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atoms of pu®. These results are far from being straightforward
extensions from the scalar case: new phenomena specific to
the matrix-valued case appear here. New ideas, including the
notion of directionality, are required in statements and proofs.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In a seminal paper [7], D. Clark initiated studying families of (scalar, finite, positive
and regular) Borel measures u® on the unit circle that correspond to purely contractive
analytic functions b on the unit disc . Namely, for o € T = 0D the measure p® was
defined as the unique measure satisfying

a+bz) .. a+b0) C+ =
a—b(z)_ZIma—b(O)—'_ C—z
oD

p(dg), o =1, (1.1)

(the function in the right hand side is Herglotz, i.e. it has positive real part, and the
above formula is just the classical Herglotz representation formula).

D. Clark himself considered the case when b is an inner function, in which case the
measures p® are purely singular. In the 1980’s and 1990’s, A. B. Aleksandrov [1,2,4,5,3]
proved many deep results regarding the families of the measures p® (for general, not
necessarily inner b), which therefore are referred to as Aleksandrov—Clark measures.
D. Sarason [21] explored the connections between the Clark measures and the corre-
sponding de Branges—Rovnyak spaces. Many deep results about finer properties of the
Clark measures were obtained by A. Poltoratski, [20,19].

The Clark measures p® are exactly the spectral measures of the unitary rank one
extensions of a model operator with the characteristic function b. This was originally
shown by Clark [7] for inner functions b; in fact, finding the corresponding spectral
measures and investigating their properties was one of the main goals of [7]. For general
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contractive functions b it was shown significantly later in [14] from a different point of
view; the measures u® in this case can have non-trivial absolutely continuous parts.®

In this paper we are dealing with matrix-valued pure contractions b. The analog (2.2)
of the Herglotz representation formula then defines a family of matrix-valued measures
pn® that also has operator theoretic meaning.

We then study the relationship between the properties of the matrix-valued contrac-
tions b and their associated Aleksandrov—Clark family of matrix-valued measures pu®. As
it was mentioned above, in the scalar setting, this topic has been well-developed. While
there was some development in the matrix-valued case [12,10,16,15], many fine properties
of the matrix-valued Aleksandrov—Clark measures are still not well-understood.

While the characterization of the absolutely continuous part of the matrix-valued
Clark measure is pretty simple, capturing the singular part of u® is more subtle. One
of the results of this paper is the description of the directional support (carrier) of the

singular part of pu®

; new phenomenon of the directionality appears here. In Section 3,
we derive an easy Nevanlinna type formula, expressing point masses of u in terms of b.

In scalar Aleksandrov—Clark theory the Aronszajn—Donoghue Theorem [6,9] states
that the singular parts of two distinct measures from the same family must be mutu-
ally singular. Trivially, such a statement cannot be true for the matrix-valued measures
ps. However, if one interprets the mutual singularity as the vector mutual singularity
introduced in [13], the corresponding result is true, see Corollary 4.6. This result is sim-
ilar (although formally not equivalent) to an earlier result for finite rank perturbations
of self-adjoint operators [13, Theorem 6.2]. Note that the proof in this paper is also
completely different from one in [13].

In Section 5, we use the vector mutual singularity to investigate the “real” mutual
singularity. We show that the exceptional set where the “real” mutual singularity fails
is small, see Theorem 5.1 below. Again the result is similar to one for finite rank pertur-
bations in [13, Theorem 6.1].

Sections 6 through 8 are devoted to extending the notion of Carathéodory on angular
derivative to the matrix-valued setting. The work of Carathéodory on angular derivative
plays an important role in the classical complex analysis; there are deep connections
with composition operators, see [22,8], the de Branges-Rovnyak spaces, see [21], theory
of rank one perturbations.

We introduce a directional Carathéodory condition in Definition 6.1. As in [21, Chap-
ter VI] and [16, Section 5.1], this condition can be related to properties of the de
Branges—Rovnyak space of b, see Proposition 6.2. We further introduce the notion of
a Carathéodory angular derivative (CAD) on subspaces (Definition 7.1); note that as
the counterexample presented in Section 7.3 shows, a straightforward generalization of
the scalar definition does not work well for the matrix case, and a bit more involved
definition is needed. In Theorems 7.4, and 8.1 through 8.3 we find relations between

3 The measures obtained in [14] coincide with the above measures p® if b(0) = 0; if b(0) # 0 they differ
by a normalizing factor.
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this CAD and the Carathéodory condition, boundary reproducing kernels for the de
Branges—Rovnyak space, and as the (matrix-valued) point masses of pu®.

2. Preliminaries
2.1. Matriz-valued Aleksandrov—Clark measures

Let H>*(D) ® C™*™ denote space of bounded n x n matrix-valued functions on the
open complex unit disc . In this paper C™*"™ denote the set of all n x n complex
matrices equipped with the operator norm (maximal singular value), i.e. the set of all
(bounded) linear operators on C™. We define the matrix-valued Schur class .#(n), to
be the set of all purely contractive functions in H*(D) ® C™*™. Recall that a function
b e H>*(D)®C™ ™ is purely contractive if and only if ||b(z)|| < 1 for all z € D. Note that
Ib(2)]] < 1if and only if ||b(0)|] < 1 by the Schwarz lemma (and Mébius transformations).

Let U(n) denote the group of unitary n x n matrices.

Given b € .(n) and a € U(n) define the function:

Ho(2) = (I, + b(z)a*) (I, — b(2)a™) " . (2.1)

It is easy to see that H, is a Herglotz function on D), i.e. an analytic function with
non-negative real part on D. Using the parallelogram identity, it is not difficult to obtain
from the classical scalar Herglotz representation formula (1.1) its matrix-valued version.*
Namely, for each « € U(n), there is a unique finite, non-negative C™*"™-valued Borel

measure ft, on the unit circle T = 0D, so that

(+z
(—=z

H,(z) =iIm H,(0) +
oD

1 (dO). (2.2)

To avoid misunderstandings, we mention that the imaginary and real part of a matrix
A is given by Im A := (A — A*)/(2i) and Re A := (A + A*)/2 respectively.

The measures pu® are called Clark or Aleksandrov—Clark measures (for b). To our
knowledge, this definition was first introduced in [12] for operator-valued inner functions
b, and then in [10] for general contractive matriz-valued functions.

Note that replacing in (2.1) the expression b(z)a* by a*b(z) we still get a Herglotz
function, so one can wonder why we use this particular order in (2.1). One of the reasons
is the theory of the matrix-valued de Branges—Rovnyak spaces.

Recall, see [16], that for b € .#(n) the de Branges-Rovnyak space . (b) is the C"-
valued reproducing kernel Hilbert space (RKHS) with matrix-valued reproducing kernel:

4 Matrix-valued and operator-valued Herglotz—Riesz representation formulas have been subject to much
research as early as [23].
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_ I, — b(2)b(w)*

kP (z,w) : -

; z,w € D. (2.3)
Note that for any a € U(n), k* = k" (so that 22(b) = (ba*)), but generally
k* # k" which motivates our choice of order.

