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This paper deals with families of matrix-valued Aleksandrov–
Clark measures {μα}α∈U(n), corresponding to purely contrac-
tive n × n matrix functions b on the unit disc of the complex 
plane. We do not make other apriori assumptions on b. In par-
ticular, b may be non-inner and/or non-extreme. The study of 
such families is mainly motivated from applications to unitary 
finite rank perturbation theory.
A description of the absolutely continuous parts of μα is a 
rather straightforward generalization of the well-known results 
for the scalar case (n = 1).
The results and proofs for the singular parts of matrix-valued 
μα are more complicated than in the scalar case, and consti-
tute the main focus of this paper. We discuss matrix-valued 
Aronszajn–Donoghue theory concerning the singular parts of 
the Clark measures, as well as Carathéodory angular deriva-
tives of matrix-valued functions and their connections with 
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atoms of μα. These results are far from being straightforward 
extensions from the scalar case: new phenomena specific to 
the matrix-valued case appear here. New ideas, including the 
notion of directionality, are required in statements and proofs.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In a seminal paper [7], D. Clark initiated studying families of (scalar, finite, positive 
and regular) Borel measures μα on the unit circle that correspond to purely contractive 
analytic functions b on the unit disc D. Namely, for α ∈ T = ∂D the measure μα was 
defined as the unique measure satisfying

α + b(z)
α − b(z) = i Im α + b(0)

α − b(0) +
∫

∂D

ζ + z

ζ − z
μα(dζ), |α| = 1, (1.1)

(the function in the right hand side is Herglotz, i.e. it has positive real part, and the 
above formula is just the classical Herglotz representation formula).

D. Clark himself considered the case when b is an inner function, in which case the 
measures μα are purely singular. In the 1980’s and 1990’s, A. B. Aleksandrov [1,2,4,5,3]
proved many deep results regarding the families of the measures μα (for general, not 
necessarily inner b), which therefore are referred to as Aleksandrov–Clark measures. 
D. Sarason [21] explored the connections between the Clark measures and the corre-
sponding de Branges–Rovnyak spaces. Many deep results about finer properties of the 
Clark measures were obtained by A. Poltoratski, [20,19].

The Clark measures μα are exactly the spectral measures of the unitary rank one 
extensions of a model operator with the characteristic function b. This was originally 
shown by Clark [7] for inner functions b; in fact, finding the corresponding spectral 
measures and investigating their properties was one of the main goals of [7]. For general 
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contractive functions b it was shown significantly later in [14] from a different point of 
view; the measures μα in this case can have non-trivial absolutely continuous parts.3

In this paper we are dealing with matrix-valued pure contractions b. The analog (2.2)
of the Herglotz representation formula then defines a family of matrix-valued measures 
μα that also has operator theoretic meaning.

We then study the relationship between the properties of the matrix-valued contrac-
tions b and their associated Aleksandrov–Clark family of matrix-valued measures μα. As 
it was mentioned above, in the scalar setting, this topic has been well-developed. While 
there was some development in the matrix-valued case [12,10,16,15], many fine properties 
of the matrix-valued Aleksandrov–Clark measures are still not well-understood.

While the characterization of the absolutely continuous part of the matrix-valued 
Clark measure is pretty simple, capturing the singular part of μα is more subtle. One 
of the results of this paper is the description of the directional support (carrier) of the 
singular part of μα; new phenomenon of the directionality appears here. In Section 3, 
we derive an easy Nevanlinna type formula, expressing point masses of μα in terms of b.

In scalar Aleksandrov–Clark theory the Aronszajn–Donoghue Theorem [6,9] states 
that the singular parts of two distinct measures from the same family must be mutu-
ally singular. Trivially, such a statement cannot be true for the matrix-valued measures 
μα

s . However, if one interprets the mutual singularity as the vector mutual singularity
introduced in [13], the corresponding result is true, see Corollary 4.6. This result is sim-
ilar (although formally not equivalent) to an earlier result for finite rank perturbations 
of self-adjoint operators [13, Theorem 6.2]. Note that the proof in this paper is also 
completely different from one in [13].

In Section 5, we use the vector mutual singularity to investigate the “real” mutual 
singularity. We show that the exceptional set where the “real” mutual singularity fails 
is small, see Theorem 5.1 below. Again the result is similar to one for finite rank pertur-
bations in [13, Theorem 6.1].

Sections 6 through 8 are devoted to extending the notion of Carathéodory on angular 
derivative to the matrix-valued setting. The work of Carathéodory on angular derivative 
plays an important role in the classical complex analysis; there are deep connections 
with composition operators, see [22,8], the de Branges–Rovnyak spaces, see [21], theory 
of rank one perturbations.

We introduce a directional Carathéodory condition in Definition 6.1. As in [21, Chap-
ter VI] and [16, Section 5.1], this condition can be related to properties of the de 
Branges–Rovnyak space of b, see Proposition 6.2. We further introduce the notion of 
a Carathéodory angular derivative (CAD) on subspaces (Definition 7.1); note that as 
the counterexample presented in Section 7.3 shows, a straightforward generalization of 
the scalar definition does not work well for the matrix case, and a bit more involved 
definition is needed. In Theorems 7.4, and 8.1 through 8.3 we find relations between 

3 The measures obtained in [14] coincide with the above measures μα if b(0) = 0; if b(0) �= 0 they differ 
by a normalizing factor.
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this CAD and the Carathéodory condition, boundary reproducing kernels for the de 
Branges–Rovnyak space, and as the (matrix-valued) point masses of μα.

2. Preliminaries

2.1. Matrix-valued Aleksandrov–Clark measures

Let H∞(D) ⊗ Cn×n denote space of bounded n × n matrix-valued functions on the 
open complex unit disc D. In this paper Cn×n denote the set of all n × n complex 
matrices equipped with the operator norm (maximal singular value), i.e. the set of all 
(bounded) linear operators on Cn. We define the matrix-valued Schur class S (n), to 
be the set of all purely contractive functions in H∞(D) ⊗ Cn×n. Recall that a function 
b ∈ H∞(D) ⊗Cn×n is purely contractive if and only if ‖b(z)‖ < 1 for all z ∈ D. Note that 
‖b(z)‖ < 1 if and only if ‖b(0)‖ < 1 by the Schwarz lemma (and Möbius transformations).

Let U(n) denote the group of unitary n × n matrices.
Given b ∈ S (n) and α ∈ U(n) define the function:

Hα(z) := (In + b(z)α∗)(In − b(z)α∗)−1. (2.1)

It is easy to see that Hα is a Herglotz function on D, i.e. an analytic function with 
non-negative real part on D. Using the parallelogram identity, it is not difficult to obtain 
from the classical scalar Herglotz representation formula (1.1) its matrix-valued version.4
Namely, for each α ∈ U(n), there is a unique finite, non-negative Cn×n-valued Borel 
measure μα on the unit circle T = ∂D, so that

Hα(z) = i Im Hα(0) +
∫

∂D

ζ + z

ζ − z
μα(dζ). (2.2)

To avoid misunderstandings, we mention that the imaginary and real part of a matrix 
A is given by Im A := (A − A∗)/(2i) and Re A := (A + A∗)/2 respectively.

The measures μα are called Clark or Aleksandrov–Clark measures (for b). To our 
knowledge, this definition was first introduced in [12] for operator-valued inner functions 
b, and then in [10] for general contractive matrix-valued functions.

Note that replacing in (2.1) the expression b(z)α∗ by α∗b(z) we still get a Herglotz 
function, so one can wonder why we use this particular order in (2.1). One of the reasons 
is the theory of the matrix-valued de Branges–Rovnyak spaces.

Recall, see [16], that for b ∈ S (n) the de Branges–Rovnyak space H (b) is the Cn-
valued reproducing kernel Hilbert space (RKHS) with matrix-valued reproducing kernel:

4 Matrix-valued and operator-valued Herglotz–Riesz representation formulas have been subject to much 
research as early as [23].
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kb(z, w) := In − b(z)b(w)∗

1 − zw
; z, w ∈ D. (2.3)

Note that for any α ∈ U(n), kb = kbα∗ (so that H (b) = H (bα∗)), but generally 
kα �= kα∗b, which motivates our choice of order.

We also mention that the order b(z)α∗ agrees well with the Clark model for finite 
rank perturbations developed in [15].

