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Honeybee swarms are a landmark example of collective behavior.

To become a coherent swarm, bees locate their queen by tracking

her pheromones. But how can distant individuals exploit these

chemical signals, which decay rapidly in space and time? Here, we

combine a behavioral assay with the machine vision detection of

organism location and scenting (pheromone propagation via wing

fanning) behavior to track the search and aggregation dynamics

of the honeybee Apis mellifera L. We find that bees collectively

create a scenting-mediated communication network by arranging

in a specific spatial distribution where there is a characteristic dis-

tance between individuals and directional signaling away from

the queen. To better understand such a flow-mediated directional

communication strategy, we developed an agent-based model

where bee agents obeying simple, local behavioral rules exist in a

flow environment in which the chemical signals diffuse and decay.

Our model serves as a guide to exploring how physical parameters

affect the collective scenting behavior and shows that increased

directional bias in scenting leads to a more efficient aggregation

process that avoids local equilibrium configurations of isotropic

(nondirectional and axisymmetric) communication, such as small

bee clusters that persist throughout the simulation. Our results

highlight an example of extended classical stigmergy: Rather

than depositing static information in the environment, individual

bees locally sense and globally manipulate the physical fields of

chemical concentration and airflow.

honeybee | olfactory communication | signal propagation |

computer vision | agent-based model

Animals routinely navigate unpredictable and unknown envi-
ronments in order to survive and reproduce. One of the

prevalent communication strategies in nature is conducted via
volatile signal communication, for example, pheromones (1, 2).
As the range and noise tolerance of information exchange is lim-
ited by the spatiotemporal decay of these signals (3, 4), animals
find creative solutions to overcome this problem by leveraging
the diffusivity, decay, and interference with information from
other individuals (5–8).

For olfactory communication, honeybees use their antennae
to recognize and respond to specific odors. Recent studies have
revealed the bees’ distinct electrophysiological responses to dif-
ferent chemicals with quantifiable preferences (9). Olfactory
communication with pheromones is crucial for many coordinated
processes inside a honeybee colony, such as caste recognition,
regulating foraging activities, and alarm broadcasting (10–12).
Studies have shown that the queen mandibular pheromone regu-
lates gene expression in the brains of workers, inducing changes
in downstream behaviors, such as nursing and foraging (13).
Among worker bees, adult foragers produce ethyl oleate, a chem-
ical inhibitory factor that plays a role in delaying foraging in
younger workers (14). In this work, we study how bees use
pheromones in the context of swarm formation. To become a
coherent swarm, honeybees must locate their queen by tracking

her pheromones that decay rapidly in time and space. How can
honeybees that are far away from the queen locate her? The spe-
cific mechanisms of the collective signal propagation strategy are
still unknown.

The mechanism to locating the queen involves a behavior
called “scenting,” where bees raise their abdomens to expose
the Nasonov pheromone gland and release the chemicals (15–
17) (Fig. 1A and Movie S1, Left). This common behavior is also
seen in other scenarios, such as scenting at the hive’s entrance
to orient foragers coming back to the hive and on food locations
(e.g., flowers) (18, 19). So far, scenting has only been character-
ized at the level of an individual bee. We investigate how this
behavior manifests at the level of a group of bees performing the
task of localizing the queen for swarming.

In the traditional chemical signaling chemotaxis and quorum
sensing scheme, the produced chemical signal by an individ-
ual is isotropic, or nondirectional and axisymmetric, as seen in
early embryonic development (20, 21) and aggregation of ame-
bae in Dictyostelium (22–24). Conversely, scenting bees create
a directional bias by fanning their wings, which draws air along
the pheromone gland along their anteroposterior axis (Fig. 1A).
Thus, in addition to diffusion or the transport of the chemi-
cals through random motion, the pheromone signals are also
subject to the process of advection, that is, the transport of
the chemicals by air motion created by the wing fanning. We
show that, when bees perform the scenting behavior, they fan
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Fig. 1. Honeybees use directed volatile communication to solve a localization problem of finding their queen. (A) Pheromone sensing bees amplify the

signal by opening the Nasonov gland in their abdomen and fan their wings to transmit their pheromones backward (a behavior called “scenting”). In

the top view of the scenting bee, s
p
i,t

is the position of a given bee, and sd
i,t is the unit vector representing the direction of scenting. (B) Solution to the

