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The ferroelectric field-effect transistor (FEFET) is a well known 
semiconductor device concept that until recently remained an 
unviable technology1,2. The concept appeared in a number of 

patents in the 1950s, and was experimentally demonstrated in the 
1970s3. A FEFET contains a ferroelectric layer in the gate dielectric 
stack of a standard metal-oxide-semiconductor field-effect transis-
tor (MOSFET). Traditionally, a FEFET is viewed as a non-volatile 
memory element in which binary data is stored in the direction of 
ferroelectric polarization (up or down). The up and down polariza-
tion directions either assist in the formation of the inversion layer in 
the semiconductor channel or deplete it, resulting in opposite shifts 
in the threshold voltage of the FEFET.

Research activities in ferroelectric devices peaked in the period 
from the late 1980s to the early 2000s, largely due to progress in 
perovskite-based, complex oxide ferroelectrics4. This era culminated 
in the successful commercialization of ferroelectric random-access 
memory (FRAM), in which a ferroelectric capacitor based on lead 
zirconate titanate (PZT) in the back-end-of-the-line (BEOL) is 
connected to the drain of a front-end metal-oxide-semiconductor 
field-effect transistor (MOSFET). Ramtron (acquired by Cypress 
Semiconductor), Texas Instruments, and Fujitsu marketed FRAM 
products for niche, low-volume applications such as smart cards, 
energy meters, airplane black boxes, radio frequency tags and wear-
able medical devices, as well as for for code storage in microcon-
trollers. At the same time, FEFETs garnered traction due to their 
attractive, non-destructive read-out functionality and energy effi-
ciency. However, the promise of FEFETs never materialized due to 
the challenges involved in the integration of perovskite oxides with 
the front-end, semiconductor manufacturing processes—in partic-
ular, those associated with perovskite etching, hydrogen sensitivity, 
thickness and cell size scaling beyond the 130 nm technology node.

The discovery of ferroelectricity in hafnium oxide (hafnia) based 
binary oxides (fluorite structure oxides) in 20115,6 jumpstarted the 
second wave of intensive research on ferroelectric devices and, espe-
cially, FEFETs. Hafnia has been the key enabler of high-K-metal-gate 

(HKMG) technology for state-of-the-art logic transistors since 
mid-2000. As such, its compatibility with modern complementary 
metal-oxide-semiconductor (CMOS) technology and scalability 
can unleash the promise of FEFETs in high volume semiconductor 
manufacturing for a wide range of commercial products.

The revival of FEFET research is timely. Computing is evolving 
in a fundamentally different way, and is now being driven by data 
centric applications7–9. The traditional pillars of the semiconductor 
industry—dimensional scaling and the von Neumann architec-
ture with clear separation of memory blocks and logic cores—will 
be insufficient to support the new ecosystem. To process massive 
amounts of data with high throughput and energy efficiency, the 
compute hardware will have to overcome the memory–logic inter-
connect bottleneck by adopting new, near-memory or in-memory 
architectures with diffused boundaries between memory and logic, 
while delivering continued performance gains at a rate exceeding 
that historically provided by scaling.