2.2. Trace and decomposition of a matrix-valued measure

We are interested in the subtle properties of the Aleksandrov–Clark family of mea-
sures. In order to formulate these precisely, we introduce some terminology.

For matrix-valued measure μ, define the trace μ := tr μ =
∑n

k=1(μ)k,k, where (μ)k,l, 
1 ≤ k, l ≤ n is the (k, l)-entry of μ. Recall that the operator norm of a matrix A is 
bounded by its trace. Indeed, we have ‖A‖ ≤ tr((A∗A)1/2) and for positive definite 
matrices A = (A∗A)1/2. In particular, there exists a measurable matrix-valued function 
W mapping the unit circle T to positive definite n × n matrices so that

dμ(λ) = W (λ)dμ(λ); λ ∈ T .

Of course, the entries of W are defined a.e. with respect to μ. This definition of W

through the trace also ensures that its entries are in L∞. In fact, we have tr W (λ) ≤ 1
with respect to μ-a.e. λ ∈ T .

Through the Lebesgue decomposition of the scalar measure dμ = wdm +dμs (here, we 
denote by m the normalized Lebesgue measure on T ) we decompose the matrix-valued 
measure μ correspondingly. Concretely, we have

dμ = Wwdm + W dμs = W̃ dm + W dμs = dμac + dμs,

where W̃ = Ww, w = dμ/dm (we can also write W̃ = dμ/dm).

2.3. Some known and some simple results on Aleksandrov–Clark measures

Let z

�

→ λ denote non-tangential convergence of z ∈ D to λ ∈ ∂D. Recall that one 
says that z

�

→ λ if z approaches λ from within a Stolz region:

Γt(λ) := {z ∈ D : |z − λ| < t (1 − |z|)}, t > 1.

It is well-known that for every t > 1 the non-tangential boundary values of b exist 
with respect to Lebesgue a.e. λ ∈ T . For λ ∈ T , we let b(λ) := lim

z

�

→λ
b(z) wherever the 

non-tangential limit exists.
The description of the closed support of the scalar measure is an easy and well-known 

fact (cf., e.g. [17, Corollary 4.4]).
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The multiplicity of the absolutely continuous part of μα can be captured in terms of 
the non-tangential boundary values b(λ) of the characteristic function. To do so, we now 
state and prove a version of [15, Theorem 5.6]. Recall that b is a contraction on D. For 
z ∈ D define the defect function

Δα(z) := (In − αb(z)∗b(z)α∗)1/2.

Through taking non-tangential boundary values of b, we can also define Δα(λ) a.e. on 
T . Consider the Lebesgue density W̃ α of μα. See Subsection 2.2 for the definition.

Theorem 2.1. Take α ∈ U(n). The Lebesgue density W̃ α of the Aleksandrov–Clark mea-
sure μα can be computed as

W̃ α(λ) = (In − αb(λ)∗)−1(Δα(λ))2(In − b(λ)α∗)−1, for a.e. λ ∈ T

(note that In − b(λ)α∗ is invertible for a.e. λ ∈ T). In particular, its rank is

rank W̃ α(λ) = rank Δα(λ) for a.e. λ ∈ T .

Proof. We begin by taking the real part of (2.2). With the Poisson extension P(μα) of 
matrix-valued measure μα, we obtain and then evaluate

P(μα) = Re [(In + b(z)α∗)(In − b(z)α∗)−1]

= (In − αb(z)∗)−1(Δα(z))2(In − b(z)α∗)−1.

Since b is a strict contraction on D, the inverses exist there.
To obtain the desired result we take z

�

→ λ. To see what happens on the left hand 
side we recall that, by Fatou’s lemma, the non-tangential boundary values of the Poisson 
extension of a complex measure equal (Lebesgue almost everywhere) to the absolutely 
continuous part of the measure. On the right hand side, we argue factor-wise. As was 
discussed before the theorem, the non-tangential boundary values of Δα(z) exist. And 
since b is a contraction on D, det(In − b(z)α∗) is a non-trivial analytic function on D. 
By the uniqueness theorem, it has non-trivial boundary values Lebesgue a.e. on T and 
so In − b(z)α∗ is invertible a.e. on T . To see that In − αb(z)∗ is invertible a.e. on T , 
simply work with the complex conjugate of the anti-analytic function. �

The following standard result (see e.g. [11, Theorem 6.1] for a real-line analog) will 
enable a recovery (see Corollary 2.3) of some information regarding the location of the 
singular part. We say that a Borel set X is a carrier of a measure, if the measure of 
T \ X vanishes.

Define the matrix-valued (or scalar-valued) Cauchy transform of a matrix-valued (or 
scalar-valued, respectively) measure
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Cν(z) :=
∫

∂D

1
1 − ζz

ν(dζ) for z ∈ D. (2.4)

Proposition 2.2. Let ν be a Cn×n regular finite positive Borel measure on T . Consider 
the sets

S :=
{

λ ∈ T : lim
z

�

→λ
tr Re Cν(z) = ∞

}
, P :=

{
λ ∈ T : lim

z

�

→λ
tr (z − λ)Cν(z) �= 0

}
,

where C is the Cauchy transform given by (2.4).
Then set S is a carrier of the singular part νs of ν and the set P is the carrier ope the 

purely atomic part νa of ν. Moreover, S has zero Lebesgue measure, and P is a minimal 
carrier of νa, meaning that no proper subset Y � P is a carrier of νa.

On the side, we mention that Proposition 2.2 is an immediate corollary to the anal-
ogous result for scalar measures. Indeed, the carrier of a matrix-valued measure is that 
of its trace, and taking the Cauchy transform, taking the trace and taking the real part 
all commute.

Moving on, we easily obtain the corresponding result for μα.

Corollary 2.3. Consider the sets

Sα =
{

λ ∈ T : lim
z

�

→λ
tr Re (In − b(z)α∗)−1 = ∞

}
,

Pα =
{

λ ∈ T : lim
z

�

→λ
tr (z − λ)(In − b(z)α∗)−1 �= 0

}
.

Then the set Sα is a carrier of the singular part μα
s of μα and P is a carrier of the purely 

atomic part μα
a of μα. Moreover, S has Lebesgue measure zero, and P is a minimal 

carrier of μα
a , meaning that no subset Y � Pα is a carrier of μα

a .

Proof. We use the identity 1+zζ̄
1−zζ̄

= 2(1 − zζ̄)−1 − 1 on the left and right hand side of 
(2.2) to re-arrange the Herglotz formula to read

(In − b(z)α∗)−1 = In − Hα(0)∗

2 +
∫

∂D

1
1 − zζ̄

μα(dζ). (2.5)

Now Proposition 2.2 (applied to measure μα) immediately yields the result. �
2.4. Poltoratski’s Theorem

The following theorem by Poltoratski, see [20, Theorem 2.7], often plays a key role in 
investigations of the singular parts of Aleksandrov–Clark measures.
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Theorem 2.4. For a (scalar) finite Borel measure τ on T and f ∈ L2(τ), the normalized 
Cauchy transform Cfτ(z)

Cτ(z) possesses the following non-tangential boundary values τs-a.e.:

lim
z

�

→λ

Cfτ(z)
Cτ(z) = f(λ) for τs-a.e. λ ∈ T .

3. Nevanlinna theorem concerning point masses

We refine the second statement of Corollary 2.3 in the following simple matrix-valued 
analog of a result by Nevanlinna.

Theorem 3.1. Fix b ∈ S (n) and α ∈ U(n). Then for any λ ∈ ∂D,

μα{λ} = lim
z

�

→λ
(1 − zλ̄)(In − b(z)α∗)−1

(the limit exists for all λ ∈ T).

Throughout this paper, we use μ{λ} to denote μ({λ}).

Remark. In the scalar situation (n = 1) the classical Nevanlinna theorem is usually 
stated as follows: For λ ∈ T one has μα{λ} �= 0 if and only if

lim
z

�

→λ
b(z) = α, and b′(λ) := lim

z

�

→λ
b′(z) exists and is finite. (3.1)

The limit b′(λ) is called the Carathéodory angular derivative. Note that the conditions 
(3.1) are equivalent to the existence of the limit

lim
z

�

→λ

b(z) − α

z − λ
,

and that this limit coincides with b′(λ). As for the μα{λ}, the statement found in the 
literature usually states that μα{λ} = 1/|b′(λ)|; however one can see from the proof (and 
it was stated in the original Nevanlinna paper [18]) that μα{λ} = αλ/b′(λ).