We also mention that the order b(z)a™ agrees well with the Clark model for finite
rank perturbations developed in [15].

2.2. Trace and decomposition of a matriz-valued measure

We are interested in the subtle properties of the Aleksandrov—Clark family of mea-
sures. In order to formulate these precisely, we introduce some terminology.

For matrix-valued measure p, define the trace p:=trp = > (1)kx, where ()5,
1 < k,1 < n is the (k,l)-entry of p. Recall that the operator norm of a matrix A is
bounded by its trace. Indeed, we have ||A| < tr((A*A)'/?) and for positive definite
matrices A = (A*A)'/2. In particular, there exists a measurable matrix-valued function
W mapping the unit circle T to positive definite n x n matrices so that

dp(\) = W(N\)du());  AeT.

Of course, the entries of W are defined a.e. with respect to p. This definition of W
through the trace also ensures that its entries are in L. In fact, we have tr W(A) <1
with respect to p-a.e. A € T.

Through the Lebesgue decomposition of the scalar measure dp = wdm—+dus (here, we
denote by m the normalized Lebesgue measure on T) we decompose the matrix-valued
measure g correspondingly. Concretely, we have

dp = Wwdm + Wdps = Wdm + Wdps = dp,, + dps,
where W = Ww, w = dp/dm (we can also write W= dp/dm).
2.83. Some known and some simple results on Aleksandrov—Clark measures

Let z = X denote non-tangential convergence of z € D to A € dD. Recall that one
says that z = X if z approaches \ from within a Stolz region:

T\ i={zeD: [z—A <t(-|2)}, t>L

It is well-known that for every ¢t > 1 the non-tangential boundary values of b exist
with respect to Lebesgue a.e. A € T. For A € T, we let b(\) := lim_» , b(z) wherever the
non-tangential limit exists.

The description of the closed support of the scalar measure is an easy and well-known

fact (cf., e.g. [17, Corollary 4.4]).
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The multiplicity of the absolutely continuous part of u® can be captured in terms of
the non-tangential boundary values b(\) of the characteristic function. To do so, we now
state and prove a version of [15, Theorem 5.6]. Recall that b is a contraction on D. For
z € D define the defect function

Ao(2) = (I, — ab(2)*b(z)a*) /2.

Through taking non-tangential boundary values of b, we can also define A, () a.e. on
T. Consider the Lebesgue density W of u®. See Subsection 2.2 for the definition.

Theorem 2.1. Take o € U(n). The Lebesgque density Wwe of the Aleksandrov—Clark mea-
sure pu® can be computed as

W) = (In — ab(\)*) " H(Aa\)2(L, — b(N)a™) ™Y, fora.e. A€T
(note that I, — b(A\)a* is invertible for a.e. X\ € T ). In particular, its rank is
rank W%(A) = rank Ay () fora.e. e T.

Proof. We begin by taking the real part of (2.2). With the Poisson extension P(u®) of
matrix-valued measure p®, we obtain and then evaluate

P(®) = Re (L + b(z)a")(In — b(z)a”) ]
= (In — ab(2)") 7 (Aa(2))*(In — b(z)a") "

Since b is a strict contraction on D, the inverses exist there.

To obtain the desired result we take z = \. To see what happens on the left hand
side we recall that, by Fatou’s lemma, the non-tangential boundary values of the Poisson
extension of a complex measure equal (Lebesgue almost everywhere) to the absolutely
continuous part of the measure. On the right hand side, we argue factor-wise. As was
discussed before the theorem, the non-tangential boundary values of A,(z) exist. And
since b is a contraction on D, det(I,, — b(z)a*) is a non-trivial analytic function on D.
By the uniqueness theorem, it has non-trivial boundary values Lebesgue a.e. on T and

*

so I, — b(z)a* is invertible a.e. on T. To see that I, — ab(z)* is invertible a.e. on T,

simply work with the complex conjugate of the anti-analytic function. O

The following standard result (see e.g. [11, Theorem 6.1] for a real-line analog) will
enable a recovery (see Corollary 2.3) of some information regarding the location of the
singular part. We say that a Borel set X is a carrier of a measure, if the measure of
T \ X vanishes.

Define the matrix-valued (or scalar-valued) Cauchy transform of a matrix-valued (or
scalar-valued, respectively) measure
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1
Cr(z) = / —v(d(¢) for z € D. (2.4)
1-¢=z
oD
Proposition 2.2. Let v be a C™ ™ regular finite positive Borel measure on T. Consider

the sets

S = {/\ET : lim tr Re Gy(z)—oo}, P = {)\ET : limtr(z)\)ev(z)#()},

PE=9Y PE=9Y

where € is the Cauchy transform given by (2.4).

Then set S is a carrier of the singular part vs of v and the set P is the carrier ope the
purely atomic part v, of v. Moreover, S has zero Lebesgue measure, and P is a minimal
carrier of v,, meaning that no proper subset Y C P is a carrier of v,.

On the side, we mention that Proposition 2.2 is an immediate corollary to the anal-
ogous result for scalar measures. Indeed, the carrier of a matrix-valued measure is that
of its trace, and taking the Cauchy transform, taking the trace and taking the real part

all commute.
Moving on, we easily obtain the corresponding result for p,,.

Corollary 2.3. Consider the sets
S, = {)\ €T : lim tr Re (I, — b(2)a*)"! = oo} ,
PZ=9Y

P, = {A €T : limtr(z — \) (I, — b(2)a*)™! # 0} :
PE=S\

Then the set Sy is a carrier of the singular part & of u® and P is a carrier of the purely

atomic part pS of pu®. Moreover, S has Lebesgue measure zero, and P is a minimal

carrier of ps, meaning that no subset Y C P, is a carrier of pg.

Proof. We use the identity i—ig = 2(1 — 2¢)~* — 1 on the left and right hand side of
(2.2) to re-arrange the Herglotz formula to read
I, — H,(0)*

(= be)ar) ==l 112Cua(dé)~ (2.5)
oD

Now Proposition 2.2 (applied to measure p®) immediately yields the result. O
2.4. Poltoratski’s Theorem

The following theorem by Poltoratski, see [20, Theorem 2.7], often plays a key role in
investigations of the singular parts of Aleksandrov—Clark measures.



8 C. Liaw et al. / Journal of Functional Analysis 280 (2021) 108830

Theorem 2.4. For a (scalar) finite Borel measure T on T and f € L*(t), the normalized

Cauchy transform eef:((zz)) possesses the following non-tangential boundary values Ts-a.e.:

= f(\) for 7s-a.e. A€ T.

3. Nevanlinna theorem concerning point masses

We refine the second statement of Corollary 2.3 in the following simple matrix-valued
analog of a result by Nevanlinna.

Theorem 3.1. Fiz b € #(n) and o € U(n). Then for any A € 0D,

u*{\} = lign(l —2\)(I, = b(z)a*)!

29

(the limit exists for all A € T ).
Throughout this paper, we use u{\} to denote p({A}).

