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Abstract

The molecular virial theorem states that for a
diatomic molecule or for an atom in the pres-
ence of a point charge, the changes in the av-
erage kinetic energy and average potential en-
ergy are equal to 〈T 〉 = −U − RdU

dR
and 〈V 〉 =

2U + RdU
dR

, respectively, where U is the inter-
action energy and R is the internuclear sepa-
ration or the atom-point charge separation. In
this paper we directly evaluate the 〈T 〉 and 〈V 〉
expectation values of an H atom in the pres-
ence of a distant point charge, obtaining exact
analytical expressions by use of Dalgarno-Lewis
perturbation theory.

Introduction

For atoms as well as molecular systems at their
equilibrium structures the virial theorem states
that

〈T 〉 = −1

2
〈V 〉, (1)

where T and V denote the kinetic and potential
energy operators, respectively. The virial the-
orem is necessarily obeyed for the exact wave
function, whereas approximate wave functions
can give average kinetic and potential ener-
gies that significantly deviate from obeying the
virial theorem. The virial theorem was gener-
alized to diatomic molecules at arbitrary inter-

nuclear separation by Slater1 and subsequently
by Hurley2 to polyatomic molecules at arbi-
trary geometries to give the so-called molecular
virial theorem. These generalizations assumed
the validity of the Born Oppenheimer approxi-
mation.3 For diatomic molecules at an arbitrary
bond length Slater obtained

〈T 〉 = −E −RdE
dR

, (2a)

〈V 〉 = 2E +R
dE

dR
, (2b)

where E is the total energy and R is the inter-
nuclear separation. The changes in the average
kinetic and potential energies due to the inter-
action is

∆ 〈T 〉 = 〈T 〉 − 〈T 〉∞ = −U −RdU
dR

, (3a)

∆ 〈V 〉 = 〈V 〉 − 〈V 〉∞ = 2U +R
dU

dR
, (3b)

where 〈T 〉∞ and 〈V 〉∞ refer to the averages at
infinite internuclear separation and U is the in-
teraction energy. Thus for a neutral diatomic
molecule at R values for which C6 dispersion
dominates

∆ 〈T 〉 = 5U, (4a)

∆ 〈V 〉 = −4U. (4b)

Interestingly, while a second-order perturba-
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tion theory treatment describes the long-range
dispersion interaction purely in terms of the
dipole-dipole coupling, the virial theorem indi-
cates that the potential energy contribution is
repulsive and that the net attraction is actually
a consequence of the kinetic energy.

In general, one determines the average kinetic
energy and potential energy contributions by
fitting the interaction energies from electronic
structure calculations as a function of R and
using Eq. 3 rather than by directly calculating
expectation values of the T and V operators.

In order to obtain a better understanding of
the origin of the attractive kinetic energy and
repulsive potential energy contributions pre-
dicted by the virial theorem, it is useful to con-
sider the simpler problem of an H atom in the
field of a point charge, at a distance R from
the atom, as well as in a uniform electric field,
since exact, complete basis set results can be
obtained for these cases. In the limit that only
dipole polarization is important, the molecular
virial theorem (Eq. 3) gives

∆ 〈T 〉 = 3U, (5a)

∆ 〈V 〉 = −2U. (5b)

For a positive point charge, |e|, this corre-
sponds to the H +

2 molecular ion with the ne-
glect of charge delocalization, the long-range
behavior of which has been the subject of nu-
merous studies.4–7 However, here our focus is
on analyzing the field-induced shifts in the av-
erage kinetic and potential energies in terms of
contributions to the wave function in the com-
plete basis set limit and which are obtained by
use of Dalgarno-Lewis perturbation theory.4 Of
course, the H atom in the presence of a uniform
efield, has no bound states,8 but for the calcu-
lations presented here autoionization is not an
issue: for the complete basis set analytical re-
sults it is suppressed by the use of low-order
perturbation theory, and for the finite basis set
variational calculations it is suppressed by the
limited spatial extent of the basis functions.

