradient tensor. Note that J = 1 for incompressible
flow; nevertheless, we include it here for completeness. The Cauchy-Green strain physically encodes
the cumulative strain experienced by a fluid element over a time ¢ relative to its reference state at
t = 0. The eigenvalues of the Cauchy-Green strain express the magnitudes of this strain along its
three principle directions. The eigenvectors of the right Cauchy-Green strain tensor point along the
directions in the reference state at + = 0 that will experience strains given by the corresponding
eigenvalues [13]. Note that a left Cauchy-Green strain tensor can also be defined with the same
eigenvalues but with eigenvectors that point along the directions that have experienced the corre-
sponding strains in the final state at time 7. The Cauchy-Green strains have seen a fair amount of
use in recent years in fluid mechanics for the purpose of identifying so-called Lagrangian coherent
structures [38]. To our knowledge, the Piola-Kirchhoff stresses have found less application in fluid
mechanics. The second Piola-Kirchhoff stress Si(f), as with any stress, can be seen as a force per
unit area. In this case, the relevant force is the ith component of the force acting at time #. The
corresponding area, however, is considered in the reference state at time ¢+ = 0 and at that time has
a surface normal that points in the j direction. Thus, importantly for our purposes, both the right
Cauchy-Green strain tensor and the second Piola-Kirchhoff stress tensor measure the dynamically
evolving forces and deformations of a fluid element but with respect to the reference state of the
element before the flow has acted on it.
An additional reason to introduce the right Cauchy-Green strain rate and the second Piola-
Kirchhoff stress is that the two form a conjugate pair so that the stress power can be written as

1= Tijsij = J_ISi(]?)EI-(J?). (10)

Thus, using these two tensors we can write the energy flux between scales in a fully Lagrangian
way with no approximations. Furthermore, the energy flux written in this way still satisfies the
Navier-Stokes equations, while the time-lagged Eulerian fluxes we described above do not. Note
that to adapt this expression for our scale-dependent case, we simply use the filtered quantities T;;
and 5§;; in the definitions given in Eqgs. (8) and (9) and compute Ei(jz) and S’i@. We note that there
are other conjugate pairs that can be used to write the stress power, such as the first Piola-Kirchoff
stress and the deformation gradient tensor. However, using the right Cauchy-Green strain rate and
the second Piola-Kirchoff stress is appealing because they share many of the same mathematical
properties and thus physical interpretations as the Eulerian stress and strain rates. For example,
by construction both the right Cauchy-Green strain rate and the second Piola-Kirchoff stress are
symmetric tensors, guaranteeing real eigenvalues and orthogonal eigenvectors.
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FIG. 4. (a) Mean Lagrangian efficiency computed using the energy flux defined in Eq. (10) as a function of
the evolution time A¢. Data are again shown for filter scales r = 4.4n, 8.8n, 17.6n, 35.25, 70.4n, and 140.87,
and the peak efficiency monotonically increases with r. (b) The value of Ar at which the efficiency peaks as a
function of filter scale. The black dashed line is an /> power law.

This Lagrangian formulation of the energy flux between scales allows us to examine, at least
indirectly, the contribution of fluid-element deformation to the cascade process. As time evolves,
the Cauchy-Green strain and Piola-Kirchhoff stress change both because the flow changes due to
unsteadiness and because the fluid element itself deforms. Thus, in contrast to the two efficiencies
we defined above where we artificially lagged the Eulerian stress relative to the rate of strain, an
efficiency based on Ei(jz) and S’flz) arises naturally and exactly from the Navier-Stokes equations and
accounts for time evolution, advection along trajectories, and additionally the net deformation of
fluid elements induced by the flow.

In Fig. 4(a), we plot this fully Lagrangian efficiency as a function of At for several different filter

scales, where At should now be interpreted as the time the flow has evolved and over which E i(jz) and

S’l(jz) where computed. Because of this slightly different meaning of A¢, we only consider positive
values. As with our Eulerian results described above, we find that the alignment, and therefore the
efficiency, improves as At increases, and then begins to decay again after reaching a peak. In the
Lagrangian case, however, when we extract the time at which the peak occurs and plot it against
the filter scale, as shown in Fig. 4(b), we find that we recover the expected Kolmogorov scaling
of Atyax ~ r?/3. Thus, as desired, this fully Lagrangian formulation appears to account for all the
relevant flow dynamics.

