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ABSTRACT: A general aminoalkylation of aryl halides was
developed, overcoming intolerance of free amines in nickel-
mediated C−C coupling. This transformation features broad
functional group tolerance and high efficiency. Taking advantage of
the fast desilylation of α-silylamines upon single-electron transfer
(SET) facilitated by carbonate, α-amino radicals are generated
regioselectively, which then engage in nickel-mediated C−C
coupling. The reaction displays high chemoselectivity for C−C over C−N bond formation. Highly functionalized pharmacophores
and peptides are also amenable.

Amines are prevalent structural motifs in natural products,
agrochemicals, and pharmaceuticals.1 Among them,

secondary arylmethylamines are abundantly represented in
numerous bioactive molecules. A survey of marketed drugs
shows that a significant number of arylmethylamines are either
secondary amines or derivatives thereof via simple substitution
(Scheme 1a). Classical syntheses of such amines include
nucleophilic displacement,2 reductive amination,3 and reduc-
tion of aryl nitriles.4 These strategies suffer from competing
reactions in polyfunctional substrates and remain in large part
inapplicable in such situations. Although transition-metal-
catalyzed cross-couplings offer alternative pathways for amine
synthesis, they typically rely on elevated temperatures as well
as the need for protecting group strategies for Lewis basic
handles.5

In recent years, the emergence of Ni/photoredox dual
catalysis has enabled the assembly of challenging C(sp2)−
C(sp3) bonds under extremely mild conditions in the presence
of delicate functional groups.6 Through single-electron transfer
(SET), radical precursors undergo reductive or oxidative
fragmentation to generate alkyl radicals that can be harnessed
through Ni-catalyzed cross-couplings. Based on this strategy,
we sought to develop a complementary approach to construct
arylmethylamines through the intermediacy of easily accessible
α-aminomethyl radicals in conjunction with commercially
abundant (het)aryl halides.
To date, nickel-mediated aminomethylations of aryl halides

remain limited to tertiary amines7 or amines bearing electron-
withdrawing protecting groups.6b,8 The only similar route to
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Scheme 1. Representative Drug Molecules Containing
Arylmethylamine Scaffolds and Free Aliphatic Amine
Syntheses by Transition-Metal-Mediated C−C Couplings
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unprotected secondary amines was reported by the Rueping
group, but was restricted to the use of secondary N-phenyl
amino acids with the decidedly less readily available triflate
electrophiles (Scheme 1b).9 Thus, engaging protecting group-
free aliphatic amines in nickel-mediated C−C coupling with
aryl and heteroaryl halides remains elusive. This challenge
presumably stems from facile C−N couplings10 and/or
hydrodehalogenation of aryl halides.11 To address these
limitations, we turned our attention to α-silylamines because
of the kinetically favorable alkyl radical generation event taking
place by regioselective α-desilylation upon SET.12 Additionally,
secondary α-silylamines can be easily prepared from
commodity chemicals (primary amines) by a simple alkylation
reaction of halomethyltrimethylsilane or reductive amination
of aldehydes or ketones with aminomethylsilane. Herein, we
describe a protocol that successfully realizes the cross-coupling
between secondary aliphatic amines in conjunction with
(het)aryl halides through Ni/photoredox dual catalysis
featuring high functional group tolerance and broad substrate
scope (Scheme 1c).
To test the proposal, methyl ((trimethylsilyl)methyl)-L-

phenylalaninate 1a, which bears a free amino group, was
reacted with para-bromobenzonitrile under conditions similar
to those reported previously by our group.7b Unfortunately, no
desired arylated product 2a was detected, and only hydro-
dehalogenated arene was observed (Table 1, entry 1). This
demonstrates the challenge in adapting free amines in C−C

cross-couplings. Although the more oxidative [Ir] and 4CzIPN
photocatalysts also provided virtually no product (entries 2
and 3), the inclusion of a base, K2CO3, afforded the desired
product in 15% yield (entry 4). We reason that K2CO3
facilitates the α-desilylation of 1a upon SET and also
sequesters the Lewis acid byproduct TMSBr.13 Encouraged
by this result, a modulation of the ratio of photocatalyst and
nickel catalyst showed that a ratio featuring a high loading of
photocatalyst is critical, and a satisfactory yield is then achieved

Table 1. Optimization and Control Studiesa

entry [PC] mol % [PC]/[Ni] additive yield (%)b

1 [Ru] 3:10 − 0
2 [Ir] 3:10 − trace
3 4CzIPN 3:10 − trace
4 4CzIPN 3:10 K2CO3 (3 equiv) 15
5 4CzIPN 5:2 K2CO3 (3 equiv) 99
6c − − K2CO3 (3 equiv) 0
7d 4CzIPN − K2CO3 (3 equiv) 0
8e 4CzIPN 5:2 K2CO3 (3 equiv) 0

aPerformed with α-silylamine 1a (1.5 equiv), para-bromobenzonitrile
(0.1 mmol) in THF (0.1 M) under blue LED irradiation at rt for 20 h.
3 mol % photocatalyst [PC] and 10 mol % [Ni] are added when the
[PC]/[Ni] ratio is 3:10, while 5 mol % [PC] and 2 mol % [Ni] are
added when the [PC]/[Ni] ratio is 5:2. bYields determined by 1H
NMR using 1,3,5-trimethoxybenzene as internal standard. cNo [PC].
dNo [Ni]. eNo light.