queen localization problem: By amplifying the queen’s pheromones by emitting their own pheromones directionally, some worker bees (green) transmit

the volatile signal over long distances while keeping a certain distance d from one another. Other informed worker bees (orange) follow the scent up the

pheromone gradient. Uninformed bees (gray) perform a random search. (C) Example of a typical experiment where, at t = 0, the queen is confined to a

cage located at a corner of the arena, and the worker bees are located at the farthest corner. After ∼ 30 min, the bees aggregate around the queen’s

cage. (D) The mean reconstruction of the attractive surface f according to SI Appendix, Eq. S2, averaged over 30 min. The mutual information (SI Appendix,

Eq. S4) between this surface and the density of the bees at the end of the experiment illustrates the correlation between the scenting directions and the

aggregation location of the bees. (E) The average number of scenting bees and the average distance between scenting bees over time. The aggregation

process is accompanied by a sharp increase and gradual fall in the number of scenting bees. In contrast, the distance between scenting bees is lowest at the

peak in number of scenting bees at the beginning and gradually increases over time.

their wings to direct the signal away from the queen and toward
informed bees following the scent and the rest of the uninformed
swarm (Fig. 1B). This directional bias increases the probabil-
ity that distant bees may sense those amplified pheromones,
upon which they also stop at a certain distance from the scent-
ing bee and amplify the signal along their own anteroposterior
axis. The combination of detection and “rebroadcast” leads to a
dynamic network that recruits new broadcasting bees over time,
as the pheromones now travel a distance that is orders of mag-
nitude the length of an individual. What are the dynamics in the
number of scenting bees during the swarming process? Is there
a characteristic distance that defines the pheromone detection
range for scenting bees? What are the advantages of a direc-
tional communication strategy vs. an isotropic one? And how
do the bees harness the physics of directed signals to create an
efficient communication network? To address these questions,
we combined a behavioral assay, machine learning solutions for
organism tracking and scenting detection and computational
agent-based modeling of the communication strategy in hon-
eybees and characterize the advantage of collective directional
scenting.

Materials and Methods

To quantify the correlation between the scenting behavior of the bees,

localization of the queen, and the aggregation process, we established a

behavioral assay in which worker bees search for a stationary caged queen

in a semi–two-dimensional (2D) arena (see SI Appendix, section A for more

details). We recorded the search and aggregation behavior of the bees from

an aerial view for 1 h to 2 h (see Movie S1 for a closeup example scenting

bee with her abdomen pointed upward and wing-fanning behavior in this

experimental arena, in contrast with a nonscenting bee standing still). To

extract data from the recordings, we then developed a markerless, auto-

matic, and high-throughput analysis method using computer vision methods

and convolutional neural networks (CNNs) (25). This pipeline allows us to

detect individual bees as well the positions and orientations of scenting bees

(see SI Appendix, section B and Fig. S2 for more details, and see Movie S2

for a movie of the example in SI Appendix, Fig. S2 B and C).

To identify the unifying behavioral principles that harness the dynamics

of volatile signals, we developed a model that captures two important phys-

ical dynamics surrounding individual bees, substance advection–diffusion

and sensing local concentration gradients, while they perform search and

identification (26). Our agent-based model is embedded in a flow environ-

ment where individuals can sense local concentrations of pheromones and

propagate them backward as well as move up the gradient (see SI Appendix,

section F and Fig. 3 for full model details).

Behavioral Assay Results

Localization Is Correlated with Scenting. In the 2D experimental
arena, worker bees placed at the opposite corner from the queen
explore the space and eventually aggregate around the queen’s
cage after ∼ 30 min (Fig. 1C). For each scenting bee i at time

t , we collected its position, s
p
i,t , and direction of scenting, s

d
i,t

(unit vector). We then correlated the scenting events with the
spatiotemporal density of bees in the arena by treating s

p
i,t and

s
d
i,t as a set of gradients that define a minimal surface of height
f (x , y , t). This surface height f (x , y , t) corresponds to the prob-
ability that a randomly moving nonscenting bee will end up at
position (x , y) by following the local scenting directions of scent-
ing bees (see SI Appendix, section E for formal definitions and
derivations).