Remark. In the scalar situation (n = 1) the classical Nevanlinna theorem is usually
stated as follows: For A € T one has u*{A} # 0 if and only if

lim b(z2) = «, and  b'()\) := lim b/(2) exists and is finite. (3.1)
P2=9) 23
The limit &' (\) is called the Carathéodory angular derivative. Note that the conditions
(3.1) are equivalent to the existence of the limit

lim 7b(z) i

’
23 z—=A

and that this limit coincides with ' (\). As for the p®{A}, the statement found in the
literature usually states that p*{A} = 1/|b'(\)|; however one can see from the proof (and
it was stated in the original Nevanlinna paper [18]) that u®{\} = aX/b'(\).

As one can easily see, in the scalar case our result gives exactly the same value.
However, in the matrix case the relations with the Carathéodory angular derivative
is more complicated (one needs to take into account the directionality of derivatives).
The complete theory of the Carathédory angular derivatives in the matrix case will be
presented below in Sections 6, 7, 8.

The authors thank H. Woerdeman for asking the question that prompted this remark.

Proof of Theorem 3.1. Multiplying both sides of equation (2.5) by 1 — z\ and taking
non-tangential limits, it follows that
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_ — 2\
lim (1 — 2\)(In — b(2)a*) ! = 0 + lim T
PE=9\ ZBM@]D 1-— ZC

“(d¢)

. 1— 2\ o
—pt )+l [ A i (do).
PE=9\ 1-— ZC
D\ {\}

Fix a t? > 0, and a Stolz domain T';()\), so that z — X from within I';(\). For each such
z, consider the integrand:

£2(0) = 1”?; Cedd\ {A}
— 2

This is a uniformly bounded (in modulus) net (indexed by z) of functions on 9D \ {A}

since:

1 o) o —e)
e

101 =] 222 <t

Moreover, for any fixed ¢ € 9D \ {\},

lim f.(¢) =0,

PE=9Y

so that the (moduli of the) f,(¢) are dominated by the constant function ¢?, and converge
to 0 pointwise on 9D \ {A}. By the Lebesgue dominated convergence theorem,

1—2\
lim e (do) =0,
PE=S\ 1-— ZC
OD\{\}

and the claim follows. O
4. Directional carrier and vector mutual singularity of singular parts

We refine Corollary 2.3 to include a directional carrier of the matrix-valued singular
part.

Proposition 4.1. For every e € Ran W()\), the non-tangential limit lim_» | b*(z)e exists
ue-a.e. and is equal to a*e.

Ramifications of this proposition are the vector mutual singularity of the matrix-
valued measures (Corollary 4.6 below), as well as the strong mutual singularity result
(Theorem 5.1).
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Proof of Proposition 4.1. We take the adjoint of (2.5) and then multiply from the left

by (I, — ab(2)*)(Cu>(z)) !, where the Cauchy transform Cu®(z) was defined in (2.4).
We arrive at

Cp(2)
Cp(z)

(1= b)) (o) ) = @G U 1/2 4 Ho(0)/2,

Now we take non-tangential limits as z = \. Recalling that the non-tangential bound-
ary limits of Cu®(z) = oo with respect to p-a.e., we obtain

. o (Cr @)\ _ o
zhg}rz\(ln —ab(z)") (Gua(z)) =0 for pud-a.e. A € ID. (4.1)

By Poltoratski’s Theorem, see Theorem 2.4, applied entrywise to Cu®/Cu® we have

. @u“(2)>*
lim = WA for pg-a.e. A € D, 4.2
i (e B forw 42

where, recall dpu® = Wedu®.
Take A € 9D such that both (4.1) and (4.2) are satisfied (it happens for ug-a.e. A €
OD). Let e € Ran W& (), so e = W(M)f for some f € C™. Then it follows from (4.2)

that
lim <e (Gu (Z)) f) =0,
2B eua(2>

and the uniform boundedness of b(z)* and (4.2) imply that

g o (8£5) ) -0

Therefore by (4.1) we get that

: Yo — T (I — b1y (B ¢ _
li (1, — ab(e) e = i (1, — b)) (P ) £ =

so
lim ab(z)*e = e.
23

Left multiplying the above identity by a*, we get the conclusion. O

Definition 4.2. For A € T we define the directional carrier of pug by

Sa(A) = {e € C™: lim b(2)*e = a*e} ,

PE=9\
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wherever the non-tangential limit exists. Further, let S(A) := S, (A).

n

Lemma 4.3. For any A € T there holds S(\) L (I, — a*)Sa(A).

Proof. Let f € S()), e € S,(N). It follows from the definition of S, () that for any
h € span{e,f} the limit lim_» , b(2)"h exists. Slightly abusing the notation let us call
this limit b(\)*h; note that b(\)* defined this way is a linear transformation acting from
span{e,f} to C™.

It is easy to see that b(\)* is a contraction. Moreover, since it acts isometrically on e
and f, it is an easy exercise to show that it acts isometrically on all of span{e, f}.

We know that b(A\)*e = a*e, b(A\)*f = f. Therefore, for e € S, (A) and f € S(\) we
obtain

(e,f)cn = (V)" e, b(A)*f)cn = (a”e,f)cn.
So ((I, —a*)e,f)cn =0 and we have £ L ([, —a*)e. O

Remark 4.4. We do not know about the existence of lim_» , b(2)*. But with respect to jg-
a.e. A € dD we have learned that lim_» , b(2)*e exists for every e € Ran W*(\). Slightly
abusing notation and always being cautious about the meaning, we denote b(\)* =
lim_», b(z)*.

Denote by b(\) any non-tangentional limit point limy_o (2%), as zx = A; it exists
because ||b(z)|| < 1, but it does not have to be unique.

A generalization of a vector analog of the Aronszajn—Donoghue Theorem (on the
mutual singularity of singular parts for rank one perturbations) follows without much
effort from Proposition 4.1. To formulate this result, we recall the notion of vector mutual
singularity (see [13, Definition 6.1]).

Definition 4.5. Matrix-valued measures p and v are said to be vector mutually singular,

p L v, if there exists a measurable function II with values in the orthogonal projections
on C™ so that

I[IuIl = 0, (I -Mv(I —1I) =0,
the matrix-valued zero measure.

We note that for a measure du = Wdu and a Borel measurable matrix-valued function
I, the measure IIull is given by

HpIl(E) = /H(z)*[du(Z)]H(Z) =/H(2)*W(Z)H(Z)du(2)

E E
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for Borel set £ C T.

It is not difficult to see that this definition can equivalently be formulated in terms of
the densities of u and v, if they are extended appropriately: Two matrix-valued measures
p and v are vector mutually singular if and only if there exist densities W and V with
dp = Wdp and dv = Vdv that satisfy Ran W(z) L RanV(2) for (u + v)-a.e. z € T.

Proposition 4.1 has the following corollary.

Corollary 4.6. For unitary o, we have py L (I, — a*)puS(I, — «).

Remark 4.7. Since the absolutely continuous part of any scalar measure is always mu-
tually singular to any singular measure, we can drop the singular part on either of the
matrix-valued measures in Corollary 4.6. So, for unitary «, we have both

i L (I — ")l (I — a), and
ps L (In — a")p®(In — ).