A wide range of new applications will be enabled by adding 
artificial intelligence (AI) to the Internet-of-Things (IoT) edge 
devices, a capability referred to as edge intelligence (EI)9. At the 
forefront of the data centric computing paradigm is the vision that 
a trillion, connected, smart edge devices will be pervasively and 
seamlessly integrated into the fabric of life, measuring physical 
parameters, processing them not at the cloud but at the edge, and 
making decisions in real time, leading to unprecedented oppor-
tunities for contextually intelligent applications with far-reaching 
societal implications. Edge intelligence will be critical for this 
vision because it will provide intensive, local computing at the 
point of data collection, thereby preventing the overburdening of 
communication to the central cloud by the massive collection of 
edge devices. AI-enabled autonomy in decision making in these 
small systems will also require autonomy in energy usage—the 
extreme need for energy efficiency—because many of these edge 
devices will be batteryless and will be powered by intermittent and 
scarce energy sources.
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The discovery of ferroelectricity in oxides that are compatible with modern semiconductor manufacturing processes, such as 
hafnium oxide, has led to a re-emergence of the ferroelectric field-effect transistor in advanced microelectronics. A ferroelectric 
field-effect transistor combines a ferroelectric material with a semiconductor in a transistor structure. In doing so, it merges 
logic and memory functionalities at the single-device level, delivering some of the most pressing hardware-level demands for 
emerging computing paradigms. Here, we examine the potential of the ferroelectric field-effect transistor technologies in cur-
rent embedded non-volatile memory applications and future in-memory, biomimetic and alternative computing models. We 
highlight the material- and device-level challenges involved in high-volume manufacturing in advanced technology nodes (≤10 
nm), which are reminiscent of those encountered in the early days of high-K-metal-gate transistor development. We argue that 
the ferroelectric field-effect transistors can be a key hardware component in the future of computing, providing a new approach 
to electronics that we term ferroelectronics.
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If the semiconductor technology can support the upcoming 
computing paradigm effectively, the sheer number of semiconduc-
tor hardware chips required could drive the next stage of exponen-
tial growth of the semiconductor industry, transforming it toward 
an over-a-trillion-dollar business. This motivates a bottom-up 
approach, innovating at the lowest level of the computing hierar-
chy—the material and device level—to deliver the required function-
alities beyond what is available with current CMOS platforms. Such 
innovations can then be leveraged at the circuit, micro-architecture, 
system and software level to deliver autonomy by energy efficient 
computing, logic–memory colocation, and performance gain while 
improving performance per watt.

In this Perspective, we examine the FEFET technology in the 
context of emerging data-centric applications. We establish the key 
device-level challenges for the commercial viability of this technol-
ogy. We argue that FEFETs, with their energy and area efficiency 
and diverse merged logic–memory functionalities, will be the fore-
runner of a new approach in electronic devices, which we refer to as 
ferroelectronics, and that this approach will be critical in addressing 
the future needs of computing.

Ferroelectric device physics leads the way
Ferroelectric materials exhibit unique features such as hysteresis, 
non-volatility, plasticity, negative dielectric permittivity/negative 
capacitance10, stochasticity11, ferroelasticity and multiferroicity12, 

semiconduction13 and even nonlinear and chaotic behaviour14 and 
quantum mechanical effects15. In a FEFET, the intrinsic ferroelectric 
dynamics is strongly coupled to the conductance state of the under-
lying semiconductor channel (Fig. 1). Being a three-terminal device 
with a transconductance, FEFETs allow for a wide gamut of circuit 
designs that leverage the unique ferroelectric physics to efficiently 
address the diverse needs of traditional and emerging computing 
applications.

As such, while a FEFET is primarily viewed as a non-volatile 
memory element, its portfolio has expanded significantly beyond 
memory applications and now includes negative capacitance transis-
tors for ultra-low power, high performance logic technology10, ana-
logue weight cells for deep neural networks (DNNs) and in-memory 
computing16–20, content-addressable memory cells for fast and 
highly parallel database search and finding match locations21, artifi-
cial neurons for spiking neural networks (SNNs)22,23, coupled oscil-
latory networks for continuous time dynamical systems24,25, circuit 
primitives for stochastic computing, fast data back-up and wake-up 
circuits for intermittent computing21 and so on—all of which utilize 
combinations of these ferroelectric features and characteristics26. In 
this section, we analyze how the device physics of the FEFET relate 
to different data-centric applications (Fig. 2), except for negative 
capacitance, a summary of which can be found in ref. 10.

Ferroelectric plasticity—that is, the stable, partially switched 
states in the ferroelectric layer programmed by sub-coercive  
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Fig. 1 | Device physics of ferroelectric field-effect transistors. A FEFET combines the rich physics of ferroelectric materials with the device physics of 
transistors. IL, interfacial layer.