As one can easily see, in the scalar case our result gives exactly the same value. 
However, in the matrix case the relations with the Carathéodory angular derivative 
is more complicated (one needs to take into account the directionality of derivatives). 
The complete theory of the Carathédory angular derivatives in the matrix case will be 
presented below in Sections 6, 7, 8.

The authors thank H. Woerdeman for asking the question that prompted this remark.

Proof of Theorem 3.1. Multiplying both sides of equation (2.5) by 1 − zλ̄ and taking 
non-tangential limits, it follows that
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lim
z

�

→λ
(1 − zλ̄)(In − b(z)α∗)−1 = 0 + lim

z

�

→λ

∫
∂D

1 − zλ̄

1 − zζ̄
μα(dζ)

= μα{λ} + lim
z

�

→λ

∫
∂D\{λ}

1 − zλ̄

1 − zζ̄
μα(dζ).

Fix a t2 > 0, and a Stolz domain Γt(λ), so that z → λ from within Γt(λ). For each such 
z, consider the integrand:

fz(ζ) := 1 − zλ̄

1 − zζ̄
; ζ ∈ ∂D \ {λ}.

This is a uniformly bounded (in modulus) net (indexed by z) of functions on ∂D \ {λ}
since:

|fz(ζ)| =
∣∣∣∣1 − zλ̄

1 − zζ̄

∣∣∣∣ =
∣∣∣∣z − λ

z − ζ

∣∣∣∣ < t2 (1 − |z|)
|z − ζ| ≤ t2 (1 − |z|)

|ζ| − |z| = t2 < ∞.

Moreover, for any fixed ζ ∈ ∂D \ {λ},

lim
z

�

→λ
fz(ζ) = 0,

so that the (moduli of the) fz(ζ) are dominated by the constant function t2, and converge 
to 0 pointwise on ∂D \ {λ}. By the Lebesgue dominated convergence theorem,

lim
z

�

→λ

∫
∂D\{λ}

1 − zλ̄

1 − zζ̄
μα(dζ) = 0,

and the claim follows. �
4. Directional carrier and vector mutual singularity of singular parts

We refine Corollary 2.3 to include a directional carrier of the matrix-valued singular 
part.

Proposition 4.1. For every e ∈ Ran W α(λ), the non-tangential limit lim
z

�

→λ
b∗(z)e exists 

μα
s -a.e. and is equal to α∗e.

Ramifications of this proposition are the vector mutual singularity of the matrix-
valued measures (Corollary 4.6 below), as well as the strong mutual singularity result 
(Theorem 5.1).



10 C. Liaw et al. / Journal of Functional Analysis 280 (2021) 108830
Proof of Proposition 4.1. We take the adjoint of (2.5) and then multiply from the left 
by (In − αb(z)∗)(Cμα(z))−1, where the Cauchy transform Cμα(z) was defined in (2.4). 
We arrive at

(In − αb(z)∗)
(
Cμα(z)
Cμα(z)

)∗
= (Cμα(z))−1 [In − In/2 + Hα(0)/2] .

Now we take non-tangential limits as z

�

→ λ. Recalling that the non-tangential bound-
ary limits of Cμα(z) = ∞ with respect to μα

s -a.e., we obtain

lim
z

�

→λ
(In − αb(z)∗)

(
Cμα(z)
Cμα(z)

)∗
= 0 for μα

s -a.e. λ ∈ ∂D. (4.1)

By Poltoratski’s Theorem, see Theorem 2.4, applied entrywise to Cμα/Cμα we have

lim
z

�

→λ

(
Cμα(z)
Cμα(z)

)∗
= W α(λ) for μα

s -a.e. λ ∈ ∂D, (4.2)

where, recall dμα = W αdμα.
Take λ ∈ ∂D such that both (4.1) and (4.2) are satisfied (it happens for μα

s -a.e. λ ∈
∂D). Let e ∈ Ran W α

s (λ), so e = W α(λ)f for some f ∈ Cn. Then it follows from (4.2)
that

lim
z

�

→λ

(
e −

(
Cμα(z)
Cμα(z)

)∗
f
)

= 0,

and the uniform boundedness of b(z)∗ and (4.2) imply that

lim
z

�

→λ
(In − αb(z)∗)

(
e −

(
Cμα(z)
Cμα(z)

)∗
f
)

= 0.

Therefore by (4.1) we get that

lim
z

�

→λ
(In − αb(z)∗)e = lim

z

�

→λ
(In − αb(z)∗)

(
Cμα(z)
Cμα(z)

)∗
f = 0,

so

lim
z

�

→λ
αb(z)∗e = e.

Left multiplying the above identity by α∗, we get the conclusion. �
Definition 4.2. For λ ∈ T we define the directional carrier of μα

s by

Sα(λ) :=
{

e ∈ Cn : lim� b(z)∗e = α∗e
}

,

z→λ
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wherever the non-tangential limit exists. Further, let S(λ) := S
In

(λ).

Lemma 4.3. For any λ ∈ T there holds S(λ) ⊥ (In − α∗)Sα(λ).

Proof. Let f ∈ S(λ), e ∈ Sα(λ). It follows from the definition of Sα(λ) that for any 
h ∈ span{e, f} the limit lim

z

�

→λ
b(z)∗h exists. Slightly abusing the notation let us call 

this limit b(λ)∗h; note that b(λ)∗ defined this way is a linear transformation acting from 
span{e, f} to Cn.

It is easy to see that b(λ)∗ is a contraction. Moreover, since it acts isometrically on e
and f , it is an easy exercise to show that it acts isometrically on all of span{e, f}.

We know that b(λ)∗e = α∗e, b(λ)∗f = f . Therefore, for e ∈ Sα(λ) and f ∈ S(λ) we 
obtain

(e, f)Cn = (b(λ)∗e, b(λ)∗f)Cn = (α∗e, f)Cn .

So ((In − α∗)e, f)Cn = 0 and we have f ⊥ (In − α∗)e. �
Remark 4.4. We do not know about the existence of lim

z

�

→λ
b(z)∗. But with respect to μα

s -
a.e. λ ∈ ∂D we have learned that lim

z

�

→λ
b(z)∗e exists for every e ∈ Ran W α(λ). Slightly 

abusing notation and always being cautious about the meaning, we denote b(λ)∗ =
lim

z

�

→λ
b(z)∗.

Denote by b(λ) any non-tangentional limit point limk→∞ b(zk), as zk

�

→ λ; it exists 
because ‖b(z)‖ ≤ 1, but it does not have to be unique.

A generalization of a vector analog of the Aronszajn–Donoghue Theorem (on the 
mutual singularity of singular parts for rank one perturbations) follows without much 
effort from Proposition 4.1. To formulate this result, we recall the notion of vector mutual 
singularity (see [13, Definition 6.1]).

Definition 4.5. Matrix-valued measures μ and ν are said to be vector mutually singular, 
μ ⊥ ν, if there exists a measurable function Π with values in the orthogonal projections 
on Cn so that

ΠμΠ = 0, (I − Π)ν(I − Π) = 0,

the matrix-valued zero measure.

We note that for a measure dμ = W dμ and a Borel measurable matrix-valued function 
Π, the measure ΠμΠ is given by

ΠμΠ(E) =
∫

Π(z)∗[dμ(z)]Π(z) =
∫

Π(z)∗W (z)Π(z)dμ(z)

E E
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for Borel set E ⊂ T .
It is not difficult to see that this definition can equivalently be formulated in terms of 

the densities of μ and ν, if they are extended appropriately: Two matrix-valued measures 
μ and ν are vector mutually singular if and only if there exist densities W and V with 
dμ = W dμ and dν = V dν that satisfy Ran W (z) ⊥ Ran V (z) for (μ + ν)-a.e. z ∈ T .

Proposition 4.1 has the following corollary.

Corollary 4.6. For unitary α, we have μs ⊥ (In − α∗)μα
s (In − α).

