

1 **Effects of Oxidation on Pyroxene Visible-Near Infrared and Mid-Infrared Spectra**

2 **Molly C. McCanta^{1,*}, M. Darby Dyar²**

3 ¹Department of Earth and Planetary Sciences
4 University of Tennessee
5 1621 Cumberland Ave
6 Knoxville TN 37996
7 mmccanta@utk.edu

8 ²Department of Astronomy
9 Mount Holyoke College
10 50 College St
11 South Hadley, MA 01075
12 mdyar@mtholyoke.edu

13 *Corresponding author

14 **Keywords:** cosmochemistry, geological processes, infrared observations, mineralogy

15 **Abstract:** Pyroxene spectral features in the visible near-infrared (VNIR) and mid-infrared (MIR) wavelengths are affected by oxidation resulting from traditional metamorphic processes as well as impact metamorphism. The observed effects are due to modifications in the crystal arising from changes in crystallization temperature or pressure or from substituting Fe^{3+} for Fe^{2+} . Highly oxidized pyroxenes from terrestrial mantle xenoliths and shock experiments indicate that the spectral effects of oxidation are greater in clinopyroxene than orthopyroxene because clinopyroxene can accommodate more Fe^{3+} structurally. Changes in clinopyroxene VNIR related to increasing oxidation include a shift in the $0.8 \mu\text{m}$ absorption band to shorter wavelengths and a strengthening of the $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ intervalence charge transfer (IVCT) band, which reduces the band depth of the $1.0 \mu\text{m}$ feature by $\sim 20\%$. Although shocked clinopyroxenes are oxidized to similar levels to that seen in the mantle xenoliths, the effects of shock overprint those of oxidation in the VNIR. These include a decrease of $\sim 76\%$ intensity of the $2.35 \mu\text{m}$ feature and a decrease of $\sim 70\%$ intensity of the $1.0 \mu\text{m}$ feature. In the MIR, the effects of oxidation and shock are minimal, resulting in a 5% overall decrease in band depth. These shifts and changes can be interpreted as a result of changes in the polyhedra surrounding the Fe cations which reduce crystal field splitting and the order of the crystal structure. Determination of planetary surface composition through VNIR remote sensing methods requires careful consideration of potential changes induced via shock and/or oxidation processes.

37 **1. Introduction**

38 Pyroxene is an abundant rock-forming mineral that serves as an important recorder of petrologic processes on Earth and throughout the Solar System. Pyroxenes of various compositions have been observed in a wide-range of planetary materials including the igneous and metamorphic materials that comprise the surface and interior portions of both undifferentiated and differentiated bodies [e.g., Papike et al., 2016]. Pyroxene compositional variations can be used to determine physical conditions such as temperature, pressure, and

45 oxygen fugacity (f_{O_2}) that were present in a rock's source region [e.g., Lindsley and Anderson, 1983; Mattioli and Wood, 1988; Ballhaus et al., 1990; Wood, 1991]. This combination of 46 abundance and ability to act as a geologic recorder have made pyroxene a powerful recorder of 47 geologic processes from the start of the Solar System through the present and made it imperative 48 to fully identify and constrain pyroxene composition when encountered either in person or 49 remotely.

50 Characterization of pyroxenes using remote sensing methods is integral to determining 51 planetary surface compositions. Previous studies to characterize pyroxene reflectance spectra as 52 a function of quadrilateral composition [Hamilton, 2000; Klima et al., 2007, 2011] relied on 53 samples experimentally grown and equilibrated under reducing conditions [Turnock et al., 1973]. 54 Spectra of natural pyroxene samples are much more complicated to interpret due to the presence 55 of additional cations available for substitution, such as Fe^{3+} and Al [i.e., Cloutis, 2002], and to 56 geologic overprints such as oxidation or shock. It is imperative to document compositional 57 variations outside the pyroxene quadrilateral and their effects on spectral features to better 58 constrain planetary surface compositions.

59 Oxidation is a common terrestrial process, often correlated with the presence of water via 60 metasomatic episodes. It generally results in increasing amounts of higher valence state cations, 61 such as Fe^{3+} , Cr^{3+} , or Ti^{4+} . Indeed, the presence of measurable Fe^{3+} in minerals and melts is often 62 used as a proxy for H_2O . For example, high H diffusivities in amphibole may result in partial 63 dehydration during ascent, removing much of the mantle water signature [Dyar et al., 1992, 64 1993]. The charge on the H ion is left behind in the structure during diffusion, via the 65 dehydrogenation reaction:

66 Such dehydrogenation of amphibole may result in concomitant increases in Fe^{3+} 67 concentration, resulting in higher Fe^{3+}/Fe^{2+} ratios. This process may also occur in pyroxenes, 68 which have been shown to contain H_2O in concentrations as high as 387 ppm in martian 69 nakhlites (Peslier et al., 2019).

70 It has long been known that significant Fe^{3+} substitution occurs as a result of oxidizing 71 conditions during the crystallization of terrestrial pyroxenes [Ohashi and Hariya, 1970; Ghose et 72 al., 1975, 1986; Akasaka, 1983; Kurepin et al., 1981]. For example, Dyar et al. [1989, 1992] and 73 McGuire et al. [1991] studied mantle samples and noted that clinopyroxenes were typically 12- 74 33% Fe^{3+} , while orthopyroxene ranged from 4-9% Fe^{3+} . Substitution of Fe^{3+} for Fe^{2+} in pyroxene 75 cannot be charge balanced by hydrogen, but rather is accommodated by other cation substitutions 76 in the structure, especially Al^{3+} for Si^{4+} . The presence of such substitution presents a 77 fundamental complication for many oxybarometers [e.g., Buddington and Lindsley, 1964; 78 Mattioli and Wood, 1988; Ballhaus et al., 1990; Wood, 1991; Sack et al., 1980; Christie et al., 79 1986; Kress and Carmichael, 1991; Cottrell et al., 2009], making constraining mineral Fe^{3+} 80 contents important in the context of understanding oxygen fugacity (f_{O_2}).

81 In addition to oxidation occurring via metasomatism, recent work has also documented 82 oxidation occurring in clinopyroxene as a result of shock metamorphic processes [McCanta and 83 Dyar, 2017]. However, it was difficult to distinguish between spectral features related to shock 84 and those arising purely from oxidation because little data from oxidized pyroxenes were 85 available. Here we present new VNIR and MIR data on additional shocked samples and a large 86 range of heavily oxidized clino- and orthopyroxenes from a variety of metasomatized mantle 87 xenoliths [McGuire et al., 1991]. The latter samples have not been subjected to shock and 88 therefore can be used to constrain the effects of increasing oxidation state on pyroxene spectral 89 90

91 features. In this study we present 1) new VNIR and MIR data constraining the spectral changes
92 observed in terrestrially oxidized pyroxenes relative to synthetic pure- Fe^{2+} samples, and 2)
93 compare the spectral features to those observed in shock oxidized pyroxenes to determine if the
94 effects of shock and oxidation can be differentiated.

95 2. Background

96 Although shock likely induces both high temperatures and pressures, their collective or
97 individual effects on pyroxene spectroscopy have not been recently studied. VNIR spectral
98 changes with pressure, temperature, or oxidation should be seen in three types of phenomena:
99 crystal field (CF) bands, metal-metal intervalence charge transfer (IVCT) bands, and oxygen to
100 metal charge transfer (OMCT) transitions [Burns, 1993]. Of these, the CF bands have been well-
101 studied under ambient conditions, most recently by Klima et al. [2008, 2010], but only decades-
102 old data are available for other conditions. MIR spectral changes with pressure, temperature, or
103 oxidation are less well described in the literature [e.g., Johnson et al., 2002].

104 In general, high temperatures are expected to cause broadening of CF bands, movement
105 to slightly longer wavelengths, and an overall shift to lower reflectance [Burns, 1993; Hinrichs et
106 al., 1999]. VNIR spectra of enstatite acquired at 400°C by Sung et al. [1977] show intensification
107 of the 0.9 μm band, which indeed moves from 0.93 μm at 20°C to 0.95 μm at 400°C. However,
108 the 1.8 μm band shift is barely resolved at 400°C due to interferences from thermal emissivity,
109 which moves toward the visible region at those temperatures. Thus its intensity dramatically
110 decreases with increasing temperature as thermal emission increases. Clinopyroxene (pigeonite)
111 studied by Sung et al. [1977] shows analogous trends at VNIR wavelengths: the 0.94 μm band
112 shifts to 0.97 between 20°C and 400°C and absorption ca. 1.8 μm decreases with increasing
113 thermal emissivity.