Fig. 2 | Applications of ferroelectric field-effect transistors and the corresponding device physics. a, Multi-state weight cell/analogue synapse for deep 
neural network accelerators. Plasticity of the ferroelectric polarization with sub-coercive voltages leads to multiple conductance states in FEFETs. Linear and 
symmetric potentiation and depression characteristics with identical pulses can be obtained in a two transistor, one FEFET (2T1FEFET) cell20. b, Ferroelectric 
ternary content addressable memory (TCAM)28,29. The match-line (ML) stays charged when the bit placed on search line matches the stored bit, while ML 
voltage discharges in case of mismatched bit. c, Ferroelectric non-volatile processor (FE-NVP) powered by an intermittent and unreliable energy source. 
The D flip flop (DFF) states are backed up in the FEFETs when power failures are anticipated, which is controlled by the back-up signal. When the power 
is restored, the data from the FEFETs is restored into the DFF controlled by the restore signal. With frequent power outages, computation progresses 
seamlessly in an FE-NVP while in a traditional volatile processor, computation has to be rolled back every time a power outage occurs. d, Ferroelectric 
neurons for spiking neural network applications22. The anti-plastic behaviour (the lack of stable, intermediate states in the hysteretic jumps in FEFET 
drain current) allows for relaxation oscillations in a simple two transistor circuit topology. The ferroelectric neuron can accommodate both inhibitory and 
excitatory functionalities. e, Ferroelectric oscillators for coupled time dynamical systems24. The synchronization dynamics is depicted in the Arnold’s tongue 
diagram which plot the range of the gate voltage difference (VGF1−VGF2) for oscillator synchronization for given values of the coupling strength (Cc). The 
coupled dynamics of ferroelectric oscillators can be utilized to solve computationally hard problems such as graph coloring, convex optimization and so on.
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voltages—leads to multi-state, non-volatile operation in FEFETs. 
This functionality is particularly important creating ultra-dense 
memories—for standard embedded memory applications and as 

multi-state weight cells or ‘analogue’ synapses in deep neural net-
work accelerators. Multi-bit operation with 2–8 bits (4–256 levels), 
order of 100-fold conductance modulation, ~5 ns update pulses, 
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and linear and symmetric potentiation–depression with identical 
pulse sequences has recently been demonstrated in FEFETs16–20. 
With deep learning models adding more layers and requiring 
more parameters, device-level requirements for implementing 
‘analogue’ weight cells have become extremely stringent especially 
for high-accuracy training in area and energy efficient, deep neu-
ral network (DNN) accelerators27. While none of the existing and 
emerging memory technologies meet these requirements, these 
early FEFET results indicate the possibility that FEFETs may be able 
to meet the ideal analogue weight cell characteristics.

The three-terminal device architecture of FEFET allows for 
unique circuit topologies in specialized memory applications. For 
example, a FEFET can act as both the selector and the non-volatile 
memory element for ternary content addressable memories 
(TCAMs) leading to the smallest footprint TCAM cell with just two 
transistors28,29. With superior array-level performance compared to 
other technologies such as magnetic tunnel junction (MTJ), resis-
tive RAM (RRAM), and even SRAM, ferroelectric TCAMs can 
enable traditional high-speed data-processing applications such 
as internet protocol filters and network routers as well as beyond 
deep neural network applications such as one/few shot learning in 
memory augmented neural networks (MANN)28.

Another application of fine-grained integration of FEFETs with 
standard CMOS logic is in intermittent computing. Especially in 
edge intelligence applications, where the energy source is inter-
mittent and unreliable (such as solar, ambient radio frequency, 
vibration, and thermal energy), the intermediate computation 
states in the pipelining logic need to be backed up into on-chip 
non-volatile memory frequently in anticipation of unpredictable 
power failures, and restored when the power returns9. FEFETs 
with their superior energy profile and high speed can enable the 
most energy and area efficient circuit primitives for intermittent  

computing (such as non-volatile latches, registers and SRAMs)30; for 
example, non-volatile D flip flops (DFFs) design has recently been 
demonstrated by adding just two FEFETs to its conventional CMOS 
counterpart21. Such FEFET-enabled systems can also be utilized for 
scheduled power gating in both low-power mobile applications and 
high-performance server processors to reduce static leakage power.

At scaled dimensions, FEFETs exhibit unusual effects: 
meta-plasticity, single-domain-like switching and stochastic-
ity. Being laterally confined to sub-100 nm with only a few struc-
tural grains present, the switching dynamics in scaled FEFETs are 
dominated by nucleation rather than domain growth and coalles-
ence—unlike that in large-area ferroelectric capacitors. In case of 
meta-plasticity, which is also termed polarization accumulation, fer-
roelectric polarization switches progressively through local nucle-
ation, and acts as a hidden, continuous variable resulting only in a 
single-domain-like, abrupt jumps in the conductance31. In a narrow 
region of phase space of program voltage and time, conductance 
switching in scaled FEFETs is not only activated by a critical thresh-
old crossing but also become probabilistic31. In addition to enabling 
multi-bit, embedded memory with scaled dimensions, these phe-
nomena together can allow for ultra-dense, energy-efficient, and 
massively parallel correlation detection systems for real-time sensor 
analytics32, on-chip random number generation for security appli-
cations33 and leaky-integrate-and-fire neurons31,34.