Proof of Corollary 4.6. Proposition 4.1 yields
Ran W< (A) C So(A) ps-a.e. and RanW(X) C S(A) pd-a.e., (4.3)

where S(A) := S, (A). In fact, we can always assume without loss of generality that the
above inclusions (4.3) hold (us+pg)-a.e.; we just need to pick appropriate representatives
for densities W and W<,

To pick such representatives, let us notice that the measures p and p® are absolutely
continuous with respect to the measure p + u®, so

dp=ud(p+p%),  dp®=ud(p+p%),
which implies
dps = ud(ps + pg),  dpg =ud(ps + pg)-

Define E={£ €T :u(§) >0}, E*={£ €T : u*(§) > 0}. Replacing the densities W
and W< by 1, W and 1., W< respectively, we do not change the measures du = Wdu
and dpu® = Wdp®.

But for such choice of densities, any statement about W that holds u-a.e. or ps-a.e. also
holds (u + p*)-a.e. or (us + ps)-a.e. respectively; and similarly for W<. So indeed, we
can assume without loss of generality that inclusions (4.3) hold (us + u2)-a.e.

It follows from the definition of S, (A) that for A € T the limit lim_» , b(2)*e exists for
all e € S(A\)+ S, (). This limit clearly defines a linear transformation from S(A\)+ S, ()
to C™, which we, slightly abusing notation, will denote b(\)*.

Clearly, b(\)* is a contraction. Since by Proposition 4.1 ||b(A)*e|| = ||e]| for all e € S(A)
and for all e € S, (), we can conclude that b(A)* acts isometrically on S(A) + S, (A).
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Therefore, for e € So () and £ € S(\) we obtain
(e7f)C" = (b(A)*e7 b()\)*f)(C” = (a*e7f)(C”~

So ((I, — a*)e,f)cn = 0 and we have f L (I, — a*)e.
We have shown that inclusions (4.3) hold for (u* 4 p)s-a.e. A € T, so

Ran W(A) L (I, — a®) Ran W<(X)
for (u® 4 p)s-a.e. A € T, and that is equivalent to the statement. 0O
5. Strong mutual singularity

The vector mutual singularity from Corollary 4.6 is used to show a strong mutual
singularity for the traces.

Theorem 5.1. Let o : R — U(n) be a C function such that for all t € R its “logarithmic
derivative” i/ (t)a(t) !

R, the scalar measures p®® = tr u®® are mutually singular with v for allt € R except

is sign definite. Then, given any singular Radon measure v on

probably countably many.

Remark. Note that if a(t) € U(n) for all ¢, the “logarithmic derivative” ia/(¢t)a(t) ! is
always Hermitian. It follows, for example from the description of the tangent space to
U(n); an elementary proof is also easy.

Note also that the matrices a(t)~1a/(t) and o' (t)a(t)~! are unitarily equivalent, so
in the above Theorem 5.1 we can use the condition that the matrix ia(t)~1a/(t) is sign

definite.

Lemma 5.2. Let A = A* be a sign definite matriz. Then for a sufficiently small § > 0
for any matriz A (not necessarily Hermitian) such that ||A — Al < & the condition
(Ax,y)c» = 0 implies that

e = yl* = e (I + lIyl*) .
where ¢ = ¢(A4, ).

Proof. Replacing the norm in C™ by an equivalent one we can assume without loss
of generality that A = I. The condition ||I — Al < § together with the assumption
(Ax,y)c~» = 0 imply that |(x,y)cn| < d||x]| - ||y]|- Then for 6 < 1

I = y* = [IxII* + lyl|* - 2Re(x, y)c~
> [|x]I* + lly[I* — 28]l - lly]
> c(8) (IIx[I* + llyll*) -
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The lemma follows. O
Proof of Theorem 5.1. Fix ¢ty € R. Differentiability of o implies that
a(t) — a(ty) = (' (to) + o(1)) - (t — to) as t — tg.

Therefore, for any € > 0 there exists an open neighborhood U > t(y such that for any
t,t' € U we have

a(t') —a(t) = (o'(t) +r(t', 1)) - (' —1),  |Ir(t’, D)l <e.

Continuity of a implies that for any § > 0 we can find a neighborhood U > to such that
forallt,t' e U

ata(t)™t = I = (a'(to)a(to)  +7 (1)) - (' — 1), 7', 1) < 6. (5.1)

One of the operators 4ic (tg)a(to) ~! is positive definite. Pick sufficiently small § in (5.1)
such that Lemma 5.2 will apply to A = 4ia’(tg)a(to) ™! with some ¢ > 0.

Let t € U be such that the scalar measure pu*® is not mutually singular with v. Let

i and i) be the absolutely continuous with respect v parts of u®®, dpd™® =

We(dy. Take a function f; € L3(v), ||ftHL2(u) =1, such that

£(€) € Ran WD (&) for v-ae. £€T. (5.2)

Now, let ¢,# € U be such that both scalar measures p®®, ") are not mutually

singular with v.
By Corollary 4.6 we have ug(t) 1L (I, — a*)ug(t )(In — «), where we used a =

a(t)a(t)~!, and so
A L (L, — a")ae" (1, — a).
This implies
Ran Wa(t)(f) 1 Ran((I,, — a*)Wa(t)(rf)) for v-a.e. £ € T.

So for the functions f;, fyr € L*(v), HftHLZ(u) = ”ft/”LQ(V) = 1 defined above in (5.2) we

have,

fe(&) L (I, — ™) fu(€) for v-a.e. £ € T.

Lemma 5.2 implies that

1£:€) = fr@©N%n = ¢ (@I, +1fe(©IL.)  forvae €T,
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and integrating with respect to dv(§) we get that

Ife = fell?, e

L) —

So, by the separability of L?(v), the measures x*® can be not mutually singular with v
only for countably many t € U.

Using standard compactness reasoning we get that any compact K C R can have at
most countably many such ¢’s, and covering R by countably many compacts we get the

conclusion of the theorem. O
6. Carathéodory condition

This section will lay the ground work for the investigation of the Carathéodory angular
derivative that will be done later in Sections 7 and 8.

Recall that for a function b € .#(n) the de Branges—Rovnyak space () is defined
as follows. Let Ty : H2(C™) — H?(C") be the (analytic) Toeplitz operator,

T,f = bf, f e H?(C")

and T, be its adjoint.
Then the de Branges—Rovnyak space J#(b) is the range of the operator R} := (I, —
TyTy)'/? endowed with the range norm,

= inf {||h|| | h e H(C") such that Ryh = f} .

”f”%o(b) H2(C™

Clearly, /(6) € H(C") and /] > 1]z o

The matrix-valued function k°(z,w) =: k% (z) defined in (2.3), is the matriz reproduc-
ing kernel for 7#(b), meaning that for any w € D and e € C™

(f(w),e)cn = (f; kzje>y¢”(b) : (6.1)

Finally, let us mention that the linear combinations of functions k%e, w € D, e € C™
are dense in #(b). Indeed, if f € 2 (b) is orthogonal to all k% e, the reproducing kernel
property (6.1) implies that f = 0.

