1 Dissecting cis-regulatory control of quantitative trait variation in a

2 plant stem cell circuit

- 3 Xingang Wang¹, Lyndsey Aguirre^{1,2}, Daniel Rodríguez-Leal^{1,4}, Anat Hendelman¹, Matthias
- 4 Benoit^{1,3}, and Zachary B. Lippman^{1,2,3*}
- 5 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- 6 ² School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- ³ Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY,
- 8 USA

10

13

- 9 ⁴ Present address: Inari Agriculture, Cambridge, MA, USA
- * To whom correspondence may be addressed:
- lippman@cshl.edu

Cis-regulatory mutations underlie important crop domestication and improvement traits^{1,2}. However, limited allelic diversity has hindered functional dissection of the large number of cis-regulatory elements and their potential interactions, thereby precluding a deeper understanding of how cis-regulatory variation impacts traits quantitatively. Here, we engineered over 60 promoter alleles in two tomato fruit size genes^{3,4} to characterize cis-regulatory sequences and study their functional relationships. We found that targeted mutations in conserved promoter sequences of SICLV3, a repressor of stem cell proliferation^{5,6}, have a weak impact on fruit locule number. Pairwise combinations of these mutations mildly enhance this phenotype, revealing additive and synergistic relationships between conserved regions, and further suggesting even higher-order cis-regulatory interactions within the SICLV3 promoter. In contrast, SIWUS, a positive regulator of stem cell proliferation repressed by SICLV3^{5,6}, is more tolerant to promoter perturbations. Our results show that complex interplay among cis-regulatory variants can shape quantitative variation, and suggest that empirical dissections of this hidden complexity can guide promoter engineering to predictably modify crop traits.

Cis-regulatory DNA determines patterns and levels of gene expression, and decoding this regulatory information is essential in understanding how genotypes translate to phenotypes. The vast *cis*-regulatory space surrounding genes makes it challenging to identify functional sequences⁷. Recent studies in diverse plant species have predicted the genome-wide presence of *cis*-regulatory elements (CREs) using sequence conservation, transcription factor binding, chromatin accessibility, and other molecular and computational approaches^{8–15}. However, empirical characterization of whether and to what extent these sequences regulate phenotypes are lagging far behind.

The identification of rare, natural mutations contributing to crop domestication and improvement has illuminated the importance of *cis*-regulatory regions in controlling quantitative trait variation^{1,2,16}. Emerging pan-genomes have exposed expansive *cis*-regulatory variation, including simple variants (e.g. SNPs, indels) and more complex structural variants (SVs), which are often associated with modified expression and phenotypes^{17–21}. However, identifying causative mutations is challenging, as variants with subtle effects are difficult to resolve and multiple mutations within and between *cis*-regulatory regions could be acting together to

influence phenotypes^{22–24}. Thus, the limited number of characterized alleles has been insufficient to dissect the functional components of a gene's *cis*-regulatory space, leaving it unclear why specific genetic perturbations result in specific quantitative phenotypic outputs. Resolving these relationships is key for the precise design and engineering of *cis*-regulatory alleles with predictable effects on crop improvement^{16,25}. Here, we use genome editing to finely dissect *cis*-regulatory control of quantitative trait variation in two genes controlling stem cell proliferation and fruit size in tomato.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

The CLAVATA3 (CLV3) gene encodes a conserved small signaling peptide that inhibits stem cell proliferation in the shoot apical meristem in many plants^{5,6,26}. Similar to other species^{27–30}, loss of tomato (Solanum lycopersicum, denoted with 'Sl' prefix) SlCLV3 results in enlarged meristems that cause fasciated phenotypes, including many more seed compartments (locules) in fruits compared to wild type plants (WT)^{4,25}. We previously developed a CRISPR-Cas9 multiplex mutagenesis drive system to engineer quantitative trait loci (QTLs) for crop improvement²⁵. Using this tool, we generated 15 SlCLV3 promoter (slclv3^{pro}) alleles, which resulted in a range of fruit locule number variation²⁵. However, the limited number of alleles, each having multiple mutations in a 1.7 kb target region, precluded association of specific promoter sequences with quantitative phenotypic changes. Hence, to increase mapping resolution, we used the same CRISPR-Cas9 drive system with eight gRNAs to generate 14 new slclv3^{pro} alleles (Fig. 1a). The resulting series of 30 alleles, including the natural QTL inversion allele fasciated (fas) and a null allele that eliminates 7.3 kb of SICLV3 promoter and coding sequence (slclv3^{pro-29}), contained various types of mutations, such as large deletions, inversions, and small indels across the target region. To simplify their visualization, we encoded each promoter allele using heatmap representations of sequence modifications in sequential 20 bp windows (Fig. 1b, c). Arranging the slclv3^{pro} alleles by phenotypic strength revealed a continuum of locule number variation, and trends in associations between *cis*-regulatory mutations and phenotypes. 14 of the alleles had weak increases in locule number (slclv3^{pro-4} to slclv3^{pro-17}; ~1-3 more locules than WT) and were associated primarily with deletions that disrupted the proximal half of the target region (Fig. 1d and Extended Data Fig. 1a,b). In contrast, most of the slclv3^{pro} alleles with locule number increases greater than fas (mean 6.1 locules) disrupted the distal half of the target region, and often contained mutations in both proximal and distal regions. Two alleles with the strongest effects on locule number removed most (slclv3^{pro-27}) or all of the target region (slclv3^{pro-28}) and

nearly matched the effect of the null allele (*slclv3*^{pro-29}, mean 15.8 locules). Though there were exceptions to these trends, likely due to multiple and different combinations of mutations across all promoter alleles, the expanded *slclv3*^{pro} allelic series indicated that multiple sequences throughout the *SlCLV3* promoter are important for its function, with a more prominent role for sequences in the distal region.

However, this expanded allelic diversity was still insufficient to relate specific *cis*-regulatory regions to quantitative phenotypic effects. Sequence conservation could indicate *cis*-regulatory function^{11,31}. We searched for conserved non-coding sequences (CNSs) by aligning the *SICLV3* promoter sequence with corresponding regions from the related Solanaceae species potato (*Solanum tuberosum*), pepper (*Capsicum annuum*), and groundcherry (*Physalis grisea*), representing 25 million years of evolution. This analysis (see Methods) identified three deeply conserved CNS regions (designated R1, R3, R4) (**Fig. 2a**), and an additional CNS region (R2) is shared only between tomato and potato. We also identified dozens of predicted transcription factor binding sites (TFBSs) throughout the entire *SICLV3* promoter, including many in the CNS regions; however, the abundance of these sequences makes precise and systematic functional characterizations impracticable (**Fig. 2a**).

We therefore used the available gRNA recognition sites to design four new CRISPR-Cas9 constructs, each having three or four gRNAs to remove all or large portions of each CNS region. We generated 16 alleles in total, with at least three alleles for each region (**Fig. 2b-e**). Five deletion alleles in R1 ranged in size from 3 bp to 226 bp, and the two smallest deletions (3 bp and 63 bp deletion) had no effect on locule number, suggesting the underlying sequences are not critical for promoter function. Notably, only the three largest R1 deletion alleles, from allele *slclv3*^{pro-R1-3} (73 bp deletion) to *slclv3*^{pro-R1-5} (226 bp deletion, removing the entire targeted region and most of the R1 CNS), caused weak increases in locule number compared to WT (**Fig. 2b**). Similarly, none of the other 11 deletion alleles in the other CNS regions had a substantial effect on locule number, and only the two largest R4 deletion alleles (*slclv3*^{pro-R4-4}: 91 bp deletion and *slclv3*^{pro-R4-5}: 340 bp deletion) weakly increased locule number, similar to the largest R1 deletions. These observations suggest that disruption of multiple sequences within a conserved region is likely required to translate into a phenotypic effect. The absence of phenotypes from R2 alleles, including *slclv3*^{pro-R2-3} that disrupted the entire R2 region, is consistent with this CNS region being less conserved throughout Solanaceae, and the largest R3 allele removed only half of the

2a-d). Most of the CNS alleles impacted at least one TFBS, and many of the larger deletions removed many of them. However, loss of multiple TFBSs did not always result in a phenotype (e.g. *slclv3*^{pro-R1-5} vs. *slclv3*^{pro-R2-3}), suggesting we could not use these sites as predictors of phenotypic effects. We also tested if changes in *SlCLV3* expression were associated with phenotypes, and only subtle expression differences were detected in these alleles. Consistent with previous observations²⁵, there were no strong correlations between altered expression and phenotypic effects (**Extended Data Fig. 2e-i**). Together, these results show that CNSs contain functional sequences, and that the R1 and R4 CNS regions are important for *SlCLV3* promoter function, but only partially contribute to its activity.