114 Pressure effects on VNIR spectra have been studied in past decades mainly through use
115 of static high-pressure experiments. Fe is accommodated in pyroxene in either the octahedral M1
116 site or the somewhat distorted 6- or 8-fold coordination M2 site (Figure 1). Pressure shifts in
117 Fe^{2+} M2 bands in orthopyroxene ranged from 12.7 up to 28.8 $\text{cm}^{-1}/\text{kbar}$ [Shankland et al., 1974],
118 i.e., a shift from 11,068 to 12,050 cm^{-1} (0.90 to 0.83 μm) at 5 GPa. Ferrosilite at 2.5 GPa also
119 shifts to higher wavenumbers (lower wavelength): 4,878 to 5411 cm^{-1} (2.05 to 1.85 μm) and
120 10,627 to 10,693 cm^{-1} (0.94 to 0.93 μm) [Mao and Bell, 1971]. Augite at 5 GPA shows blue-shift
121 (shift to higher frequency) and increased intensity of 9,805 cm^{-1} (1.02 μm) band, and almost no
122 shift of the bands at 18,180 and 19,760 cm^{-1} [Abu-Eid, 1976]. Finally, IVCT in pyroxenes was
123 studied Bell and Mao [1974] and Mao [1970], where the 0.7 μm bands was seen to intensify
124 significantly at 30 GPa. As summarized by Burns [1993] on page 366 “in general, blue-shifts of
125 CF absorption bands to higher energies are observed with rising pressures. With an inverse fifth-
126 power dependence on cation-anion distance, IVCT transitions are relatively insensitive to band
127 shifts.” Thus it is expected that the high pressures experienced during shock might have
128 analogous effects.

129 Finally, it is useful to consider the effect of substituting Fe^{3+} for Fe^{2+} in pyroxene even at
130 room temperature. The Fe^{2+} bands arising from the M1 site occur at 10,200 cm^{-1} (0.98 μm) and
131 8,475 cm^{-1} (1.18 μm) [Rossman, 1980; Straub et al., 1991]. Fe^{3+} is also thought to cause an
132 IVCT band at 12,000-14,000 cm^{-1} (0.8 to 0.7 μm) [Burns, 1993]. Fe^{2+} in M2 occurs at 9,600 and
133 4,400 cm^{-1} (1.04 and 2.27 μm) [White and Keester, 1966; Burns and Huggins, 1973; Hazen et
134 al., 1978]. Fe^{3+} is thought to occupy only the M1 site, so its substitution should thus affect only
135 the $\sim 1 \mu\text{m}$ region unless the Fe^{3+} substitution affects the overall geometry of the mineral. In such

137 cases spin-forbidden crystal field transitions in Fe^{3+} -bearing clinopyroxene can result in a sharp
138 peak near $0.44 \mu\text{m}$ as well as two broad bands near 0.82 and $0.60 \mu\text{m}$ [Burns et al., 1976;
139 Rossman, 1980]. These features are often too weak to be detected in reflectance spectra, masked
140 by the $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ IVCT band.

141 All of these spectral band shifts result from changes in the geometry and size of the
142 oxygen polyhedra surrounding the Fe^{2+} and Fe^{3+} cations in the pyroxene structure. Insights into
143 these shifts can be gained by comparisons of the crystal structures of hedenbergite synthesized at
144 0 and 10 GPa ($\text{CaFe}^{2+}\text{Si}_2\text{O}_6$ from Zhang et al. [1997]) compared with the Fe^{3+} pyroxene end-
145 member esseneite ($\text{CaFe}^{3+}\text{AlSiO}_6$, from Cosca and Peacor [1987]). Portions of these three
146 structures are shown in [Figure 1](#) from the same perspective, looking down the x axis.

147 Close inspection of [Figure 1](#) reveals subtle differences between these three spectra that
148 are quantified in [Figure 2](#), which shows the cation-oxygen bond distances. Compared with 0 GPa
149 hedenbergite, both the shocked and oxidized pyroxenes show longer FeM2-O1 , FeM2-O2 , and
150 M2-O3 bond distances. Shocked hedenbergite also has the longest M2-O3 bonds and M1-O1 and
151 M1-O2 as well. Longer bond distances imply higher values of crystal field splitting [Burns,
152 1993], which is expressed in wavenumbers, and thus high pressure/shock would be expected to
153 shift peaks to lower wavelengths in VNIR spectra.

154 In summary, prior research on the effects of temperature, pressure, and changes in
155 polyhedral size due to oxidation (substitution of smaller trivalent cations such as Fe^{3+}) are all
156 known to affect the positions and intensities of pyroxene spectral bands. This paper seeks to
157 clarify which of these effects is dominant relative to oxidation state and shock phenomena.

158 3. Samples studied

161 3.1. Terrestrial mantle pyroxenes

162 Spinel lherzolite xenoliths from Dish Hill and Cima, CA, and Kilbourne Hole, NM were
163 gently crushed and hand-sieved to avoid potential oxidation. Orthopyroxene and clinopyroxene
164 were hand-picked to create mineral separates that were visually pure and their $\text{Fe}^{3+}/\Sigma\text{Fe}$ was
165 determined via Mössbauer spectroscopy ([Table 1](#); [Figure 3](#)) following methods of Dyar et al.
166 [1989] and McGuire et al. [1991]. In previous work, highly oxidized pyroxenes like these were
167 interpreted to be the result of metasomatic processes active in the upper mantle [McGuire et al.,
168 1991]. All pyroxenes are Mg-rich because they represent high temperature crystallization
169 products of mantle assemblages, with the majority of compositions falling between the enstatite
170 and diopside end-members ([Figure 3](#)).

171 3.2. Shocked pyroxenes

172 The target sample used in the shock experiments was a diopside from Jaipur, India
173 ($\text{Wo}_{49}\text{En}_{47}\text{Fs}_4$) with low starting Fe^{3+} (9%) ([Table 1](#); [Figure 3](#)). All shock experiments were
174 performed at Johnson Space Center utilizing a 20 mm flat plate accelerator [Hörz, 1970].
175 Samples were prepared as particulate material sieved to a grain size of $150\text{--}250 \mu\text{m}$ [McCanta
176 and Dyar, 2017]. The prepared targets were encased in stainless steel containers. Projectiles were
177 composed of polyethylene mounted with metal flyer plates of varying composition determined
178 by the desired shock pressure. Experiments were run over a range of shock pressures from 21 to
179 59 GPa ([Table 1](#)) and took place under vacuum, at relatively high p_{O_2} conditions ($\sim 10^{-4}$ atm). All
180 pyroxenes were analyzed with Mössbauer spectroscopy post-experiment and observed to be
181 oxidized relative to the starting diopside regardless of shock pressure [McCanta and Dyar, 2017].

183 **4. Analytical Methods**

184

185 *4.1. Reflectance spectroscopy*

186 Shocked and natural samples were gently ground to make a whole-rock powder, which
187 was sieved to <45 μm prior to spectral analysis. Visible to near-infrared bi-directional reflectance
188 spectra (0.3-2.6 μm , sampled at 5 nm increments) were acquired relative to halon at 30° incident,
189 0° emergent angles using the Reflectance Experiment Laboratory (RELAB) bidirectional
190 spectrometer at Brown University. Data were then corrected for the properties of halon.

191 The same samples (in the same dish) were measured using a Pike diffuse reflectance
192 attachment (off-axis, biconical) with the Thermo Nexus 870 FTIR spectrometer (2-50 μm , 5000-
193 200 cm^{-1}) located at RELAB, using a diffuse gold standard. FTIR spectra were obtained in a
194 purged environment (H_2O and CO_2 free). Data were typically spliced to the near-infrared data at
195 2.5 μm to use the absolute reflectance of the bidirectional system. Detailed descriptions of the
196 RELAB facility instruments can be found in the overview by Pieters and Hiroi [2004] (RELAB
197 information is also available at <http://www.planetary.brown.edu/relab/>).

198 All band depths were calculated using methods developed in Pelkey et al. [2007] where
199 absorption band depths (BD) are determined according to Eq. 1.

200
$$\text{BD} = 1 - R_C/R_{C^*}, \quad (1)$$

201 where R_C is the reflectance at the center of the spectral band and R_{C^*} is the modeled reflectance
202 at the center of the band (defined in Eqs. 2-4).