The opposite of plasticity effect can also be observed in FEFETs—
that is, antiplasticity: the lack of stable, intermediate state in the 
hysteretic jumps of the FEFET drain current. This occurs when a 
metal layer is introduced to sandwich the ferroelectric layer to form 
a metal–ferroelectric–metal–insulator–semiconductor (MFMIS) 
structure in a FEFET. Note that a typical FEFET uses a metal–fer-
roelectric–insulator–semiconductor (MFIS) structure where the 
ferroelectric layer is not in between metal layers. Antiplasticity can 
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enable biomimetic computing models such as spiking neural net-
works22, coupled oscillatory time dynamical systems24 and swarm 
intelligent networks25. At the heart of these compute models is a 
relaxation oscillator that encodes information in time domain—in 
the frequency, phase, spike timing or spike count. One of the unique 
features of the ferroelectric neural primitives is that they can accom-
modate inhibitory functionality in addition to its excitatory coun-
terpart in a compact, two transistor topology—which is one of the 
key requirements for successful learning and high-accuracy infer-
encing in spiking neural networks22. This is in contrast with CMOS 
neurons that require tens of transistors, and alternative emerging 
materials/devices-based neurons which do not have the built-in 
inhibitory function. In addition, ferroelectric spiking neurons 
have characteristic features beyond simple leaky-integrate-and-fire 
dynamics and can exhibit a large number of dynamical phenomena 
of cortical neurons unlike CMOS and alternative memory-based 
implementations23. In addition, spiking or oscillatory neurons with 
inhibitory and excitatory inputs—with recurrent connectivity based 
on analogue, ferroelectric synapses—can allow for efficient imple-
mentation of reservoir computing models for temporal data clas-
sification and pattern generation.

Vertical FEFETs in dense, three-dimensional (3D) NAND 
architecture are being actively pursued35. This is interesting from 
a stand-alone-memory point of view due to their potential for low 
voltage operation compared to that of the mainstream 3D NAND 
flash technology. In addition, interesting concepts of FEFET based 
reconfigurable memory devices have recently been proposed in 
which the hysteresis can be dynamically tuned and the operating 
mode can be switched from ‘non-volatile’ to ‘volatile’ on the fly by 
an additional control terminal36,37. Such reconfigurablity can, in 
principle, broaden the design space for non-volatile memory and 
neural network applications. Ferroelectricity in hafnia-based binary 
oxides is robust at both high and cryogenic temperatures and even 
in radiation environments38,39, which makes FEFETs attractive as an 
extreme-environment memory technology.

The memory landscape
We now address the question: where does FEFET fit in the embedded 
memory space? The game-changer for all data centric applications 
is high-bandwidth, low-latency, energy-efficient, dense embedded 
memory that is programmable with low, logic-compatible voltages 
(<1.5 V). Unlike stand-alone memories, embedded memory shares 
the same silicon as its logic counterpart and, hence, enable efficient 
data transfer between logic cores and memory units in traditional 
von Neumann computers and can support upcoming, in-memory 
computing architectures. Today, embedded static random-access 
memory (eSRAM) is the only commercially viable embedded mem-
ory solution available on advanced technology nodes (sub-28 nm), 
which, however, is volatile and suffers from a rather large cell size 
(>120–150F2, F being the feature size) and high standby static leak-
age power. Embedded DRAM (eDRAM) is also volatile, and faces 
the challenges of high power dissipation due to the need to frequent 
refresh operations. In the embedded non-volatile memory (eNVM) 
space, the workhorse is the embedded flash (eFlash) technology 
based on floating gate (FG) transistors40. However, the scalability 
of the FG eFlash technology into 28 nm and sub-28 nm nodes will 
arguably hit a wall due to both technical and economic challenges, 
the most important ones being increased mask counts (>13) and 
hence, the cost, the requirement of very high voltages (~12 V), 
limited endurance (~104 cycles) and the unavailability of polysili-
con in the HKMG technology to implement the floating gate9. The 
potential ‘mainstream’ alternative to floating gate technology is the 
oxide–nitride–oxide (ONO) based eFlash where the polysilicon FG 
is replaced with a nitride charge trapping layer. ONO-eFlash tech-
nologies have higher endurance (105–106 cycles), and is integratable 
with advanced nodes with demonstrations at the 28 nm HKMG 
node in the Si–oxide–nitride–oxide–Si (SONOS) structure41 and the 
16 nm FinFET node in the split-gate metal–oxide–nitride–oxide–Si 
(SG MONOS) structure42, respectively. SONOS eFlash devices can 
operate at smaller voltages (5–7 V) due to gentler Fowler–Nordheim 
tunneling mechanism, and require a lower number of additional 