Scheme 2. Scope of Secondary α-Silylamines and (Het)aryl
Bromidesa,b

aAll values correspond to isolated yields after purification. bUnless
otherwise noted, reactions were performed using aryl bromide (1
equiv, 0.3 mmol), α-silylamine (1.5 equiv, 0.45 mmol), 4CzIPN (5
mol %, 0.015 mmol), Ni(dtbbpy)Br2 (2 mol %, 0.006 mmol), and
K2CO3 (3 equiv, 0.9 mmol) in THF (0.1 M) at rt for 20 h with blue
LEDs (∼10 W) irradiation.
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(entry 5). Furthermore, control studies showcased that all
reaction parameters are necessary for effective aminomethyla-
tion (entries 6 to 8), and there is no erosion of the
stereochemical integrity (see Supporting Information for
details). Notably, neither starting material 1a nor product 2a
appears to undergo C−N coupling with aryl halide,
demonstrating the high chemoselectivity of this method.
Having established feasible cross-coupling conditions, the

substrate scope of this aminomethylation process was
evaluated (Scheme 2). The electron density on the aryl ring
was demonstrated to have little to no effect on the coupling
efficiency (2a−e), and meta- (2d) and ortho (2e)-substituted
substrates also exhibited good coupling efficiency. Meanwhile,
an unprotected alcohol group is well tolerated (2c), resisting
silylation during the reaction process.14 The scope of the
reaction with regard to heteroaryl halides was next explored,
permitting access to materials that otherwise would require use
of the less commercially available benzyl halides (for N-
alkylation approaches) or heteroaryl aldehydes (for reductive
amination). A wide variety of heteroaryl cores are incorporated
in good yields without the need of protection, including an
indazole (2i). Additionally, heteroaryl-based pharmacophores
(2m−p) including the antihistamine Loratadine (2m) and
GABA receptor antagonist Flumazenil (2o) display excellent
reactivity. Electron-rich heteroaryl systems (2f, 2g) serve as
competent substrates despite what must be a slower oxidative
addition.15 Notably, a primary sulfonamide (2k), which
contains a polar acidic group, is accommodated, showing
that multiple polar functional groups can be introduced by this
method. With respect to the scope of secondary α-silylamines,
amino acid based organosilanes including tyrosine (2s),
glutamate (2v), and N-Boc-lysine (2w) afford the desired
aminomethyl subunits without compromising yields. Further-
more, the oxidation-labile methionine residue (2r) is amenable
to this cross-coupling reaction. No protecting group is
necessary for the indole moiety of tryptophan (2q). The

scope has been further extended to more nucleophilic amines
(2x, 2y, 2aa). Because of the mild nature of Ni/photoredox
dual catalysis, the protocol is applicable to complex amine
systems including the dipeptide aspartame methyl ester (2z).
Finally, as part of our ongoing efforts to develop synthetic tools
to incorporate saccharide derivatives into complex molecular
fragments,16 this protocol was extended to the amino-
methylation of aryl bromides with a pyranose moiety (2aa),
prepared via reductive amination from the corresponding
glycosyl aldehyde and commercially available aminomethylsi-
lane.
With a broad scope based on a secondary α-amino radical,

we next applied the developed method to the construction of
tertiary amines. In fact, a significant improvement in reaction
efficiency and functional group tolerance was observed over
that of a protocol previously developed in the group (Scheme
3).7b Not only was a considerable improvement on yields
achieved, but substrates with polar functional groups including
amines (3i) and alcohols (3j, 3k) were successfully
accommodated. Additionally, instead of using (hetero)aryl
iodides, the less expensive and more readily available
(hetero)aryl bromides delivered the products in excellent
yields (3m−p). The scope of the α-silylamines was not limited
to aliphatic amines (3q, 3r), but could be extended to an
indole derivative as well (3s).
Another important feature of α-silylamine precursors is their

ease of modification. To demonstrate this, a streamlined
synthesis of dipeptide benzylamine 3t starting from proline-
derived organosilane 1l was carried out (Scheme 3c).12d

Deprotection of 1l with TFA followed by peptide coupling
afforded intermediate 1p with good efficiency. Under standard
arylation conditions, the corresponding tertiary amine 3t was
obtained without compromising the yield. As such, the
modular nature of this cross-coupling allows rapid access to
structurally diverse α-aminoalkyl radicals, delivering unique