203
$$R_{C^*} = aR_S + bR_L \quad (2)$$

204
$$a = b - 1 \quad (3)$$

205
$$b = (\lambda_C - \lambda_S) / (\lambda_L - \lambda_S) \quad (4)$$

206 R_{C^*} is therefore a linear fit between the long wavelength (λ_L) and short wavelength (λ_S) areas
207 outside the designated band.

208

209 *4.2. Mössbauer spectroscopy*

210 Approximately 40 mg of each sample were gently mixed with sugar under acetone (to
211 prevent oxidation via heating), then heaped in a sample holder confined by Kapton ® polyimide
212 tape. Mössbauer spectra were acquired at 295K using a source of ~80 mCi ^{57}Co in Rh on a SEE
213 Co. (formerly WEB Research Co.) model WT302 spectrometer (Mount Holyoke College). For
214 each sample, the fraction of the baseline due to the Compton scattering of 122 keV gammas by
215 electrons inside the detector was determined by measuring the count rate with and without a
216 14.4-keV stop filter (~2 mm of Al foil) in the gamma beam. Compton-corrected absorption was
217 calculated for each individual spectrum using the formulation $A/(1 - b)$, where b is the Compton
218 fraction and A is the uncorrected absorption. This correction does not change the results of the
219 fits per se but does allow accurate determination of % absorption in the spectra. It is necessary
220 because the range of energy deposited in the detector by Compton events extends from 0 keV to
221 40 keV, overlapping both the 14 keV and 2 keV energies deposited by the 14 keV gammas.

222 Run times were 24-48 hours. Spectra were collected in 2048 channels and corrected for
223 nonlinearity via interpolation to a linear velocity scale, which is defined by the spectrum of the
224 25 μm Fe foil used for calibration. The WMOSS algorithm fits a straight line to the points
225 defined by the published values of the Fe metal peak positions (as y values) and the observed
226 positions in channels (x values). Data were then folded before fitting, using the WMOSS Auto-
227 fold procedure that folds the spectrum about the channel value that produces the minimum least

228 squares sum difference between the first half of the spectrum and the reflected second half of the
229 spectrum.

230 Mössbauer spectra were modeled using the Mex_disdd program, which was acquired
231 from the University of Ghent courtesy of E. DeGrave. The program uses Lorentzian line shapes
232 and solves full hyperfine interaction Hamiltonians for isomer shift and quadrupole splitting but
233 uses multiple distributions for magnetically split spectral components, where the value of the
234 magnetic field is given as the value for the most heavily weighted distribution. Errors on isomer
235 shift, quadrupole splitting, and line widths are ± 0.02 - 0.03 mm/s for the doublets and sextets in
236 these spectra, and errors on hyperfine fields are ± 2 - 3 kOe. Errors on total %Fe³⁺ are ± 1 - 5 %
237 absolute based on repeated fits to the same spectra, with a detection limit for Fe³⁺ of roughly 1%.
238 Spectra from McCanta and Dyar (2017) were re-fit for this project to ensure consistency;
239 resultant changes were within error bars for the technique as quoted above.

240 5. Results

241 5.1. Mössbauer results

242 Much has been written to explain site assignments used to interpret Mössbauer spectra of
243 pyroxenes; see Dyer et al. [2013] for a summary. In brief, there are up to three Fe²⁺ doublets
244 arising from Fe²⁺ in some combination of M1 and M2 sites, but assignment of those doublets has
245 varied. In orthopyroxene, Seifert [1983] suggested that minor substitution of trivalent cations
246 (Fe³⁺ and Al³⁺) into M1 causes distortion in adjacent M2 site. Seifert [1983] posited two types of
247 M1 sites: one with only divalent neighbors, and one with trivalent substitutions in adjacent sites.

248 In clinopyroxene, Dowty and Lindsley [1973] interpreted their spectra to represent one
249 Fe³⁺, one M²Fe²⁺ and two M¹Fe²⁺ doublets; Zhi et al. [2001] concurred with these assignments and
250 suggested that Fe³⁺ was in M1. Many subsequent papers [e.g., Dyer et al. 1989 and Dyer et al.
251 2013] also observed the three Fe²⁺ doublets in pyroxenes, but reversed the site assignments to
252 two M²Fe²⁺ and one M¹Fe²⁺ doublets. In the latter study of synthetic Ca-Mg-Fe clinopyroxenes,
253 all samples with Ca²⁺ > Mg+Fe displayed the one M1 and two M2 Fe²⁺ doublets, each with a
254 distinctive recoil-free fraction. The second M2' site was suggested by Rossi et al. [1987] and
255 Bruno et al. [1982] to be the location for divalent cations, leaving the M2 for Ca. However,
256 Mössbauer data are most consistent with the presence of some Fe²⁺ coexisting with Ca in M2,
257 some in M2', as well as with other cations in M1. Thus, three Fe²⁺ doublets are seen in some of
258 our pyroxene data and assigned as M1, M2, and M2'. Note that one sample (Ba-2-101-B opx)
259 also contained an olivine impurity, distinctive due to its high quadrupole splitting and
260 constrained by the four-phase mineral assemblage in these rocks.

261 Those site assignments are given in Table 2 in the Appendix following conventions
262 established in Dyer et al. [2013] for Fe²⁺. The site with isomer shift (δ) of ~ 1.18 mm/s and
263 quadrupole splitting (Δ) of ~ 2.50 mm/s is assigned to Fe²⁺ in M1, $\delta \approx 1.14$ mm/s and $\Delta \approx 2.0$
264 mm/s to Fe²⁺ in M2, and $\delta \approx 1.14$ mm/s, and $\Delta \approx 1.80$ mm/s to Fe²⁺ in M2'. Site assignments for
265 Fe³⁺ features have not been well-established, although it is generally assumed that the smaller
266 Fe³⁺ cations will occupy solely the M1 site or possibly substitute for Si⁴⁺ in the tetrahedral site.
267 We have labeled the Fe³⁺ doublets as ^AFe³⁺, ^BFe³⁺, and ^{IV}Fe³⁺ for now, pending eventual
268 completion of single crystal structure refinements (SREF) that are in progress.

269 Fe³⁺ is determined directly from peak areas with no correction to account for differential
270 for recoil-free fraction, f , for Fe²⁺ and Fe³⁺. At 295K, values of f have been well-characterized for
271 Fe²⁺ in M1 and M2 in pyroxene [Dyer et al., 2007, 2013] and are quite similar. However, to our

knowledge, f has not been measured for Fe^{3+} in pyroxene, and therefore no correction could be made. Note also that spectra with the identical proportion of Fe in any given site may not have the same site occupancies because Mössbauer only measures *percentages* of the total Fe cations present rather than the *total* Fe cations. Thus this study focuses on Fe^{3+} contents rather than on site occupancies of Fe, which are the subject of ongoing work in our group. The percentage of the total Fe as Fe^{3+} in our suite ranges from 4 to 14% in orthopyroxene and 8 to 54% in clinopyroxene. These ranges are consistent with those observed for these minerals by Dyar et al. [1989], McGuire et al. [1991], and Dyar et al. [1992].

5.2. VNIR results

$\text{Fe}^{3+}/\Sigma\text{Fe}$ contents in the mantle clinopyroxene range from 0.09-0.40 (Table 1), indicating significant Fe^{3+} can substitute into the mineral structure. The metasomatized mantle clinopyroxene VNIR features show typical clinopyroxene spectral features including 1.0 μm and 2.35 μm features resulting from Fe^{2+} in the M2 site and a $\text{Fe}^{2+}\leftrightarrow\text{Fe}^{3+}$ intervalence charge transfer (IVCT) band near 0.8 μm (Figure 4). Both the 1.0 μm and the 0.8 μm bands broaden as the amount of Fe^{3+} increases in the clinopyroxene, with the 0.8 μm feature shifting to lower wavelengths ($\sim 0.75 \mu\text{m}$; Figure 4). The strengthening of the $\text{Fe}^{2+}\leftrightarrow\text{Fe}^{3+}$ IVCT band also results in the reduction of the band depth of the 1.0 μm feature ($\sim 20\%$) with progressive oxidation. Although the Mössbauer data show the presence of some Fe^{2+} in the M1 site that should give rise to bands ca. 1.0 and 1.2 μm , those are not apparent in the VNIR spectra. Perhaps they overlap with the 1.0 μm feature from M^2Fe^{2+} and/or are not seen because the total M^1Fe^{2+} is very small, about 0.05 formula units or less. A number of the mantle clinopyroxenes exhibit a strong 0.64 μm band related to Cr content [Cloutis, 2002] (Figure 4). Additionally, the presence of spin-forbidden Fe^{3+} is observed as a weak, sharp peak near 0.44 μm in the oxidized samples (Figure 4). Spin-forbidden Fe^{3+} features at 0.6 and 0.82 μm are not observed as they are obscured by the Cr content of the pyroxene or the $\text{Fe}^{2+}\leftrightarrow\text{Fe}^{3+}$ IVCT band, respectively.