To show that the attractive surface f (x , y , t) is correlated with
the final concentration of bees ρ(x , y , t ′), we compute the nor-
malized mutual information, NMI(〈f 〉

t
; 〈ρ(tend)〉), between the

attractive surface averaged over the entire experiment (Fig. 1D)
and the density of the bees averaged over the last 5 min of the
experiment. The mutual information measures the information
that the two variables, 〈f 〉

t
and 〈ρ(tend)〉, share, and determines

how much knowing one variable reduces uncertainty about the
other. The NMI is scaled between zero (no mutual information)

2 of 8 | PNAS

https://doi.org/10.1073/pnas.2011916118

Nguyen et al.

Flow-mediated olfactory communication

in honeybee swarms

D
o
w

n
lo

a
d
e
d
 b

y
 g

u
e
s
t 
o
n
 J

u
n
e
 7

, 
2
0
2
1
 



E
C

O
LO

G
Y

A
P

P
LI

E
D

M
A

T
H

E
M

A
T
IC

S

and one (perfect correlation). We averaged the density of bees
over the last 5 min of the experiment to capture the density of
the entire group and avoid discrete peaks of density resulting
from movement of individual bees (see SI Appendix, section E
for definitions). For the experiment shown in Fig. 1 C–E, the
NMI is 0.21. The top right region in the arena with maximal
〈f 〉

t
corresponds to the location around the queen, illustrating

the correlation between the scenting directions and the queen
localization of the bees. We performed N =14 experiments of
various group sizes (rounded to the nearest 10), and report an
average NMI of 0.11 (σ2 =0.002). See SI Appendix, Table S1 for
values for individual experiments, and see SI Appendix, Fig. S3
for pairs of the average frame and the average attractive surface
for all experiments.

A Characteristic Distance between Scenting Bees. The aggrega-
tion process is accompanied by a sharp increase in the average
number of scenting bees, followed by a slow decay, until there
are few scenting bees and the majority of the bees are aggre-
gated around the queen (Fig. 1E, orange curve). See Movie
S3 for the experiment shown in Fig. 1 C–E, with the attractive
surface reconstruction and time series data. We also charac-
terize the temporal dynamics of the distance between neigh-
boring scenting bees, which are treated as adjacent points in
the Voronoi diagram for each frame (see example diagram in
SI Appendix, Fig. S2 E and F and section C for more details).
Throughout the growth in the number of scenting bees, the
distance between scenting bees decreases to a minimal value,
then increases as the number of scenters decreases (Fig. 1E,
green curve).

To show the reproducibility of the behavioral assay and assess
the effect of group size in the aggregation process, we tested

14 group sizes ranging from approximately 180 to 1,000 bees.
Three example experiments with Nbees =320, 500, and 790 are
shown in Fig. 2A and Movies S4–S6. Each example includes
three snapshots showing the process of aggregation around the
queen’s cage over 60 min. The average numbers of scenting
bees over time for all experiments of various group sizes are
shown in Fig. 2B. Generally, there are more scenting bees over
time as the number of bees in the arena increases. Across den-
sities, we observe a typical characteristic of a sharp increase
in scenting bees at the beginning as the bees initially search
for the queen, and a slow decrease as they slowly aggregate
around the queen’s cage. Based on observations, we assume that
bees in tight clusters, such as those at the very beginning, do
not usually scent, as they are not sufficiently spread out to fan
their wings.

The time evolution of the average distance from all bees in
the arena to the queen is shown in Fig. 2C. There are no clear
distinctions between the temporal dynamics of this distance as
a function of density. For most densities, there is a sharp drop
in this distance to the queen very early on (∼100 s to 200 s),
corresponding to the early increase in number of scenting bees.
The average distance to the queen then gradually falls as bees
make their way to her vicinity.

We also measured the distance between neighboring scenting
bees over time for all group sizes (Fig. 2D). This distance shows
a characteristic gradual increase over time. At the beginning of
the aggregation process at the peaks in scenting bees, this dis-
tance is fairly constant across all sizes, ranging from 5.00 cm to
7.35 cm, with an outlier from the lowest group size experiment at
9.06 cm (Fig. 2E). A linear model is fitted to the data (excluding
the outlier) with the slope m =0.00031 cm/nbees. The presence
of this constant distance between nearest-neighbor scenting bees

A B C

D E

Fig. 2. Distance between scenting bees is invariant to bee density. (A) Example experiments of various bee densities, each with three snapshots showing

the process of aggregation around the queen’s cage over 60 min. (B) The average number of scenting bees over time for all experiments of various densities.