Remark 4.7. Since the absolutely continuous part of any scalar measure is always mu-
tually singular to any singular measure, we can drop the singular part on either of the 
matrix-valued measures in Corollary 4.6. So, for unitary α, we have both

μ ⊥ (In − α∗)μα
s (In − α), and

μs ⊥ (In − α∗)μα(In − α).

Proof of Corollary 4.6. Proposition 4.1 yields

Ran W α(λ) ⊂ Sα(λ) μs-a.e. and Ran W (λ) ⊂ S(λ) μα
s -a.e., (4.3)

where S(λ) := S
In

(λ). In fact, we can always assume without loss of generality that the 
above inclusions (4.3) hold (μs+μα

s )-a.e.; we just need to pick appropriate representatives 
for densities W and W α.

To pick such representatives, let us notice that the measures μ and μα are absolutely 
continuous with respect to the measure μ + μα, so

dμ = ud(μ + μα), dμα = uαd(μ + μα),

which implies

dμs = ud(μs + μα
s ), dμα

s = uαd(μs + μα
s ).

Define E = {ξ ∈ T : u(ξ) > 0}, Eα = {ξ ∈ T : uα(ξ) > 0}. Replacing the densities W
and W α by 1

E
W and 1

Eα W α respectively, we do not change the measures dμ = W dμ

and dμα = W αdμα.
But for such choice of densities, any statement about W that holds μ-a.e. or μs-a.e. also 

holds (μ + μα)-a.e. or (μs + μα
s )-a.e. respectively; and similarly for W α. So indeed, we 

can assume without loss of generality that inclusions (4.3) hold (μs + μα
s )-a.e.

It follows from the definition of Sα(λ) that for λ ∈ T the limit lim
z

�

→λ
b(z)∗e exists for 

all e ∈ S(λ) +Sα(λ). This limit clearly defines a linear transformation from S(λ) +Sα(λ)
to Cn, which we, slightly abusing notation, will denote b(λ)∗.

Clearly, b(λ)∗ is a contraction. Since by Proposition 4.1 ‖b(λ)∗e‖ = ‖e‖ for all e ∈ S(λ)
and for all e ∈ Sα(λ), we can conclude that b(λ)∗ acts isometrically on S(λ) + Sα(λ).
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Therefore, for e ∈ Sα(λ) and f ∈ S(λ) we obtain

(e, f)Cn = (b(λ)∗e, b(λ)∗f)Cn = (α∗e, f)Cn .

So ((In − α∗)e, f)Cn = 0 and we have f ⊥ (In − α∗)e.
We have shown that inclusions (4.3) hold for (μα + μ)s-a.e. λ ∈ T , so

Ran W (λ) ⊥ (In − α∗) Ran W α(λ)

for (μα + μ)s-a.e. λ ∈ T , and that is equivalent to the statement. �
5. Strong mutual singularity

The vector mutual singularity from Corollary 4.6 is used to show a strong mutual 
singularity for the traces.

Theorem 5.1. Let α : R → U(n) be a C1 function such that for all t ∈ R its “logarithmic 
derivative” iα′(t)α(t)−1 is sign definite. Then, given any singular Radon measure ν on 
R, the scalar measures μα(t) := tr μα(t) are mutually singular with ν for all t ∈ R except 
probably countably many.

Remark. Note that if α(t) ∈ U(n) for all t, the “logarithmic derivative” iα′(t)α(t)−1 is 
always Hermitian. It follows, for example from the description of the tangent space to 
U(n); an elementary proof is also easy.

Note also that the matrices α(t)−1α′(t) and α′(t)α(t)−1 are unitarily equivalent, so 
in the above Theorem 5.1 we can use the condition that the matrix iα(t)−1α′(t) is sign 
definite.

Lemma 5.2. Let A = A∗ be a sign definite matrix. Then for a sufficiently small δ > 0
for any matrix Ã (not necessarily Hermitian) such that ‖A − Ã‖ < δ the condition 
(Ãx, y)Cn = 0 implies that

‖x − y‖2 ≥ c ·
(
‖x‖2 + ‖y‖2)

,

where c = c(A, δ).

Proof. Replacing the norm in Cn by an equivalent one we can assume without loss 
of generality that A = I. The condition ‖I − Ã‖ < δ together with the assumption 
(Ãx, y)Cn = 0 imply that |(x, y)Cn | ≤ δ‖x‖ · ‖y‖. Then for δ < 1

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 Re(x, y)Cn

≥ ‖x‖2 + ‖y‖2 − 2δ‖x‖ · ‖y‖
≥ c(δ)

(
‖x‖2 + ‖y‖2)

.
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The lemma follows. �
Proof of Theorem 5.1. Fix t0 ∈ R. Differentiability of α implies that

α(t) − α(t0) = (α′(t0) + o(1)) · (t − t0) as t → t0.

Therefore, for any ε > 0 there exists an open neighborhood U � t0 such that for any 
t, t′ ∈ U we have

α(t′) − α(t) = (α′(t0) + r(t′, t)) · (t′ − t), ‖r(t′, t)‖ < ε.

Continuity of α implies that for any δ > 0 we can find a neighborhood Ũ � t0 such that 
for all t, t′ ∈ Ũ

α(t′)α(t)−1 − I =
(
α′(t0)α(t0)−1 + r̃(t′, t)

)
· (t′ − t), ‖r̃(t′, t)‖ < δ. (5.1)

One of the operators ±iα′(t0)α(t0)−1 is positive definite. Pick sufficiently small δ in (5.1)
such that Lemma 5.2 will apply to A = ±iα′(t0)α(t0)−1 with some c > 0.

Let t ∈ Ũ be such that the scalar measure μα(t) is not mutually singular with ν. Let 
μ̃α(t) and μ̃α(t′) be the absolutely continuous with respect ν parts of μα(t), dμ̃α(t)

s =
W̃ α(t)dν. Take a function ft ∈ L2(ν), ‖ft‖

L2(ν)
= 1, such that

ft(ξ) ∈ Ran W̃ α(t)(ξ) for ν-a.e. ξ ∈ T . (5.2)

Now, let t, t′ ∈ Ũ be such that both scalar measures μα(t), μα(t′) are not mutually 
singular with ν.

By Corollary 4.6 we have μ
α(t)
s ⊥ (In − α∗)μα(t′)

s (In − α), where we used α =
α(t′)α(t)−1, and so

μ̃α(t)
s ⊥ (In − α∗)μ̃α(t′)

s (In − α).

This implies

Ran W̃ α(t)(ξ) ⊥ Ran((In − α∗)W̃ α(t)(ξ)) for ν-a.e. ξ ∈ T .

So for the functions ft, ft′ ∈ L2(ν), ‖ft‖
L2(ν)

= ‖ft′‖
L2(ν)

= 1 defined above in (5.2) we 

have,

ft(ξ) ⊥ (In − α∗)ft′(ξ) for ν-a.e. ξ ∈ T .

Lemma 5.2 implies that

‖ft(ξ) − ft′(ξ)‖2
n ≥ c · (‖ft(ξ)‖2

n + ‖ft′(ξ)‖2
n ) for ν-a.e. ξ ∈ T ,
C C C
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and integrating with respect to dν(ξ) we get that

‖ft − ft′‖2
L2(ν)

≥ c.

So, by the separability of L2(ν), the measures μα(t) can be not mutually singular with ν
only for countably many t ∈ Ũ .

Using standard compactness reasoning we get that any compact K ⊂ R can have at 
most countably many such t’s, and covering R by countably many compacts we get the 
conclusion of the theorem. �
6. Carathéodory condition

This section will lay the ground work for the investigation of the Carathéodory angular 
derivative that will be done later in Sections 7 and 8.

Recall that for a function b ∈ S (n) the de Branges–Rovnyak space H (b) is defined 
as follows. Let Tb : H2(Cn) → H2(Cn) be the (analytic) Toeplitz operator,

Tbf := bf, f ∈ H2(Cn)

and T ∗
b be its adjoint.

Then the de Branges–Rovnyak space H (b) is the range of the operator Rb := (In −
TbT ∗

b )1/2 endowed with the range norm,

‖f‖
H (b) = inf

{
‖h‖

H2(Cn)
: h ∈ H2(Cn) such that Rbh = f

}
.

Clearly, H (b) ⊂ H2(Cn) and ‖f‖
H (b) ≥ ‖f‖

H2(Cn)
.