The mantle orthopyroxene samples analyzed contain significantly less Fe^{3+} than the associated clinopyroxenes ($\text{Fe}^{3+}/\Sigma\text{Fe} = 0.06\text{--}0.14$) due to steric constraints [e.g., McGuire et al., 1991]. The grains exhibited typical VNIR features including band minima at 0.9 and 1.8 μm resulting from Fe^{2+} in the M2 site (Figure 5). The more oxidized samples show a slight increased absorption around 0.65 μm due to the presence of a $\text{Fe}^{2+}\leftrightarrow\text{Fe}^{3+}$ IVCT band. No indication of hematite is present in the analyzed orthopyroxene samples [i.e., Straub and Burns, 1991], though the low overall Fe^{3+} content of the orthopyroxenes may prevent this.

The experimentally shocked clinopyroxene showed significant Fe^{3+} concentrations (unshocked: 9% \rightarrow shocked average: 25% Fe^{3+}) accompanied by an overall flattening of VNIR spectral features (Figure 6). With shock metamorphism, there is a decrease of $\sim 76\%$ intensity of the spectral band arising from Fe^{2+} in the M2 site at 2.35 μm . In addition, a decrease of $\sim 70\%$ intensity of the spectral band arising from Fe^{2+} in the M2 site at 1.0 μm was observed (Figure 6). A commensurate increase in band intensity for Fe^{3+} features, such as the $\text{Fe}^{2+}\leftrightarrow\text{Fe}^{3+}$ IVCT band, was not observed likely because they are of such low intensity and therefore overshadowed by the shock-induced destruction of VNIR features. No correlation of total shock pressure and amount of Fe^{3+} present in the clinopyroxene is observed.

Oxidation is also recorded in the VNIR region as a strong inverse relationship between spectral slope from 0.4 and 0.6 μm (absorption edge) and % Fe^{3+} in the shocked pyroxenes with a 67% decrease in slope recorded as oxidation increases (Figure 7), although there is not a direct correlation between increasing amount of shock pressure and slope decrease (i.e., the least

320 shocked sample at 36 GPa exhibits the largest decrease in spectral slope). A similar inverse
321 relationship occurs in the oxidized mantle clinopyroxenes (73% decrease in slope of the
322 absorption edge as oxidation increases) albeit offset to higher slope values (Figure 7).
323 Orthopyroxenes, which have low $\text{Fe}^{3+}/\Sigma\text{Fe}$ due to steric crystal chemical constraints, do not
324 appear to have a similar correlation.

325

326 5.3. MIR results

327 The shocked clinopyroxenes and the unshocked starting material all exhibit the five
328 critical absorptions in the MIR denoted by Hamilton [2000] in reduced synthetic samples (CA1 =
329 1120 cm^{-1} ; CA2 = 961 cm^{-1} ; CA3 = 916 cm^{-1} ; CA4 = 560 cm^{-1} ; CA5 = 482 cm^{-1}). However, the
330 band centers have been offset to slightly different wavelengths due to different compositions
331 (CA1 = 1138 cm^{-1} ; CA2 = 963 cm^{-1} ; CA3 = 923 cm^{-1} ; CA4 = 565 cm^{-1} ; CA5 = 474 cm^{-1}) (Figure
332 8). In addition, the 515 cm^{-1} spectral absorption generally observed in high Mg pyroxenes is also
333 present in both shocked and unshocked clinopyroxenes. The shocked clinopyroxenes however
334 are demonstrably different from the unshocked starting material. Most notably, there is a
335 decrease in overall band depth of ~5% at all shock pressures (Figure 8), similar to that described
336 in shocked orthopyroxenites [Johnson et al., 2002]. Additionally, there is a significant shift in the
337 transparency feature whose center is located at 742 cm^{-1} in the unshocked material and shifted to
338 higher wavenumbers (798 cm^{-1}) in all shocked clinopyroxenes (Figure 8). No obvious correlation
339 with amount of band depth decrease and shock pressure is observed.

340 The oxidized mantle clinopyroxenes exhibit the CA1, CA4, and CA5 critical MIR
341 absorptions in addition to the 515 cm^{-1} absorption [Hamilton, 2000] (Figure 9). The two
342 absorption features at 923 and 963 cm^{-1} are muted, instead a single broad feature centered at 943 cm^{-1}
343 is observed (Figure 9). A decrease in the overall band depth of ~5%, similar to that seen in
344 the shocked clinopyroxenes is evident when comparing the low Fe^{3+} clinopyroxenes to those
345 with high Fe^{3+} (Figure 9) with the 943 cm^{-1} absorption showing the most significant decrease
346 (~22%).

347 All critical absorption features identified by Hamilton [2000] in high Mg orthopyroxene
348 MIR spectra were observed in the mantle orthopyroxenes in this study (CA1 = 1090 cm^{-1} ; CA2 =
349 980 cm^{-1} ; CA3 = 957 cm^{-1} ; CA4 = 868 cm^{-1} ; CA5 = 570 cm^{-1} ; CA6 = 548 cm^{-1} ; CA7 = 511 cm^{-1} ;
350 CA8 = 451 cm^{-1}) (Figure 10). The broad nature of the CA1 feature makes it difficult to assign an
351 absolute position, but it remains close to that determined for high Mg orthopyroxene. The
352 amount of Fe^{3+} substitution into the mantle orthopyroxenes studied is small when compared to
353 that of the clinopyroxenes. As such, no differences are observed as a function of increasing Fe^{3+}
354 concentration (Figure 10).

355

356 6. Discussion

357

358 6.1. Effects of oxidation on pyroxene spectra

359 The effects of oxidation on pyroxene VNIR spectra can be summarized as a shift in the
360 $0.8\text{ }\mu\text{m}$ feature to lower wavelengths and a strengthening of the $\text{Fe}^{2+}\leftrightarrow\text{Fe}^{3+}$ intervalence charge
361 transfer (IVCT) band, reducing the band depth of the $1.0\text{ }\mu\text{m}$ feature. Recall that the introduction
362 of Fe^{3+} in the pyroxene structure increases the FeM2-O1, FeM2-O2, and M2-O3 bond distances.
363 The higher crystal field splitting would imply a shift to lower wavelength of the M2 bands, and
364 that is indeed what is observed. It is also logical to conclude that the increase in IVCT band
365 strength results from the higher Fe^{3+} contribution to it. Additionally, oxidation results in an

366 inverse relationship between the spectral slope in the absorption edge and the %Fe³⁺. Shock can
367 be ruled out as contributing to this feature as similar changes are observed in oxidized samples
368 from both shock experiments and natural mantle assemblages (Figure 7).

369

370 *6.2. Effects of shock on pyroxene spectra*

371 Shock overprints these effects in the VNIR and results in a decrease of ~76% intensity of
372 the 2.35 μm feature and a decrease of ~70% intensity of the 1.0 μm feature. Although all
373 pyroxenes analyzed in this study were oxidized, clear differences exist between their spectra.
374 The effect is most striking in the VNIR region. When comparing shocked and unshocked
375 clinopyroxenes with similar Fe³⁺ contents (31% vs. 35%), the spectral band at 2.35 μm ,
376 representative of Fe²⁺ in the M2 site, is nearly completely gone in the shocked sample while it
377 remains unchanged in the oxidized sample (Figure 11). The depth of the 1.0 μm band that
378 reduces as oxidation progresses in the mantle clinopyroxene is similarly reduced in the shocked
379 samples, but to a much larger degree (80% reduction in intensity when Fe³⁺ is controlled for;
380 Figure 11). The slight shift in the position of the 1.0 μm band between the plotted pyroxenes may
381 be due to the compositional difference between the mantle clinopyroxene and shocked starting
382 material and/or it could be a shock effect. Finally, the 0.8 μm Fe²⁺↔Fe³⁺ IVCT band is not
383 present at all in the shock oxidized clinopyroxenes although visible in the mantle oxidized
384 samples. For the studied clinopyroxenes, the effects of shock appear to overprint those of
385 oxidation in the VNIR region.