The weak phenotypes of individual R1 and R4 deletion alleles compared to the alleles that removed both proximal and distal promoter sequences (Fig. 1b-d and Fig. 2b-e) suggested genetic interactions between conserved regions. To explore these relationships, we devised two strategies to create alleles with combinations of mutations in two different CNS regions (Extended Data Fig. 3a,b), since their close physical distances prevented combining them by recombination. Our approaches preserve an existing mutation in one CNS region and then introduce a new mutation in a second CNS region, which avoids altering sequences between two targeted regions. In the first approach, trans-targeting, we crossed plants homozygous for individual mutations that also carry their respective CRISPR-Cas9 transgenes to allow for reciprocal targeting of the inherited wild type CNSs. Alleles with mutations in two CNSs were then identified in F1 plants, and homozygous mutants were recovered in F2 populations (Extended Data Fig. 3a). Our second approach used sequential editing, in which transgene-free homozygous mutants having a deletion in one region were transformed with a CRISPR-Cas9 construct targeting a second region (Extended Data Fig. 3b). Since only the largest deletion alleles in our individual CNS targeting resulted in phenotypes, we focused on isolating new alleles with large perturbations in combinations of CNS regions. Applying both approaches, we obtained a total of 13 pairwise combined mutations in R1-R4, R1-R2, and R2-R4, with at least two alleles for each combination of targeted CNS regions.

Nine new alleles with mutations in both R1 and R4 all caused a greater increase in locule number compared to the strongest allele from each individual region (Fig. 3a and Extended Data Fig. 3c), with different R1-R4 combined alleles enhancing the phenotype to varying

degrees (Fig. 3a, e.g. $R1^5 + R4^c$ vs. $R1^b + R4^5$). This result prompted us to test if the enhanced phenotypes were the sum of effects from individual R1 and R4 mutations, or if they exceeded them (i.e. additivity vs. synergism). Since the newly induced mutations in the combined alleles were different from the original individual mutations, we performed stringent tests of additivity or synergism by using the sum of the effects from the strongest individual alleles in each region. Our statistical analyses (see Methods) showed that four of the nine R1-R4 combined alleles had synergistic effects (Fig. 3a,b and Extended Data Fig. 3c,d), and one $(R1^5 + R4^d)$ was synergistic in one experiment and additive in another, possibly due to environmental influence. The remaining four combined alleles had additive effects, and interestingly three of them had small indels in either R1 or R4 (Extended Data Fig. 3c,d), which overlapped with indels that showed no effect on their own (Fig. 2b-e). This suggested that some mutations exhibit phenotypic effects only in the presence of other mutations, reflecting redundant relationships between the underlying sequences. A similar relationship was evident between some mutations in R2, which have no effect on their own, and mutations in other regions (Fig. 2c). For example, the combined $R1^5+R2^a$ allele, which inherited the original R1 mutation and a partial R2 deletion, resulted in similar locule numbers as the single R1 mutation (Fig. 3c), whereas an allele that removed R1 and R2 together (R1+R2) resulted in a much stronger phenotype. These observations suggest that the R2 CNS functions redundantly with the R1 CNS; however, this allele disrupted an additional 40 bp near R1 relative to the original single mutation, which could be contributing to enhancement (Fig. 3c and Extended Data Fig. 3e). Such redundant effects may be specific, as combining R2 and R4 mutations did not increase locule number compared to R4 alleles alone, though R2 was not entirely deleted in the R2-R4 combined alleles (Fig. 3d). Together, these results show that additive, synergistic, and redundant relationships among conserved sequences all contribute to SICLV3 promoter function (Fig. 3e). Notably, the strongest combined alleles still showed only moderate phenotypic effects, indicating even higher-order interactions underlie the wide range of quantitative variation from the *SlCLV3* promoter (**Fig. 1b-d**).

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

CLV3 functions in a deeply conserved negative feedback relationship with the homeodomain transcription factor WUSCHEL (WUS), which promotes stem-cell proliferation (**Fig. 4a**)^{5,6}. A weak gain-of-function *cis*-regulatory allele (lc) that disrupts sequences downstream of tomato *WUS* (SIWUS) underlies a locule number QTL with a similar effect as weak $slclv3^{pro}$ alleles^{3,25}. We therefore tested whether similar cis-regulatory complexity controls

SIWUS. Null mutations of WUS in Arabidopsis thaliana cause premature termination of the primary shoot meristem during embryogenesis, and produce axillary meristems that cycle between reinitiation and termination of vegetative and floral meristems after a few organs have formed. In contrast, hypomorphic wus alleles can form several leaves before primary meristem termination, and axillary meristems give rise to shoots and normal flowers³²⁻³⁴. As there are no known loss-of-function mutations in SIWUS, we generated two frame-shift alleles by targeting its coding sequence with two gRNAs (Fig. 4b). Similar to Arabidopsis, homozygous null slwus mutant seedlings failed to maintain the shoot apical meristem, which terminated after producing 2-3 leaves (Fig. 4c). Reinitiated meristems would then develop and produce a leaf before terminating, resulting in stunted bushy plants that never produced shoots or transitioned to reproductive growth (Fig 4c,d). To test potential quantitative effects from SIWUS promoter alleles, we performed CRISPR-Cas9 multiplex mutagenesis on a 2.6 kb target region that included four CNS regions (out of five in the SIWUS promoter), and generated eight diverse alleles having mostly large deletions that removed one or more CNSs and also intervening sequences (Fig. 4e,f). The most severe allele (slwus^{pro-8}, 1.9 kb deletion), which eliminated three CNSs and had a rearrangement in the proximal CNSs that could not be resolved, was similar to the null coding sequence mutants (Extended Data Fig. 4a). Interestingly, all other slwus^{pro} mutants appeared normal, including flower and fruit development, although they occasionally produced extra cotyledons. We asked if these promoter alleles caused weak effects on locule number; however, all were similar to WT, with the exception of allele slwus^{pro-6}. This allele contained a 223 bp insertion and a 554 bp inversion and caused a subtle increase in locule number similar to lc (Fig. 4f, g and Extended Data Fig. 4b). These results suggest that the SIWUS promoter is more tolerant to perturbations than the SICLV3 promoter, though the most critical sequences might be in a proximal 350 bp conserved region overlapping the 5' UTR, which was not included in our target region. We also asked if the slwus^{pro} alleles could have effects in sensitized genotypes that produce fruits with many locules. To test this, we crossed the slclv3^{pro-29} null allele with two slwus^{pro} alleles that disrupted a single CNS or multiple CNSs (slwus^{pro-4} and slwus^{pro-5}, respectively), and both double mutants showed a partial suppression of locule number (mean of 12-14 locules in double mutants compared to mean of 16 locules in slclv3^{pro-29}) (**Fig. 4h**). These results are also consistent with quantitative epistatic relationships between cis-regulatory mutations in CLV3 and WUS²⁵. Thus, mutations in the promoter of

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

SIWUS can also cause locule number variation, and some of these effects may depend on background mutations.

In conclusion, we have shown that multiple functional components within a promoter, represented by conserved sequences and their genetic interactions, underlie the complex relationships between *cis*-regulatory regions and their contribution to quantitative phenotypic effects. The additive, redundant and synergistic relationships revealed from our *in vivo* dissection of the SICLV3 promoter may reflect a broader principle of how promoters and other cisregulatory regions of plant genes are buffered from genetic perturbations, a theme also gaining support from in vivo cis-regulatory dissections in animals^{22,35,36}. In plants, the large number of predicted CREs in promoters suggest that such complexity is prevalent, and could involve genetic and physical interactions with 3' regions and also over long distances^{8,9}. However, as shown by our mutagenesis of SlCLV3 and SlWUS promoters, cis-regulatory complexity can vary substantially between genes, highlighting the need for empirical dissections to understand cisregulatory control and its potential to give rise to quantitative variation. Compared to TFBSs, which are often too abundant and diverse for functional characterizations, CNSs result from purifying selection and often overlap with open chromatin⁸, making them prime candidates for *in* vivo functional dissections by genome editing. Indeed, CNSs can reduce the large mutational space of *cis*-regulatory regions and facilitate engineering QTLs by identifying sequences most likely to produce quantitative variation for crop improvement.

Our results also show that the quantitative effects from a particular mutation can be influenced by other mutations, particularly those that are closely linked. *Cis*-regulatory variation is pervasive in related genomes^{17–21}, and the presence of other linked variants might be affecting characterized QTL mutations, making it challenging to predict the precise quantitative effects of engineered *cis*-regulatory mutations in different genetic backgrounds. Moreover, unlinked mutations in coding or *cis*-regulatory regions can further modify outcomes from *cis*-regulatory engineering³⁷. With the deployment of precision genome editing tools^{38,39}, more dissections of complex interactions between natural and engineered variants that shape quantitative variation will emerge, which in turn will guide the precise design of *cis*-regulatory alleles for crop improvement.