Table 1 | Key parameters and metrics

Metrics Mainstream embedded memory Embedded ferroelectric memory

eSRAM eDRAM70 eFlash 
(FG)

eFlash (SG 
MONOS)42

eFlash 
(SONOS)41

FEFET 
(hafnia 
based, MFIS 
structure)

FEFET 
(hafnia 
based, 
MFMIS 
structure)

FRAM (hafnia 
based)

FRAM 
(perovskite 
based)67

Cell size 120–150F2 40F2 40–60F2 40–50F2 50–60F2 10–30F2 10–30F2 30–40F2 50–60F2

Cell structure 6T 1T1C 1.5T 1.5T 2T 1T 1T1FE, 1T 1T1FE, 2T2FE 1T1FE, 2T2FE

Non-volatile No No Yes Yes Yes Yes Yes Yes Yes

Multi-bit operation No No Yes Yes Yes Yes Yes No No

Non-destructive read Yes No Yes Yes Yes Yes Yes No No

Status Av. Dev. Av. Dev. Dev. Res. Res. Res. Av.

Advanced node 
demonstration

7 nm 
FinFET

22 nm 
FinFET

40 nm 16 nm 
FinFET

28 nm 
HKMG

22 nm FDSOI N/A N/A 130 nm

Write voltage <1 V <1 V ~12 V ~12 V ~5 V 1.5–4 V ~1.5 V 1–3 V 1.5 V

Write energy ~1 fJ ~1 pJ ~100 pJ ~100 pJ 1–10 pJ 1–10 fJ 1–10 fJ ~100 fJ ~1 pJ

Standby power High Medium Low Low Low Low Low Low Low

Write speed <1 ns >10 ns ~100 ns <100 ns ~100 ns 1–10 ns 1–10 ns 1–10 ns 1 µs

Read speed <1 ns >10 ns ~10 ns <10 ns ~10 ns 1–10 ns 1–10 ns 1–25 ns 50–100 ns

Endurance >1016 >1016 ~104 ~105 ~106 105–109 >1010 >1012 >1014

Key device parameters and performance metrics comparing current embedded memory candidates and ferroelectric technologies. Data for eDRAM, SG MONOS eFlash, SONOS eFlash and perovskite 
based FRAM are obtained from ref. 70, ref. 42, ref. 41 and ref. 67, respectively. FG, floating gate; SG MONOS, split gate metal–oxide–nitride–oxide–Si; SONOS, Si–oxide–nitride–oxide–Si; eSRAM, embedded 
static random-access memory; eFlash, embedded flash; eDRAM, embedded dynamic random-access memory; FRAM, ferroelectric random access memory; T, transistor; C, capacitor; FE, ferroelectric; Av., 
commercially available; Dev., development; Res., research.
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masks (~5). However, the voltage is still not logic compatible, and 
hence, they require charge-pump circuits leading to degraded array 
efficiency and lower memory density.

To fill this gap, several emerging candidates are being exten-
sively investigated for the better part of two decades—such as spin 
transfer torque magnetic random-access memory (STT-MRAM), 
resistive random-access memory (RRAM), and phase change mem-
ory (PCM). In fact, several industrial houses have demonstrated 
early prototypes of these emerging eNVMs with back-end-of-the 
line integration at relatively scaled technology nodes including: 
STT-MRAM on the 22 nm and the 28 nm platforms43,44 and RRAM 
on the 22 nm node45 and PCM on the 40 nm node46. However, 
STT-MRAM, RRAM and PCM—all being current-driven devices—
are bottlenecked by their high write energies. STT-MRAM has a 
large cell size due to the large area of the access transistor required 
for providing a high write current, lacks multi-bit functionality and 
requires deposition of a large number of precisely controlled thin 
film layers. RRAM suffers from inherent variability in filament for-
mation process.