386 Based on the background presented earlier, it would be expected that the effects of high
387 temperature experienced during shock, if quenched in the structure, would result in broadening
388 and redshift of crystal field bands. This is not seen. Pressure effects from shock should be
389 manifest as blueshifts to lower wavelengths of both M²Fe²⁺ bands potentially accompanied by
390 intensification of IVCT features. Only the first of these is observed, accompanied by the
391 disappearance of the 2.35 μm band and a very diminished 1.0 μm band. These results suggest
392 that shock is reducing the size of the polyhedra surrounding the Fe cations, reducing CF splitting
393 and order of the crystal structure and blueshifting the peaks. However, at some point in the shock
394 process, the long-range order in the structure breaks down completely. Some CF splitting
395 remains at 1.0 μm but not at 2.35 μm . It is possible that the M2 site falls apart because it is larger
396 and thus more vulnerable to distortion and disintegration from shock. This might leave only a
397 small 1.0 μm feature from M1. Moreover, IVCT is no longer possible because the regular atomic
398 structure that permits exchange of electrons between Fe cations in adjacent sites no longer exists.
399 Confirmation of the nature of the residual structure of shocked pyroxenes remains elusive to our
400 efforts to date; so far, we have not succeeded in finding well-diffracting crystals from any
401 meteorite to examine the extent of ordering (though we are continuing to try).

402 In the MIR, both shocked oxidized and mantle oxidized clinopyroxenes show a decrease
403 in band depths of absorption features of similar magnitude. The most obvious difference between
404 the samples is the CA2 and CA3 features which are both observed in the shocked clinopyroxenes
405 (Figure 8) but are combined into a single broad feature in the mantle clinopyroxenes (Figure 9).

406

407 *6.3. Crystallographic controls on Fe³⁺ incorporation in pyroxene*

408 Steric controls prevent significant incorporation of Fe³⁺ into the orthopyroxene crystal
409 structure though some substitution does occur ca. 0-16% of Fe³⁺/ΣFe [e.g., Annersten et al.,
410 1978; Canil et al., 1994; McGuire et al. 1989, 1991; Dyar et al. 1989, 1992]. However, this study
411 and many prior ones have demonstrated that clinopyroxene can accommodate significant

412 (Fe³⁺/ΣFe values of 10-66%) amounts of Fe³⁺ into its structure [McGuire et al. 1989, 1991; Dyar
413 et al. 1989, 1992]. The presence of Fe³⁺ in clinopyroxene is controlled not only by redox state
414 (i.e., the amount of Fe³⁺ present in the system to be incorporated into the crystal), but also by the
415 pyroxene Mg# (= Mg/Mg+Fe²⁺). Clinopyroxenes with Mg# >90 exhibit Fe³⁺/ΣFe concentrations
416 of less than 20% (Table 1). Those pyroxenes with Mg# 80-90 contain significantly more Fe³⁺
417 (Table 1). It may be this correlation results from the overall bulk concentration of iron in the
418 system such that when more iron present more is available to be oxidized. This is complicated by
419 temperature and pressure controls as well, although these should be minimized in this sample set
420 as all pyroxenes come from similar mantle xenoliths. This question will be resolved in our
421 ongoing program to obtain SREF on all these samples where possible.
422

423 *6.4. Comparison with previous studies*

424 Previous studies have looked at the effects of either shock [Jeanloz and Ahrens, 1977;
425 Adams et al., 1979; Johnson et al., 2002] or oxidation [Cloutis, 2002] in pyroxene spectra
426 separately. In contrast to the significant changes in the shocked pyroxene VNIR spectra
427 discussed in this study, Adams et al. [1979] observed no change in pyroxene VNIR spectra at
428 experimental shock pressures of 59.7 GPa. An experimental study of the effects of increasing
429 shock pressure on MIR spectra of orthopyroxenites (bronzite-rich) found little change beyond a
430 general shallowing of minor absorption features at 976 cm⁻¹ and 567 cm⁻¹ [Johnson et al., 2002].
431 Direct comparisons cannot be made with the shocked pyroxenes in this study and those in
432 previous studies due to starting composition differences (clinopyroxene vs. orthopyroxene). The
433 crystallographic and crystal chemical changes associated with these differences are significant.
434 Clinopyroxene appears to behave in a different manner when subjected to high shock pressures
435 (30-59 GPa) resulting in changes to characteristic VNIR spectral features, including loss of the
436 2.35 μm band and shallowing of the 1.0 μm band, and decreasing band depths in the MIR
437 ([Figures 4 and 8](#)).

438 Shock oxidation has also been observed in the mafic mineral olivine in experimental
439 samples where the shock took place under high p_{O_2} conditions [Bauer, 1979]. Shock oxidation in
440 natural olivine has proven more difficult to quantify. Ostertag et al. [1984] proposed shock
441 oxidation as the reason for the brown olivine observed in martian meteorite ALHA 77005,
442 although Burns [1989] showed that minimal Fe³⁺ (<1%) was present in the natural shocked
443 olivines. A more recent study of martian chassignite NWA 2737 reported shocked olivine with
444 up to 3% total iron as Fe³⁺ [Treiman et al., 2007; Pieters et al., 2008] suggesting the potential for
445 some production of Fe³⁺ during the shock process. The amounts of Fe³⁺ proposed for olivine
446 incorporation are very small due to crystallographic controls
447

448 *6.5. Implications for remote sensing*

449 Assigning values to the location of the 1.0 μm (Band 1) and 2.0 μm (Band 2) pyroxene
450 VNIR features remains one of the most common means by which to determine planetary surface
451 compositions remotely [e.g., Adams, 1974; Pieters, 1993; Mustard et al., 2005; Burbine et al.,
452 2010]. Even the high levels of Fe³⁺ incorporation measured in the oxidized mantle clinopyroxene
453 samples do not significantly change the location of either of these features in either the studied
454 ortho- or clinopyroxene. However, either the shifting of the Fe²⁺↔Fe³⁺ IVCT band from near 0.8
455 μm to ~0.75 μm as a function of progressive oxidation in the clinopyroxene or the observation of
456 the weak, but sharp peak at 0.44 μm due to spin-forbidden Fe³⁺ ([Figure 4](#)) could be used to
457 determine if the clinopyroxene was oxidized (i.e., contained significant amounts of Fe³⁺). This

458 shift was not observed in the orthopyroxene samples, although the low total Fe^{3+} contents of
459 those grains might hinder this.

460 It may also be feasible to use the negative slope observed in the absorption edge as a
461 function of $\% \text{Fe}^{3+}$ to quantify clinopyroxene oxidation state remotely (Figure 7). The oxidized
462 mantle samples exhibit this correlation. Significantly, the shock oxidized samples do as well.
463 Although shock appears to obliterate much of the oxidized spectral signal (Figure 11), the
464 negative slope of the absorption edge remains. Therefore, the shifting of the $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ IVCT
465 band could be used to determine that a clinopyroxene was oxidized and the slope of the
466 absorption edge could determine the degree of that oxidation.

467 A more significant implication for remote sensing studies of planetary surfaces is the
468 effect of shock. The $2.35 \mu\text{m}$ feature suffers a decrease of $\sim 76\%$ in spectral intensity via shock
469 processes (Figure 6), although a minor band is still present at all shock pressures studied. In the
470 absence of this feature, pyroxene presence and composition cannot be determined using VNIR
471 observations alone. The $1.0 \mu\text{m}$ feature remains in our shock experiments, although the band
472 depth is greatly diminished, suggesting that higher shock pressures might result in its loss as
473 well. MIR pyroxene spectral features are minimally affected by shock (Figure 8) and therefore
474 could be used to identify the presence of pyroxene even if shocked. Therefore, a combination of
475 wavelengths may be required to accurately identify and determine pyroxene composition
476 remotely. Careful consideration of both VNIR and MIR wavelengths collectively may also allow
477 for information about the shock and/or oxidation history of the pyroxene to be evaluated which
478 would not be possible individually.

479

480 7. Conclusions

481 The effects of shock on pyroxene spectra are most prevalent in the VNIR, causing an
482 overall flattening of spectral features. Decreases in band depth due to shock are also observed in
483 the MIR, but to a much smaller degree. The effect of oxidation on pyroxene spectra is observed
484 in VNIR spectra of clinopyroxenes as an overall shallowing of slope from 400 to 600 nm and a
485 shifting of the $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ IVCT band with progressive oxidation. This is observed in all oxidized
486 samples, both shock-oxidized and mantle, and results from the charge transfer reactions at these
487 wavelengths. Oxidation effects in the MIR were minimal and do not appear to be linked to
488 pyroxene $\% \text{Fe}^{3+}$ concentration. It is evident that when interpreting spectral data from surfaces
489 that may contain pyroxene, especially clinopyroxene, the effects of shock and oxidation need to
490 be considered.