There are more scenting bees with higher number of bees in the arena. Across densities, we observe a typical characteristic of a sharp increase in scenting

bees at the beginning and decrease over time. (C) The average distance to the queen over time for all experiments of various densities. This distance

gradually decreases as bees aggregate around the queen. The positive correlation between distance to queen and number of scenting bees is evidence for

the functional importance of scenting events to the problem of queen finding. (D) The average distance between scenting bees over time for all experiments

of various densities. Across densities, these distances are fairly constant at the beginning around the peaks in B, and increase over time. (E) The average

distance between scenting bees at the peak in number of scenting bees as a function of density. Error bars represent the standard deviation over all of the

distances for each density. The distance between scenting bees is approximately constant across densities, except for a low-density outlier. A linear model

(green line) is fit to the data, excluding the outlier, with a slope of m = 0.00031 cm/nbees.
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during the initial stage of the aggregation suggests the possibility
of a pheromone concentration threshold that turns on scenting
for individual bees in this collective communication network.
As more bees aggregate around the queen, the bees collec-
tively “turn off” scenting. The higher distance between scenting
neighbors later in the recordings suggest that the few remaining
scenting events are more stochastic.

These experimental results, scenting behavior with wing fan-
ning to direct pheromones, the threshold-dependent triggering
of this behavior, and a characteristic distance between scent-
ing bees, serve as core ingredients for our agent-based model.
We will use the model as a proof of concept of our proposal of
the mechanistic localization behavior, described in more detail
in the next section. The goal of our modeling is to test hypothe-
ses of the mechanisms behind the phenomenon and explore the
possible emergent patterns that arise to assess the effect of the
directional signaling strategy employed by the bees.

Agent-Based Model Results.

Model Predicts Optimal Signal Propagation within a Range of Behav-

ioral Parameters. We systematically explore a range of values for
the directional bias wb , and the threshold T , for various num-
bers of bees in the arena N . Parameters wb and T are potential
behavioral parameters that bees could adjust based on input
from the environment. The directional bias wb represents the
magnitude of the directional advection–diffusion of pheromone
released by a bee (see Fig. 3B for a comparison of isotropic
[wb =0] vs. advection–diffusion [wb =10]). The threshold T is
the local concentration of pheromone above which a bee is acti-
vated from the random walk (i.e., a bee scents or walks up the
concentration gradient when this threshold is met). Each com-
bination of the three parameters (wb , T , and N ) is a simulation
repeated 20 times. All other parameters, including C0 (the ini-
tial pheromone concentration), D (diffusion coefficient), and γ

(decay constant) from SI Appendix, Eq. 6, remain constant across
all simulations.

We quantify aggregation around the queen through the
average distance of worker bees to the queen, 〈d(t)〉=

1/N
∑N

i=1

√

(xi(t)− xq)2 +(yi(t)− yq)2, where xi(t) and yi(t)
are the x and y positions of worker bee i , respectively, and xq and
yq are the x and y positions of the stationary queen bee. We also
extract various other properties of the aggregation processes in
the model: the queen’s cluster size and the number of clusters as
additional measures of efficiency, the distance to the queen from
the farthest active bee (i.e., a bee that is scenting or performing
the directed walk up the pheromone gradient) to assess how far
signals as a function of wb and T propagate, and the number of
scenting bees as a measure of energy expenditure. Our model
predicts four distinct phases for all densities, which are deter-
mined by (wb ,T ). Note that “phase” does not refer to a period
in a time sequence but to the dynamics and outcome observed
from different combinations of the parameters.
Phase 1. For low values of both wb and T , the bees aggregate
into small clusters that are homogeneously spread throughout
the simulation box (Fig. 4E). This is reflected by a sharp ini-
tial decrease and then gradual decrease of 〈d(t)〉 throughout
the simulation (Fig. 4A), a consistently high number of scenting
bees (Fig. 4B), a consistently small cluster of bees in the queen’s
vicinity (Fig. 4C), and a consistently high distance of the farthest
active bee from the queen (Fig. 4D). A simulation is provided in
Movie S7.
Phase 2. At higher values of T and wb , only bees in the vicin-
ity of the queen are activated and join the local cluster around
the queen. This is reminiscent of diffusion-limited aggregation
that results in a sparse fractal-like cluster around the queen (Fig.
4F). This phase is reflected by a gradual decrease in 〈d(t)〉 and
a gradual increase in the number of scenting bees, the queen’s
cluster size, and the distance of the farthest active bee from the