The matrix-valued function kb(z, w) =: kb
w(z) defined in (2.3), is the matrix reproduc-

ing kernel for H (b), meaning that for any w ∈ D and e ∈ Cn

(f(w), e)
Cn =

〈
f, kb

we
〉

H (b) . (6.1)

Finally, let us mention that the linear combinations of functions kb
we, w ∈ D, e ∈ Cn

are dense in H (b). Indeed, if f ∈ H (b) is orthogonal to all kb
we, the reproducing kernel 

property (6.1) implies that f ≡ 0.

Definition 6.1. We say that a function b ∈ S (n) satisfies the Carathéodory condition in 
the codirection x ∈ Cn at a point λ ∈ T if

lim inf
z

�

→λ

‖x‖2 − ‖b(z)∗x‖2

1 − |z|2 < ∞. (6.2)

Proposition 6.2. Given b ∈ S (n) and a non-zero vector x ∈ Cn and λ ∈ ∂D, the 
following are equivalent:
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(i) The function b satisfies Carathéodory condition in the codirection x at the point λ.
(ii) There exists x̃ ∈ Cn such that the function

x − b(z)x̃
1 − zλ

belongs to H2(Cn).
(iii) For any f ∈ H (b) the limit

lim
z

�

→λ
(f(z), x)Cn =: �λ,x(f)

exists and the linear functional f �→ �λ,x(f) is bounded on H (b).
(iv) A stronger version of the Carathéodory condition holds, i.e.

lim sup
z

�

→λ

‖x‖2 − ‖b(z)∗x‖2

1 − |z|2 < ∞.

Moreover, if the above conditions are satisfied, then

lim
z

�

→λ
b(z)∗x =: b∗(λ, x)

exists and equals to x̃ from Statement (ii), the function

kb
λ,x(z) := x − b(z)b∗(λ, x)

1 − zλ
∈ H (b) (6.3)

and the linear functional �λ,x is given by �λ,x(f) = 〈f, kb
λ,x〉

H (b) .

Definition 6.3. We call the function in (6.3) the boundary reproducing kernel of H (b)
in the codirection x at the point λ ∈ T .

Proof. Let Statement (i) be satisfied. Notice, that this condition just means

lim inf
z

�

→λ
‖kb

zx‖2
H (b) =: C < ∞.

Hence there is a sequence zk

�

→ λ so that ‖kb
zk

x‖2
H (b) → C, and we can also assume, 

without loss of generality (by passing to a subsequence, if necessary) that kb
zk

x converges 
weakly to some h ∈ H (b) by weak compactness. Similarly, we can also assume that 
b(zk)x converges to some vector x̃ ∈ Cn. Notice that the Carathéodory condition implies 
that ‖x̃‖ = ‖x‖.

Then for any y ∈ Cn

(h(z), y)Cn = 〈h, kb
zy〉
H (b)
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= lim
k→∞

〈kb
zk

x, kb
zy〉

H (b)

= lim
k→∞

(
In − b(z)b(zk)∗

1 − zzk
x, y

)
Cn

=
(

x − b(z)x̃
1 − zλ̄

, y
)

Cn

,

so

h(z) = x − b(z)x̃
1 − zλ̄

. (6.4)

Since H (b) ⊂ H2(Cn), we get that h ∈ H2(E), and the above formula for h implies 
Statement (ii).

Assuming now that Statement (ii) holds, let us prove (iii). First let us show that

lim
z

�

→λ
b(z)∗x = x̃. (6.5)

By the assumption (ii) we know that h defined by (6.4) belongs to H2(Cn). Every H2

function is O((1 − |z|)−1/2). Since as z

�

→ λ the quantities 1 − |z|2 and |1 − λz| are 
comparable in the sense of two sided estimates, we conclude that for z

�

→ λ

y − b(z)x̃ = O((1 − |z|)1/2),

or, equivalently

b(z)∗x − x̃ = O((1 − |z|)1/2).

But the right hand side tends to 0 as z

�

→ λ, so (6.5) is proved.
Statement (iii) will follow immediately from the weak convergence kb

zx → h in H (b)
as z

�

→ λ.
To prove the weak convergence, notice first that identity (6.5) implies that for h(z)

given by (6.4) kb
z(w)x → h(w), as z

�

→ λ for all w ∈ D. So, for all w ∈ D and all y ∈ Cn

we have 〈kb
zx, kb

wy〉
H (b) → 〈h, kb

wy〉
H (b) as z

�

→ λ.
Therefore, to prove the weak convergence, it is sufficient to show that

‖kb
zx‖

H (b) ≤ C < ∞

for z in the non-tangential approach region, because we already have the convergence on 
a dense set (linear combinations of kb

wy).
Since ‖b(z)‖ ≤ 1 and ‖x‖ = ‖x̃‖, we have

0 ≤ 2 Re ((x − b(z)x̃), x)Cn

= ((In − b(z)b(z)∗)x, x)Cn + ‖x̃ − b(z)∗x‖2
n .
C



18 C. Liaw et al. / Journal of Functional Analysis 280 (2021) 108830
It follows that:

‖kb
zx‖2 = 1

1 − |z|2 ((In − b(z)b(z)∗)x, x)Cn

≤ 2
1 − |z|2 |(y − b(z)x̃, x)Cn |

= 2 |1 − zλ̄|
1 − |z|2

∣∣∣〈h, kb
zx〉

H (b)

∣∣∣
≤ 2 |1 − zλ̄|

1 − |z|2 ‖kb
zx‖‖h‖.

And so ‖kb
zx‖ is uniformly bounded in any non-tangential approach region for λ.

Finally, let us prove (iii) =⇒ (iv). Suppose that �λ,x is a bounded linear functional 
and consider a Stolz domain Γt(λ). Then for any f ∈ H (b),

sup
z∈Γt(λ)

{|〈f, kb
zx〉

H (b) |} < ∞.

By the Principle of Uniform Boundedness it then follows that

sup
z∈Γt(λ)

‖kb
zx‖ < ∞,

which is exactly Statement (iv). �
Proposition 6.4. For b ∈ S (n) and λ ∈ ∂D, the set of all Carathéodory codirections at 
λ ∈ T , i.e. the collection of all x ∈ Cn such that b satisfies the Carathéodory condition 
at λ is a subspace of Cn.

Proof. The set of all Carathéodory codirections is invariant under multiplication by 
scalars, so it is enough to show that if x and y are Carathéodory codirections, then so 
is x + y. Since ‖b(z)‖ ≤ 1, we conclude

0 ≤ ‖x ± y‖2 − ‖b(z)∗(x ± y)‖2

= ‖x‖2 + ‖y‖2 − ‖b(z)∗x‖2 − ‖b(z)∗y‖2 ± 2 Re ((x, y) − (b(z)∗x, b(z)∗y)) .

Since this expression is non-negative for any choice of ± sign, we see that

2
∣∣∣Re

(
(x, y)

Cn − (b(z)∗x, b(z)∗y)
Cn

)∣∣∣ ≤ ‖x‖2 + ‖y‖2 − ‖b(z)∗x‖2 − ‖b(z)∗y‖2,

and therefore

‖x ± y‖2 − ‖b(z)∗(x ± y)‖2 ≤ 2
(
‖x‖2 − ‖b(z)∗x‖2 + ‖y‖2 − ‖b(z)∗y‖2)

.
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Since both x and y are Carathéodory codirections, this inequality and part (iv) of Propo-
sition 6.2 imply that x ± y are also Carathéodory codirections. �
7. Carathéodory angular derivative (CAD)

Definition 7.1. Let E be a subspace of Cn and denote by P
E

: Cn → E the corresponding 
orthogonal projection. A function b ∈ S (n) is said to have a Carathéodory angular 
derivative5 (CAD) at λ ∈ T on the subspace E, if for every e ∈ E

lim
z

�

→λ
b(z)e = e, (7.1)

and

CADE b(λ) := lim
z

�

→λ
P

E
b′(z)P

E
exists. (7.2)

Proposition 7.2. A function b ∈ S (n) has a Carathéodory angular derivative on a sub-
space E if and only if

lim
z

�
→λ

P
E

b(z) − I

z − λ
P

E
exists. (7.3)

Moreover, in this case the limits (7.3) and (7.2) coincide.

Proof. The proof goes exactly as in the scalar-valued case, and is only presented for the 
convenience of the reader.