231

232

233

234

235

236 References

- 237 1. Swinnen, G., Goossens, A. & Pauwels, L. Lessons from Domestication: Targeting Cis-
- Regulatory Elements for Crop Improvement. *Trends in Plant Science* **21**, 506–515 (2016).
- 239 2. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: Genetics of domestication
- and diversification. *Nature Reviews Genetics* **14**, 840–852 (2013).
- 3. Muños, S. et al. Increase in Tomato Locule Number Is Controlled by Two Single-
- Nucleotide Polymorphisms Located Near WUSCHEL. *Plant Physiol.* **156**, 2244–2254
- 243 (2011).
- 4. Xu, C. et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato.
- 245 Nat. Genet. 47, 784–792 (2015).
- Somssich, M., Je, B. Il, Simon, R. & Jackson, D. CLAVATA-WUSCHEL signaling in the
- shoot meristem. *Development* **143**, 3238–3248 (2016).
- Soyars, C. L., James, S. R. & Nimchuk, Z. L. Ready, aim, shoot: stem cell regulation of
- 249 the shoot apical meristem. *Curr. Opin. Plant Biol.* **29**, 163–168 (2016).
- 250 7. Galli, M., Feng, F. & Gallavotti, A. Mapping Regulatory Determinants in Plants. *Front.*
- 251 *Genet.* **11**, 1280 (2020).
- 252 8. Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory
- elements. *Nat. Plants* **5**, 1250–1259 (2019).
- 254 9. Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize genome.
- 255 *Nat. Plants* **5**, 1237–1249 (2019).
- 256 10. Tu, X. et al. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104
- 257 transcription factors. *Nat. Commun.* **11**, 5089 (2020).
- 258 11. Song, B. et al. Constrained non-coding sequence provides insights into regulatory
- elements and loss of gene expression in maize. Preprint at
- 260 https://doi.org/10.1101/2020.07.11.192575 (2020).
- 261 12. Jores, T. et al. Identification of Plant Enhancers and Their Constituent Elements by

- 262 STARR-seq in Tobacco Leaves. *Plant Cell* **32**, 2120–2131 (2020).
- 263 13. Mejía-Guerra, M. K. & Buckler, E. S. A k-mer grammar analysis to uncover maize
- regulatory architecture. *BMC Plant Biol.* **19**, 103 (2019).
- 265 14. Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. & Gao, G. PlantRegMap: charting functional
- regulatory maps in plants. *Nucleic Acids Res.* (2019). doi:10.1093/nar/gkz1020
- 267 15. Crisp, P. A. et al. Stable unmethylated DNA demarcates expressed genes and their cis-
- regulatory space in plant genomes. *Proc. Natl. Acad. Sci.* 117, 23991–24000 (2020).
- 269 16. Springer, N., de León, N. & Grotewold, E. Challenges of Translating Gene Regulatory
- 270 Information into Agronomic Improvements. *Trends Plant Sci.* **24**, 1075–1082 (2019).
- 271 17. Alonge, M. et al. Major Impacts of Widespread Structural Variation on Gene Expression
- and Crop Improvement in Tomato. *Cell* **182**, 145-161.e23 (2020).
- 273 18. Liu, Y. et al. Pan-Genome of Wild and Cultivated Soybeans. Cell 182, 162-176.e13
- 274 (2020).
- 275 19. Walkowiak, S. *et al.* Multiple wheat genomes reveal global variation in modern breeding.
- 276 *Nature* **588**, 277–283 (2020).
- 277 20. Jayakodi, M. *et al.* The barley pan-genome reveals the hidden legacy of mutation breeding.
- 278 Nature **588**, 284–289 (2020).
- 279 21. Haberer, G. et al. European maize genomes highlight intraspecies variation in repeat and
- gene content. *Nat. Genet.* **52**, 950–957 (2020).
- 281 22. Fuqua, T. *et al.* Dense and pleiotropic regulatory information in a developmental enhancer.
- 282 *Nature* **587**, 235–239 (2020).
- 283 23. Jakobson, C. M. & Jarosz, D. F. What Has a Century of Quantitative Genetics Taught Us
- 284 About Nature's Genetic Tool Kit? *Annu. Rev. Genet.* **54**, 439–464 (2020).
- 285 24. Zeitlinger, J. Seven myths of how transcription factors read the cis-regulatory code. *Curr*.
- 286 *Opin. Syst. Biol.* **23**, 22–31 (2020).
- 287 25. Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B.
- Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. *Cell*
- **171**, 470-480.e8 (2017).
- 290 26. Fletcher, J. The CLV-WUS Stem Cell Signaling Pathway: A Roadmap to Crop Yield
- 291 Optimization. *Plants* **7**, 87 (2018).
- 292 27. Fan, C. et al. A Novel Single-Nucleotide Mutation in a CLAVATA3 Gene Homolog

- 293 Controls a Multilocular Silique Trait in Brassica rapa L. *Mol. Plant* 7, 1788–1792 (2014).
- 294 28. Fletcher, J. C. Signaling of Cell Fate Decisions by CLAVATA3 in Arabidopsis Shoot
- 295 Meristems. *Science* **283**, 1911–1914 (1999).
- 29. Suzaki, T. et al. Conservation and Diversification of Meristem Maintenance Mechanism
- in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 Gene. *Plant Cell Physiol*.
- **47**, 1591–1602 (2006).
- 299 30. Rodriguez-Leal, D. et al. Evolution of buffering in a genetic circuit controlling plant stem
- 300 cell proliferation. *Nat. Genet.* **51**, 786–792 (2019).
- 301 31. Nelson, A. C. & Wardle, F. C. Conserved non-coding elements and cis regulation: actions
- speak louder than words. *Development* **140**, 1385–1395 (2013).
- 303 32. Laux, T., Mayer, K. F. X., Berger, J. & Jürgens, G. The WUSCHEL gene is required for
- shoot and floral meristem integrity in Arabidopsis. *Development* **122**, 87–96 (1996).
- 305 33. Lin, T.-F., Saiga, S., Abe, M. & Laux, T. OBE3 and WUS Interaction in Shoot Meristem
- 306 Stem Cell Regulation. *PLoS One* **11**, e0155657 (2016).
- 307 34. Mayer, K. F. X. et al. Role of WUSCHEL in Regulating Stem Cell Fate in the
- 308 Arabidopsis Shoot Meristem. *Cell* **95**, 805–815 (1998).
- 309 35. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in
- 310 mammalian development. *Nature* **554**, 239–243 (2018).
- 311 36. Torbey, P. et al. Cooperation, cis-interactions, versatility and evolutionary plasticity of
- multiple cis-acting elements underlie krox20 hindbrain regulation. *PLOS Genet.* **14**,
- 313 e1007581 (2018).
- 314 37. Soyk, S., Benoit, M. & Lippman, Z. B. New Horizons for Dissecting Epistasis in Crop
- Quantitative Trait Variation. Annu. Rev. Genet. 54, 287–307 (2020).
- 316 38. Ren, Q. et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat.
- 317 *Plants* 7, 25–33 (2021).
- 318 39. Wang, S. et al. Precise, predictable multi-nucleotide deletions in rice and wheat using
- 319 APOBEC–Cas9. *Nat. Biotechnol.* **38**, 1460–1465 (2020).
- 320 40. Brooks, C., Nekrasov, V., Lipppman, Z. B. & Van Eck, J. Efficient gene editing in tomato
- in the first generation using the clustered regularly interspaced short palindromic
- repeats/CRISPR-associated9 system. *Plant Physiol.* **166**, 1292–1297 (2014).
- 323 41. Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: Software for designing

- 324 CRISPR/Cas guide RNA with reduced off-target sites. *Bioinformatics* **31**, 1120–1123
- 325 (2015).
- 326 42. Werner, S., Engler, C., Weber, E., Gruetzner, R. & Marillonnet, S. Fast track assembly of
- multigene constructs using golden gate cloning and the MoClo system. *Bioeng. Bugs* **3**,
- 328 38–43 (2012).
- 329 43. Van Eck, J., Keen, P. & Tjahjadi, M. Agrobacterium tumefaciens-Mediated
- Transformation of Tomato. in *Transgenic Plants: Methods and Protocols* (eds. Kumar, S.,
- Barone, P. & Smith, M.) 225–234 (Springer New York, 2019). doi:10.1007/978-1-4939-
- 332 8778-8 16
- 333 44. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by
- genome editing. *Nat. Plants* **4**, 766–770 (2018).
- 335 45. Qin, C. *et al.* Whole-genome sequencing of cultivated and wild peppers provides insights
- into Capsicum domestication and specialization. *Proc. Natl. Acad. Sci.* **111**, 5135–5140
- 337 (2014).
- 338 46. Hardigan, M. A. et al. Genome Reduction Uncovers a Large Dispensable Genome and
- Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum.
- 340 Plant Cell 28, 388–405 (2016).
- 47. Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA:
- computational tools for comparative genomics. *Nucleic Acids Res.* **32**, W273–W279
- 343 (2004).
- 344 48. Mathelier, A. et al. JASPAR 2016: a major expansion and update of the open-access
- database of transcription factor binding profiles. *Nucleic Acids Res.* **44**, D110–D115
- 346 (2016).
- 347 49. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given
- 348 motif. *Bioinformatics* **27**, 1017–1018 (2011).
- 349 50. Park, S. J., Jiang, K., Schatz, M. C. & Lippman, Z. B. Rate of meristem maturation
- determines inflorescence architecture in tomato. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 639–
- 351 644 (2012).
- 352
- 353
- 354

Acknowledgements

We thank members of the Lippman laboratory and D. Jackson for discussions and comments on the manuscript. We thank G. Robitaille, J. Kim, A. Krainer and R. Santos for technical support. We thank Z. H. Lemmon for assistance in allele characterization. We thank L. Randall, A. Doyle, P. Keen, K. Swartwood, M. Tjahjadi and J. Van Eck for performing tomato transformations. We thank T. Mulligan, K. Schlecht, A. Krainer, C. Gilbert, and S. Qiao for assistance with plant care. We thank T. Ha for assistance with statistical analyses. This research was supported by the Howard Hughes Medical Institute and grant support from: the BARD (United States-Israel Binational Agricultural Research and Development Fund, IS-5120-18C) to Z.B.L., and the Vaadia-BARD Postdoctoral Fellowship (award no. FL-542-16) to A.H., and the National Science Foundation Plant Genome Research Program (grant nos. IOS-1546837 and IOS-1732253) to Z.B.L.