Definition 6.1. We say that a function b € . (n) satisfies the Carathéodory condition in
the codirection x € C™ at a point A € T if

2 * 2
— e O
PE=9\ 1- |Z|

(6.2)

Proposition 6.2. Given b € .#(n) and a non-zero vector x € C™ and A € ID, the
following are equivalent:
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(i) The function b satisfies Carathéodory condition in the codirection x at the point X.
(ii) There exists x € C™ such that the function

x —b(2)X

1— 2\

belongs to H?(C™).
(ili) For any f € () the limit

lim (f(2),%X)cn = ax(f)

PE=SY
exists and the linear functional f — £y «(f) is bounded on J£(b).
(iv) A stronger version of the Carathéodory condition holds, i.e.
2 _ * 2
N e O

25 1=

Moreover, if the above conditions are satisfied, then

lim b(2)*x =: b*(\, %)

23
exists and equals to X from Statement (ii), the function

x — b(2)b* (A, x)

T e ) (6.3)

k3 x(2) =

and the linear functional €y x is given by €y x(f) = (, kl)’\7x>%(b),

Definition 6.3. We call the function in (6.3) the boundary reproducing kernel of ¢ (b)
in the codirection x at the point A € T.

Proof. Let Statement (i) be satisfied. Notice, that this condition just means

lim inf ||klz’x||2%(b) =:C < 0.
PE=SY

Hence there is a sequence z; = A so that ||k’z’kx||if(b) — C, and we can also assume,
without loss of generality (by passing to a subsequence, if necessary) that k:gkx converges
weakly to some h € #(b) by weak compactness. Similarly, we can also assume that
b(zy)x converges to some vector X € C™. Notice that the Carathéodory condition implies
that [[x|| = [|x]|.

Then for any y € C"

(h(2),¥)cn = (h, k2y>ﬁf(b)
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. b b
- klingo<kzkxv kzy>%(b)

= lim (_]n—b(z)b(zk) X,y>
Cn

k—o0 1— 27
X —b(2)x

:(45y> )

1—2zA Cn

x — b(z)i

1— 2\

SO

h(z) = (6.4)
Since ' (b) C H?(C™), we get that h € H?(E), and the above formula for h implies
Statement (ii).
Assuming now that Statement (ii) holds, let us prove (iii). First let us show that

lim b(z)*x = X. (6.5)
PE=9Y
By the assumption (ii) we know that h defined by (6.4) belongs to H?(C™). Every H?
function is O((1 — |z|)~/?). Since as z = X the quantities 1 — |2|? and |1 — Az| are
comparable in the sense of two sided estimates, we conclude that for 2 = A

y = b(2)x = O((1 - |2)*/?),
or, equivalently
b(2)*x —% = O((1 — |2])"/?).

But the right hand side tends to 0 as z = A, so (6.5) is proved.

Statement (iii) will follow immediately from the weak convergence k’x — h in J#(b)
as z = A\

To prove the weak convergence, notice first that identity (6.5) implies that for h(z)
given by (6.4) k2(w)x — h(w), as z = A for all w € D. So, for all w € D and all y € C"
we have <kgx,kfuy>%7(b) - (h,kzjy>%(b) as z 5 .

Therefore, to prove the weak convergence, it is sufficient to show that

[K2x] gy < € < 0

for z in the non-tangential approach region, because we already have the convergence on
a dense set (linear combinations of k%y).
Since ||b(z)|| < 1 and ||x|| = ||X]|, we have

0 <2Re((x —b(2)X),X)cn
= ((In = b(2)b(2)")%, X)cn + [ = b(2) "I|Z,..-
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It follows that:

I = = (= M 0
2 ~
< T— [(y = b(2)%,%)cu|

|1 — 2|

_ b

= 21 “F (h,kzx>%(b)
|1 —25\| b

<2 k h||.

< e k)

And so ||k%x|| is uniformly bounded in any non-tangential approach region for .
Finally, let us prove (iii) = (iv). Suppose that ¢, x is a bounded linear functional
and consider a Stolz domain I';(A). Then for any f € J(b),

sup {[(f,k2x) [} < 00
z€l't(N) 7 (b)

By the Principle of Uniform Boundedness it then follows that

sup [|kZx]| < oo,
z€l¢(N)

which is exactly Statement (iv). O

Proposition 6.4. For b € . (n) and A € 0D, the set of all Carathéodory codirections at
A e T, ie. the collection of all x € C™ such that b satisfies the Carathéodory condition
at X is a subspace of C™.

Proof. The set of all Carathéodory codirections is invariant under multiplication by
scalars, so it is enough to show that if x and y are Carathéodory codirections, then so
is x +y. Since ||b(2)|| < 1, we conclude

0 < [lx £y = [Ib(2)" (x £ y)*
= [lx[* + [yl = 16(=)"x]|* = [16(=)"y[|* £ 2Re ((x,¥) — (b(2)"x,b(2)"y)) -

Since this expression is non-negative for any choice of + sign, we see that
2|Re (6 )¢n = (0()%.b() V) )| < Il + 9112 = (=) 12 = ()51,
and therefore

e = w1 = [1B(2)" (e £ y) 1 < 2 ([l = (1) "%[I* + [[y]I* = lIb(=)"¥ %) -
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Since both x and y are Carathéodory codirections, this inequality and part (iv) of Propo-
sition 6.2 imply that x +y are also Carathéodory codirections. O

7. Carathéodory angular derivative (CAD)
Definition 7.1. Let F be a subspace of C™ and denote by P, : C" — E the corresponding

orthogonal projection. A function b € #(n) is said to have a Carathéodory angular
derivative® (CAD) at A € T on the subspace E, if for every e € E

lim b(z)e = e, (7.1)
PE=9\
and
CADgb(A) := lim PEb’(z)PE exists. (7.2)
PE=9\

Proposition 7.2. A function b € .#(n) has a Carathéodory angular derivative on a sub-
space E if and only if

lim P M

lim Pp="3 P exists. (7.3)

E
Moreover, in this case the limits (7.3) and (7.2) coincide.

Proof. The proof goes exactly as in the scalar-valued case, and is only presented for the
convenience of the reader.
Suppose f has a Carathéodory angular derivative at A on a subspace E. For w € D

z

Po:) = bw)) Py = [ WOk

w

Now take z in the non-tangential approach region (Stolz domain T't(})), and let w —
A along the line connecting z and A € T. Then using (7.1) and, say, the dominated
convergence theorem we get that

P, (b(z) — b(\) P, = / PY(€)P, dc;
A

for simplicity we can assume here that the integral is taken over the interval connecting
z and A. Then trivially using (7.2) we get

5 Or simply angular derivative.



20 C. Liaw et al. / Journal of Functional Analysis 280 (2021) 108830

P, (b(z) — b(A\)) Py — (2 — A) CAD b( / (P,b'(€)P, — CADgb(N)) de

A

=o(1)(z = A).

Dividing by z — A and taking the limit as z — X we see that the limit (7.3) exists and
coincides with CADg b(\).