Suppose f has a Carathéodory angular derivative at λ on a subspace E. For w ∈ D

P
E

(b(z) − b(w))P
E

=
z∫

w

b′(ξ)dξ.

Now take z in the non-tangential approach region (Stolz domain Γt(λ)), and let w →
λ along the line connecting z and λ ∈ T . Then using (7.1) and, say, the dominated 
convergence theorem we get that

P
E

(b(z) − b(λ))P
E

=
z∫

λ

P
E

b′(ξ)P
E

dξ;

for simplicity we can assume here that the integral is taken over the interval connecting 
z and λ. Then trivially using (7.2) we get

5 Or simply angular derivative.
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P
E

(b(z) − b(λ))P
E

− (z − λ) CADE b(λ) =
z∫

λ

(
P

E
b′(ξ)P

E
− CADE b(λ)

)
dξ

= o(1)(z − λ).

Dividing by z − λ and taking the limit as z → λ we see that the limit (7.3) exists and 
coincides with CADE b(λ).

Vice versa, assume now that the limit (7.3) exists. Let us call this limit A. Take 
e ∈ E ⊂ Cn and denote f(z) := P

E
b(z)e. Fix a Stolz region Γt(λ), and a bigger region 

Γt′(λ), t′ > t. For each z ∈ Γt(λ) let Tz be the circle centered at z of radius δ · (1 − |z|), 
where δ > 0 is sufficiently small so Tz ⊂ Γt′(λ) for all z ∈ Γt(λ).

Then for z ∈ Γt(λ)

f ′(z) = 1
2πi

∫
Tz

f(ξ)
(ξ − z)2 dξ

= 1
2πi

∫
Tz

f(ξ) − e
(ξ − z)2 dξ

= 1
2πi

∫
Tz

(
f(ξ) − e

ξ − z
− Ae

)
1

ξ − z
dξ + 1

2πi

∫
Tz

Ae
ξ − z

dξ.

Now, let z

�

→ λ (with z ∈ Γt(λ)). By the Cauchy theorem the second integral in the last 
line is always Ae. And since the limit in (7.3) is A, we see that as the first integral tends 
to 0. �

In the scalar case (n = 1) Definition 7.1 covers only special case when the non-
tangential boundary value b(λ) = lim

z

�

→λ
b(z) = 1. The definition below covers the 

general case.

Definition 7.3. Let E be a subspace of Cn and α ∈ U(n). We say that a function b ∈ S (n)
has a Carathéodory angular derivative in codirection (E, α) at λ ∈ ∂D if bα∗ has a 
Carathéodory angular derivative on a subspace E.

Theorem 7.4. If μα{λ} �= 0 and Ran μα{λ} = E for some λ ∈ T , then bα∗ has a 
Carathéodory angular derivative CAD

E
(bα∗)(λ) at λ on the subspace E, and its Moore–

Penrose inverse equals λμα{λ}.

Remark 7.5. The functions b(z) and b̃(z) := λ̄zb(z) have the same boundary behavior at 
λ ∈ T , meaning that the Aleksandrov–Clark measures for b and b̃ have the same point 
mass at λ, and the limits in the definition of the CAD for both functions also coincide.

Therefore, replacing b by b̃ we can assume without loss of generality that b(0) = 0.
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7.1. Some known facts about the Clark operator

To prove the theorem, let us first recall some results about the Clark model obtained 
in [15]. Note first that for the case b(0) = 0 the matrix-valued measure B∗Bdμ considered 
in [15] coincides with the Aleksandrov–Clark measures treated in this paper (in the case 
b(0) �= 0 they differ by normalization).

In [15] the Clark operator Φ from the model space Kb and the weighted L2 space 
L2(μ), where matrix-valued measure μ is the Aleksandrov–Clark measure for b, was 
constructed.

Let us recall that for a matrix valued measure μ = Wμ, the norm in the weighted 
space L2(μ) is defined as

‖f‖2
L2(μ)

=
∫

(dμ(ξ)f(ξ), f(ξ))
Cn

=
∫

(W (ξ)f(ξ), f(ξ))
Cn

dμ(ξ) (7.4)

and the space L2(μ) consists of the Borel measurable vector-valued functions f with 
‖f‖

L2(μ)
< ∞. We should mention here, that while for general operator-valued measures, 

the definition of the weighted space L2(μ) is quite involved, a matrix-valued measure 
μ can always be represented as dμ = W dμ with a scalar measure μ (for example with 
μ = tr μ), and the integration is reduced to the standard integration with respect to the 
scalar measure μ, see (7.4).

Let us also recall, that the Sz.-Nagy–Foiaş model space Kb is defined as the set of 
vector-valued functions

Kb :=
(

H2(Cn)
clos ΔL2(Cn)

)
�

(
b

Δ

)
H2(Cn),

where Δ(ξ) := (In − b(ξ)∗b(ξ))1/2, ξ ∈ T ; here by b(ξ) we mean the non-tangential 
boundary values of b(z) as z

�

→ ξ, z ∈ D.
In [15, Theorem 8.7] the following description of the adjoint Clark operators Φ∗ was 

obtained (we present only formula for the case b(0) = 0 here)

Φ∗f =
(

0
Δ(Cμ)+

)
f +

(
(Cμ)−1

+
Δ

)
(C[μf ])+ . (7.5)

Here, as was defined in (2.4), Cμ is the Cauchy transform in the unit disc D of the 
measure μ. In analogy, C[μf ] is the Cauchy transform of the vector-valued measure μf . 
The subscript “+” means that we are considering non-tangential boundary values from 
D to the unit circle T .

Theorem 8.7 stated in [15] using a different notation, so for the convenience of the 
reader we provide the translation.
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The function θ = θΓ corresponds to the function b in the present paper. The matrix 
Γ is defined as Γ = −θ(0), so in our case Γ = 0. Symbols DΓ and DΓ∗ denote the defect 
operators,

DΓ = (I − Γ∗Γ)1/2, DΓ∗ = (I − ΓΓ∗)1/2,

so in our case DΓ = DΓ∗ = In.
The matrix-valued measure B∗Bμ, where μ is a scalar measure and B is a matrix-

valued function corresponds to our Aleksandrov–Clark measure μ. To see that one can 
compare [15, Equation (4.6)] (θ0 there means that θ(0) = 0) with (2.2), noticing that if 
b(0) = 0 then H(0) = In, so Im H(0) = 0.

Finally, ΔΓ in [15] corresponds to our Δ.
We do not need all properties of Φ (or of Φ∗) that were presented in [15]; we only 

need to know that formula (7.5) defines a unitary operator Φ∗ : L2(μ) → Kb.

7.2. Proof of Theorem 7.4

As discussed in Remark 7.5, without loss of generality, we can assume α = In.
The operator Φ∗ : L2(μ) → Kb is a unitary operator. However, in its definition 

(7.5) the model space Kb is not involved. So, if we increase the target space from Kb

to L2(Cn) ⊕ L2(Cn), we can treat the operator Φ∗, defined by the formula (7.5) as an 
operator from L2(μ) to L2(Cn) ⊕L2(Cn). To avoid confusion, let us denote this operator 
with extended target space as Φ̃∗, and let Φ̃ : L2(Cn) ⊕ L2(Cn) → L2(μ) be its adjoint.

One can easily see that Φ̃∗ : L2(μ) → L2(Cn) ⊕ L2(Cn) is an isometry, and that 
Ran Φ̃∗ = Kb.

Define Φ̃m := Φ̃ −Mm
ξ Φ̃Mm

z̄ . Here we use ξ, z ∈ T for independent variables in L2(μ)
and L2(Cn) ⊕ L2(Cn) respectively, so

[Mξf ](ξ) := ξf(ξ), f ∈ L2(μ),

and

(Mz̄g)(z) = z̄g(z), g ∈ L2(Cn) ⊕ L2(Cn).

Take f = 1{λ}e, e ∈ Ran μ{λ} and g ∈ L2(Cn) ⊕L2(Cn). Since trivially M∗
ξ f = Mξ̄f =

λ̄f , we see that

(Mm
ξ Φ̃Mm

z̄ g, f)
L2(μ)

= (Mm
z̄ g, Φ̃∗Mm

ξ̄
f)

L2 = λm(Mm
z̄ g, Φ̃∗f)

L2 −→ 0,

as m → ∞ (because Mm
z̄ g → 0 weakly in L2(Cn) ⊕ L2(Cn)).