V. DISCUSSION AND CONCLUSIONS

The recovery of the expected dynamical scaling in this Lagrangian formulation, when combined
with the physical meaning of the Cauchy-Green and Piola-Kirchhoff tensors as described above,
reveals what was missing from our Eulerian analysis and illuminates a key process in the physics of
the energy cascade. As we have argued before, the cascade can be productively conceptualized as
a process by which some scales do mechanical work on others [17-19]. In a continuum theory like
fluid mechanics, it is natural to think of mechanical work in terms of stresses and strains, but if we
were considering a discrete system, we would only need forces and displacements. The difference
between the continuum mechanics viewpoint and the particle mechanics picture is the recognition
that the shape of an object is fundamentally important for understanding how applied forces will
cause it to evolve. Computing stress on a fluid element, for example, requires knowledge both of
the applied forces and the orientation of its surface. As time evolves in a fluid flow, the shape of a
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fluid element can evolve and deform, and importantly, this is a dynamical process that occurs over
finite times. Both of our Eulerian analyses, however, fundamentally neglect this process, instead
implicitly assuming that the shape of a fluid element reacts instantaneously to applied stresses since
our computations of the Eulerian stress and strain rate are fundamentally instantaneous quantities.
Even considering these quantities lagged along trajectories does not address this issue, as such an
analysis references the strain rate and stress to different deformational states of the fluid element.
In contrast, the Lagrangian formulation properly handles dynamical deformation because both the
right Cauchy-Green strain and the second Piola-Kirchhoff stress map the forces and displacements
back to the same reference state of the fluid element (namely that at # = 0). In a sense, then, the
Lagrangian formulation, though seemingly more complex in that it involves quantities less familiar
in fluid mechanics, actually allows us to think about simpler quantities such as force and velocity by
effectively removing the contributions of deformation by this mapping back to the reference state.

What these results reveal about the dynamical processes occurring along trajectories is that
indeed, as one might expect, the effective force that emerges from the coupling between large
scales and small scales does tend to align with the velocity of a fluid element on a timescale
that follows the expected Kolmogorov scaling. However, during this alignment process, the fluid
element also deforms, potentially on a different timescale. The instantaneous stress on the fluid
element therefore does not appropriately capture the energy transfer between scales, because even
though the instantaneous orientation of the forces on the particle may be relevant for computing the
flux, the instantaneous shape of the element may not be. This mismatch between the evolution of
force and shape may be part of an explanation for the effective memory that has noted for turbulent
stresses and that makes them in a sense viscoelastic [1]. Thus, our results help to clarify the role and
importance of deformation in understanding the physics of the cascade.

Additionally, both this deformation and the gradual alignment of the force on a fluid element
with its displacement are asymmetric in time and are thus signatures of the broken time-reversal
symmetry in turbulence. Indeed, if we measure the cascade efficiency in this Lagrangian formulation
in reverse time, we find that it decreases monotonically with no peaks at nonzero Az. We note that
the key role played by deformation in the cascade is similarly implicated in recent work emphasizing
the more significant contributions of strain self-amplification relative to vortex stretching in the
cascade [14-16].

Taken together, our results allow us to develop an expanded understanding of how the Eulerian
energy cascade is manifest in a Lagrangian description of turbulence. In particular, they indicate
that there are three essential elements in such a picture. As time progresses, the unsteadiness of
the flow drives large-scale straining. This straining in turn drives the production of smaller scale
motion via the nonlinearity in the Navier-Stokes equations expressed as a turbulent stress. That this
momentum transfer to small scales occurs as a result of the large-scale straining is supported by
observation that the orientation of the stress lags behind that of the strain. At the same time, both
the stress and strain fields are altered in time due to advection, so that the spatial locations where
the energy flux between scales occurs move in time. Advection is organized along the trajectories of
fluid elements, and thus the alignment dynamics of the stress and strain rate are more coherent along
such trajectories. However, simply considering the Eulerian stress and strain rate along trajectories
does not fully capture the dynamics of scale-to-scale energy transfer because this approach does
not account for deformation of the fluid elements. And indeed, our results in Sec. IV using a fully
Lagrangian formulation of the energy flux between scales indicate that it is necessary to account for
this deformation to recover the full dynamics of the cascade. Thus, our results underscore the key
role played by deformation in the cascade.

This notion is appealing as it ties back to two key features of the cascade that we raised above:
that it retains signatures of the broken time-reversal symmetry even in stationary turbulence and that
it can be thought of as a mechanical process of some scales doing work on others. Both of these
aspects can be captured by the notion of irreversible deformation: irreversibility naturally breaks
time-reversal invariance, and irreversible deformation requires work to be done. Thus, we suggest
that the most important element of deformation in the cascade is its irreversible part.
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These results suggest some possible avenues that may be fruitful for turbulence modeling. Short-
time approximations for the Lagrangian deformation have been used to model the anisotropic part
of the pressure Hessian [39] and the turbulent stress [40]. Our results indicate that it may even be
valuable to go farther and consider explicit models for the deformation gradient tensor in turbulence
closures.
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