A relatively newcomer in this crowded field of embedded mem-
ory, FEFET offers at least three distinctive advantages. First, the 
close resemblance between FEFET and the HKMG transistor tech-
nology (Fig. 3 and Table 1) suggests that FEFETs have the same scal-
ability as that of the state-of-the-art logic transistors down to sub-10 
nm nodes with a greatly reduced, ‘additional’ mask count (≤2) com-
pared to eFlash technologies as well as other non-volatile memories. 
To that end, FEFETs have already been integrated in 28 nm planar 
bulk CMOS and 22 nm fully depleted planar silicon-on-insulator 
(FDSOI) CMOS platforms as an embedded memory technology 
with array-level demonstrations47,48. Second, and equally impres-
sive, is the fact that the energy profile of FEFET is the best-in-class 
among all non-volatile memory technologies, approaching the 
realm of volatile eSRAM. Being electric-field driven, ferroelectricity 
provides a write energy in FEFET that is at least two or three orders 
of magnitude lower than that in STT-MRAM, RRAM and PCM and 
is within an order of magnitude of that of eSRAMs. Third, the tran-
sistor action in FEFETs, which is not available in other two terminal 
memories, allows not only for fast, non-destructive read but also 
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unique, efficient and creative cell and circuit designs with low-area 
footprint (10–30F2 depending on application). In addition, the write 
operation in ferroelectric devices can be extremely fast and less  
than 1 ns (ref. 49).

The technological challenges
The path forward for FEFETs in the domain of data-centric appli-
cations definitely involves porting them into advanced technology 
nodes at 10 nm and beyond—in FinFET and even nano-sheet archi-
tectures. This is because scaling not only increases the embedded 
memory density but also improves its raw performance such as 
read/write speed and, most importantly, provides compatibility with 
high-performance logic located on the same chip/die. For the ferro-
electric gate stack to fit into the tight pitch at such nodes, the fer-
roelectric layer needs to be scaled from the current state-of-the-art 
of 5–10 nm to 3 nm and below. To that end, robust ferroelectricity in 
hafnia-based oxides has already been demonstrated at these scaled 
thicknesses50,51. Ferroelectric thickness scaling can also lead to the 
reduction of the write voltage from the current 2–4 V to on-chip 
logic compatible voltages (≤1.2 V), thereby eliminating the need 
for charge pump circuits and hence better memory array efficiency 
(albeit at the cost of a reduced memory window).

For array-level performance at advanced nodes, the 
device-to-device variation of the threshold voltage (Vth) is an 
important consideration. Due to the lack of an epitaxial template 
for a ferroelectric on a semiconductor in a FEFET, the ferroelec-
tric microstructure is mesoscopically disordered and polycrystal-
line, varying spatially in terms of grain radius (2–50 nm), phase 
distribution (ferroelectric orthorhombic Pca21, non-ferroelectric 
monoclinic P2/c and tetragonal P42/nmc phases), orientation,  
grain boundaries, sub-grain domain walls and interphase bound-
aries52,53 (Fig. 4). A scaled FEFET may contain a few randomly 
distributed structural grains, which is an intrinsic source of Vth vari-
ability—in addition to traditional sources such as random dopant 

fluctuations, fabrication tolerances and so on54. This bears similarity 
to the metal gate polycrystallinity induced work-function variation 
in early HKMG technologies. By making the metal layers extremely 
nanocrystalline (1–2 nm of grain size) or ‘pseudo-amorphous’, the 
device-to-device Vth variation was alleviated in HKMG transis-
tors. It is possible that a similar grain engineering approach could 
be adopted for FEFETs: if the average ferroelectric grain size can 
be reduced to 2–3 nm while still preserving ferroelectricity within, 
each of the scaled FEFETs would contain hundreds of grains. In 
such a case, non-uniformities in microstructure average out within 
the device itself leading to a reduced device-to-device variation. 
Conversely, engineering structural texture in rather large ferroelec-
tric grains55 or converting amorphous layers altogether into single 
crystal-like ones56 can be powerful approaches to control Vth varia-
tion. Nonetheless, better insights into the FEFET variability aspects 
will require fundamental materials-level studies of voltage-induced 
microstructural evolution at both microscopic (atomic) and meso-
scopic scales (grain structures), potentially employing in-situ and 
multi-scale structural probing techniques57.