Author contributions

Z.B.L. conceived the project. X.W., L.A., D.R.L., A.H. and Z.B.L. designed and planned experiments. X.W., L.A., D.R.L., A.H., M.B., and Z.B.L performed experiments and collected data. X.W., L.A., D.R.L., A.H., M.B., and Z.B.L analyzed data, and X.W. and Z.B.L. wrote the manuscript with input from L.A. All authors read, edited, and approved the manuscript.

Competing interests

Z.B.L. is a consultant for and a member of the Scientific Strategy Board of Inari Agriculture, and he is also a named inventor on a number of patents and patent applications directed to related technology that have been exclusively licensed from CSHL to Inari Agriculture.

384

382

383

385

386

387

388

389 Figure legends.

390 391

Main figures

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

Fig. 1 | A large and diverse collection of CRISPR-Cas9 engineered SICLV3 promoter alleles reveals complex relationships between promoter mutations and fruit locule number variation. a, An expanded collection of 30 SICLV3 promoter alleles was generated using a CRISPR-Cas9 genetic drive system²⁴. CRISPR-Cas9 transgenic plants are first generated by transforming a construct carrying eight guide RNAs (gRNAs) targeting the promoter. Plants confirmed to carry the Cas9 transgene are then screened by PCR for promoter mutations. Plants biallelic for promoter mutations are then crossed to wild type (WT) plants. The inherited Cas9 transgene can target the WT allele in F1 progeny to generate new mutations. F2 progenies resulting from F1 self-fertilization are then screened by PCR for homozygosity and absence of the Cas9 transgene (i.e. negative for Cas9), and new SICLV3 promoter alleles are validated by Sanger sequencing. b, Schematics depicting 29 CRISPR-Cas9 engineered SICLV3 promoter (slclv3^{pro}) alleles, along with the domestication QTL allele fas. Large deletions, insertions, and inversions are represented by red dashed lines, orange boxes, and red boxes, respectively. Small insertions and deletions (indels) are indicated by numbers and letters. Red arrowheads, gRNAs. Gray line, promoter region. Black box, start of the first exon. c, Heatmap representation of the slclv3^{pro} alleles and fas. The 2.1 kb promoter region is divided into 20 bp windows. Purple color intensity in each window indicates the ratio of sequence changed (i.e. deleted) relative to WT. Red color indicates inversion. **d**, Quantification of fruit locule number. Box plots show the 25th, 50th (median), and 75th percentiles for each genotype (left). Number of fruits quantified (n), mean and standard deviation (sd) are shown. e, Fruit images showing ranges of locule number

variation for WT and *slclv3*^{pro} alleles. Images of fruits representing locule number ranges (30th and 70th percentiles) for the selected genotypes: WT, *slclv3*^{pro4}, *slclv3*^{pro11}, *slclv3*^{pro17}, *slclv3*^{pro21}, *slclv3*^{pro23} and *slclv3*^{pro28} are shown below images. Alleles are ordered according to phenotypic strength (**b-d**).

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

413

414

415

416

Fig. 2 | Mutations in individual conserved sequences of the SICLV3 promoter result in weak effects on locule number. a, Four sets of gRNAs (colored arrowheads) targeting four blocks of conserved cis-regulatory sequences in the SlCLV3 promoter. mVISTA plots of CLV3 promoter sequence alignments between Solanum lycopersicum (tomato) and three other Solanaceae species (potato, Solanum tuberosum; pepper, Capsicum annuum; groundcherry, Physalis grisea) show four conserved regions labeled R1-R4 (colored shading). Blue regions of mVISTA plots indicate >70% sequence similarity over 100 bp windows. Each region was targeted individually by CRISPR-Cas9. Predicted transcription factor binding sites (TFBSs) at relative profile score thresholds of 95% (See Methods) are shown at the bottom (red triangles). b, Schematics depicting five slclv3^{pro} alleles with targeted mutations in conserved region R1 (slclv3^{pro-R1}), their heatmap representations, and quantification of locule numbers. Blue horizontal bars under allele schematics indicate conserved non-coding sequences (CNSs) that are conserved across tomato, potato, pepper and groundcherry. Stacked bar charts show the percentage of total fruits for each locule number. Box plots show the distribution of locule numbers. Number of fruits (n), mean and standard deviation (sd) of locule number are shown. The slclv3^{pro-R1-4} and slclv3^{pro-R1-5} alleles showing significant weak effects are outlined with a red box. c, Schematic and heatmap representations of three R2 alleles (slclv3^{pro-R2}) and quantification of locule numbers. d, Schematic and heatmap representations of three R3 alleles (slclv3^{pro-R3}) and quantification of locule numbers. e, Schematic and heatmap representations of five R4 alleles (slclv3^{pro-R4}) and quantification of locule numbers. Box plots in (b-e) show the 25th, 50th, and 75th percentiles for each genotype. The slclv3^{pro-R4-4} and slclv3^{pro-R4-5} alleles showing significant weak effects are outlined with a red box. Significantly different locule numbers compared to WT are indicated in (b) and (e) (p values of two-sided Dunnett's 'compare with control' test less than 0.2 are shown, ns: not significant).

441442

Fig. 3 | Combining mutations in conserved cis-regulatory regions reveals additive, redundant, and synergistic relationships between sequences in the SICLV3 promoter. a, Combinations of mutations in R1 and R4 show increased locule numbers compared to individual mutations in these regions. Schematics and heatmap representations of alleles with mutations in R1 or R4 alone (left-top), and alleles with combined mutations in R1 and R4 from trans-targeting (left-middle) or sequential editing (left-bottom). In alleles with combined mutations, original mutations in one region is labeled by superscript numbers and newly generated mutations in the other region is designated by superscript letters (Extended Data Fig. 3a,b). Stacked bar charts and box plots show locule number quantifications (right). b, Summary of tests for non-additive effects in combined alleles compared to individual mutations in R1 and R4 regions. If the increase of locule numbers in a combined allele of R1 and R4 is significantly greater than the sum of increases in individual R1 and R4 alleles (adjusted p-values<0.05), then there is a synergistic relationship between the combined mutations. Otherwise, their relationship is additive. Combined allele $R1^5+R4^d$ (labeled with *) showed a non-additive effect in a different experiment (Extended Data Fig. 3c,d). c, Schematics and heatmap representations of promoter alleles with mutations in R1 or R2 alone and alleles with combined mutations in R1 and R2. Stacked bar charts and box plots show locule number quantifications. d, Schematics and heatmap representations of promoter alleles with mutations in R2 or R4 alone and alleles with combined mutations in R2 and R4. Stacked bar charts and box plots show locule number quantifications. e. Summary of the genetic relationships between conserved cis-regulatory regions. Phenotypic effects of representative alleles with combined mutations showing different genetic relationships (top). A diagrammatic summary of different genetic relationships between conserved SICLV3 promoter regions (bottom). Box plots in (a, c-e) show the 25th, 50th, and 75th percentiles for each genotype. P values in (a, c, and d) are from two-sided Dunnett's 'compare with control' test (p values less than 0.2 are shown, ns: not significant).