We then can conclude that (for f = 1{λ}e, e ∈ Ran μ{λ} and g ∈ L2(Cn) ⊕ L2(Cn)) 
we have the limiting behavior
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(Φ̃mg, f)
L2(μ)

−→ (Φ̃g, f)
L2(μ)

as m → ∞.

If we now take g = Φ̃∗(1{λ}e′), e′ ∈ Ran μ{λ}, then using the fact that Φ̃∗ is an isometry, 
we get that

(Φ̃g, f)
L2(μ)

=
(

1{λ}e′, 1{λ}e
)

L2(μ)
= (μ{λ}e′, e)

Cn .

Using formula (7.5) we get that

Φ̃∗
mf(z) = Φ∗f(z) − Mm

z Φ∗(Mm
ξ̄

f) = C1(z)
∫
T

1 − (zξ̄)m

1 − zξ̄
[μ(dξ)]f(ξ);

where

C1 =
(

(Cμ)−1
+

Δ

)
.

Therefore, for g ∈ L2(Cn) ⊕ L2(Cn)

Φ̃mg(ξ) =
∫
T

1 − (z̄ξ)m

1 − z̄ξ
C1(z)∗g(z)dm(z).

It was shown in [15, Lemma 8.6] that (Cμ)(z) = (In − b(z))−1 for all z ∈ D and a.e. on 
T ; this fact can also be easily obtained from (2.1). Therefore, if g = g1 ⊕ g2 ∈ Kb (note 
that g1 ∈ H2(Cn))

C∗
1 g = g1 + (b∗g1 + Δg2) a.e. on T .

By the definition of Kb we have h := (b∗g1 + Δg2) ∈ H2
−(Cn), so∫

T

1 − (z̄ξ)m

1 − z̄ξ
h(z)dm(z) = 0 for all m ∈ N0.

For a function f ∈ H2 (possibly vector-valued) denote by Pmf the partial sum of its 
Taylor (Fourier) series, i.e. Pmf(z) =

∑m
k=0 f̂(k)zk. With this notation we have

Φ̃mg(ξ) =
∫
T

1 − (z̄ξ)m

1 − z̄ξ
g1(z)dm(z) =

m−1∑
k=0

ĝ1(k)ξk =: Pm−1g1(ξ). (7.6)

For g = Φ∗1{λ}e′ = Φ̃∗1{λ}e′ we have g1(z) = (1 − λ̄z)−1(In − b(z))μ{λ}e′. So for 
this g, it follows from (7.6) that
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Φ̃mg(ξ) =
m−1∑
k=0

ϕ̂(k)μ{λ}e′ξk = Pm−1ϕ, ϕ(z) := (1 − λ̄z)−1(In − b(z)). (7.7)

As discussed above, for f = 1{λ}e, e ∈ Ran μ{λ} and g = Φ̃∗1{λ}e′, we have

lim
m→∞

(Φ̃mg, f)
L2(μ)

= (Φ̃g, f)
L2(μ)

= (μ{λ}e′, e).

Combining this with (7.7) we see that

∞∑
k=0

(ξkϕ̂(k)μ{λ}e′, 1{λ}e)
L2(μ)

=
∞∑

k=0

λk(ϕ̂(k)μ{λ}e′, μ{λ}e)
Cn = (μ{λ}e′, e)

Cn .

In other words, the Taylor series of the function (ϕ( · )μ{λ}e′, μ{λ}e)
Cn converges (at 

z = λ) to (μ{λ}e′, e)
Cn . Denoting E = Ran μ{λ} we can see that this is equivalent 

to the convergence of the Taylor series of the function P
E

ϕP
E

to the Moore–Penrose 
inverse μ{λ}[−1] of μ{λ}.

The convergence of the Taylor series at λ implies the radial convergence

P
E

ϕ(rλ)P
E

−→ (μ{λ})[−1] as r → 1−.

To show the non-tangential convergence we need the following simple and well-known 
fact, which can be proved using a standard normal families argument.

Proposition 7.6. Let f be a bounded analytic function in a sector Sγ := {z ∈ D : z �=
0, | arg z| < γ}, 0 < γ ≤ π.

If there exists a “radial limit”

lim
x→0+

f(x) = a,

then for any 0 < β < γ the “non-tangential” limit as z → 0 in Sβ exists and coincides 
with a, i.e.

lim
z→0:z∈Sβ

f(z) = a.

Remark. The above “radial limit” can be taken along any ray in Sγ originating from the 
origin. And, of course, the position and orientation of the sector is not important.

Remark 7.7. The condition that f is bounded in Sγ can be replaced by the assumption 
that the range of is not dense in C, because in this case one can find a linear fractional 
transformation ϕ such that ϕ ◦ f is bounded.
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Let us now prove the non-tangential convergence of P
E

ϕ(z)P
E

at λ. First of all, notice 
that Re((In − b(z))e, e)

Cn ≥ 0 for all e ∈ Cn. Second, notice that for a non-tangential 
approach regions S = {z ∈ D : | arg(z − λ)| < γ, |z − λ| < 1}, γ < π/2, the values of 
1/(1 − λz) lie in a sector of aperture 2γ < π. Therefore, for and e ∈ E the values of

((In − b(z))e, e)
Cn

1 − λz
, (7.8)

z ∈ S, lie in a sector with aperture less than 2π, i.e. the range is not dense in C. 
Therefore (see Remark 7.7), Proposition 7.6 applies, and there is a non-tangential limit 
for any smaller approach region S′ = {z ∈ D : | arg(z − λ)| < β, |z − λ| < 1}, β < π. 
Since γ < π/2 can be arbitrary, we get the non-tangential convergence of (7.8) for any 
e ∈ E in the approach region of any aperture.

Applying the polarization identity we get non-tangential convergence of (7.3). This 
concludes the proof of Theorem 7.4. �
7.3. An example

It is a natural question to ask whether both projections P
E

in (7.2) and (7.3) are 
really necessary. Below we will give an example of a function b ∈ S (2) such that the 
corresponding Clark measure μ (μα with α = I2) has an atom at 1, but the limits (7.2)
and (7.3) (with E = Ran μ{λ}) fail to exist if one of the projections P

E
is missing.

It is more convenient to work in the right half-plane Cr := {z ∈ C : Re z > 0}. Let 
ω, ω(z) = (1 − z)/(1 + z) be the standard conformal map from the unit disc D to Cr. 
Note that ω−1 = ω, and ω(1) = 0. For an analytic function f on D we denote by f̃ its 
“transplant” to the right half-plane Cr , f̃ := f ◦ ω−1 = f ◦ ω (recall that ω−1 = ω).

Define the function H̃ in Cr by

H̃(z) = 1
z

+ 1
zγ

+ 1, z ∈ Cr, (7.9)

where 0 < γ < 1. Clearly H̃ is Herglotz (Re H̃(z) ≥ 0), and, moreover on the imaginary 
axis

Re H̃(ix) = |x|−γ cos(γπ/2) + 1.

Define

θ̃(z) := H̃(z) − 1
H̃(z) + 1

.

Clearly |θ̃(z)| < 1 on CR, and, moreover, for small x
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|θ̃(ix)|2 = (Im H̃(ix))2 + (Re H̃(ix) − 1)2

(Im H̃(ix))2 + (Re H̃(ix) + 1)2

= 1 − 4 Re H̃(ix)
(Im H̃(ix))2 + (Re H̃(ix) + 1)2

≤ 1 − c|x|2−γ . (7.10)

It is also easy to see that for any δ > 0

|θ̃(ix)|2 ≤ r(δ) < 1 (7.11)

for all |x| ≥ δ.
So, for 0 < β < 1 such that 2β > 2 − γ and for sufficiently small ε > 0 the matrix-

valued function

b̃(z) :=
(

θ̃(z) 0
0 0

)
+ ε

zβ

1 + z

(
0 1
1 1

)

is a strictly contractive one, i.e. ‖b̃(z)‖ < 1 for z ∈ Cr; by norm here we mean the 
operator norm.

