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Cis-regulatory mutations underlie important crop domestication and improvement
traits'”. However, limited allelic diversity has hindered functional dissection of the large
number of cis-regulatory elements and their potential interactions, thereby precluding a
deeper understanding of how cis-regulatory variation impacts traits quantitatively. Here,
we engineered over 60 promoter alleles in two tomato fruit size genes™ to characterize cis-
regulatory sequences and study their functional relationships. We found that targeted
mutations in conserved promoter sequences of SICLV3, a repressor of stem cell
proliferation’ © have a weak impact on fruit locule number. Pairwise combinations of these
mutations mildly enhance this phenotype, revealing additive and synergistic relationships
between conserved regions, and further suggesting even higher-order cis-regulatory
interactions within the SICLV3 promoter. In contrast, SIWUS, a positive regulator of stem
cell proliferation repressed by SICLV3’ ©_is more tolerant to promoter perturbations. Our
results show that complex interplay among cis-regulatory variants can shape quantitative
variation, and suggest that empirical dissections of this hidden complexity can guide

promoter engineering to predictably modify crop traits.

Cis-regulatory DNA determines patterns and levels of gene expression, and decoding this
regulatory information is essential in understanding how genotypes translate to phenotypes. The
vast cis-regulatory space surrounding genes makes it challenging to identify functional
sequences’. Recent studies in diverse plant species have predicted the genome-wide presence of
cis-regulatory elements (CREs) using sequence conservation, transcription factor binding,

8-15
. However,

chromatin accessibility, and other molecular and computational approaches
empirical characterization of whether and to what extent these sequences regulate phenotypes are
lagging far behind.

The identification of rare, natural mutations contributing to crop domestication and
improvement has illuminated the importance of cis-regulatory regions in controlling quantitative
trait variation'*'®. Emerging pan-genomes have exposed expansive cis-regulatory variation,
including simple variants (e.g. SNPs, indels) and more complex structural variants (SVs), which

are often associated with modified expression and phenotypes'’ '

. However, identifying
causative mutations is challenging, as variants with subtle effects are difficult to resolve and

multiple mutations within and between cis-regulatory regions could be acting together to
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2224 Thus, the limited number of characterized alleles has been insufficient

influence phenotypes
to dissect the functional components of a gene’s cis-regulatory space, leaving it unclear why
specific genetic perturbations result in specific quantitative phenotypic outputs. Resolving these
relationships is key for the precise design and engineering of cis-regulatory alleles with

predictable effects on crop improvement' %%’

. Here, we use genome editing to finely dissect cis-
regulatory control of quantitative trait variation in two genes controlling stem cell proliferation
and fruit size in tomato.

The CLAVATA3 (CLV3) gene encodes a conserved small signaling peptide that inhibits

5626 Qimilar to other

stem cell proliferation in the shoot apical meristem in many plants
species®’ ", loss of tomato (Solanum lycopersicum, denoted with SI’ prefix) SICLV3 results in
enlarged meristems that cause fasciated phenotypes, including many more seed compartments
(locules) in fruits compared to wild type plants (WT)**. We previously developed a CRISPR-
Cas9 multiplex mutagenesis drive system to engineer quantitative trait loci (QTLs) for crop
improvement®. Using this tool, we generated 15 SICLV3 promoter (slclv3’®) alleles, which
resulted in a range of fruit locule number variation®. However, the limited number of alleles,
each having multiple mutations in a 1.7 kb target region, precluded association of specific
promoter sequences with quantitative phenotypic changes. Hence, to increase mapping resolution,
we used the same CRISPR-Cas9 drive system with eight gRNAs to generate 14 new slc/v3’”
alleles (Fig. 1a). The resulting series of 30 alleles, including the natural QTL inversion allele
fasciated (fas) and a null allele that eliminates 7.3 kb of SICLV3 promoter and coding sequence
(slelv3? ro-29 ), contained various types of mutations, such as large deletions, inversions, and small
indels across the target region. To simplify their visualization, we encoded each promoter allele
using heatmap representations of sequence modifications in sequential 20 bp windows (Fig. 1b,
¢). Arranging the slc/v3” alleles by phenotypic strength revealed a continuum of locule number
variation, and trends in associations between cis-regulatory mutations and phenotypes. 14 of the
alleles had weak increases in locule number (slclv3”°” to slclv3”*"'7; ~1-3 more locules than WT)
and were associated primarily with deletions that disrupted the proximal half of the target region
(Fig. 1d and Extended Data Fig. 1a,b). In contrast, most of the sic/v3” alleles with locule
number increases greater than fas (mean 6.1 locules) disrupted the distal half of the target region,
and often contained mutations in both proximal and distal regions. Two alleles with the strongest