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Fig. 4 | The promoter of *SIWUS* is more tolerant to genetic perturbations. a, CLV3 and WUS function in a conserved negative feedback circuit that modulates stem cell proliferation and meristem size. Red and blue colored areas indicate conventional expression domains for *CLV3* and *WUS*, respectively. LP, leaf primordia. b, CRISPR-Cas9 mutagenesis of the *SIWUS* coding sequence (*slwus*^{CR-cds}). *SIWUS* gene model and gRNA target positions (top, red arrows)

are shown, along with sequences of WT and two slwus^{CR-cds} null alleles (bottom). Black box, black line and grey box represent exon, intron and UTR. c, Terminated primary shoot meristem in the slwus^{CR-cds-1} mutant (right) compared to WT (left). White arrowhead marks terminated meristem with two leaves. L, leaf. The same phenotype was observed for slwus^{CR-cds-2} (n > 10 individual plants). **d**, Repetitive meristem initiation and termination phenotype of the slwus^{CR-cds-} ¹ null mutant. Inset in the middle image shows reinitiated disorganized meristems (white arrowheads) that quickly terminate after generating one or two leaf primordia (e.g. red arrowhead). The same phenotype was observed for slwus^{CR-cds-2}. e, Schematic depicting seven SlWUS promoter (slwus^{pro}) alleles (top). Blue arrows, gRNA targets. Red dashed lines, deletions. Red box, inversion. Orange triangle, insertion. Predicted TFBSs at relative profile score thresholds of 99% are shown as red triangles (middle). mVISTA plots of WUS promoter sequence alignments between tomato and potato, pepper, and groundcherry show five regions of conserved sequences (bottom). f, Heatmap representations of slwus^{pro} alleles (top). Schematic depicting a CRISPR-Cas9 generated allele of the SIWUS 3' region mimicking the domestication cis-regulatory QTL allele lc^{24} . g. Quantification of locule number in slwus^{pro} alleles. The slwus^{pro-6} allele showing a weak gain-of-function effect is outlined with a red box. h, Locule number quantifications showing that slwus^{pro-4} and slwus^{pro-5} reduce locule number in the slclv3^{pro-29} (7.3 kb deletion) background. Alleles are ordered the same in **e-g**. Box plots in **g** and **h** show the 25th, 50th, and 75th percentiles for each genotype. P values in (g) and (h) are from two-sided Dunnett's 'compare with control' test (WT and slclv3^{pro-29} as controls, respectively; p values less than 0.2 are shown; ns: not significant).

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Methods

Plant material, growth conditions, and phenotyping. Seeds of wild type (Solanum lycopersicum cultivar M82, LA3475), fas, slclv3-10 and lc^{CR} in the M82 background were from our own stocks. Seeds were either germinated on moistened filter paper at 28 °C in the dark and later transferred to soil or directly sown in soil in 96-cell plastic flats and grown to 4~5-week-old seedlings in the greenhouse before being transplanted to pots in the greenhouse or directly to fields at Cold Spring Harbor Laboratory. The greenhouse condition is long-day (16 h light, 26-28 °C / 8 h dark, 18-20 °C; 40-60% relative humidity) with natural light supplemented with artificial light from high-pressure sodium bulbs (~250 µmol m⁻² s⁻¹). Plants in the fields were grown under drip irrigation and standard fertilizer regimes, and were used for quantifications of fruit locule number. We counted locules from approximately 100 fruits from about 10 individual plants for each genotype. The locule number phenotyping experiments were repeated over two summer field seasons, representing different soil conditions and environments. Locule data in Fig. 1, Extended Data Fig. 2, Extended Data Fig. 3 and Extended Data Fig. 4 are from experiments in 2019, while data in Fig. 2, Fig. 3 and Fig. 4 and Extended Data Fig. 1 are from experiments in 2020. Phenotypes of slwus null mutants were observed in more than ten plants during at least two growing seasons.

CRISPR-Cas9 mutagenesis, plant transformation, and selection of mutant alleles.

CRISPR-Cas9 mutagenesis and generation of transgenic tomato lines were performed as described previously ⁴⁰. Briefly, gRNAs were designed using the CRISPRdirect tool (https://crispr.dbcls.jp/)⁴¹. Binary vectors for Cas9 and gRNAs were assembled using Golden Gate cloning as described ^{25,42}. The final binary plasmids were introduced into wild type M82 or homozygous promoter alleles by *Agrobacterium tumefaciens*-mediated transformation through tissue culture ⁴³. First-generation (T0) transgenic plants were transplanted in soil and grown under standard greenhouse conditions. Genotyping of CRISPR-generated mutations was performed as previously described ²⁵. Briefly, gRNA target regions were PCR amplified in T0 transgenic plants (gRNA and primer sequences for genotyping are listed in Supplementary Table 1). PCR products were then analyzed by gel electrophoresis and cloned into pSC-B-amp/kan (Agilent) following the manufacturer's instructions for Sanger sequencing. Sequences were assembled using Geneious (v11.1.5).

Cis-regulatory sequence conservation analyses and TFBS prediction. For comparative sequence analysis of Solanaceae CLV3 promoters, the syntenic regions of SICLV3 and surrounding sequences in S. tuberosum, S. annuum and P. grisea were identified by BLAST using the SICLV3 genomic sequence, including the protein coding regions^{44–46}. 3 kb genomic sequences upstream of the CLV3 coding regions from S. tuberosum, S. annum and P. grisea were aligned those of S. lvcopersicum using mVISTA LAGAN (http://genome.lbl.gov/vista/mvista/submit.shtml)⁴⁷. The plots show alignment windows of 100bp at a similarity threshold of 70%, highlighted in blue. The same analysis was performed with 3kb promoter sequences of WUS. Predicted TFBSs were identified from 1.5 kb of the SICLV3 promoter and 2.6 kb of the SIWUS promoter. Plant TF motifs in JASPAR Core Plantae⁴⁸ were used with FIMO motif scanning in the **MEME** suite (http://memesuite.org/doc/fimo.html)⁴⁹. Relative profile score thresholds of 95% and 99% were used as cutoffs to show TFBSs in the SICLV3 and SIWUS promoters, respectively.

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

RNA extraction and Quantitative RT-PCR (qPCR). For gene expression analysis, seeds were germinated on moistened filter paper at 28 °C in dark. After germination, seedlings at similar stages were transferred to soil in 96-cell plastic flats and grown in the greenhouse. Shoot apices including the first floral meristem and sympodial inflorescence meristems were collected at the floral meristem stage of meristem maturation⁵⁰, and immediately flash-frozen in liquid nitrogen. Seven to ten apices were combined as one biological replicate and three replicates were collected for each genotype. Total RNA was extracted using TRIzol® Reagent (Invitrogen) and 200 ng of total RNA was used for cDNA synthesis using the SuperScript IV VILO Master Mix (Invitrogen). qPCR was performed with gene-specific primers using the iQ SYBR Green SuperMix (Bio-Rad) reaction system on the CFX96 Real-Time system (Bio-Rad). Primer sequences are available in Supplementary Table 1.

Statistical analyses. For Pairwise comparisons between promoter alleles and wild type, locule number phenotypes in alleles having mutations in individual conserved regions or with combined mutations were compared to the isogenic wild type control M82 using Dunnett's 'compare with control' tests.

For tests of genetic interactions, a pairwise interaction between mutations in two regions (e.g. R1 and R4) was defined as the difference between the locule number change in the combined allele, R1+R4, and the expected locule number change obtained by the addition of locule number changes from alleles with mutations in single regions (R1 and R4). The interaction between two mutations is:

$$\varepsilon_{R1+R4} = (\mu_{R1+R4} - \mu_{WT}) - ((\mu_{R1} - \mu_{WT}) + (\mu_{R4} - \mu_{WT}))$$
$$= \mu_{R1+R4} - \mu_{R1} - \mu_{R4} + \mu_{WT}$$

560 in which μ is the mean locule number. To test if there was any significant interaction, the 561 probability of ε_{R1+R4} being different from 0 (the p-value) was calculated using the parameters 562 below:

The sample distribution of ε_{R1+R4} follows approximately a normal distribution with mean estimate

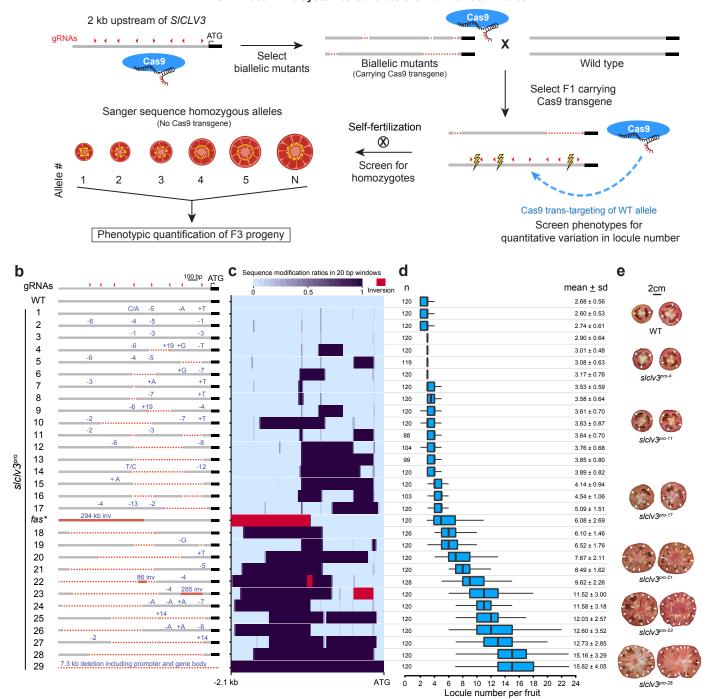
$$\hat{\mu} = \hat{\varepsilon}_{R1+R4} = \hat{\mu}_{R1+R4} - \hat{\mu}_{R1} - \hat{\mu}_{R4} + \hat{\mu}_{WT}$$

and variance of

$$\hat{\sigma}^2 = \frac{\hat{\sigma}_{R1+R4}^2}{n_{R1+R4}^2} + \frac{\hat{\sigma}_{R1}^2}{n_{R1}} + \frac{\hat{\sigma}_{R4}^2}{n_{R4}} + \frac{\hat{\sigma}_{WT}^2}{n_{WT}}$$