491

492 **Acknowledgments.** Work supported by NSF grants EAR-1754268 and EAR-1754261 and
493 NASA grant 80NSSC19K1008. We thank Takahiro Hiroi for assistance collecting VNIR and
494 MIR data at RELAB and Elizabeth Sklute for assistance with Mössbauer data processing. The
495 reviews of Jeff Johnson and an anonymous reviewer were thorough and much appreciated.

496

497 **References**

498 Abu-Eid, R. M. (1976) Absorption spectra of transition metal-bearing minerals at high pressures.
499 In *The Physics and Chemistry of Rocks and Minerals*. R.G.J. Strens, ed., Wiley, New
500 York, pp. 641-675.

501 Adams, J.B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied
502 to remote sensing of solid objects in the solar system. *Journal of Geophysical Research*
503 79, 4829-4836.

504 Adams, J.B., Hörz F., and Gibbons R.V. (1979) Effects of shock-loading on the reflectance
505 spectra of plagioclase, pyroxene, and glass. 10th Lunar and Planetary Science Conference,
506 1-3.

507 Akasaka, M. (1983) ⁵⁷Fe Mössbauer study of clinopyroxenes in the join CaFeAlSiO₆-CaTiAlO₆.
508 Physics and Chemistry of Minerals, 9, 205-211.

509 Annersten H., Olesch M., and Seifert F.A. (1978) Ferric iron in orthopyroxene: a Mössbauer
510 spectroscopic study. *Lithos* 11, 301-310.

511 Ballhaus C., Berry R.F., and Green D.H. (1990) Oxygen fugacity in the Earth's upper mantle.
512 *Nature* 348, 437-440.

513 Bauer J.F. (1979) Experimental shock metamorphism of mono- and polycrystalline olivine: A
514 comparative study. 10th Lunar and Planetary Science Conference, 2573-2596.

515 Bell P.M. and Mao H.K. (1974) Pressure effect on charge-transfer processes in minerals.
516 Carnegie Institution of Washington Yearbook 73.

517 Buddington A.F. and Lindsley D.H. (1964) Iron-titanium oxide minerals and synthetic
518 equivalents. *Journal of Petrology* 5, 310-357.

519 Bruno, E., Carbonin, S., and Molin, G. (1982) Crystal structures of Ca-rich clinopyroxenes on
520 the CaMgSi₂O₆-Mg₂Si₂O₆ join. *Tschermaks Mineralogische und Petrographische
521 Mitteilungen*, 29, 223-240.

522 Burbine T.H., Buchanan P.C., Dolkar T., and Binzel R.P. (2010) Pyroxene mineralogies of near-
523 Earth vestoids. *Meteoritics and Planetary Science* 44, 1331-131.

524 Burns R.G. (1989), Olivine alteration phases in shergottite ALHA 77005; Information from 4.2
525 degrees K Mössbauer spectra. *NASA Technical Memo* 4130, 211-212.

526 Burns, R.G. (1993) *Mineralogical Applications of Crystal Field Theory*, 2nd ed. Cambridge, 551
527 pp.

528 Burns R.G., Parkin K.M., Loeffler B.M., Leung I.S., and Abu-Eld R.M. (1976) Further
529 characterization of spectral features attributed to titanium on the Moon. *Proceedings of
530 the Lunar Science Conference* 7th, 2561-2578.

531 Burns, R.G., and Huggins, F.E. (1973) Visible-region absorption spectra of a Ti³⁺ fassaite from
532 the Allende meteorite: A discussion. *American Mineralogist*, 58, 955-961.

533 Canil D., O'Neill H.St.C., Pearson D.G., Rudnick R.L., McDonough W.F., and Carswell D.A.
534 (1994) Ferric iron in peridotites and mantle oxidation states. *Earth and Planetary Science
535 Letters* 123, 205-220.

536 Christie D.M., Carmichael I.S.E., and Langmuir C.H. (1986) Oxidation states of mid-ocean ridge
537 basalt glasses. *Earth and Planetary Science Letters* 79, 397-411.

538 Cloutis E.A. (2002) Pyroxene reflectance spectra: Minor absorption bands and effects of
539 elemental substitutions. *Journal of Geophysical Research* 107, doi:
540 10.1029/2001JE001590.

541 Cosca, M.A., and Peacor, D.R. (1987) Chemistry and structure of esseneite (CaFe³⁺AlSiO₆), a
542 new pyroxene produced by pyrometamorphism. *American Mineralogist* 72, 148-156.

543 Cottrell E., Kelley K.A., Lanzirotti A., and Fischer R.A. (2009) High-precision determination of
544 iron oxidation state in silicate glasses using XAS. *Chemical Geology* 268, 167-179.

545 Dowty, E., and Lindsley, D.H. (1973) Mössbauer spectra of synthetic hedenbergite-ferrosilite
546 pyroxenes. *American Mineralogist*, 58, 850-868.

547 Dyar M.D., Klima, R.L., Fleagle, A., and Peel, S.E. (2013) Fundamental Mössbauer parameters
548 of synthetic Ca-Mg-Fe pyroxenes. *American Mineralogist*, 98, 1172-1186.

549 Dyar M.D., Mackwell S.M., McGuire A.V., Cross L.R., and Robertson J.D. (1993) Crystal
550 chemistry of Fe^{3+} and H^+ in mantle kaersutites: Implications for mantle metasomatism.
551 *American Mineralogist*, 78, 968-979.

552 Dyar M.D., McGuire A.V., and Mackwell S.M. (1992) $\text{Fe}^{3+}/\text{H}^+$ and D/H in mantle kaersutites -
553 Misleading indicators of mantle source fugacities. *Geology* 20, 565-568.

554 Dyar M.D., McGuire A.V., and Ziegler R.D. (1989) Redox equilibria and crystal chemistry of
555 coexisting minerals from spinel lherzolite mantle xenoliths. *American Mineralogist* 74,
556 969-980.

557 Dyar, M.D., Klima, R.L., and Pieters, C.M. (2007) Effects of differential recoil-free fraction on
558 ordering and site occupancies in Mössbauer spectroscopy of orthopyroxenes. *American
559 Mineralogist*, 92, 424-428.

560 Dyar, M.D., McGuire, A.V., and Harrell, M.D. (1992) Crystal chemistry of iron in two styles of
561 metasomatism in the upper mantle. *Geochimica et Cosmochimica Acta*, 56, 2579-2586.

562 Ghose, S., Okamura, F.P., and Ohashi, H. (1986) The crystal structure of $\text{CaFe}^{3+}\text{SiAlO}_6$ and the
563 crystal chemistry of Fe^{3+} - Al^{3+} substitution in calcium Tschermak's pyroxene.
564 *Contributions to Mineralogy and Petrology*, 92, 530-535.

565 Ghose, S., Wan, C., Okamura, F.P., Ohashi, H., and Weidner, J.R. (1975) Site preference and
566 crystal chemistry of transition metal ions in pyroxenes and olivines. *Acta
567 Crystallographica*, sect. A , 31, 76.

568 Hamilton V.E. (2000) Thermal infrared emission spectroscopy of the pyroxene mineral series.
569 *Journal of Geophysical Research* 105, 9701-9716.

570 Hazen R. M., Bell P. M., and Mao H. K. 1978. Effects of compositional variation on absorption
571 spectra of lunar pyroxenes. *Proceedings, 9th Lunar and Planetary Science Conference*.
572 pp. 2919-2934.

573 Hinrichs J.L., Lucey P.G., Robinson M.S., Meiborn A., and Krot A.N. (1999) Implications of
574 temperature-dependent near-IR spectral properties of common minerals and meteorites
575 for remote sensing of asteroids. *Geophysical Research Letters* 26, 1661-1664.

576 Hörz F. (1970) A small ballistic range for impact metamorphism studies. NASA Technical Note
577 D-5787. Washington, D.C.: National Aeronautics and Space Administration. 19 p.

578 Jeanloz R. and Ahrens T.J. (1977) Pyroxenes and olivines: Structural implications of shock-wave
579 data for high pressure phases. In: *High-Pressure Research* (eds. M.H. Manghnani and S-I.
580 Akimoto), p.439-461.

581 Johnson J.R., Hörz F., Lucey P.G., and Christensen P.R. (2002) Thermal infrared spectroscopy
582 of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of
583 Mars. *Journal of Geophysical Research* 107, doi:10.1029/2001JE001517.