effects on locule number removed most (slc/v3”*?") or all of the target region (slciv3”°*%) and
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nearly matched the effect of the null allele (slc/v3”?’, mean 15.8 locules). Though there were
exceptions to these trends, likely due to multiple and different combinations of mutations across
all promoter alleles, the expanded slc/v3”” allelic series indicated that multiple sequences
throughout the SICLV3 promoter are important for its function, with a more prominent role for
sequences in the distal region.

However, this expanded allelic diversity was still insufficient to relate specific cis-
regulatory regions to quantitative phenotypic effects. Sequence conservation could indicate cis-

regulatory function''"!

. We searched for conserved non-coding sequences (CNSs) by aligning
the SICLV3 promoter sequence with corresponding regions from the related Solanaceae species
potato (Solanum tuberosum), pepper (Capsicum annuum), and groundcherry (Physalis grisea),
representing 25 million years of evolution. This analysis (see Methods) identified three deeply
conserved CNS regions (designated R1, R3, R4) (Fig. 2a), and an additional CNS region (R2) is
shared only between tomato and potato. We also identified dozens of predicted transcription
factor binding sites (TFBSs) throughout the entire SICLV3 promoter, including many in the CNS
regions; however, the abundance of these sequences makes precise and systematic functional
characterizations impracticable (Fig. 2a).

We therefore used the available gRNA recognition sites to design four new CRISPR-
Cas9 constructs, each having three or four gRNAs to remove all or large portions of each CNS
region. We generated 16 alleles in total, with at least three alleles for each region (Fig. 2b-e).
Five deletion alleles in R1 ranged in size from 3 bp to 226 bp, and the two smallest deletions (3
bp and 63 bp deletion) had no effect on locule number, suggesting the underlying sequences are
not critical for promoter function. Notably, only the three largest R1 deletion alleles, from allele
slelv3” 153 (73 bp deletion) to slclv3”*™ '~ (226 bp deletion, removing the entire targeted region
and most of the R1 CNS), caused weak increases in locule number compared to WT (Fig. 2b).
Similarly, none of the other 11 deletion alleles in the other CNS regions had a substantial effect
on locule number, and only the two largest R4 deletion alleles (slclv3”°***: 91 bp deletion and
slelv3” 3 340 bp deletion) weakly increased locule number, similar to the largest R1 deletions.
These observations suggest that disruption of multiple sequences within a conserved region is
likely required to translate into a phenotypic effect. The absence of phenotypes from R2 alleles,

3pr0—R2—3

including slclv that disrupted the entire R2 region, is consistent with this CNS region

being less conserved throughout Solanaceae, and the largest R3 allele removed only half of the
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target region, possibly leaving functional sequences intact (Figure 2c-e and Supplemental Fig.
2a-d). Most of the CNS alleles impacted at least one TFBS, and many of the larger deletions

removed many of them. However, loss of multiple TFBSs did not always result in a phenotype

3pro-R1-5 3pr0-R2-3

(e.g. slclv vs. slclv ), suggesting we could not use these sites as predictors of
phenotypic effects. We also tested if changes in SICLV3 expression were associated with
phenotypes, and only subtle expression differences were detected in these alleles. Consistent
with previous observations®, there were no strong correlations between altered expression and
phenotypic effects (Extended Data Fig. 2e-i). Together, these results show that CNSs contain
functional sequences, and that the R1 and R4 CNS regions are important for SICLV3 promoter
function, but only partially contribute to its activity.