At large separation, R, of the point charge
from the atom, the sign of the point charge is

immaterial and

U = − α

2R4
, (6)

where α is the dipole polarizability. In the
complete basis set limit α = −4.5 a.u. and
U = −2.25R−4 a.u.4 For the case of an atom in
a uniform electric field, the analog of the molec-
ular virial theorem is

∆ 〈T 〉 = −U + 2ε
dU

dε
, (7a)

∆ 〈V 〉 = 2U − 2ε
dU

dε
, (7b)

where U = −0.5αε2

Theory

Although our primary interest is in delineating
the various contributions to ∆ 〈T 〉 and ∆ 〈V 〉 as
evaluated directly from the wave function, we
find it instructive to first consider results ob-
tained from finite basis set variational calcula-
tions. For these calculations we employ for the
H atom a basis set comprised of the s and p por-
tions of the aug-cc-pV6Z Gaussian-type orbital
basis set.9,10 This basis set (hereafter referred
to as A) gives an energy of the ground state of
the isolated H atom only 7 × 10−7 a.u. above
the exact value and a value of the dipole polar-
izability of 4.4928 a.u., in close agreement with
the exact result of 4.5 a.u. We place the per-
turbing point charge, here taken to be q = −|e|,
10 Bohr from the H atom which results in an
electric field of 0.01 a.u. The efield calculations
were carried out on the H atom using this field
strength. The finite-basis set calculations were
carried out using the Gaussian 16 program.11

Table 1 reports the total energy, the 〈V 〉 and
〈T 〉 values, and the virial ratio of the isolated
atom as well as for the atom in the presence
of the point charge or the uniform electric field
as obtained from the finite basis set calcula-
tions. For comparison the Table also reports
exact results obtained in the complete basis set
limit, calculated allowing only dipole polariza-
tion. (The procedure used to obtain the exact
results is described below.) To facilitate anal-
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ysis of the results, the Table also reports the
changes in 〈T 〉 and 〈V 〉 caused by the pertur-
bations.

From Table 1, it is seen that with basis set
A the variational calculations on the H atom
in the presence of the point charge or the ex-
ternal uniform efield give 〈V 〉 / 〈T 〉 ratios and
∆ 〈T 〉 and ∆ 〈V 〉 values very close to the exact
results. The small discrepancies of the finite ba-
sis set variational results from the exact results
(described below) are due to the incompleteness
of the basis set (in the s and p space) as well as
to the recovery in the former of contributions
other than dipole polarization. Specifically, at
the value of R and field strength employed in
the calculations, there is a small contribution
from the γ hyperpolarizability, and in the point
charge calculations there is also a more sig-
nificant contribution from the B dipole-dipole-
quadrupole hyperpolarizality. These higher-
order contributions would cease to be impor-
tant were R increased to say 20 Bohr and the
external field to 0.0025 a.u.

A clue as to the terms in the wave function re-
sponsible for the changes in 〈V 〉 and 〈T 〉 due to
the point charge or external efield is provided by
the following ”experiment”. We uncontracted
the s functions in basis set A, and used the
resulting set of primitive functions in a varia-
tional calculation of the energy of the isolated
H atom. The s primitives were then contracted
to a single function with the contraction coef-
ficients being taken to correspond to those of
the 1s orbital from the variational calculation.
We now make a new basis set, designated B,
by combining the single contracted s function
with the six p functions of basis set A. Calcula-
tions with basis set B give the same energy and
dipole polarizability of the isolated H atom as
basis set A. However, they give much smaller
in magnitude ∆ 〈T 〉 and ∆ 〈V 〉 values and an
appreciably different virial ratio than obtained
using basis set A. Thus a basis set with multiple
s functions rather than the single contracted s
function is important in establishing the virial
theorem result. Indeed, it has been noted in
prior studies that the lowering of the kinetic
energy of H +