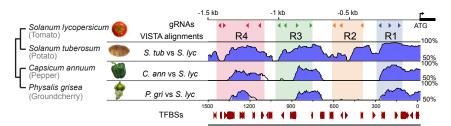
in which $\hat{\sigma}$ is the sample variance and n is number of samples. P values were adjusted using Benjamini-Hochberg (BH) method. Since newly induced mutations in the combined alleles are not exactly the same as those in alleles with mutations only in individual conserved regions, we used the strongest phenotypes from mutations in each CNS region to represent their expected additive effects and tested for non-additivity.

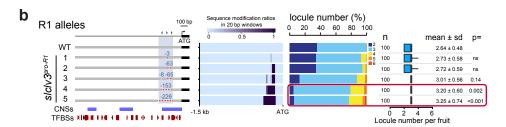
For expression analyses using RT-qPCR, three biological replicates of pooled meristems were used for each genotype and at least two technical replicates were performed for each biological replicate. Means \pm s.e. were shown and mean values between groups were compared by two-sample t tests.

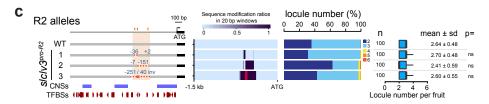

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

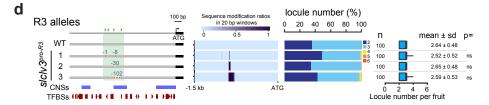
Data Availability

Source Data files for all main and Extended Data figures are available in the online version of the paper. All additional data sets are available from the corresponding author upon request.