584 Klima R.L., Dyar M.D., and Pieters C.M. (2011) Near-infrared spectra of clinopyroxenes:
585 Effects of calcium content and crystal structure. *Meteoritics & Planetary Science* 46, 379-
586 395.

587 Klima R.L., Pieters C.M., and Dyar M.D. (2007) Spectroscopy of synthetic Mg-Fe pyroxenes I:
588 Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared.
589 Meteoritics and Planetary Science 42, 235-253.

590 Klima, R. L., Pieters, C. M., and Dyar, M.D. (2008) Characterization of the 1.2 μm M1 pyroxene
591 band: Extracting cooling history from near-IR spectra of pyroxenes and pyroxene-
592 dominated rocks. *Meteoritics and Planetary Science*, 43, 1591-1604.

593 Klima, R.L., Dyar, M. D., and Pieters, C. M. (2010) Near-infrared spectra of clinopyroxenes:
594 effects of calcium content and crystal structure. *Meteoritics and Planetary Science*, doi:
595 10.1111/j.1945-5100.2010.01158.x.

596 Kress V. and Carmichael I.S.E. (1991) The compressibility of silicate liquids containing Fe_2O_3
597 and the effect of composition, temperature, oxygen fugacity, and pressure on their redox
598 states. *Contributions to Mineralogy and Petrology* 108, 82-92.

599 Kurepin, V.A., Polshin, 8.V., and Alibekov, G.I. (1981) Intracrystalline distribution of the
600 cations Fe^{3+} and Al in the clinopyroxene $\text{CaFe}^{3+}\text{AlSiO}_6$. *Mineralogisheskii Zhurnal*, 3,
601 83-88.

602 Lindsley D.H. and Anderson D.J. (1983) A two-pyroxene thermometer. *Journal of Geophysical
603 Research* 88, A887-A906.

604 Mao, H.-K. (1970) The system jadeite ($\text{NaAlSi}_2\text{O}_6$)-anorthite ($\text{CaAl}_2\text{Si}_2\text{O}_8$) at high pressure.
605 Carnegie Institution of Washington Yearbook 69, 163-168.

606 Mao, H.-K., and Bell, P.M. (1971) Crystal field spectra. *Annual Report of the Geophysical
607 Laboratory Yearbook*, 70, 207-215.

608 Mattioli G.S., and Wood B.J. (1988) Magnetite activities across the $\text{MgAl}_2\text{O}_4\text{-Fe}_3\text{O}_4$ spinel
609 join, with application to thermobarometric estimates of upper mantle oxygen fugacity.
610 *Contributions to Mineralogy and Petrology* 98, 148-162.

611 McCanta M.C. and Dyar M.D. (2017) Impact-related thermal effects on the redox state of Ca-
612 pyroxene. *Meteoritics and Planetary Science*, doi: 10.1111/maps.12793.

613 McGuire A.V., Dyar M.D., and Nielson J.E. (1991) Metasomatic oxidation of upper mantle
614 peridotite. *Contributions to Mineralogy and Petrology* 109, 252-264,
615 doi:10.1007/BF00306483.

616 McGuire, A.V., Dyar, M.D., and Ward, K.W. (1989) Neglected $\text{Fe}^{3+}/\text{Fe}_{2+}$ ratios: a study of Fe^{3+}
617 contents of megacrysts from alkali basalts. *Geology*, 17, 687-689.

618 Mustard J.F., Poulet F., Gendrin A., Bibring J.P., Langevin Y., Gondet B., Mangold N., Bellucci
619 G., and Altieri F. (2005) Olivine and pyroxene, diversity in the crust of Mars. *Science*
620 307:1594-1597.

621 Ohashi, H., and Hariya, Y. (1970) Order-disorder of ferric iron and aluminum in Ca-rich
622 clinopyroxene. *Proceedings of the Japanese Academy*, 46, 684-687.

623 Ostertag R., Amthauer G., Rager H., and McSween H.Y. Jr. (1984) Fe^{3+} in shocked olivine
624 crystals of the ALHA 77005 meteorite. *Earth and Planetary Science Letters* 67, 162-166,
625 doi:10.1016/0012-821X(84)90111-0.

626 Papike J.J., Simon S.B., Burger P.V., Bell A.S., Shearer C.K., and Karner J.M. (2016)
627 Chromium, vanadium, and titanium valence systematics in Solar System pyroxene as a
628 recorder of oxygen fugacity, planetary provenance, and processes. *American
629 Mineralogist* 101, 907-918.

630 Pelkey S.M., Mustard J.F., Murchie S., Clancy R.T., Wolff M., Smith M., Milliken R., Bibring
631 J.-P., Gendrin A., Poulet F., Langevin Y., and Gondet B. (2007) CRISM multispectral

632 summary products: Parameterizing mineral diversity on Mars from reflectance. *Journal of*
633 *Geophysical Research Planets*, 112, doi.org/10.1029/2006JE002831.

634 Peslier A.H., Hervig R., Yang S., Humayun M., Barnes J. J., and Brandon A.D. (2019)
635 Determination of the water content and D/H ratio of the martian mantle by unraveling
636 degassing and crystallization effects in nakhlites. *Geochimica et Cosmochimica Acta*
637 266, 382–415.

638 Pieters C.M. (1993) Compositional diversity and stratigraphy of the lunar crust derived from
639 reflectance spectroscopy. In *Remote geochemical analysis: Elemental and mineralogical*
640 *composition* (eds. Pieters C.M. and Englert P.A.J.). Cambridge University Press. pp. 309–
641 339.

642 Pieters C.M. and Hiroi T. (2004) RELab (Reflectance Experiment Laboratory): A NASA
643 multiuser spectroscopy facility. 35th Lunar and Planetary Science Conference, abstract
644 #1720.

645 Pieters C.M., Klima R.L., Hiroi T., Dyar M.D., Lane M.D., Treiman A.H., Noble S.K., Sunshine
646 J.M., and Bishop J.L. (2008) Martian dunite NWA 2737: Integrated spectroscopic
647 analyses of brown olivine. *Journal of Geophysical Research* 113,
648 doi:10.1029/2007JE002939.

649 Rossi, G., Oberti, R., Dal Negro, A., Molin, G.M., and Mellini, M. (1987) Residual electron
650 density of the M2 site in C2/c clinopyroxenes relationship with bulk chemistry and sub-
651 solidus evolution. *Physics and Chemistry of Minerals*, 14, 514–520.

652 Rossman, G.R. (1980) Pyroxene spectroscopy. *Reviews in Mineralogy*, 7, 91–115,

653 Sack R.O., Carmichael I.S.E., Rivers M.L., and Ghiorso M.S. (1980) Ferric-ferrous equilibria in
654 natural silicate liquids at 1 bar. *Contributions to Mineralogy and Petrology* 75, 369–376.

655 Seifert, F. (1983) Mössbauer line broadening in aluminous orthopyroxenes: Evidence for next
656 nearest neighbors interactions and short-range order. *Neues Jahrbuch für Mineralogie*
657 *Abhandlungen*, 148, 141–162.

658 Shankland, T.J., Duba, A. G., and Woronow, A. (1974) Pressure shifts of optical absorption
659 bands in iron-bearing garnet, spinel, olivine, pyroxene, and periclase. *Journal of*
660 *Geophysical Research*, 79, 3273–3282.

661 Straub D.W., Burns R.G., and Pratt S.F. (1991) Spectral signatures of oxidized pyroxenes:
662 Implications to remote sensing of terrestrial planets. *Journal of Geophysical Research* 96,
663 18,819–18,830.

664 Straub, D.W. and Burns, R.G. (1991) Degradation of Fe-Mg silicates in hot CO₂ atmospheres:
665 Applications to Venus. *LPSC*, XXII, 1349–1350.

666 Straub, D.W., Burns, R.G., and Pratt, S.F. (1991) Spectral signature of oxidized pyroxenes:
667 implications to remote-sensing of terrestrial planets. *Journal of Geophysical Research*,
668 96, 18819–18830.

669 Sung, C.-M., Singer, R.B., Parkin, K.M., and Burns, R.G. (1977) Temperature dependence of
670 Fe²⁺ crystal field spectra: Implications to mineralogical mapping of planetary surfaces.
671 *Proceedings Lunar Science Conference* 8th, 1063–1079.