Vice versa, assume now that the limit (7.3) exists. Let us call this limit A. Take
e € £ C C" and denote f(z) := P_b(z)e. Fix a Stolz region I';()), and a bigger region
Ty (), t' > t. For each z € T'y(A) let T, be the circle centered at z of radius ¢ - (1 — |z]),
where ¢ > 0 is sufficiently small so T, C T'y/(\) for all z € T'y(\).

Then for z € T'y(\)

o L[S
16 =5 | e

() e

z

Now, let z = X (with z € T'4())). By the Cauchy theorem the second integral in the last
line is always Ae. And since the limit in (7.3) is A, we see that as the first integral tends
to 0. O

In the scalar case (n 1) Definition 7.1 covers only special case when the non-
tangential boundary value b()\) = lim_», b(z) = 1. The definition below covers the

general case.

Definition 7.3. Let E be a subspace of C™ and o € U(n). We say that a function b € .¥(n)
has a Carathéodory angular derivative in codirection (E,a) at A € 9D if ba* has a
Carathéodory angular derivative on a subspace E.

Theorem 7.4. If p*{\} # 0 and Ran u*{\} = E for some A € T, then ba* has a
Carathéodory angular derivative CAD ,(ba™)(A) at A on the subspace E, and its Moore—
Penrose inverse equals Apu*{\}.

Remark 7.5. The functions b(z) and b(z) := Azb(z) have the same boundary behavior at

A € T, meaning that the Aleksandrov—Clark measures for b and b have the same point

mass at A, and the limits in the definition of the CAD for both functions also coincide.
Therefore, replacing b by b we can assume without loss of generality that b(0) = 0.
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7.1. Some known facts about the Clark operator

To prove the theorem, let us first recall some results about the Clark model obtained

in [15]. Note first that for the case b(0) = 0 the matrix-valued measure B* Bdy considered
in [15] coincides with the Aleksandrov—Clark measures treated in this paper (in the case

b(0) # 0 they differ by normalization).

In [15] the Clark operator ® from the model space X, and the weighted L? space
L?(p), where matrix-valued measure p is the Aleksandrov—Clark measure for b, was
constructed.

Let us recall that for a matrix valued measure g = Wy, the norm in the weighted
space L?(u) is defined as

1912, = [ QOO FO). = [ WOHOSE) g dute) (1)

and the space L?(u) consists of the Borel measurable vector-valued functions f with
| f ||L2 Gy < We should mention here, that while for general operator-valued measures,

the definition of the weighted space L?(u) is quite involved, a matrix-valued measure
p can always be represented as du = Wdp with a scalar measure p (for example with
= tr ), and the integration is reduced to the standard integration with respect to the
scalar measure u, see (7.4).

Let us also recall, that the Sz.-Nagy—Foiag model space K is defined as the set of
vector-valued functions

Xy = (clofA(L(;Z()C”)> © (Z) HA(CT),

where A(€) = (I, — b(&)*b(£))/2, ¢ € T; here by b(¢) we mean the non-tangential
boundary values of b(z) as z = &, z € D.

In [15, Theorem 8.7] the following description of the adjoint Clark operators ®* was
obtained (we present only formula for the case b(0) = 0 here)

-1
@' = ( A(é’u)+> I+ (“‘2* )(@[uf])+- (75)

Here, as was defined in (2.4), Cp is the Cauchy transform in the unit disc D of the
measure g. In analogy, C[uf] is the Cauchy transform of the vector-valued measure pf.
The subscript “+” means that we are considering non-tangential boundary values from
D to the unit circle T.

Theorem 8.7 stated in [15] using a different notation, so for the convenience of the
reader we provide the translation.
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The function § = 6. corresponds to the function b in the present paper. The matrix
I is defined as I' = —6(0), so in our case I' = 0. Symbols D[, and D... denote the defect
operators,

D.=(I-T"T)"?, D, =(I-TT")"
so in our case DF = DF* =1,.

The matrix-valued measure B*Bu, where pu is a scalar measure and B is a matrix-
valued function corresponds to our Aleksandrov—Clark measure p. To see that one can
compare [15, Equation (4.6)] (6o there means that 8(0) = 0) with (2.2), noticing that if
b(0) = 0 then H(0) = I,,, so Im H(0) = 0.

Finally, A}, in [15] corresponds to our A.

We do not need all properties of ® (or of ®*) that were presented in [15]; we only
need to know that formula (7.5) defines a unitary operator ®* : L?(u) — Xp.

7.2. Proof of Theorem 7.4

As discussed in Remark 7.5, without loss of generality, we can assume o = I,,.

The operator ®* : L?(u) — X, is a unitary operator. However, in its definition
(7.5) the model space X is not involved. So, if we increase the target space from K
to L?(C™) @ L?(C™), we can treat the operator ®*, defined by the formula (7.5) as an
operator from L?(u) to L?(C™)@® L?(C™). To avoid confusion, let us denote this operator
with extended target space as ®*, and let ® : L2(C™) @ L%(C™) — L2(p) be its adjoint.

One can easily see that ®* : L2(p) — L2(C™) & L%(C™) is an isometry, and that
Ran ®* = K.

Define ®,, := & — Mg"tf)M;” Here we use &, z € T for independent variables in L%(pu)
and L%(C™) & L?(C™) respectively, so

[MefI(€) = €£(8),  feL?(m),

and
(Mz9)(z) = 29(2), g€ L*(C")@ L*(C").

’T‘ake f= 1{>\}e7 e € Ranpu{\} and g € L*(C") ® L*(C™). Since trivially M f = Mg f =
Af, we see that

(M ®M"g, f) o = (MI'g, @ M'f),, = A" (MP*g, " f) , — 0,

L?(p) L?
as m — oo (because Mg — 0 weakly in L2(C") @ L?(C™)).

We then can conclude that (for f e, e € Ranpu{)\} and g € L?(C") @ L?(C™))
we have the limiting behavior

=1y
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(5mg7f)L2(lJ() — (‘59,,70)1:2(“) as m — oo.
If we now take g = 5*(1{A} e'), € € Ran p{\}, then using the fact that ®* is an isometry,
we get that
- B ) B /
@9. 1) 2 = (L€ 1) oy~ I e

Using formula (7.5) we get that

B fle) = (2) = WP ) = o) [ T s o)
T

where

Therefore, for g € L?(C™) & L*(C™)

809l = [ T E ) ) am(),
T

It was shown in [15, Lemma 8.6] that (Cu)(2) = (I, — b(2))~! for all z € D and a.e. on
T; this fact can also be easily obtained from (2.1). Therefore, if g = g1 @ g2 € K, (note
that g, € H?(C™))

Cig=g1+ (g1 + Agz) a.e.on T.