2 at large R is associated with a
delocalization of the electron density.7

We now progress to a detailed analysis of
the various contributions to the kinetic energy
and potential energy resulting from the pertur-
bation (point charge or uniform efield). The
ground state wave function of the H atom in
the presence of the point charge or efield may
be expressed as in terms of the orbitals of the
unperturbed H atom as

ψ = |1s〉+
∑
n=2

c(p)n |np〉+
∑
n 6=1

c(s)n |ns〉, (8)

where only s and p basis functions are included
as we are focusing on dipole polarization. The
coefficients in Eq. 8 are given by

c(p)n =
〈np|V ′|1s〉
ε1s − εnp

(9)

and

c(s)n =
∑
m=2

〈ns|V ′|mp〉〈mp|V ′|1s〉
(ε1s − εns)(ε1s − εmp)

. (10)

In Eqs. 9 and 10 and ensuing equations,
V ′ denotes the external perturbation, and the
orbitals and orbital energies are the exact re-
sults for the non-relativistic Schrödinger equa-
tion (the Hamiltonian of which is denoted by
H0) for the H atom. In addition, the sums also
include the continuum contributions.

If we retain energy contributions through
second-order in the perturbation, the energy
lowering relative to that of an isolated H atom
(i.e., 〈1s|H0|1s〉) is∑

n=2

[
c(p)

2

n (〈np|H0|np〉 − 〈1s|H0|1s〉)

+ 2c(p)n 〈np|V ′|1s〉
]

(11)

which, upon the substitution,

〈np|H0|np〉 − 〈1s|H0|1s〉 = εnp − ε1s, (12)

reduces to ∑
n=2

〈1s|V ′|np〉〈np|V ′|1s〉
ε1s − εnp

(13)

which is the standard second-order perturba-
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Table 1: Energies (a.u.) virial ratios, 〈V 〉, and 〈T 〉 values (in a.u.) of an H atom, both
isolated, and in the presence of a −|e| point charge at R = 10 Bohr or a uniform electric
field of strength 0.01 a.u.

System Basis set Etot − 〈V 〉〈T 〉 〈V 〉 〈T 〉 ∆ 〈V 〉 ∆ 〈T 〉
isolateda CBSb -0.5000000 2.000000 -1.0000000 0.5000000
efield, pt. chg. CBSb -0.5002250 2.001802 -0.9995500 0.4993250 0.0004500 -0.0006750
isolateda A, B -0.4999993 2.000004 -0.9999966 0.4999973
efield A -0.5002242 2.001811 -0.9995441 0.4993200 0.0004559 -0.0006800
efield B -0.5002238 2.000653 -1.0001211 0.4998973 -0.0001211 -0.0001027
pt. chg. A -0.5002218 2.001779 -0.9995554 0.4993337 0.0004446 -0.0006663
pt. chg. B -0.5002214 2.000640 -1.0001229 0.4999015 -0.0001229 -0.0000985

a Isolated H atom.
b Exact results in the complete s and p basis set (CBS) limit, allowing only for dipole polarization.

tion result. Dalgarno and Lewis4 showed that
for a perturbation of the form D r cos θ, where
D = q/R2 and ε for the point charge and uni-
form fields, respectively, one can find a function
f = D(r2/2 + r) cos θ such that

〈np|V ′|1s〉 = 〈np|[H0, f ]|1s〉
= (εnp − ε1s)〈np|f |1s〉, (14)

allowing Eq. 13 to be rewritten as

−
∑
n=2

〈1s|V ′|np〉〈np|f |1s〉 = −〈1s|V ′f |1s〉.

(15)
Elimination of the the

∑ |np〉〈np| summation
in the left-hand side of Eq. 15 was accomplished
by use of the identity operator, which for the H
atom is

1 = |1s〉〈1s|+
∑
n 6=1

|ns〉〈ns|+
∑
n=2

|np〉〈np|+ . . . .