The weak phenotypes of individual R1 and R4 deletion alleles compared to the alleles
that removed both proximal and distal promoter sequences (Fig. 1b-d and Fig. 2b-e) suggested
genetic interactions between conserved regions. To explore these relationships, we devised two
strategies to create alleles with combinations of mutations in two different CNS regions
(Extended Data Fig. 3a,b), since their close physical distances prevented combining them by
recombination. Our approaches preserve an existing mutation in one CNS region and then
introduce a new mutation in a second CNS region, which avoids altering sequences between two
targeted regions. In the first approach, trans-targeting, we crossed plants homozygous for
individual mutations that also carry their respective CRISPR-Cas9 transgenes to allow for
reciprocal targeting of the inherited wild type CNSs. Alleles with mutations in two CNSs were
then identified in F1 plants, and homozygous mutants were recovered in F2 populations
(Extended Data Fig. 3a). Our second approach used sequential editing, in which transgene-free
homozygous mutants having a deletion in one region were transformed with a CRISPR-Cas9
construct targeting a second region (Extended Data Fig. 3b). Since only the largest deletion
alleles in our individual CNS targeting resulted in phenotypes, we focused on isolating new
alleles with large perturbations in combinations of CNS regions. Applying both approaches, we
obtained a total of 13 pairwise combined mutations in R1-R4, R1-R2, and R2-R4, with at least
two alleles for each combination of targeted CNS regions.

Nine new alleles with mutations in both R1 and R4 all caused a greater increase in locule

number compared to the strongest allele from each individual region (Fig. 3a and Extended

Data Fig. 3c¢), with different R1-R4 combined alleles enhancing the phenotype to varying
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degrees (Fig. 3a, e.g. RI’+R4° vs. RI"+R4’). This result prompted us to test if the enhanced
phenotypes were the sum of effects from individual R1 and R4 mutations, or if they exceeded
them (i.e. additivity vs. synergism). Since the newly induced mutations in the combined alleles
were different from the original individual mutations, we performed stringent tests of additivity
or synergism by using the sum of the effects from the strongest individual alleles in each region.
Our statistical analyses (see Methods) showed that four of the nine R1-R4 combined alleles had
synergistic effects (Fig. 3a,b and Extended Data Fig. 3¢,d), and one (R/’+R4") was synergistic
in one experiment and additive in another, possibly due to environmental influence. The
remaining four combined alleles had additive effects, and interestingly three of them had small
indels in either R1 or R4 (Extended Data Fig. 3¢,d), which overlapped with indels that showed
no effect on their own (Fig. 2b-e). This suggested that some mutations exhibit phenotypic effects
only in the presence of other mutations, reflecting redundant relationships between the
underlying sequences. A similar relationship was evident between some mutations in R2, which
have no effect on their own, and mutations in other regions (Fig. 2¢). For example, the combined
RI°+R2“ allele, which inherited the original R1 mutation and a partial R2 deletion, resulted in
similar locule numbers as the single R1 mutation (Fig. 3c), whereas an allele that removed R1
and R2 together (R/+R2) resulted in a much stronger phenotype. These observations suggest that
the R2 CNS functions redundantly with the R1 CNS; however, this allele disrupted an additional
40 bp near RI1 relative to the original single mutation, which could be contributing to
enhancement (Fig. 3¢ and Extended Data Fig. 3e). Such redundant effects may be specific, as
combining R2 and R4 mutations did not increase locule number compared to R4 alleles alone,
though R2 was not entirely deleted in the R2-R4 combined alleles (Fig. 3d). Together, these
results show that additive, synergistic, and redundant relationships among conserved sequences
all contribute to SICLV3 promoter function (Fig. 3e). Notably, the strongest combined alleles still
showed only moderate phenotypic effects, indicating even higher-order interactions underlie the
wide range of quantitative variation from the S/CLV3 promoter (Fig. 1b-d).