By the definition of K, we have h := (b*g; + Aga) € H2(C™), so

[ ame) =0 torame
T

For a function f € H? (possibly vector-valued) denote by P,,f the partial sum of its
Taylor (Fourier) series, i.e. Ppf(2) =Y 1, f(k)z*. With this notation we have

8090 = [T E g am(e) = Y G0t = Pacin©): (76)
T k=0

For g = ®*1€’ = 5*1{,\}e’ we have g1(z) = (1 — Az)~ (I, — b(2))u{\}€'. So for
this g, it follows from (7.6) that
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m—1

=Y AN = Prap,  p(2) = (1= A2) " (I, = b(2)). (7.7)

k=0

e, e € Ran u{\} and g = ®*1, €, we have

As discussed above, for f =1 o

{3}

i (@ng. f) o, = (20.1) 2, = (B{A}e ).

m—0o0

L? ()
Combining this with (7.7) we see that

oo

D (Ephp{re 1 ), ZA’“ Ku{rle, uf{rle)c. = (n{A}e,e)e.

k=0 k=0

In other words, the Taylor series of the function (¢(-)u{A}e’, u{A}e)., converges (at
z = A) to (u{A}e’,e)q.. Denoting E' = Ranp{A} we can see that this is equivalent
to the convergence of the Taylor series of the function P,pP, to the Moore-Penrose
inverse u{A\}=1 of u{\}.

The convergence of the Taylor series at A implies the radial convergence

e(rA Py — () asr 17,

To show the non-tangential convergence we need the following simple and well-known
fact, which can be proved using a standard normal families argument.

Proposition 7.6. Let f be a bounded analytic function in a sector S, := {z € D : z #
0,|]argz| < v}, 0 <~ <.
If there exists a “radial limit”

i ) =a

then for any 0 < B <« the “non-tangential” limit as = — 0 in Sg exists and coincides
with a, i.e.

lim  f(z) =

z—0: ZGS[;

Remark. The above “radial limit” can be taken along any ray in S, originating from the
origin. And, of course, the position and orientation of the sector is not important.

Remark 7.7. The condition that f is bounded in S, can be replaced by the assumption
that the range of is not dense in C, because in this case one can find a linear fractional
transformation ¢ such that ¢ o f is bounded.
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Let us now prove the non-tangential convergence of PEgo(z)PE at A. First of all, notice
that Re((Z, — b(2))e,e)
approach regions S = {z € D : |arg(z — A\)| < v, |z — A| < 1}, v < 7/2, the values of
1/(1 — X2) lie in a sector of aperture 2y < 7. Therefore, for and e € E the values of

> 0 for all e € C™. Second, notice that for a non-tangential

((In = b(2))e, €)cn
11—z

(7.8)

z € S, lie in a sector with aperture less than 27, i.e. the range is not dense in C.
Therefore (see Remark 7.7), Proposition 7.6 applies, and there is a non-tangential limit
for any smaller approach region S’ = {z € D : |arg(z — \)| < 8, |z — | < 1}, B8 < 7.
Since v < /2 can be arbitrary, we get the non-tangential convergence of (7.8) for any
e € F in the approach region of any aperture.

Applying the polarization identity we get non-tangential convergence of (7.3). This
concludes the proof of Theorem 7.4. O

7.3. An example

It is a natural question to ask whether both projections P, in (7.2) and (7.3) are
really necessary. Below we will give an example of a function b € .(2) such that the
corresponding Clark measure p (u® with o = I) has an atom at 1, but the limits (7.2)
and (7.3) (with £ = Ran pu{A}) fail to exist if one of the projections P, is missing.

It is more convenient to work in the right half-plane C, := {z € C : Rez > 0}. Let
w, w(z) = (1 — 2)/(1 + z) be the standard conformal map from the unit disc D to C,.
Note that w™ = w, and w(1) = 0. For an analytic function f on D we denote by fits
“transplant” to the right half-plane C,., f:: fow ™! = fouw (recall that w™! = w).

Define the function H in C, by

~ 1 1
H(z)z;—i—;—&-l, z € Cy, (7.9)

where 0 < v < 1. Clearly H is Herglotz (Re H (z) > 0), and, moreover on the imaginary

axis
Re H (iz) = |x| =" cos(ym/2) + 1.
Define
H(z)+1

Clearly |0(z)| < 1 on Cg, and, moreover, for small x
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Bia)|? = (Im H (iz))? + (Re H(iz) — 1)?
Im H (iz))? + (Re H(iz) 4 1)2
. 4Re H (iz)
(Im H (ix))? + (Re H (iz) + 1)2
<1—clx* . (7.10)
It is also easy to see that for any § > 0
0(iz)|? < r(6) < 1 (7.11)

for all |z| > 0.
So, for 0 < # < 1 such that 25 > 2 — v and for sufficiently small ¢ > 0 the matrix-

valued function
~ (z) 0 # (01
b =
(2) (0 0>+€1+2 11

is a strictly contractive one, i.e. |[b(z)|| < 1 for z € Cy; by norm here we mean the

operator norm.

Indeed, it is clear that b is a bounded analytic function in Cy, so it is sufficient to show
that HE(ZI)” < 1 for all z # 0. We can estimate the bigger Frobenius (Hilbert—Schmidt)
norm ||b(z)||. For small z we get using (7.10) that

16(2)[12 < 1= clz[>7 + Ce2|a|?”. (7.12)

Since 23 > 2 —~ the right hand side is less than 1 for sufficiently small z and ¢, i.e. there
exist €9, > 0 such that for all |z] < § and 0 < € < g¢ the right hand side of (7.12) is
less than 1.

For |z| > § we use (7.11) and the fact that the function (iz)?/(1 + iz) is bounded, to
conclude that [|b(iz)||2 < 1 for sufficiently small ¢ (and for |z| > §).

To see that the function b :=bow gives us the desired example, we first notice that
for an analytic function f on D and f:: fowl=fow

lim(1—¢&)f(§) =2lim zf(z) (7.13)
31 250
and
O f© 1 ()
ma-g Tz =

So, to verify the desired properties, we need to compute the limits of (I — 5(2)) /z and
of its inverse as z = 0.
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It follows from the definition of § and (7.9) that for small z

~ 2z

1-0(z) = T A 50: 2z (1+o0(1)).

Then

5-5@):( 20 el )(1+o(1))

—e2P 1—g2f

=< 2 szﬁ><1+o<1>>;

—e2P 1

the multiplication by 1 4 o(1) means that each entry of the matrix is multiplied by its
own term 1+ o(1). Computing the inverse we get

. B
(Io —b(2)) "' = ! ( L )(1+0(1))

22 ezl 2z

Z ezf~1
=3 (ﬂ? ) ) (1+ o(0)).