B CA

D

Fig. 3. Scenting model. (A) Our L × L 2D simulation box is discretized into l × l sized pixels. (B) Scenting bees can produce directional bias (example

on Right with wb = 10), compared to no directional bias on Left. (C) When a bee detects a local pheromone concentration that is above the activa-

tion threshold (C(x, y, t) > T), the bee calculates the concentration gradient around it (using the nearest nine pixels, highlighted in different shades

of green) and walks up gradient toward higher pheromone concentrations. (D) Example of a simulation showing a series of snapshots. The queen is

shown as a red filled circle, and worker bees are shown as a red filled circle colored by their internal state: scenting (green), activated (orange), and

nonactivated (gray). Activated bees perform a directed walk up the pheromone gradient, and nonactivated bees perform a random walk. The instanta-

neous pheromone concentration C(x, y, t) corresponds to the green color scale. Simulation parameters are N = 100, wb = 30, T = 0.01 C0 = 0.0575, D = 0.6,

and γ = 108.
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Fig. 4. Directional bias is associated with optimal search and aggregation in the scenting model. (A) The average distance of the worker bees to the queen

as a function of time steps, for examples of the four different phases. (B) The average number of scenting bees as a function of time steps, for examples

of the four different phases. (C) The average queen’s cluster size as a function of time steps, for examples of the four different phases. (D) The average

distance of the farthest active bee to the queen as a function of time steps, for examples of the four different phases. (E–H) Example of a simulation from

the four different phases, showing a temporal series of snapshots. The queen is shown as a red filled circle, and worker bees are shown as a red filled circle

colored by their internal state: scenting (green), performing a directed walk up the pheromone gradient (orange), and performing a random walk (gray).

The instantaneous pheromone concentration C(x,y,t) corresponds to the green color scale. Simulation parameters are N = 300, C0 = 0.0575, D = 0.6, and

γ = 108. For phase 1, wb = 0, T = 0.01 (E); for phase 2, wb = 10, T = 0.5 (F); for phase 3, wb = 30, T = 0.05 (G); and, for phase 4, wb = 0, T = 1.0 (H). Phase

3, which is associated with the fastest aggregations around the queen, is highlighted in red.

queen as bees slowly cluster via the random walk (Fig. 4 A–D). A
simulation is provided in Movie S8.
Phase 3. At low values of T and high values of wb , the acti-
vated bees create a percolating network of senders and receivers
of the pheromone signal (Fig. 4G). This combination of T
and wb ensures the fastest aggregation process around the
queen and the fastest growth of the queen’s cluster (Fig. 4 A
and C). This process keeps most bees active with the scent-
ing task throughout the simulation (Fig. 4B). Although bees in
phases 2 and 3 eventually cluster at the queen’s location, the
pheromone signals in phase 3 reach a much farther distance at
the beginning than in phase 2, where bees slowly cluster only
via the random walk (Fig. 4D). A simulation is provided in
Movie S9.
Phase 4. When the activation threshold T is high enough, no
worker bees are activated, and no clusters are formed (Fig.
4H). In this phase, the bees simply perform a random walk. A
simulation is provided in Movie S10.

The existence of a phase 3 in the computational model sug-
gests that using a directional signal is advantageous, as this
phase does not exist in the absence of directional bias (wb =0).
Although, in both phase 2 and phase 3, the bees are able to
aggregate around the queen with similar values of the aver-
age final distance to the queen (such as for N =100, where
the values are 0.56 and 0.53 units, respectively, in SI Appendix,
Fig. S5D), bees in phase 3 are able to reach a plateau dis-
tance to the queen earlier (on average at t =5,117 compared to
t =6,864.6 in phase 2, in SI Appendix, Fig. S5E) while requir-
ing less scenting events to reach that plateau (on average,

5,566.18 events compared to 7,732.50 in phase 2, in SI Appendix,
Fig. S5F).