a


CRISPR-Cas9 Drive System to Generate SICLV3 Promoter Alleles




a

SICLV3 Promoter Dissection

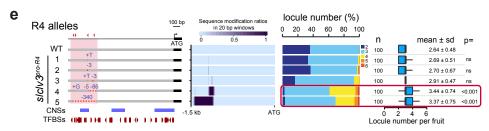
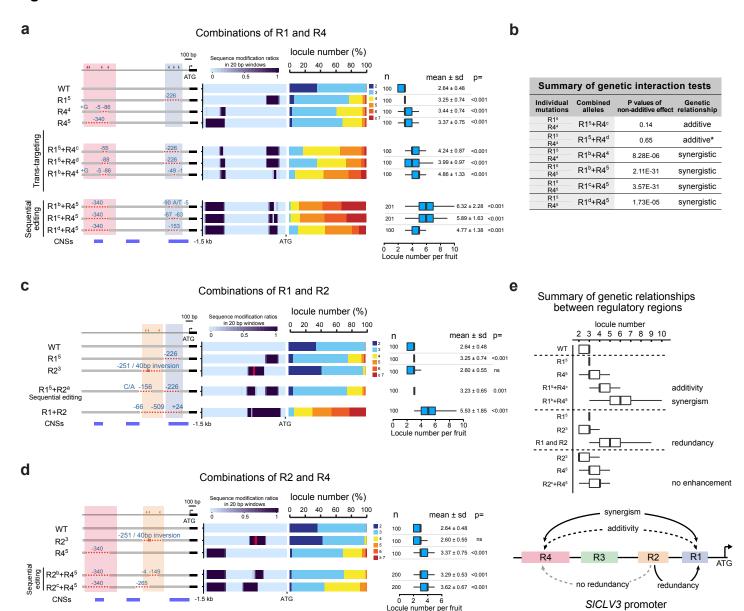
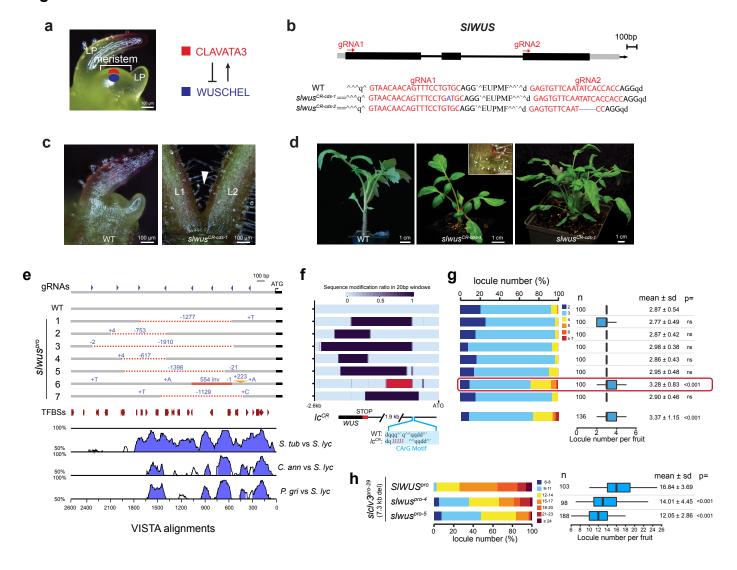
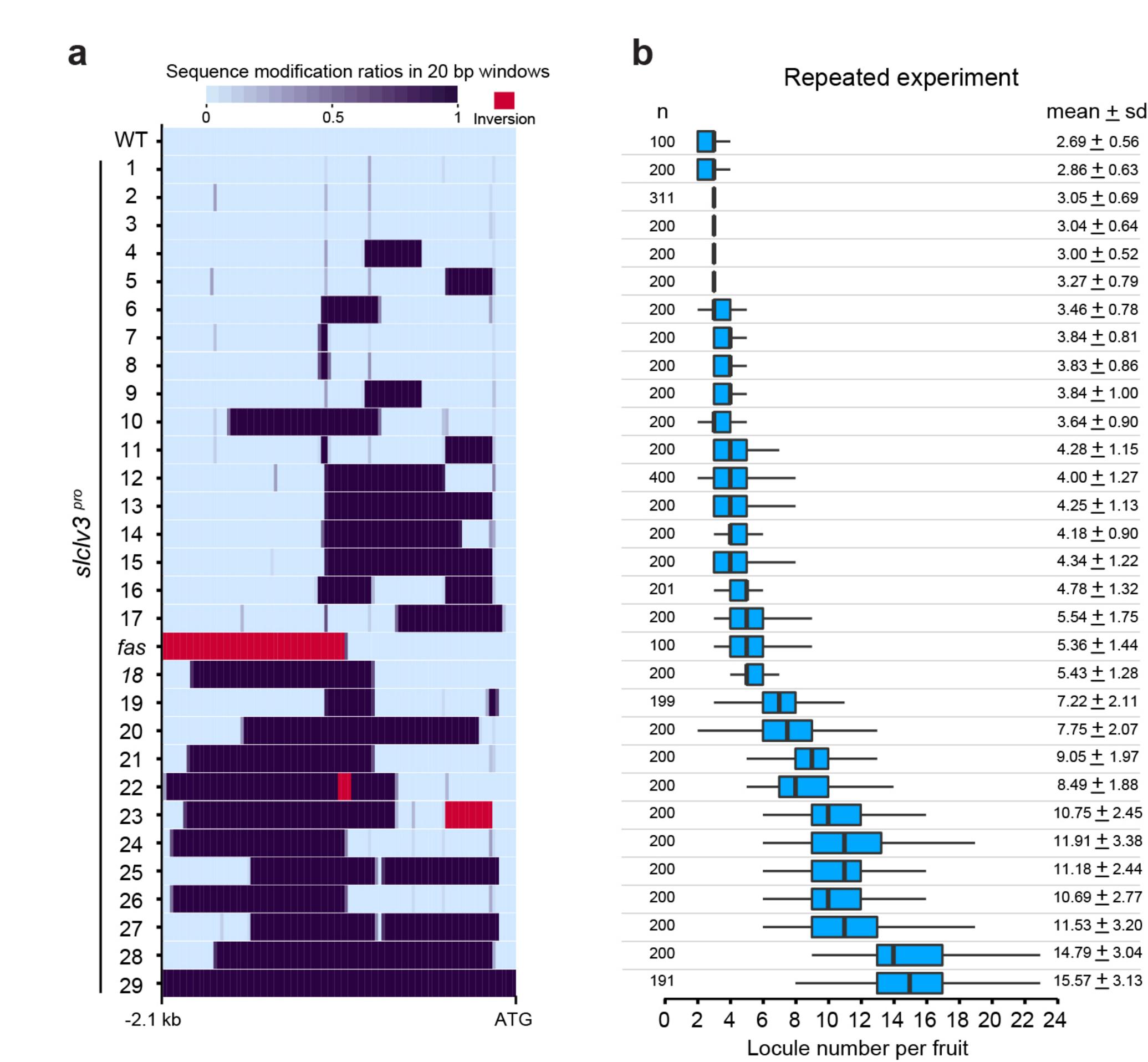
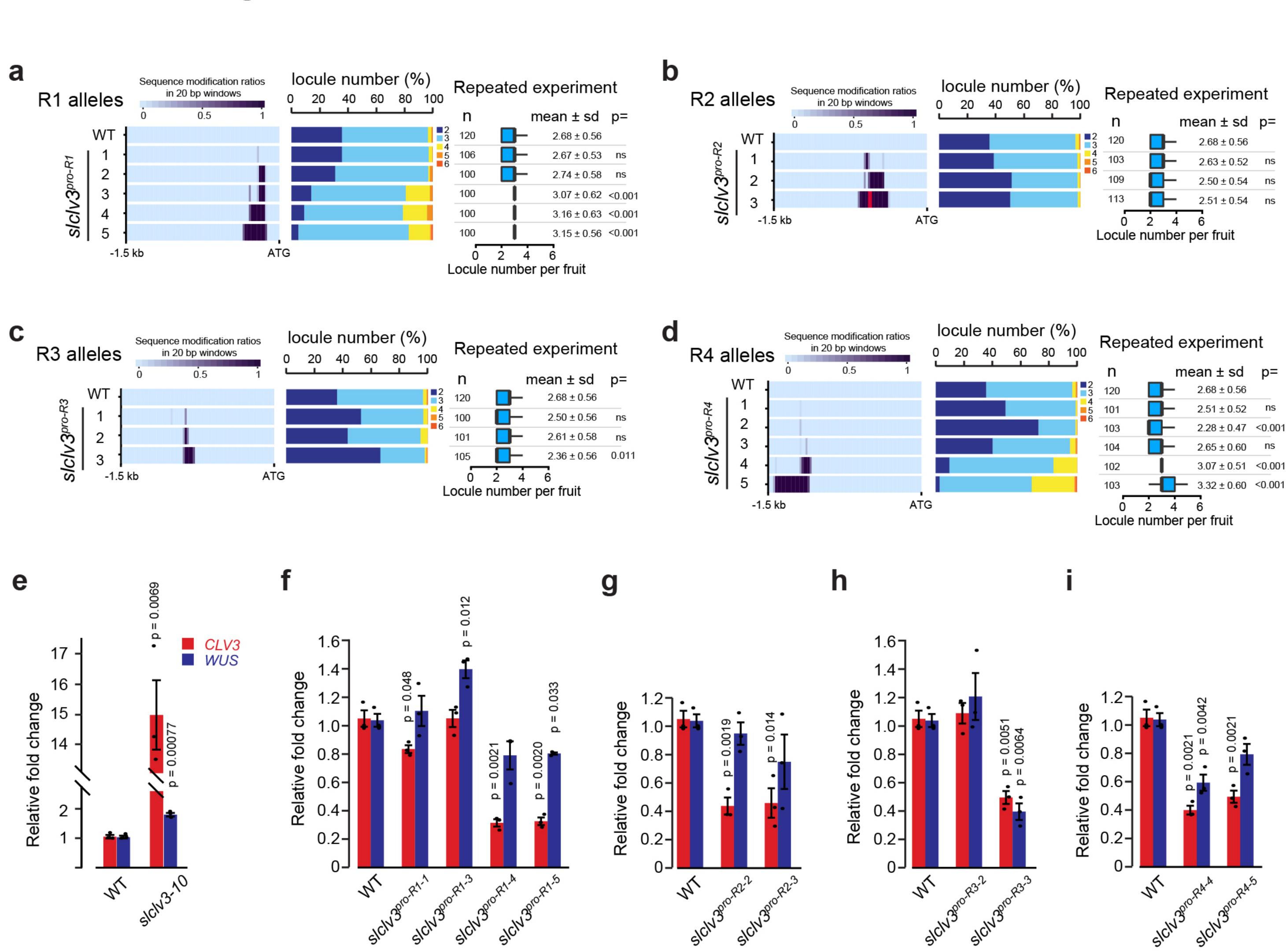
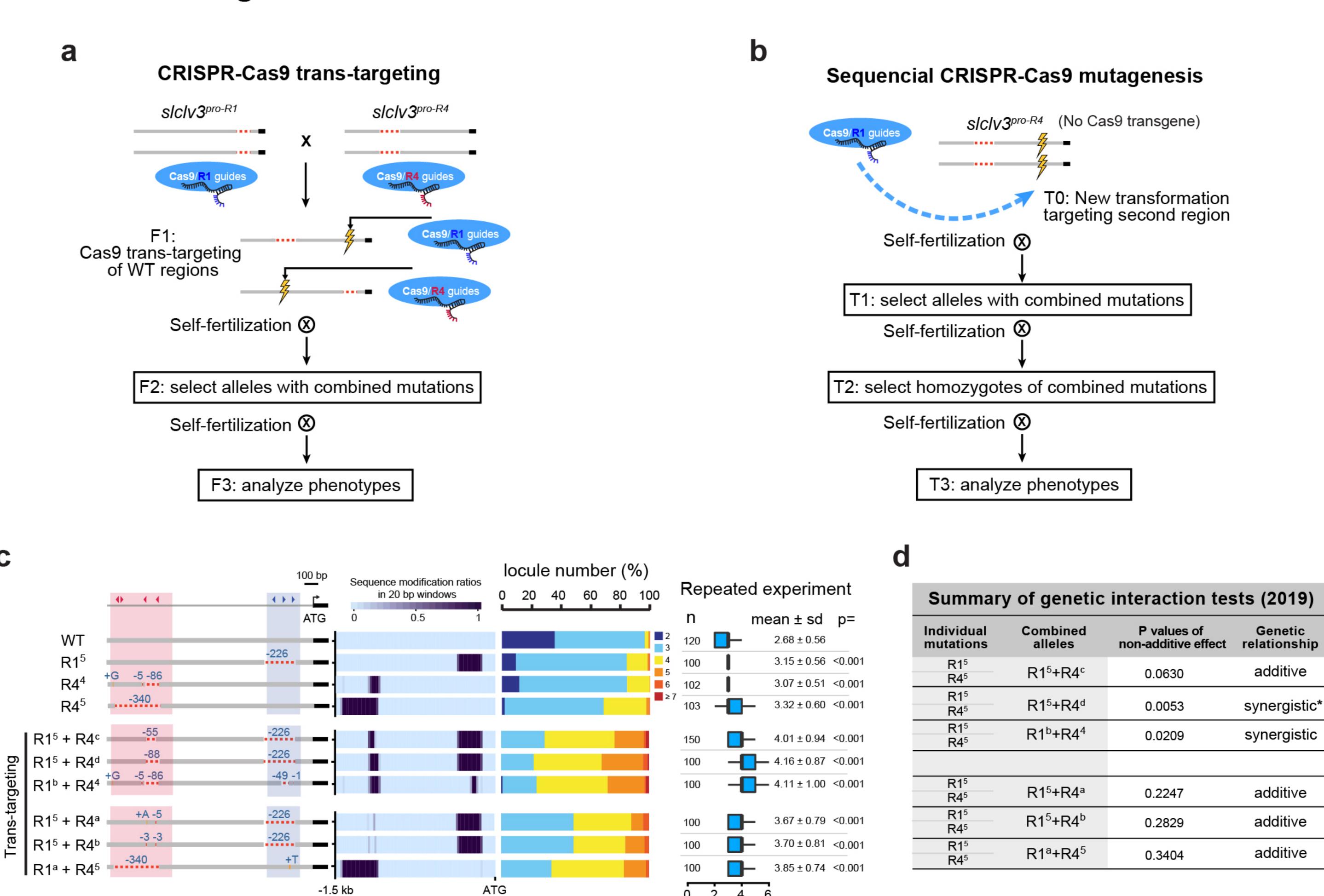