CLV3 functions in a deeply conserved negative feedback relationship with the
homeodomain transcription factor WUSCHEL (WUS), which promotes stem-cell proliferation
(Fig. 4a)™®. A weak gain-of-function cis-regulatory allele (Ic) that disrupts sequences
downstream of tomato WUS (SIWUS) underlies a locule number QTL with a similar effect as

3,25

weak slclv3” alleles™. We therefore tested whether similar cis-regulatory complexity controls
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SIWUS. Null mutations of WUS in Arabidopsis thaliana cause premature termination of the
primary shoot meristem during embryogenesis, and produce axillary meristems that cycle
between reinitiation and termination of vegetative and floral meristems after a few organs have
formed. In contrast, hypomorphic wus alleles can form several leaves before primary meristem
termination, and axillary meristems give rise to shoots and normal flowers® >*. As there are no
known loss-of-function mutations in SIWUS, we generated two frame-shift alleles by targeting its
coding sequence with two gRNAs (Fig. 4b). Similar to Arabidopsis, homozygous null siwus
mutant seedlings failed to maintain the shoot apical meristem, which terminated after producing
2-3 leaves (Fig. 4c¢). Reinitiated meristems would then develop and produce a leaf before
terminating, resulting in stunted bushy plants that never produced shoots or transitioned to
reproductive growth (Fig 4c¢,d). To test potential quantitative effects from SIWUS promoter
alleles, we performed CRISPR-Cas9 multiplex mutagenesis on a 2.6 kb target region that
included four CNS regions (out of five in the S/IWUS promoter), and generated eight diverse
alleles having mostly large deletions that removed one or more CNSs and also intervening
sequences (Fig. 4e,f). The most severe allele (siwus”®, 1.9 kb deletion), which eliminated three
CNSs and had a rearrangement in the proximal CNSs that could not be resolved, was similar to
the null coding sequence mutants (Extended Data Fig. 4a). Interestingly, all other slwus”
mutants appeared normal, including flower and fruit development, although they occasionally
produced extra cotyledons. We asked if these promoter alleles caused weak effects on locule
number; however, all were similar to WT, with the exception of allele slwus”". This allele
contained a 223 bp insertion and a 554 bp inversion and caused a subtle increase in locule
number similar to /c (Fig. 4f, g and Extended Data Fig. 4b). These results suggest that the
SIWUS promoter is more tolerant to perturbations than the SICLV3 promoter, though the most
critical sequences might be in a proximal 350 bp conserved region overlapping the 5° UTR,
which was not included in our target region. We also asked if the slwus” alleles could have
effects in sensitized genotypes that produce fruits with many locules. To test this, we crossed the
slelv3”? null allele with two siwus”” alleles that disrupted a single CNS or multiple CNSs
(stwus”* and siwus””, respectively), and both double mutants showed a partial suppression of
locule number (mean of 12-14 locules in double mutants compared to mean of 16 locules in

3pro—29

slelv ) (Fig. 4h). These results are also consistent with quantitative epistatic relationships

between cis-regulatory mutations in CLV3 and WUS™. Thus, mutations in the promoter of
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SIWUS can also cause locule number variation, and some of these effects may depend on
background mutations.

In conclusion, we have shown that multiple functional components within a promoter,
represented by conserved sequences and their genetic interactions, underlie the complex
relationships between cis-regulatory regions and their contribution to quantitative phenotypic
effects. The additive, redundant and synergistic relationships revealed from our in vivo dissection
of the SICLV3 promoter may reflect a broader principle of how promoters and other cis-
regulatory regions of plant genes are buffered from genetic perturbations, a theme also gaining

223336 n plants, the large number of

support from in vivo cis-regulatory dissections in animals
predicted CREs in promoters suggest that such complexity is prevalent, and could involve
genetic and physical interactions with 3’ regions and also over long distances®’. However, as
shown by our mutagenesis of SICLV3 and SIWUS promoters, cis-regulatory complexity can vary
substantially between genes, highlighting the need for empirical dissections to understand cis-
regulatory control and its potential to give rise to quantitative variation. Compared to TFBSs,
which are often too abundant and diverse for functional characterizations, CNSs result from
purifying selection and often overlap with open chromatin®, making them prime candidates for in
vivo functional dissections by genome editing. Indeed, CNSs can reduce the large mutational
space of cis-regulatory regions and facilitate engineering QTLs by identifying sequences most
likely to produce quantitative variation for crop improvement.