The Spatial–Temporal Shapes of Clusters in Experiments and Simula-

tions. To connect the results of the model and the experiments,
we analyze the clusters that change in shape and size over time
in the experiments (for densities ranging from N =250 to 400)
and simulations (for density N =100 where the percolation net-
works are best observed as elongated clusters). See SI Appendix,
section I and Fig. S9 for how we isolate and define the clusters
for this analysis.

To quantitatively compare the experiments to the different
phases in the model, we measure farthest active distance, cluster
area, cluster circularity, and cluster angle to the queen and show
the time series of these attributes in Fig. 5. We exclude phase
4 simulations from these analyses, as the virtual bees are never
activated, and no clusters form. First, in Fig. 5A, we show the dis-
tance to the queen from the farthest active bee (in experiments:
scenting bees; in model: scenting or bee walking up the gradi-
ent) as a measure that differentiates the phases based on how far
the signals propagate. In phase 1, this distance plateaus at a rel-
atively high value when bees remain in small clusters throughout
the arena. In phase 2, this distance plateaus at a relatively low
value as the bees must be closer to the queen to be activated,
and signals do not propagate as far as in phase 3, where we see
a high initial distance as the percolation network forms, and a
gradual decrease as bees cluster around the queen. The tempo-
ral dynamics of the experimental curve (green) are similar to the
phase 3 simulation. Note that the oscillations in the experimental
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Fig. 5. Cluster properties of the experiments and simulations. For all panels, the green curve shows the average in experiments, and labeled gray curves

show the average in different phases of the simulations. (A) The distance of the farthest active bee to the queen as a measure of how far the signals

propagate. (B) The cluster area over time. (C) The cluster circularity over time. (D) The cluster angle relative to the queen over time.

series are likely due to the spontaneous scenting events that may
come from bees far away and not yet in the queen’s cluster. For
each cluster attribute, we also measure the Pearson correlation
between the experiments and the simulations in each phase, pre-
sented in SI Appendix, Table S4. For the farthest active distance,
the coefficients between the experiments and the simulations in
phases 1, 2, and 3 are −0.075, −0.662, and 0.759, respectively.
For all attributes, the number of samples used to compute the
correlation is N =1,975 (simulation data are down-sampled to
match the number of data points in the experimental data).

Second, we quantify the cluster area for both the experiments
and the simulations (Fig. 5B). In phase 1, the cluster around
the queen is very small, as most bees are stuck in local equilib-
ria. In phase 2, the cluster gradually increases and plateaus at a
relatively intermediate size. In phase 3 and in the experiments,
the cluster area quickly increases as the percolation network
activates, and gradually decreases as bees approach and swarm
around the queen. Shown in SI Appendix, Table S4, the coeffi-
cients between the experiments and the simulations in phases 1,
2, and 3 are 0.527, −0.784, and 0.762, respectively.

Third, we quantify the circularity of the clusters over time,
in Fig. 5C, defined as (4 ∗Area ∗π)/(Perimeter2). A perfect
circle has a circularity value of one. In phase 1, the cluster
around the queen forms quickly and stays very small and rel-
atively round, with a high circularity. Phase 2 simulations tend
to have irregular clusters that form via bees finding the queen
via the random walk, resulting in a relatively low to intermedi-
ate circularity values. In phase 3, we observe the clusters starting
at relatively low circularity as the percolation networks activate,
and becoming more circular over time as the compact cluster
around the queen forms. The experimental clusters gradually
increase in circularity similar to phases 2 and 3. Shown in SI

Appendix, Table S4, the coefficients between the experiments and
the simulations in phases 1, 2, and 3 are 0.684, 0.716, and 0.790,
respectively.

Finally, in Fig. 5D, we show the angular deviation of the clus-
ter orientations from the orientation leading to the queen. This
relative angle plateaus for phases 1 and 2, in which the process
of clustering around the queen is less dynamic and the cluster’s
final shape is determined earlier. In phase 3 and the experiments,
the cluster gradually orients toward the queen over time. We com-
pute the angular correlation between the relative angle time series
using 〈cos(θexperiment − θsimulation)〉. Shown in SI Appendix, Table S4,
the coefficient between the experiments and the simulations in
phases 1, 2, and 3 are 0.49, 0.94, and 0.96, respectively.