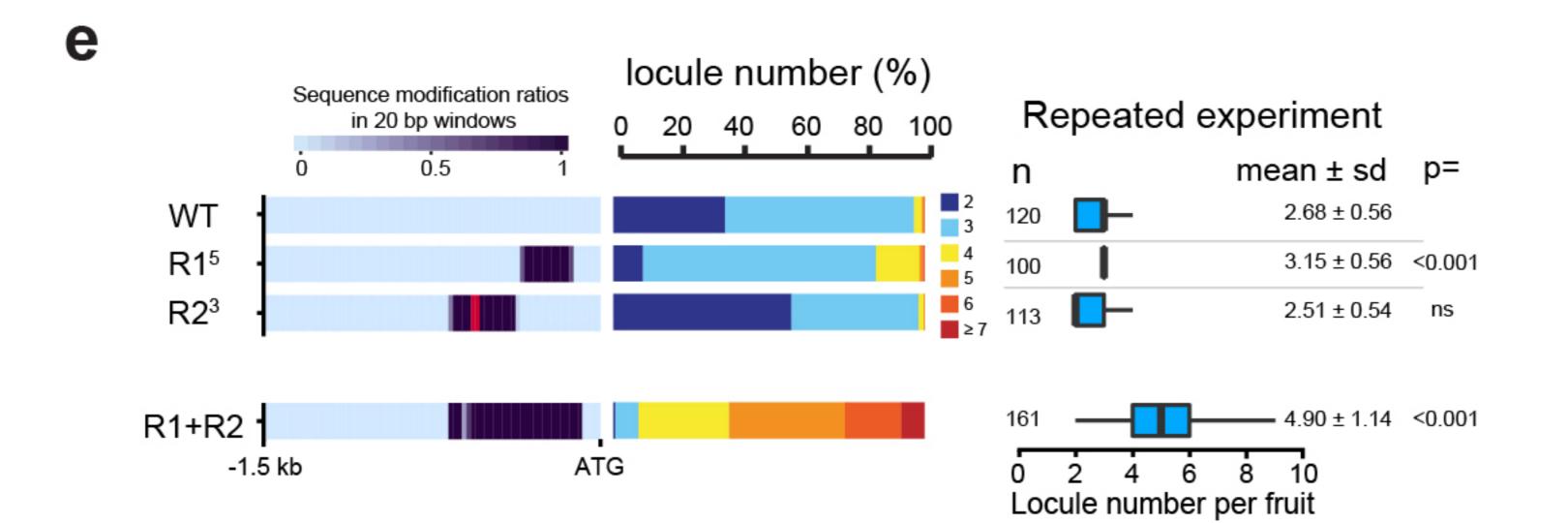
Figure 3



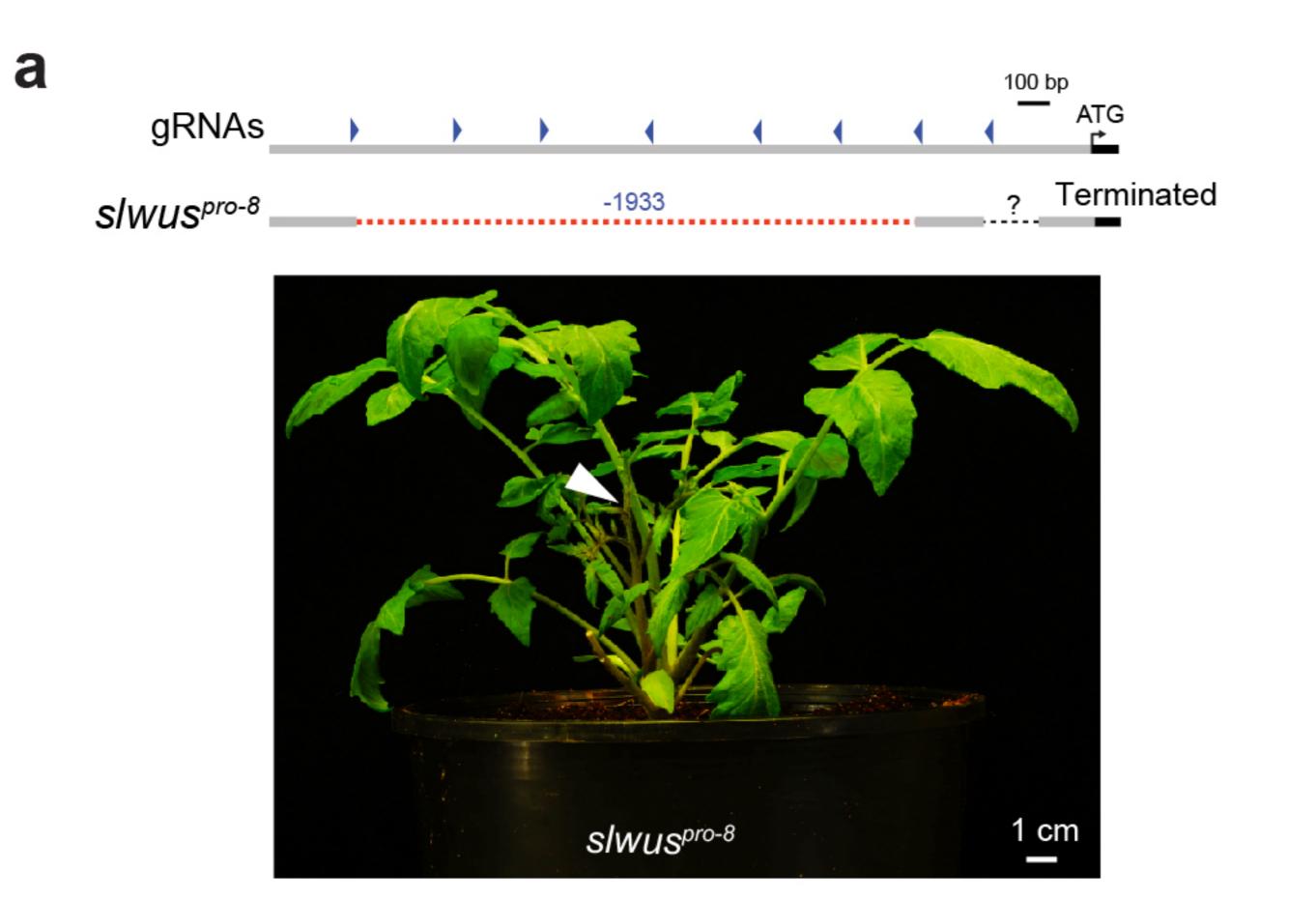
SICLV3 promoter

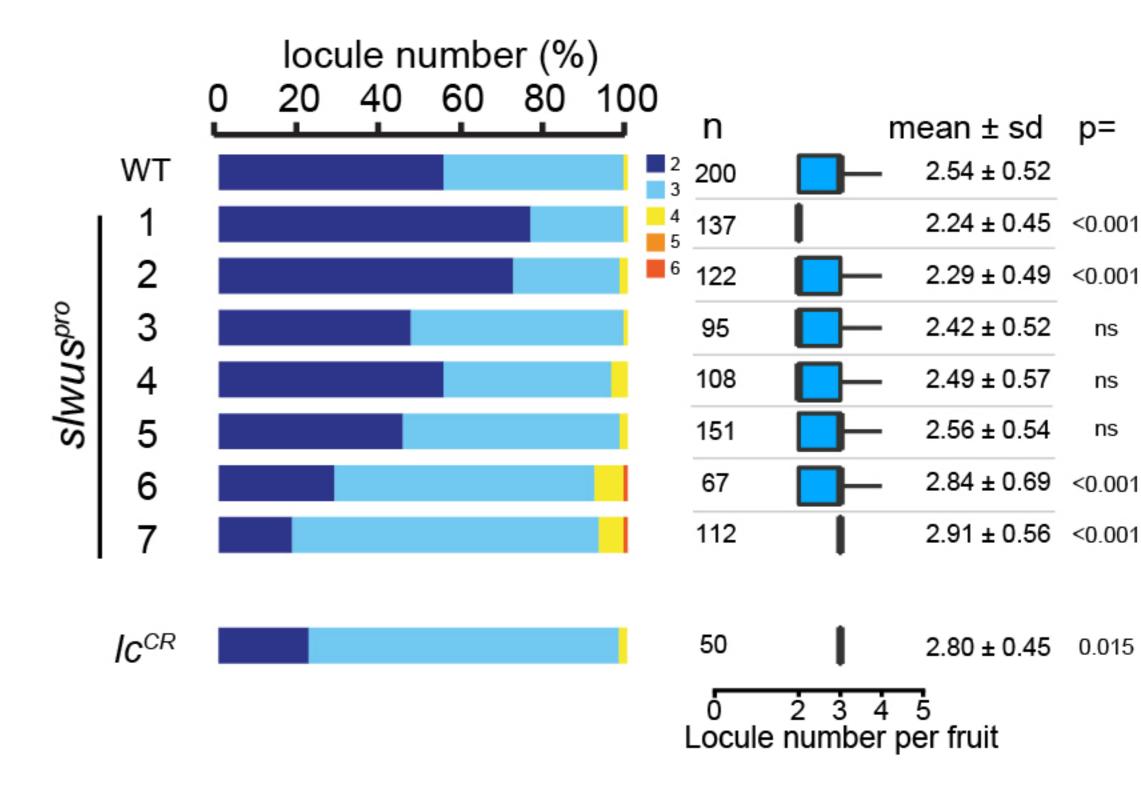

Figure 4


Extended Data Fig. 1



Extended Data Fig. 2


Extended Data Fig. 3



Locule number per fruit

Extended Data Fig. 4

bRepeated experiment at a second field site