Our results also show that the quantitative effects from a particular mutation can be
influenced by other mutations, particularly those that are closely linked. Cis-regulatory variation

. . 17-21
is pervasive in related genomes'’

, and the presence of other linked variants might be affecting
characterized QTL mutations, making it challenging to predict the precise quantitative effects of
engineered cis-regulatory mutations in different genetic backgrounds. Moreover, unlinked
mutations in coding or cis-regulatory regions can further modify outcomes from cis-regulatory

38,39 : .
=7, more dissections of

engineering’’. With the deployment of precision genome editing tools
complex interactions between natural and engineered variants that shape quantitative variation
will emerge, which in turn will guide the precise design of cis-regulatory alleles for crop

improvement.
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Figure legends.

Main figures

Fig. 1 | A large and diverse collection of CRISPR-Cas9 engineered SICLV3 promoter alleles
reveals complex relationships between promoter mutations and fruit locule number
variation. a, An expanded collection of 30 SICLV3 promoter alleles was generated using a
CRISPR-Cas9 genetic drive system”’. CRISPR-Cas9 transgenic plants are first generated by
transforming a construct carrying eight guide RNAs (gRNAs) targeting the promoter. Plants
confirmed to carry the Cas9 transgene are then screened by PCR for promoter mutations. Plants
biallelic for promoter mutations are then crossed to wild type (WT) plants. The inherited Cas9
transgene can target the WT allele in F1 progeny to generate new mutations. F2 progenies
resulting from F1 self-fertilization are then screened by PCR for homozygosity and absence of
the Cas9 transgene (i.e. negative for Cas9), and new SICLV3 promoter alleles are validated by
Sanger sequencing. b, Schematics depicting 29 CRISPR-Cas9 engineered SICLV3 promoter
(slclv3P) alleles, along with the domestication QTL allele fas. Large deletions, insertions, and
inversions are represented by red dashed lines, orange boxes, and red boxes, respectively. Small
insertions and deletions (indels) are indicated by numbers and letters. Red arrowheads, gRNAs.
Gray line, promoter region. Black box, start of the first exon. ¢, Heatmap representation of the
slelv3”” alleles and fas. The 2.1 kb promoter region is divided into 20 bp windows. Purple color
intensity in each window indicates the ratio of sequence changed (i.e. deleted) relative to WT.
Red color indicates inversion. d, Quantification of fruit locule number. Box plots show the 25th,
50™ (median), and 75™ percentiles for each genotype (left). Number of fruits quantified (n), mean

and standard deviation (sd) are shown. e, Fruit images showing ranges of locule number
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variation for WT and slclv3”™ alleles. Images of fruits representing locule number ranges (30™
and 70™ percentiles) for the selected genotypes: WT, slclv3™™?, slclv3”", slclv3’", slclv3"™?,
slelv3”% and slelv3’* are shown below images. Alleles are ordered according to phenotypic

strength (b-d).

Fig. 2 | Mutations in individual conserved sequences of the SICLV3 promoter result in weak
effects on locule number. a, Four sets of gRNAs (colored arrowheads) targeting four blocks of
conserved cis-regulatory sequences in the SICLV3 promoter. mVISTA plots of CLV3 promoter
sequence alignments between Solanum [lycopersicum (tomato) and three other Solanaceae
species (potato, Solanum tuberosum; pepper, Capsicum annuum; groundcherry, Physalis grisea)
show four conserved regions labeled R1-R4 (colored shading). Blue regions of mVISTA plots
indicate >70% sequence similarity over 100 bp windows. Each region was targeted individually
by CRISPR-Cas9. Predicted transcription factor binding sites (TFBSs) at relative profile score
thresholds of 95% (See Methods) are shown at the bottom (red triangles). b, Schematics

depicting five slclv3’ alleles with targeted mutations in conserved region R1 (slclv3”**®!