Overall, we compare the structural phases we observe in the
simulations and the spatiotemporal structures formed by the bees
in the experiments. By extracting the four properties of the clus-
tering dynamics and comparing the experimental data to the sim-
ulation data from phases 1 through 3, we show that the clustering
of the bees in our experiments tend to behave inconsistently with
virtual bees in phases 1 and 4. Hence, the real-world system likely
exists within phase 2 and/or phase 3 of the model.

The Effect of Bee Density on the Phase Boundaries. We use our
model to construct phase diagrams for three different densities,
low (L2/50), medium (L2/100), and high (L2/300). Across densi-
ties, lowT and lowwb result in phase 1 with multiple clusters (Fig.
6). In this phase, the range of T increases, while the range of wb

decreases as density increases. On the other hand, phase 4 is the
result of high T and high wb values. With more bees in the arena,
other phases expand, while the range of phase 4 gets smaller.

Phase 2 is typically the result of intermediate T values and
low to intermediate wb values. These higher T values prevent
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the percolation seen in phase 3, as the pheromone signals are
not as far-reaching when bees are less sensitive to sense them
to become propagators. Phase 3 with the successful aggregation
via percolation is achieved with intermediate to high wb and
low T values. As density increases, the range of wb and T for
phase 3 is greater, as there are more bees to create and sustain
the communication network in the arena. Phase 3 in N =50 is
103, 051 pixels, or 15.9% of the total diagram; phase 3 in N =100
is 137, 282 and 21.2%, respectively; and phase 3 in N =300 is
321, 807 and 49.7%, respectively. When there is a higher density
of bees, the bees are able to aggregate around the queen while
not needing to be as highly sensitive (i.e., lower T value) to the
signals. Across all densities, phase 3 never occurs when there is
no directional bias (i.e., wb =0). This illustrates the importance
of the directed signaling strategy to create an effective communi-
cation network within the model. The existence of a network of
transmitters and receivers of pheromones that percolates across
the entire computational simulation arena is crucial to achieve
fast and successful aggregation around the queen.

Discussion and Conclusion

Combining experiments and high-throughput machine vision
tracking of location and scenting behavior, we investigated the
communication mechanisms that honeybee swarms employ to
collectively locate their queen, a difficult problem given the
limited information available from short-lived pheromone sig-
nals. We find that individual bees act as receivers and senders
of signals by using the Nasonov scenting behavior, releasing
pheromones from the glands and fanning their wings to direct
the signals backward (Fig. 1 A and B and Movie S1, Left). In
an arena with a caged queen, bees were quick to activate a col-
lective communication network, as we see a sharp, early-time
increase in the number of scenting bees (Figs. 1E and 2B). In
this network, scenting bees stand at a characteristic distance
from their neighbors while dispersing signals (Fig. 2E), which
suggests a concentration threshold in the activation mechanism
of individual bees’ scenting behavior. We show that the scent-
ing events are highly correlated with the collective aggregation
around the queen (Fig. 1D and SI Appendix, Fig. S3). Together,
these experimental results provide testable hypotheses of the
mechanisms of this collective communication strategy and of
whether the threshold-dependent directional signaling behavior
is advantageous—concepts that we explore with the agent-based
model.

The experimental findings guide our design and implemen-
tation of an agent-based model of the queen localization phe-
nomenon. We model individual bees as agents with simple rules
for movement, detection of pheromone based on a concentra-
tion threshold, directed signaling, and chemotaxis to move up
the local gradient (Fig. 3). The bee agents are not aware of
the queen’s location or of the global pheromone profile in the
flow environment. We show that, by only local interactions, these
agents are able to aggregate around the queen mostly quickly and
efficiently when they implement directed signaling within a range
of bias values (i.e., 10≤wb < 60) (Fig. 4). When the density of
bees increases in the simulated arena, effective aggregation can
also occur with a wider range of T as opposed to being limited
to lower T or lower sensitivity to pheromones (Fig. 6). Thus,
with more bees active in the communication network, individ-
uals can afford to be less sensitive while still achieving swarm
formation. Overall, the four different phases that are present
in the model show us the possible emergent properties of this
honeybee phenomenon. Importantly, our modeling emphasizes
the significance of the wing-fanning behavior, which allows for
directed signaling and therefore more efficient aggregation in the
swarm. In the absence of the directional bias where the signal is
isotropic (i.e., wb =0), the successful aggregation in phase 3 is
never achieved. Finally, we present a comparison of the spatial–
temporal structures of the clusters in the experiments and the
simulations, which demonstrates that the real-world behavior of
the bees is inconsistent with phases 1 and 4 but does exhibit
elements of phase 2 and phase 3. Additional experiments and
simulations are required to make more precise distinctions. For
example, an experiment with a single bee and a stationary queen
can decouple the behavior of an individual from the swarm to
tune the model parameters.