Therefore, by Theorem 3.1 we have for the Clark measure p (with o = I)

pl1) = Hm(1 =) (T2 =)~ = 2lim = (B~ 5(:) ™ = <1 0) |

230 0 0

here we used (7.13) in the second equality.
Similarly, we get using (7.14) that

i (I — b()/(1— ) = & lim (I, ~ 5(2))/2 = ( ! OO> |

£31 2530 oo 0

This means that for £ = Ran u{1} we have

0 0

but if we omit one of the projections P, the (finite) limit does not exist. O
8. Carathéodory angular derivatives and point masses
We begin by presenting two results which compare the Carathéodory condition from

Definition 6.1 to the CAD, see Definition 7.1. In Theorems 8.1 and 8.2, we clarify the
relation between the Carathéodory condition and the CAD.
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Recall that the directional support of u® at A € T was introduced in 4.2 to be
Sa(A) = {e € C":lim_x, b(z)*e = a*e}. Now, consider the set

P29
Eo(X) := {x € Su(A) : b satisfies Carathéodory condition at A in codirection x} .
By Proposition 6.4, E, () is a subspace of C™.
Theorem 8.1. Function ba* has CAD at X on the subspace E,(\), and

(CAD , (ba*)(\)x, y)cn = (K}« k3y) #®)

Proof. Let x € E, (). Then by Proposition 6.2 the vector-valued function

—b(2)x
B (z) = 2R 8.1
{ole) = X 1)
with X = b*(\, x) belongs to J#(b), and since E,(A) C S, () we have
X =b"(\,x) = lim b(2)"x = a™x. (8.2)

PE=SY

Now, take y € E,(\). Then the non-tangential limit

lim (k?\,x(z)a y)(Cn

PE=9Y
exists by Statement (iii) of Proposition 6.2. Using (8.1) and (8.2), we obtain the existence
of

I,—b *
lim (i_)ax, y> for all x,y € E,(X).
PE=SY 1—2A Ccn

This implies the existence of

I, — b(z)a*
By Ba(d) 1 o) Ea(})

as was claimed. O

Theorem 8.2. If ba™ has CAD on some subspace E of C", then for all x € E, P,ba
satisfies the Carathéodory condition in the codirection x.

|
E
Proof. Without loss of generality assume a = I,,. By the hypothesis, the non-tangential
limit

lim p, I = ME)
23 1—2zA
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exists. So, for all x € E, the limit

I, —ab(2)*
lim P L_(Z)x
PE=9\ B 1—2A
exists, and so is the limit of the norm,
x — P ab(z)*x
k= Phab(a)°x|

23\ |1 _5/\|

(8.3)

By the triangle inequality ||ul| — ||v] < |lu — V]|, so
[afl? = [IvI* < (lafl + vl =]
Applying this to u = x and v = P,ab(z)"x, and using the fact that
[Pgab(z)" x| < [lab(z)"x|| = [|b(z)"x| < [,
we have
x> = | Ppab(z)*x|* < 2||x[[[|]x — Pyab(z)*x]|.

Since in a non-tangential approach region to A the quantities 1 — |2|? and |1 — Z\| are
compatible, we have

|| — | Py ab(z)x|* [x — Ppab(z)"x||

lim sup < 2||x|| lim sup
>

PE=9\ L- ‘Z|2 EE=D L- |Z|2
X — P_ab(z)*x
< C|x|l limbsup | |1E_ Z)(\) |

25 A

for some 0 < C' < oo; here, the boundedness of the final expression follows from (8.3).
The resulting estimate

I = Pab() x|
im sup

PE=SY 1= |Z|2

is clearly stronger than the Carathéodory condition (6.2) (liminf < limsup). O
Theorem 8.3. We have Ran u*{A\} = E,(A).

Proof. By Theorem 7.4, the CAD of ba* at A exists on the subspace Ran u®{A}. There-
fore, by Theorem 8.2 the Carathéodory condition is satisfied in the codirection x for all
x € Ran pu*{\}. Thus, we obtain
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Ran pu*{A} C E,(A).

Let us prove the reverse inclusion. Renaming ba*™ by b we can always assume a = I,
and skip the index a.

Define an operator ¥ acting from L?(u) to the space of analytic C™-valued functions
on the unit disc D,

VF(2) = (I = W) = (1 ) [ @@ O ()

—Zf
T

here p is the Clark measure p® with o = I, for b.
Denote by L3 (), the closure in L?(p) of linear combinations of analytic in D vectorial
rational fractions 7y, x

x
w,x = D, cm.
Twx (&) [ —we weD, xe

Let x € E(A), where recall E(\) = E, (A) with a = I,,. Then we have lim_» , b(2)*x =

x and by Proposition 6.2, the boundary reproducing kernel klex is given by

I, —b(2)

kb )= ————X 8.5
e = B (85)

By Lemma 8.4 below, W : L2 (u) — #(b) is a unitary operator. So, we see that
Kix=Vf

for some f € L2 (p).
Comparing the formula (8.4) for ¥ with the formula (8.5) for kf’\’x we can conclude
that f is supported at the point A only. More precisely f = 1, X, where p{\}X = x.

But this exactly means that x € Ran u{\}. O

A}

Remark. If 5(0) = 0 the operator ¥ used in this proof is exactly the first component of
the adjoint Clark operator ®* from [15], which we also used in (7.5). For the general
case (when b(0) # 0) it differs slightly from the one in [15] as the measure there does
not have the same normalization as ours.

Lemma 8.4. The operator U, restricted to L2 () is a unitary operator between L% (p)
and the de Branges—Rovnyak space J(b).

Proof. Define

~ Iy —b(w)*

ky(€) = —we webh, £€T.



C. Liaw et al. / Journal of Functional Analysis 280 (2021) 108830 31

We will show that for any x € C"™ there holds

I = HO(w)"

Ukyx = kb x = =
1 —wé

(8.6)

where, recall, k¥ is the reproducing kernel for the de Branges—Rovnyak space #(b), and

<wa,Ezy> = (Mx, y)cn = <k;f;x,l<:§y>%)(b) . (8.7)

L2 (p) 1—wz

That means ¥ is an isometry from a dense set in L2 (p) (linear combinations of functions
kwX) to #(b). The subspace WL2 (p) contains linear combinations of functions kfx,
w €D, x € C", and such linear combinations are dense in J#(b). Indeed, if f € (b) is
orthogonal to all k% x, then

(f(w)’ X) = <f7 ]{ZJX>% =0,

cn (b)

for all w € D and all x € C™. So we have f = 0.

So, W : L2 () — H(b) is indeed a unitary operator.

To prove (8.6) let us compute ¥k, by computing ¥k,,ex, where (ex)7_; is the stan-
dard basis in C™. Using the formula

1 111 1+w§+1+zZ
1—wE 1-26 1-wz 2 \1-w& 1-2£)°

where w,z € D, £ € T, we can see that

[\Il’];w}(z) = (I, — b(»)) / . 71@5 = lzgd”(g) (I, — b(w)*)
T
- % ' L{:—bm(j) (Cop(w)” + Cop(2)) (In — b(w)"), (8.8)

where Cs is the Herglotz transform,

Cov(z) = / 1 * 2 ().
T

Using (2.2) we see that

In+b(z) i Im I, + b(0)

R CRS FET)

(we write the product (I, + b(2))(I, — b(2))~! as fraction to emphasize that terms
commute), so
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Capl) + Cap(z) = 7 ZEZ; - 28 '
Therefore

(I, — b(2)) (Copa(w)* + Cop(2)) (I — b(w)*) = 2+ (I, — b(2)b(w)*),
and (8.8) gives us

Wha(z) = IR (8.9)

so (8.6) is proved.
To prove (8.7) let us notice that

<%wx, Ezy>L = ([sz] (2)x, y)Cn )

2(n)

But Wk, is already computed, see (8.9), so (8.7) follows immediately. O

Remark. In the above proof it is essential that both z,w € D.
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