Scheme 3. Scope of Tertiary α-Silylamines and (Het)aryl Bromidesa,b

aAll values correspond to isolated yields after purification. bUnless otherwise noted, reactions were performed using aryl bromide (1 equiv, 0.3
mmol), α-silylamine (1.5 equiv, 0.45 mmol), 4CzIPN (3 mol %, 0.009 mmol), Ni(dtbbpy)Br2 (8 mol %, 0.024 mmol), K2CO3 (3 equiv, 0.9 mmol)
in THF (0.1 M) at rt for 20 h with blue LED (∼10 W) irradiation. cReactions were performed using aryl iodides. dReactions were performed using
two blue Kessil lamps (30 W) with a shortened reaction time (6 h). eNMP (0.1 M) was used instead of THF (0.1 M).
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synthetic disconnections in the design of peptide−drug
conjugates in pharmaceutical settings.
To gain insight into the mechanism of this Ni/photoredox

process involving free aliphatic amino groups, a series of
experiments were performed. First, the reactivity difference
between an α-silylamine 1i and a secondary alkylamine 4 was
evaluated (Scheme 4a), because both of them are known to
generate α-amino radicals under SET.17 Under the standard
conditions for cross-coupling developed herein, the α-silyl-
amine delivered the C−C coupling product 2x, while the
corresponding alkylamine underwent C−N coupling to an
aniline 5. We reasoned the mechanism for this C−N coupling
is similar to what was proposed by the MacMillan group.18

This divergent reaction pathway indicates that the rate
difference between α-desilylation and α-deprotonation plays
an important role, and the kinetically faster α-desilylation
process favors C−C coupling overall. Additionally, α-silyl-
amines are reportedly capable of undergoing a radical aza-
Brook rearrangement under SET oxidation, generating α-
silylamino methyl radical 7.19 Consequently, an experiment
was conducted to explore this possibility. Because silylamines

are prone to hydrolyze into hydroamines during workup, the
crude mixture was directly monitored by 29Si NMR (Scheme
4b). Results showed that there was no silylamine 8 present in
the crude reaction mixture, thus ensuring no radical aza-Brook
rearrangement is occurring. Although control studies have
precluded the possibility of direct radical substitution of aryl
halide by α-amino radical, the role of the nickel catalyst is still
unclear. In a stoichiometric experiment, the nickel catalyst is
found to be capable of oxidizing 1i under 390 nm light
irradiation, which aligns with results previously communicated
by Miyake.10c However, only trace conversion of 1i was
detected under 456 nm light irradiation. Because the nickel
catalyst can oxidize 1i under 390 nm irradiation, amino-
methylation in the absence of a photocatalyst under purple
light irradiation was examined (Scheme 4c). In the
stoichiometric experiment with a nickel catalyst, 1i, and
para-bromobenzonitrile, no formation of the C−C coupling
product 2x was observed, while a small amount of the C−N
coupling product 9 was found. This indicates that the nickel
species is not a competent oxidant in this system, and thus, an
energy-transfer pathway is ruled out. Also, Stern−Volmer
quenching studies demonstrate that 1i can efficiently quench
excited state 4CzIPN (see Supporting Information), indicating
the oxidation of α-silylamines by photocatalyst. Furthermore, a
stoichiometric experiment using a Ni(II)-aryl halide complex
10 with 1i does not yield any desired C−C coupling product
11, excluding the possibility of oxidative addition of aryl halide
to Ni(0) (Scheme 4c).
Based on these results, a dual photoredox/nickel-catalyzed

process is proposed (Scheme 4d). First, blue LED irradiation
enables the excitation of 4CzIPN, which then oxidizes an α-
silylamine via SET. The facile α-desilylation facilitated by
carbonate promotes the generation of an α-amino radical,
which could then be intercepted by Ni(0), yielding an alkyl-
Ni(I) species, with subsequent oxidative addition of an aryl
halide. The resulting Ni(III) complex readily undergoes
reductive elimination, offering the C−C coupled product and
Ni(I). Finally, SET from the reduced form of 4CzIPN to the
Ni(I) regenerates the ground state 4CzIPN and Ni(0) for the
next catalytic cycle.
In conclusion, a user-friendly and versatile route toward the

aminomethylation of functionalized (het)aryl halides under
mild reaction conditions is reported. This protocol features a
protecting-group-free synthetic strategy for the preparation of
secondary arylmethylamines. This aminomethylation can be
further extended to the synthesis of tertiary amines. The
commercial availability of (het)aryl halides as well as the low,
uniform oxidation potentials of α-silylamines allow the
incorporation of diverse radical architectures from commodity
chemicals while retaining high functional group tolerance.
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