), their
heatmap representations, and quantification of locule numbers. Blue horizontal bars under allele
schematics indicate conserved non-coding sequences (CNSs) that are conserved across tomato,
potato, pepper and groundcherry. Stacked bar charts show the percentage of total fruits for each
locule number. Box plots show the distribution of locule numbers. Number of fruits (n), mean
and standard deviation (sd) of locule number are shown. The slclv3”°*' and slclv3”*™ alleles
showing significant weak effects are outlined with a red box. ¢, Schematic and heatmap
representations of three R2 alleles (slc/v3”°™) and quantification of locule numbers. d,
Schematic and heatmap representations of three R3 alleles (slc/v3”°™) and quantification of

locule numbers. e, Schematic and heatmap representations of five R4 alleles (slclv3”°**) and

quantification of locule numbers. Box plots in (b-e) show the 25", 50", and 75" percentiles for

3pro—R4—4 3pr0—R4—5

each genotype. The slclv and slclv alleles showing significant weak effects are
outlined with a red box. Significantly different locule numbers compared to WT are indicated in
(b) and (e) (p values of two-sided Dunnett's ‘compare with control’ test less than 0.2 are shown,

ns: not significant).
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Fig. 3 | Combining mutations in conserved cis-regulatory regions reveals additive,
redundant, and synergistic relationships between sequences in the SICLV3 promoter. a,
Combinations of mutations in R1 and R4 show increased locule numbers compared to individual
mutations in these regions. Schematics and heatmap representations of alleles with mutations in
R1 or R4 alone (left-top), and alleles with combined mutations in R1 and R4 from trans-targeting
(left-middle) or sequential editing (left-bottom). In alleles with combined mutations, original
mutations in one region is labeled by superscript numbers and newly generated mutations in the
other region is designated by superscript letters (Extended Data Fig. 3a,b). Stacked bar charts
and box plots show locule number quantifications (right). b, Summary of tests for non-additive
effects in combined alleles compared to individual mutations in R1 and R4 regions. If the
increase of locule numbers in a combined allele of R1 and R4 is significantly greater than the
sum of increases in individual R1 and R4 alleles (adjusted p-values<0.05), then there is a
synergistic relationship between the combined mutations. Otherwise, their relationship is
additive. Combined allele RI°+R4? (labeled with *) showed a non-additive effect in a different
experiment (Extended Data Fig. 3c,d). ¢, Schematics and heatmap representations of promoter
alleles with mutations in R1 or R2 alone and alleles with combined mutations in R1 and R2.
Stacked bar charts and box plots show locule number quantifications. d, Schematics and heatmap
representations of promoter alleles with mutations in R2 or R4 alone and alleles with combined
mutations in R2 and R4. Stacked bar charts and box plots show locule number quantifications. e,
Summary of the genetic relationships between conserved cis-regulatory regions. Phenotypic
effects of representative alleles with combined mutations showing different genetic relationships
(top). A diagrammatic summary of different genetic relationships between conserved SICLV3
promoter regions (bottom). Box plots in (a, ¢-e) show the 25", 50" and 75™ percentiles for each
genotype. P values in (a, ¢, and d) are from two-sided Dunnett's ‘compare with control’ test (p

values less than 0.2 are shown, ns: not significant).

Fig. 4 | The promoter of SIWUS is more tolerant to genetic perturbations. a, CLV3 and
WUS function in a conserved negative feedback circuit that modulates stem cell proliferation
and meristem size. Red and blue colored areas indicate conventional expression domains for
CLV3 and WUS, respectively. LP, leaf primordia. b, CRISPR-Cas9 mutagenesis of the SIWUS

CR-cds

coding sequence (slwus ). SIWUS gene model and gRNA target positions (top, red arrows)
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are shown, along with sequences of WT and two slwus“®“* null alleles (bottom). Black box,
black line and grey box represent exon, intron and UTR. ¢, Terminated primary shoot meristem

CR-cds-1

in the slwus mutant (right) compared to WT (left). White arrowhead marks terminated

meristem with two leaves. L, leaf. The same phenotype was observed for siwus“®“*? (n > 10

individual plants). d, Repetitive meristem initiation and termination phenotype of the slwus®“*"