(16)
Specifically

∑ |np〉〈np| was replaced by 1, as
the other terms in the expansion do not result
in non-zero integrals. The resulting integral on
the right-hand side of Eq. 15 may be readily
evaluated, giving −2.25R−4 for the point charge
perturbation and −2.25ε2 a.u. for the uniform
efield perturbation.4

We now consider the contributions of the var-
ious terms in the wave function to the averages
of the kinetic energy operator and the −1/r
portion of the potential energy operator, retain-
ing terms that are second-order in the interac-

tion. The relevant averages are given by

∆
〈
Â
〉

=−
∑
n=2

(c(p)n )2〈1s|Â|1s〉

+
∑
n=2,
m=2

c(p)n c(p)m 〈np|Â|mp〉

+ 2
∑
n 6=1

c(s)n 〈ns|Â|1s〉, (17)

where Â denotes either the kinetic energy oper-
ator or −1/r. The first term on the right-hand
side of Eq. 17 is a result of normalization, which
may be evaluated as follows

−
∑
n=2

〈1s|f |np〉〈np|f |1s〉〈1s|Â|1s〉

= −〈1s|f 2|1s〉〈1s|Â|1s〉. (18)

In accomplishing this simplification we made
use of the fact that the (c

(p)
n )2 factor in Eq. 17

can be rewritten as 〈1s|f |np〉〈np|f |1s〉 by two
applications of the Dalgarno-Lewis procedure
again with f = D(r2/2 + r) cos θ, and the re-
placement of

∑ |np〉〈np| with 1 as discussed
above. The two integrals in the right-most term
of Eq. 18, 〈1s|f 2|1s〉 and 〈1s|Â|1s〉, are readily
evaluated with the results being presented in
Table 2 below.

The second term on the right-hand side of
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Table 2: Contributions to ∆ 〈T 〉 and ∆ 〈V 〉
for a H atom perturbed by a point charge
or a uniform efield evaluated in the com-
plete basis set limit.a

Contribution ∆ 〈T 〉 ∆ 〈V 〉
−∑(c

(p)
n )2〈1s|Â|1s〉 −43/16 86/16

2
∑

c
(p)
n 〈1s|V ′|np〉 −72/16∑∑
c
(p)
n c

(p)
m 〈np|Â|mp〉 27/16 −34/16

2
∑

c
(s)
n 〈1s|Â|ns〉 −92/16 92/16

Total −27/4 18/4
a The quantities reported are the coefficients of

R−4 or ε2.

Eq. 17 may be evaluated as

∑
n=2,
m=2

〈1s|V ′|np〉〈np|Â|mp〉〈mp|V ′|1s〉
(ε1s − εnp)(ε1s − εmp)

=
∑
n=2,
m=2

〈1s|f |np〉〈np|Â|mp〉〈mp|f |1s〉

= 〈1s|fÂf |1s〉. (19)

In deriving this result, the Dalgarno-Lewis
substitution was made twice and the identity
operator was used twice to eliminate the sum-
mations. The values of this contribution for the
two choices of Â are summarized in Table 2.

The third contribution from Eq. 17 may be
re-expressed as

2
∑
n 6=1,
m=2

〈1s|V ′|mp〉〈mp|V ′|ns〉〈ns|Â|1s〉
(ε1s − εmp)(ε1s − εns)

= −2
∑
n 6=1

〈1s|fV ′|ns〉〈ns|Â|1s〉
ε1s − εns

= 2
∑
n 6=1

〈1s|fV ′|ns〉〈ns|g|1s〉. (20)

The first simplification made use of the
Dalgarno-Lewis method and insertion of the
identity operator to eliminate the sum over the
p functions. However, to deal with the sum over
the ns(n 6= 1) functions required deriving func-
tions g for which 〈ns|[H0, g]|1s〉 = 〈ns|Â|1s〉 for
Â corresponding to the kinetic energy operator
and −1/r. The g functions and their deriva-
tions are presented in Supplemental informa-

tion. Using the identity operator, the last term
of Eq. 20 can be simplified as follows

2
∑
n 6=1

〈1s|fV ′|ns〉〈ns|g|1s〉 = 2〈1s|fV ′g|1s〉

− 2〈1s|fV ′|1s〉〈1s|g|1s〉. (21)

The integrals on the right-hand side of Eq. 21
are readily evaluated, and their contributions
are included in Table 2.