In addition to presenting mechanistic details about the queen
localization phenomenon in honeybees, we have also developed
an effective image analysis pipeline for markerless, automatic,
and high-throughput honeybee detection and behavior recog-
nition (SI Appendix, Fig. S2). Our approach uses state-of-the-
art neural network models that are trained on our honeybee
data and can be retrained and applied to other systems. Our
high-throughput pipeline can be easily improved for future
applications. First, the detection of individual bees currently
employs a classical computer vision approach of simple Otsu’s
adaptive thresholding, morphological transformations, and con-
nected components. While these methods are quick and

A B C

Fig. 6. The effect of bee density on phase boundaries. Phase diagrams constructed from scenting model dynamics using summary heat maps in SI Appendix,

Fig. S5 as a function of T and wb for all three densities, N = 50 (A), N = 100 (B), and N = 300 (C). The black rectangles indicate the example simulations we

showed in detail in Fig. 4. The area of the optimal phase (phase 3) grows with N. Phase 3 in N = 50 is 103, 051 pixels, or 15.9% of the total diagram; phase 3

in N = 100 is 137, 282 and 21.2%, respectively; and phase 3 in N = 300 is 321, 807 and 49.7%, respectively.
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sufficient to identify bees from background, they struggle to sepa-
rate bees when they significantly touch or overlap in the image, a
problem exacerbated by our backlight system. In future designs,
we will modify our experimental setup to use different lighting
systems where more features on bees are visible, allowing the
usage of CNNs for the task of image segmentation to detect more
individual bees in dense environment (e.g., ref. 27). Additionally,
while using the wing angle as a proxy for scenting in static images
is effective, scenting is a time-dependent behavior which could
be more accurately identified using information from multiple
frames. Temporal information can be incorporated using activ-
ity recognition networks (28, 29) on labeled videos of bees. This
will require tracking individual bees over time to build a labeled
dataset composed of short movies of the scenting behavior. We
will explore recent efforts in automatic tracking of bees, such as
works by ref. 30. The ability to track the scenting behavior of bees
over time will allow us to answer interesting questions regarding
the roles worker bees play in this swarming context. For example,
does every bee eventually scent or does only a proportion of the
same bees scent while others follow the pheromone trails to the
queen?

Various future directions arise. The model will allow testable
predictions about the resilience of the communication network.
This concept includes assessing the effect of node failure via
removal of some signaling bees, interference with a secondary
signal via introducing artificial pheromone to the network, and
the disruption of pheromone flows in the presence of wind.
Experiments can then be performed to test the model’s phe-
nomenological predictions. Together, the tools will allow better
understanding of how the dynamic nature of the network allows
the swarm to overcome local obstacles such as solid objects,
and deal with a nonstationary search target, as well as turbulent
airflow and conflicting chemical signals.

From a physics perspective, our active system functions by cou-
pling flows and forces in the presence of feedback (31–33). The

individual building blocks (in this case, a bee) can sense their
microenvironment (flow, forces, chemical content) and respond
in a way that promotes survival; typically, the response changes
the macroenvironment the individual is embedded in, thus creat-
ing a perpetual coupling between the individuals, the group, and
the environment. From a biological perspective, our approach is
an extension of the studies of classical stigmergy (34) wherein
organisms deposit and respond to static information in the envi-
ronment. In contrast, the bees in our system are able to sense
local chemicals but also manipulate the global physical fields
by actively directing signals with the scenting behavior. Har-
nessing the bees’ natural solutions to communication—honed by
eons of evolution, selection, and refinement—we can not only
more deeply understand collective animal behavior but lever-
age that understanding to create bioinspired system designs in
the fields of dynamic construction materials, swarm robotics, and
distributed communication.

Data Availability. Computational code for the ML-based image analysis and

for the agent-based model has been deposited in GitHub at https://github.

com/peleg-lab/CollectiveScentingABM and https://github.com/peleg-lab/

CollectiveScentingCV.
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