" null mutant. Inset in the middle image shows reinitiated disorganized meristems (white
arrowheads) that quickly terminate after generating one or two leaf primordia (e.g. red

arrowhead). The same phenotype was observed for shwus®“*~

. e, Schematic depicting seven
SIWUS promoter (slwus”") alleles (top). Blue arrows, gRNA targets. Red dashed lines, deletions.
Red box, inversion. Orange triangle, insertion. Predicted TFBSs at relative profile score
thresholds of 99% are shown as red triangles (middle). mVISTA plots of WUS promoter
sequence alignments between tomato and potato, pepper, and groundcherry show five regions of
conserved sequences (bottom). f, Heatmap representations of s/wus” alleles (top). Schematic
depicting a CRISPR-Cas9 generated allele of the SIWUS 3’ region mimicking the domestication
cis-regulatory QTL allele /c**. g, Quantification of locule number in siwus”® alleles. The
slwust”" allele showing a weak gain-of-function effect is outlined with a red box. h, Locule
number quantifications showing that siwus”°? and siwus”*> reduce locule number in the
slelv3’*?° (7.3 kb deletion) background. Alleles are ordered the same in e-g. Box plots in g and
h show the 25", 50", and 75™ percentiles for each genotype. P values in (g) and (h) are from
two-sided Dunnett's ‘compare with control’ test (WT and slclv3”?’ as controls, respectively; p

values less than 0.2 are shown; ns: not significant).
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Methods

Plant material, growth conditions, and phenotyping. Seeds of wild type (Solanum
Iycopersicum cultivar M82, LA3475), fas, slclv3-10 and Ic® in the M82 background were from
our own stocks. Seeds were either germinated on moistened filter paper at 28 °C in the dark and
later transferred to soil or directly sown in soil in 96-cell plastic flats and grown to 4~5-week-old
seedlings in the greenhouse before being transplanted to pots in the greenhouse or directly to
fields at Cold Spring Harbor Laboratory. The greenhouse condition is long-day (16 h light, 26-
28 °C / 8 h dark, 18-20 °C; 40-60% relative humidity) with natural light supplemented with
artificial light from high-pressure sodium bulbs (~250 pmol m > s '). Plants in the fields were
grown under drip irrigation and standard fertilizer regimes, and were used for quantifications of
fruit locule number. We counted locules from approximately 100 fruits from about 10 individual
plants for each genotype. The locule number phenotyping experiments were repeated over two
summer field seasons, representing different soil conditions and environments. Locule data in
Fig. 1, Extended Data Fig. 2, Extended Data Fig. 3 and Extended Data Fig. 4 are from
experiments in 2019, while data in Fig. 2, Fig. 3 and Fig. 4 and Extended Data Fig. 1 are from
experiments in 2020. Phenotypes of s/wus null mutants were observed in more than ten plants

during at least two growing seasons.

CRISPR-Cas9 mutagenesis, plant transformation, and selection of mutant alleles.
CRISPR-Cas9 mutagenesis and generation of transgenic tomato lines were performed as

described previously *.

Briefly, gRNAs were designed using the CRISPRdirect tool
(https://crispr.dbels.jp/)*!. Binary vectors for Cas9 and gRNAs were assembled using Golden
Gate cloning as described ****. The final binary plasmids were introduced into wild type M82 or
homozygous promoter alleles by Agrobacterium tumefaciens-mediated transformation through
tissue culture *. First-generation (TO) transgenic plants were transplanted in soil and grown
under standard greenhouse conditions. Genotyping of CRISPR-generated mutations was
performed as previously described ». Briefly, gRNA target regions were PCR amplified in TO
transgenic plants (gRNA and primer sequences for genotyping are listed in Supplementary Table
1). PCR products were then analyzed by gel electrophoresis and cloned into pSC-B-amp/kan