State-of-the-art FEFETs have a field-cycling endurance in the 
range of 105–109 cycles for deterministic switching47,48,57,58. This 
endurance, while being significantly better than that in eFlash and 
similar to those in STT-MRAMs and RRAMs, is limited compared 
to that of eSRAM. It is to be noted that a hafnia-based ferroelectric 
oxide in a metal–insulator–metal structure can endure much greater 
number of cycles of deterministic switching (~1011)59. In ferroelec-
tric capacitors, effects such wake-up, ageing, imprint and fatigue 
are related to multiple microscopic mechanisms including oxygen 
vacancies, grain boundaries and structural defects, carrier injection, 
domain and domain-wall pinning, structural phase change and so 
on. In a FEFET, additional degradation mechanisms such as charge 
trapping and trap generation at the interfaces, and potentially elec-
tron–hole recombination and hot carrier effects are present60–64. In 
fact, similar to the degradation aspects of HKMG technology, the 
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FEFET endurance limitation is predominantly an interface issue: 
The weakest link in a FEFET is not the ferroelectric layer itself, but 
rather the interfaces in the metal–ferroelectric–insulator–semicon-
ductor structure60–64. Due to its lower dielectric constant (~4), most 
of the gate voltage drop during write operation appears across the 
interfacial oxide layer (IL) (Fig. 5); this leads to an IL electric field 
as high as 10–15 MV cm–1 (ref. 61). Improving the endurance will 
require a meticulous gate stack design that improves the interface 
quality and increases the voltage drop across the ferroelectric layer 
and decreases it across the interfacial oxide layer. The known tech-
niques in the HKMG technology on reducing the IL thickness via 
scavenging techniques, increasing the dielectric constant of the IL, 
and passivation of bulk, interface and grain boundary trap need 
to be re-explored in the FEFET context65. Reducing the write volt-
age will reduce the hot carrier related degradation mechanisms in 
FEFETs as well. Interestingly, unlike the case in FRAMs, relatively 
low values of spontaneous polarization and dielectric constant of 
ferroelectric layer can be conducive for FEFETs60. An alternative 
strategy to improve endurance is to eliminate the ferroelectric-IL 
interface altogether in a FEFET with a MFMIS structure that con-
tains an intermediate, floating metallic gate with the ferroelectric 
layer integrated in the BEOL. In fact, endurance greater than 1010 
cycles has recently been demonstrated in such FEFET structures19.

Ultimately, technological development of FEFETs will essentially 
be a trade-off among all metrics: endurance and reliability, memory 
window and on–off ratio, scalability, latency/access time and operat-
ing voltage, retention time, variability and so on. The design space of 
FEFETs will not have any singular region of optimality; it will rather be 
dictated by the specific requirements of data-centric applications and 
perhaps based on the level of data persistence/retention that the appli-
cation demands. For example, plasiticity/partial polarization switching 
in FEFETs enables desirable features such as dense multi-bit-per-cell 
operation, low and logic-compatible write voltage and potentially 
unlimited endurance at the expense of reduced memory window and 
on–off ratio, decreased memory retention and increased Vth varia-
tion61,66. IL scaling will adversely affect the channel mobility while 
ferroelectric thickness scaling will reduce the memory window, both 
of which, in turn, increases the memory access time. The good news 
is that many of the current challenges of the FEFET technology are 
reminiscent of those in the early days of the HKMG technology from 
the mid-1990s and into the 2000s, which ultimately became one of the 
glowing success stories of the semiconductor industry.