As seen from Eq. 21 (and Eq. S18 of the Sup-
plemental information), the contributions of the
excited s levels to the average kinetic energy
and average of −1/r are proportional to D2.
However, if one considers the contribution of
these terms to the total energy, they give a con-
tribution propostional to D4. In other words,
the contribution is a consequence of the γ hy-
perpolarizability.

Table 2 reports the coefficients of the various
contributions to ∆ 〈T 〉 and ∆ 〈V 〉. To obtain
the energy contributions these need to be mul-
tiplied by R−4 and ε2, in the case of the point
charge and efield, respectively. Table 2 also in-
cludes the potential energy contribution from
the second term of Eq. 11, which arises solely
from the perturbation and does not involve ma-
trix elements of the kinetic energy operator or
−1/r.

The sum of the various contributions to ∆ 〈T 〉
and ∆ 〈V 〉 agree exactly with the shifts pre-
dicted by the virial theorem (Eq. 6). We find
it instructive to separate the diagonal and off-
diagonal contributions from the terms with the
〈np|Â|mp〉 factor and to combine the diagonal
〈np|Â|np〉 contribution with that involving the
〈1s|Â|1s〉 factor. The regrouped terms are re-
ported in Table 3.

As required, for the terms involving diagonal
matrix elements of Â, the ∆ 〈V 〉 contribution
is minus twice the ∆ 〈T 〉 contribution, while
for terms involving the off-diagonal 〈np|Â|mp〉
elements, the ∆ 〈V 〉 contribution is minus the
∆ 〈T 〉 contribution. If the terms involving the
non-diagonal 〈1s|Â|ns〉 and 〈np|Â|mp〉 matrix
elements are grouped together, their net contri-
butions to ∆ 〈T 〉 and ∆ 〈V 〉 are 2U and −2U ,
respectively.

The use of Dalgarno-Lewis perturbation the-
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Table 3: Contributions to ∆ 〈T 〉 and ∆ 〈V 〉
for a H atom perturbed by a point charge
or a uniform efield evaluated in the com-
plete basis set limit with the diagonal and
off-diagonal 〈np|Â|mp〉 contributions split
apart.

Contribution ∆ 〈T 〉 ∆ 〈V 〉∑
(c

(p)
n )2(〈np|Â|np〉 − 〈1s|Â|1s〉) U −2U

2
∑

c
(p)
n 〈1s|V ′|np〉 2U∑∑
c
(p)
n c

(p)
m 〈np|Â|mp〉 (off-diag) −5/9U 5/9U

2
∑

c
(s)
n 〈1s|Â|ns〉 23/9U −23/9U

Total 3U −2U

ory together with the identity operator also al-
lows us to express the wave function in Eq. 8 in
a simple analytical form:

ψ =

{
1−D

(
r2

2
+ r

)
cos θ

+D2

[(
r4

16
+

3r3

8
+

9r2

8

)
(

cos2 θ +
1

3

)
− 81

16

]}
|1s〉, (22)

where the second term accounts for the contri-
bution from the p orbitals (i.e., the hybridiza-
tion) and the third term results from the |ns〉,
n 6= 1, orbitals, which enter via mixing with
the p orbitals. (The derivation of this contribu-
tion is given in the Supplemental information.)
The term accounting for the admixture of the
|ns〉 levels is largely responsible for the lowering
of the kinetic energy due to the external field,
and is associated with an increase in the radial
extent of the charge distribution of the H atom.

Figure 1 reports the change in charge density
caused by the field-induced admixture of the
|ns〉, n 6= 1, states into the wave function. As
seen from the figure for a field of ε = 0.01 a.u.,
the admixture with the ns orbitals results in a
radial shift of ∼0.0005 |e| from short r to 2 ∼
6.5 Bohrs from the nucleus.