672 Treiman A.H., Dyar M.D., McCanta M.C., Pieters C.M., Hiroi T., Lane M.D., and Bishop J.
673 (2007) Martian dunite NWA 2737: Petrographic constraints on geologic history, shock
674 events, and olivine color. *Journal of Geophysical Research* 112,
675 doi:10.1029/2006JE002777.

676 Turnock A.C., Lindsley D.H., and Grover J.E. (1973) Synthesis and unit cell parameters of Ca-
677 Mg-Fe pyroxenes. *American Mineralogist* 58, 50–59.

678 White, W.B., and Keester, K.L. (1966) Optical absorption spectra of iron in the rock-forming
679 silicates. *American Mineralogist*, 51, 774-791.

680 Wood B.J. (1991) Oxygen barometry of spinel peridotites. *Reviews in Mineralogy* 25, 417-431.

681 Zhang L., Ahsbahs H., Hafner S.S., and Kutoglu A. (1997) Single-crystal compression and
682 crystal structure of clinopyroxene up to 10 GPa. *American Mineralogist* 82, 245 - 258.

683 Zhi, X.C., Chen, P., Lin, C.Z., Chen, S.Q., Zhang, G.L. and Li, Y.Z., and Lin, L. (2001) Oxidation
684 experiment of natural megacrystal clinopyroxene: Implications for assignment of Mossbauer
685 spectra. *Acta Geologica Sinica – English edition*, 75, 51-58.

686

Table 1. Summary of Pyroxene Compositions.

Sample	Locality	Wo	En	Fs	Mg#	Fe ³⁺ /ΣFe
Ba-1-61 cpx	Dish Hill, CA	46.7	48.2	5.1	91.9	16
DH-210 cpx	Dish Hill, CA	40.4	50.3	9.3	87.2	21
Ba-2-101-E cpx	Dish Hill, CA	45.8	49.0	5.1	93.3	32
DH-218 cpx	Dish Hill, CA	43.6	42.7	13.7	82.3	34
DH-201 cpx	Dish Hill, CA	43.8	44.3	11.9	85.1	35
DH-211 cpx	Dish Hill, CA	43.3	43.5	13.3	83.2	35
DH-213 cpx	Dish Hill, CA	44.0	43.3	12.6	84.0	36
DH-231 cpx	Dish Hill, CA	43.8	41.9	14.3	81.9	37
DH-217 cpx	Dish Hill, CA	44.3	42.0	13.7	82.9	39
DH-101-E opx	Dish Hill, CA	1.6	89.8	8.6	91.7	6
Ba-2-101-B opx	Dish Hill, CA	1.2	80.8	8.5	90.5	9
Ba-2-101-D opx	Dish Hill, CA	9.3	82.6	8.1	92.2	14
EP-3-72 cpx	Kilbourne Hole, NM	46.2	48.5	5.3	91.9	18
EP-3-162 cpx	Kilbourne Hole, NM	46.6	47.4	5.9	91.1	22
EP-1-42A cpx	Kilbourne Hole, NM	51.5	46.7	0.7	74.9	25
EP-1-42B cpx	Kilbourne Hole, NM	46.2	41.0	0.70	69.5	25
EP-3-72 opx	Kilbourne Hole, NM	1.7	88.6	9.7	90.8	4
Ki-5-235 cpx	Cima, CA	46.5	48.3	5.2	91.7	16
Jaipur diopside ^a	Jaipur, India	49.3	47.0	3.7	94.8	8
3493 (36 GPa) ^b	Jaipur, India	49.3	47.0	3.7	94.8	31
3494 (43 GPa)	Jaipur, India	49.3	47.0	3.7	94.8	24
3496 (52 GPa)	Jaipur, India	49.3	47.0	3.7	94.8	17
3495 (59 GPa)	Jaipur, India	49.3	47.0	3.7	94.8	27

^aComposition from McCanta and Dyar [2017]^bShock sample pressure in parentheses from McCanta and Dyar [2017]

689 **Figure Captions**

690
691 Figure 1. Portions of the crystal structures of the Fe^{3+} (left) and Fe^{2+} (center and right) forms of
692 Ca clinopyroxene, essenite from Cosca and Peacor [1987] and hedenbergite from Zhang et al.
693 [1997], at 0 GPa (center) and 10 GPa (right). In these nominal end-members, Ca fills the M2 site
694 and Fe the M1 site, but in most naturally occurring pyroxenes, Mg, Fe^{2+} , and Fe^{3+} compete for
695 the M1 site, and some Fe^{2+} also enters the M2 site.

696
697 Figure 2. Comparison of bond distances for the three pyroxenes for which structures are shown
698 in Figure 1. Esseneite is the Fe^{3+} clinopyroxene that forms in fused sedimentary rocks. The two
699 hedenbergite refinements are taken from Zhang et al. [1987] from the same sample at ambient
700 and 10 GPa. The Fe^{3+} sample behaves more like the high-pressure hedenbergite and supports the
701 idea that both high pressure and small cations affect bond distances.

702
703 Figure 3. Pyroxene quadrilateral showing the range of pyroxene compositions investigated in this
704 study in red squares.

705
706 Figure 4. Visible and near-infrared spectra of mantle clinopyroxene. Spectra are offset for clarity.
707 Spectral line color indicates amount of Fe^{3+} measured in the pyroxene (% Fe^{3+} values for
708 individual pyroxenes listed in Table 1). Red = 35-39% Fe^{3+} ; orange = 30-34% Fe^{3+} ; green = 20-
709 29% Fe^{3+} ; blue = 10-19% Fe^{3+} ; purple = 8% Fe^{3+} . Location of the $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ IVCT band is shown
710 as the black dashed line. Note the shift to lower wavelengths as a function of progressive
711 oxidation. Location of the spin-forbidden crystal Fe^{3+} feature at 0.44 μm is shown as black dash-
712 dot line.

713
714 Figure 5. Visible and near-infrared spectra of mantle orthopyroxenes. Spectra are offset for
715 clarity. Numbers on right side of plot indicate the % Fe^{3+} measured in each pyroxene. Location of
716 the $\text{Fe}^{2+} \leftrightarrow \text{Fe}^{3+}$ IVCT band is shown as the black dashed line.

717
718 Figure 6. Visible and near-infrared spectra of shocked clinopyroxenes and unshocked starting
719 material. Spectra are offset for clarity. Numbers on right side of plot indicate the % Fe^{3+}
720 measured in each pyroxene. Experimental shock pressures are given on the left side of the plot.

721
722 Figure 7. Relationship between spectral slope between 0.4 and 0.6 μm (absorption edge) and
723 % Fe^{3+} . Slope calculated using the median of 3 channels on either side of respective wavelength
724 to reduce stochastic noise. Green triangles = shocked clinopyroxene; green star = shocked
725 clinopyroxene starting composition; red squares = mantle clinopyroxene; blue circles = mantle
726 orthopyroxene.

727
728 Figure 8. Mid-infrared spectra of shocked clinopyroxenes and unshocked starting material.
729 Spectra are offset for clarity. Numbers on right side of plot indicate the % Fe^{3+} measured in each
730 pyroxene. Experimental shock pressures are given on the left side of the plot. Dashed lines
731 indicate the critical absorptions (CA1-CA5) identified by Hamilton [2000] for high Mg
732 clinopyroxene and the additional 515 cm^{-1} absorption observed in high Mg pyroxenes.

734 Figure 9. Mid-infrared spectra of selected mantle clinopyroxene. Spectra are offset for clarity.
735 Numbers on left side of plot indicate the %Fe³⁺ measured in each pyroxene. Dashed lines
736 indicate the critical absorptions (CA1, CA2+CA3, CA4, CA5) identified by Hamilton [2000] for
737 high Mg clinopyroxene and the additional 515 cm⁻¹ absorption observed in high Mg pyroxenes.
738
739 Figure 10. Mid-infrared spectra of mantle orthopyroxene. Spectra are offset for clarity. Numbers
740 on left side of plot indicate the %Fe³⁺ measured in each pyroxene. Dashed lines indicate the
741 critical absorptions (CA1-CA8) identified by Hamilton [2000] for high Mg orthopyroxene.
742
743 Figure 11. Comparison of VNIR spectra of mantle oxidized clinopyroxene (%Fe³⁺ = 35) and
744 shocked clinopyroxene (%Fe³⁺ = 31).
745
746

747
748 Figure 1.
749

750
751 Figure 2.
752
753

754
755 Figure 3.
756
757

Figure 4.

760 Figure 5.

761 Figure 6.

762

Figure 7.

765 Figure 8.
766

Figure 9.

768 Figure 10.

769

770 Figure 11.