At this point, it is worth noting that FRAM can be positioned 
as another embedded memory technology which, being enabled 
by ferroelectricity, shares some of the attractive features of FEFETs 
such as energy efficiency and non-volatility. Lead zirconate tita-
nate (PZT) based FRAMs with 1T1C (one transistor, one capaci-
tor) cell configuration are commercially available as embedded 
memories for microcontrollers and digital signal processors67 and 
stand-alone NOR memory solutions68. However, due to the ‘lack’ 
of the transconductance gain that FEFET offers, FRAM requires a 
destructive read, is slower and read sensing requires an accurate ref-
erence which adds complexity to cell design, perhaps often requir-
ing a 2T2C configuration. This limits density and array efficiency as 
well as the design space for circuit-level motifs. On the other hand, 
FRAM potentially enjoys superior endurance (due to the lack of IL 
and semiconductor interfaces) and voltage scalability compared to 
those in their FEFET counterparts, and hence is particularly well 
suited for DRAM-type applications.

FEFETs can dominate the upcoming data-centric computing 
paradigm by being complementary to eSRAM and CMOS based 
volatile memories and by being an alternative with superior density 
and energy efficiency in application specific, hierarchical memory 
architectures. This is because applications in this new paradigm 
range from the cloud to the client to the edge varying dramatically 
in terms of power, performance, area and cost; no single, embedded  

technology can span the entire space. For example, dedicated 
deep neural network inference engines in the cloud will require 
ultra-dense memories with ultra-fast access times. In such applica-
tions, high performance, advanced node FEFETs (potentially even 
in a monolithic 3D configuration on top of CMOS logic or in a 3D 
vertical column like SONOS based 3D NAND structure) with mod-
est endurance can be the key enablers. Autonomous systems with 
lifelong and in-field learning demands will require frequent write 
into memory banks with relaxed data retention time, and hence, 
endurance traded off with retention with partial polarization switch-
ing will be appropriate. In the paradigm of edge intelligence with a 
trillion, connected smart devices, performance with brutal energy 
efficiency will be the most important requirement. Especially when 
powered by scavenged/intermittent power sources, the back-up 
and restore functionality will require intricate meshing between 
non-volatile technology with the CMOS-based primitives, that is, 
eSRAM, register, latches and flip-flops. In moving AI training to the 
edge nodes (referred to as small-system AI), the neural networks are 
likely to be partly pre-programmed requiring frequent, in-the-field 
weight updates in only a few dynamic layers enabled by ultra-fast, 
high endurance eSRAMs while most others will be static enabled 
with a non-volatile memories with high retention and moderate 
endurance—that is, FEFETs9. Altogether, advanced node FEFETs 
provide non-volatility, a best-in-class energy profile and unique 
cell and circuit design capabilities, while complementary eSRAMs 
enable ultra-fast speed and raw performance. Hence, in the future, 
data centric computing paradigm, the FEFET-eSRAM combination 
will enable architecting application specific, fluid memory hierar-
chies that balance energy, density, performance, memory access pat-
terns, area and cost.

The era of ferroelectronics
Over the last century, ferroelectricity has yielded a remarkable range 
of fundamental discoveries and innovations69, which, from a tech-
nology standpoint, culminated in the successful commercialization 
of a memory product with one of the best energy profiles: FRAMs 
based on perovskite oxides. With the discovery of ferroelectricity in 
modern CMOS-compatible and scalable materials—hafnium oxide 
and zirconium oxide and their alloyed variants—the stage is set for 
ferroelectrics to come to the forefront of mainstream semiconduc-
tor electronics, creating an era of ferroelectronics.

Ferroelectronics is not a singular technology. Instead, it uses a 
diverse set of devices and elements that include negative capacitance 
logic transistors, non-volatile memory devices such as FEFETs and 
FRAMs, magnetoelectric–multiferroic devices, and foundational 
technologies such as CAM, analogue and radio-frequency capa-
bilities9; FEFETs are central to all of this. In our view, FEFETs are 
not just yet another memory device. They are rather a memory–
compute element and one of most versatile transistor technologies 
ever conceived, thanks to their rich device physics. The progression 
of FEFETs will follow a path similar to that of the HKMG transis-
tor, which, to date, has been one of most successful technologies in 
semiconductor electronics.

Data-centric computing will require a pervasive presence of fer-
roelectronics and most importantly, FEFETs. These devices offer 
performance, energy and area efficiency, and unique, merged logic–
memory functionalities, and can complement CMOS-based logic 
and volatile memory technologies in supporting diverse workloads 
and applications. The next wave of exponential growth of the semi-
conductor industry depends on how well the electronic hardware 
can support the explosion of data-centric computing applications, 
and we believe that the FEFET technology will be a key component 
in delivering this future.
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