Conclusions

The molecular virial theorem predicts that the
interaction of an atom with a distant point

0 2 4 6 8 10
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ψ
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4
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Figure 1: Change in r2ψ2 in going from the
unperturbed 1s orbital to allowing for the field-
induced admixture of excited ns orbitals, for an
external uniform field of 0.01 a.u.

charge lowers the kinetic energy by 3|U | and
raises the potential energy by 2|U |, where U =
−0.5αR−4. For the case of an H atom interact-
ing with a point charge at large R, exact ex-
pressions can be obtained for the various con-
tributions to the kinetic and potential energy
changes by use of a procedure introduced by
Dalgarno and Lewis. Although the exact po-
larizability and energy at large R can be ob-
tained using second order perturbation theory
with a basis set with a single s function (pro-
vided it is the 1s eigenfunction of the isolated
atom) and a complete set of p eigenfunctions,
in order to accurately describe the kinetic and
potential energy changes due to the interaction
requires using a flexible set of s functions due to
the importance of matrix elements of the form
〈1s|Â|ns〉, as well as allowing mixing of the dif-
ferent p functions through the kinetic energy or
−1/r operators.

Although we have focused here on the con-
tributions to the kinetic and potential energies
of an H atom in an electric field, we note that
the same strategy can be applied to evaluate
the changes in the average kinetic and poten-
tial energies of two H atoms at large internu-
clear separation where dispersion interactions
dominate.
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Derivation of functions g and h: function g sim-
plifies the calculation of the last term of the av-
erage of a kinetic or potential energy operator
given in Eq. 17; function h simplifies coefficient
c
(s)
n providing analytical functional form of the

wave function given in Eq. 8.

References

(1) Slater, J. C. The Virial and Molecular
Structure. J. Chem. Phys. 1933, 1, 687–
691.

(2) Hurley, A. C. Virial Theorem for Poly-
atomic Molecules. J. Chem. Phys. 1962,
37, 449–450.

(3) Born, M.; Oppenheimer, R. Zur Quanten-
theorie der Molekeln. Ann. Phys. 1927,
389, 457–484.

(4) Dalgarno, A.; Lewis, J. T. The exact
calculation of long-range forces between
atoms by perturbation theory. Proc. R.
Soc. Lond. A 1955, 233, 70–74.

(5) Robinson, P. D. Hypervirial theorems and
perturbation theory in quantum mechan-
ics. Proc. R. Soc. Lond. A 1965, 283, 229–
237.

(6) Lyon, W. D.; Matcha, R. L.;
Sanders, W. A.; Meath, W. J.;
Hirschfelder, J. O. Perturbation Treat-
ment of the Ground State of H +

2 . J.
Chem. Phys. 1965, 43, 1095–1100.

(7) Winn, J. S. Implications of the virial the-
orem on the description of weak bonds. J.
Chem. Phys. 1981, 74, 608–611.

(8) Jentschura, U. D. Resummation of the di-
vergent perturbation series for a hydro-
gen atom in an electric field. Phys. Rev.
A 2001, 64, 013403.

(9) Dunning, T. H., Jr. Gaussian basis sets for
use in correlated molecular calculations. I.
The atoms boron through neon and hydro-
gen. J. Chem. Phys. 1989, 90, 1007–1023.

(10) Kendall, R. A.; Dunning, T. H., Jr.; Har-
rison, R. J. Electron affinities of the first-
row atoms revisited. Systematic basis sets
and wave functions. J. Chem. Phys. 1992,
96, 6796–6806.

(11) Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scal-
mani, G.; Barone, V.; Petersson, G. A.;
Nakatsuji, H. et al. Gaussian 16 Revision
C.01. 2016; Gaussian Inc. Wallingford
CT.

7



Graphical TOC Entry

0 2 4 6 8 10

r

−5

0

5

∆
r2
ψ

2

Molecular virial theorem

E-field induced mixing of |1s〉
with |ns〉 levels of the H atom

8