(Agilent) following the manufacturer’s instructions for Sanger sequencing. Sequences were

assembled using Geneious (v11.1.5).
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Cis-regulatory sequence conservation analyses and TFBS prediction. For comparative
sequence analysis of Solanaceaec CLV3 promoters, the syntenic regions of S/ICLV3 and
surrounding sequences in S. tuberosum, S. annuum and P. grisea were identified by BLAST
using the SICLV3 genomic sequence, including the protein coding regions** *. 3 kb genomic
sequences upstream of the CLV3 coding regions from S. tuberosum, S. annum and P. grisea were
aligned to those of S. [lycopersicum using mVISTA LAGAN alignment
(http://genome.lbl.gov/vista/mvista/submit.shtml )*’. The plots show alignment windows of
100bp at a similarity threshold of 70%, highlighted in blue. The same analysis was performed
with 3kb promoter sequences of WUS. Predicted TFBSs were identified from 1.5 kb of the
SICLV3 promoter and 2.6 kb of the SIWUS promoter. Plant TF motifs in JASPAR Core Plantae*®
were used with FIMO motif scanning in the MEME suite (http:/meme-
suite.org/doc/fimo.html)*. Relative profile score thresholds of 95% and 99% were used as cut-

offs to show TFBSs in the SICLV3 and SIWUS promoters, respectively.

RNA extraction and Quantitative RT-PCR (qPCR). For gene expression analysis, seeds were
germinated on moistened filter paper at 28 °C in dark. After germination, seedlings at similar
stages were transferred to soil in 96-cell plastic flats and grown in the greenhouse. Shoot apices
including the first floral meristem and sympodial inflorescence meristems were collected at the
floral meristem stage of meristem maturation®’, and immediately flash-frozen in liquid nitrogen.
Seven to ten apices were combined as one biological replicate and three replicates were collected
for each genotype. Total RNA was extracted using TRIzol® Reagent (Invitrogen) and 200 ng of
total RNA was used for cDNA synthesis using the SuperScript IV VILO Master Mix
(Invitrogen). qPCR was performed with gene-specific primers using the 1Q SYBR Green
SuperMix (Bio-Rad) reaction system on the CFX96 Real-Time system (Bio-Rad). Primer

sequences are available in Supplementary Table 1.

Statistical analyses. For Pairwise comparisons between promoter alleles and wild type, locule
number phenotypes in alleles having mutations in individual conserved regions or with combined
mutations were compared to the isogenic wild type control M82 using Dunnett's ‘compare with

control’ tests.
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For tests of genetic interactions, a pairwise interaction between mutations in two regions
(e.g. R1 and R4) was defined as the difference between the locule number change in the
combined allele, R/+R4, and the expected locule number change obtained by the addition of
locule number changes from alleles with mutations in single regions (R1 and R4). The

interaction between two mutations is:

er1+ra = (UR1+R4 — Hwr) — ((Iim — twr) + (Ups — :uWT))
= HUR1+Ra — Ur1 — Ura + Uwr
in which p is the mean locule number. To test if there was any significant interaction, the
probability of €zq g4 being different from 0 (the p-value) was calculated using the parameters

below:

The sample distribution of €zq4g4 follows approximately a normal distribution with mean

estimate
U = Ep1+ra = UR1+R4 — UR1 — Ur4 + Uwr
and variance of
~ 2 A 2 A 2 A 2
2 _ OR1+R4 OR1 OR4 Owr

- +— 2y
NR1+R4 NR1 NR4 Ny

Q>

in which & is the sample variance and n is number of samples. P values were adjusted using
Benjamini-Hochberg (BH) method. Since newly induced mutations in the combined alleles are
not exactly the same as those in alleles with mutations only in individual conserved regions, we
used the strongest phenotypes from mutations in each CNS region to represent their expected
additive effects and tested for non-additivity.

For expression analyses using RT-qPCR, three biological replicates of pooled meristems
were used for each genotype and at least two technical replicates were performed for each
biological replicate. Means =+ s.e. were shown and mean values between groups were compared

by two-sample t tests.

Reporting Summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.
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581 Data Availability

582 Source Data files for all main and Extended Data figures are available in the online
583  version of the paper. All additional data sets are available from the corresponding author upon
584  request.
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Figure 3
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Extended Data Fig. 1
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Extended Data Fiqg. 2
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Extended Data Fig. 3
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Extended Data Fig. 4
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