Indeed, it is clear that ̃b is a bounded analytic function in Cr, so it is sufficient to show 
that ‖b̃(ix)‖ < 1 for all x �= 0. We can estimate the bigger Frobenius (Hilbert–Schmidt) 
norm ‖b̃(z)‖2. For small x we get using (7.10) that

‖b̃(z)‖2
2 ≤ 1 − c|x|2−γ + Cε2|x|2β . (7.12)

Since 2β > 2 −γ the right hand side is less than 1 for sufficiently small x and ε, i.e. there 
exist ε0, δ > 0 such that for all |x| < δ and 0 < ε < ε0 the right hand side of (7.12) is 
less than 1.

For |x| ≥ δ we use (7.11) and the fact that the function (ix)β/(1 + ix) is bounded, to 
conclude that ‖b̃(ix)‖2

2 < 1 for sufficiently small ε (and for |x| ≥ δ).
To see that the function b := b̃ ◦ ω gives us the desired example, we first notice that 

for an analytic function f on D and f̃ := f ◦ ω−1 = f ◦ ω

lim
ξ

�

→1
(1 − ξ)f(ξ) = 2 lim

z

�

→0
zf̃(z) (7.13)

and

lim
ξ

�

→1

f(ξ)
(1 − ξ) = 1

2 lim
z

�

→0

f̃(z)
z

. (7.14)

So, to verify the desired properties, we need to compute the limits of (I2 − b̃(z))/z and 
of its inverse as z

�

→ 0.
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It follows from the definition of θ̃ and (7.9) that for small z

1 − θ̃(z) = 2z

1 + z1−γ + 2z
= 2z · (1 + o(1)).

Then

I2 − b̃(z) =
(

2z −εzβ

−εzβ 1 − εzβ

)
(1 + o(1))

=
(

2z −εzβ

−εzβ 1

)
(1 + o(1));

the multiplication by 1 + o(1) means that each entry of the matrix is multiplied by its 
own term 1 + o(1). Computing the inverse we get

(I2 − b̃(z))−1 = 1
2z

(
1 εzβ

εzβ 2z

)
(1 + o(1))

= 1
2

(
1/z εzβ−1

εzβ−1 2

)
(1 + o(1)).

Therefore, by Theorem 3.1 we have for the Clark measure μ (with α = I2)

μ{1} = lim
ξ

�

→1
(1 − ξ) · (I2 − b(ξ))−1 = 2 lim

z

�

→0
z · (I2 − b̃(z))−1 =

(
1 0
0 0

)
;

here we used (7.13) in the second equality.
Similarly, we get using (7.14) that

lim
ξ

�

→1
(I2 − b(ξ))/(1 − ξ) = 1

2 lim
z

�

→0
(I2 − b̃(z))/z =

(
1 ∞
∞ ∞

)
.

This means that for E = Ran μ{1} we have

lim
ξ

�

→1
P

E

(I2 − b(ξ))
1 − ξ

P
E

=
(

1 0
0 0

)
,

but if we omit one of the projections P
E

, the (finite) limit does not exist. �
8. Carathéodory angular derivatives and point masses

We begin by presenting two results which compare the Carathéodory condition from 
Definition 6.1 to the CAD, see Definition 7.1. In Theorems 8.1 and 8.2, we clarify the 
relation between the Carathéodory condition and the CAD.
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Recall that the directional support of μα at λ ∈ T was introduced in 4.2 to be 
Sα(λ) =

{
e ∈ Cn : lim

z

�

→λ
b(z)∗e = α∗e

}
. Now, consider the set

Eα(λ) := {x ∈ Sα(λ) : b satisfies Carathéodory condition at λ in codirection x} .

By Proposition 6.4, Eα(λ) is a subspace of Cn.

Theorem 8.1. Function bα∗ has CAD at λ on the subspace Eα(λ), and(
CAD

E
(bα∗)(λ)x, y

)
Cn

=
〈
kb

λ,x, kb
λ,y

〉
H (b) .

Proof. Let x ∈ Eα(λ). Then by Proposition 6.2 the vector-valued function

kb
λ,x(z) = x − b(z)x̃

1 − zλ
(8.1)

with x̃ = b∗(λ, x) belongs to H (b), and since Eα(λ) ⊂ Sα(λ) we have

x̃ = b∗(λ, x) = lim
z

�

→λ
b(z)∗x = α∗x. (8.2)

Now, take y ∈ Eα(λ). Then the non-tangential limit

lim
z

�

→λ

(
kb

λ,x(z), y
)
Cn

exists by Statement (iii) of Proposition 6.2. Using (8.1) and (8.2), we obtain the existence 
of

lim
z

�

→λ

(
In − b(z)α∗

1 − zλ
x, y

)
Cn

for all x, y ∈ Eα(λ).

This implies the existence of

lim
z

�

→λ
PEα(λ)

In − b(z)α∗

1 − zλ
PEα(λ) ,

as was claimed. �
Theorem 8.2. If bα∗ has CAD on some subspace E of Cn, then for all x ∈ E, P

E
bα∗|

E

satisfies the Carathéodory condition in the codirection x.

Proof. Without loss of generality assume α = In. By the hypothesis, the non-tangential 
limit

lim
z

�

→λ
P

E

In − b(z)α∗

1 − zλ
P

E
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exists. So, for all x ∈ E, the limit

lim
z

�

→λ
P

E

In − αb(z)∗

1 − zλ
x

exists, and so is the limit of the norm,

lim
z

�

→λ

‖x − P
E

αb(z)∗x‖
|1 − zλ| < ∞. (8.3)

By the triangle inequality ‖u‖ − ‖v‖ ≤ ‖u − v‖, so

‖u‖2 − ‖v‖2 ≤ (‖u‖ + ‖v‖)‖u − v‖.

Applying this to u = x and v = P
E

αb(z)∗x, and using the fact that

‖P
E

αb(z)∗x‖ ≤ ‖αb(z)∗x‖ = ‖b(z)∗x‖ ≤ ‖x‖,

we have

‖x‖2 − ‖P
E

αb(z)∗x‖2 ≤ 2‖x‖‖x − P
E

αb(z)∗x‖.

Since in a non-tangential approach region to λ the quantities 1 − |z|2 and |1 − zλ| are 
compatible, we have

lim sup
z

�

→λ

‖x‖2 − ‖P
E

αb(z)∗x‖2

1 − |z|2 ≤ 2‖x‖ lim sup
z

�

→λ

‖x − P
E

αb(z)∗x‖
1 − |z|2

≤ C‖x‖ lim sup
z

�

→λ

‖x − P
E

αb(z)∗x‖
|1 − zλ| < ∞

for some 0 < C < ∞; here, the boundedness of the final expression follows from (8.3).
The resulting estimate

lim sup
z

�

→λ

‖x‖2 − ‖P
E

αb(z)∗x‖2

1 − |z|2 < ∞

is clearly stronger than the Carathéodory condition (6.2) (lim inf ≤ lim sup). �
Theorem 8.3. We have Ran μα{λ} = Eα(λ).

Proof. By Theorem 7.4, the CAD of bα∗ at λ exists on the subspace Ran μα{λ}. There-
fore, by Theorem 8.2 the Carathéodory condition is satisfied in the codirection x for all 
x ∈ Ran μα{λ}. Thus, we obtain
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Ran μα{λ} ⊂ Eα(λ).

Let us prove the reverse inclusion. Renaming bα∗ by b we can always assume α = In

and skip the index α.
Define an operator Ψ acting from L2(μ) to the space of analytic Cn-valued functions 

on the unit disc D,

Ψf(z) := (In − b(z))C[μf ](z) = (In − b(z))
∫
T

1
1 − zξ

(dμ(ξ))f(ξ); (8.4)

here μ is the Clark measure μα with α = In for b.
Denote by L2

+(μ), the closure in L2(μ) of linear combinations of analytic in D vectorial 
rational fractions rw,x

rw,x(ξ) := x
1 − wξ

, w ∈ D, x ∈ Cn.

Let x ∈ E(λ), where recall E(λ) = Eα(λ) with α = In. Then we have lim
z

�

→λ
b(z)∗x =

x and by Proposition 6.2, the boundary reproducing kernel kb
λ,x is given by

kb
λ,x(z) = In − b(z)

1 − zλ
x. (8.5)

By Lemma 8.4 below, Ψ : L2
+(μ) → H (b) is a unitary operator. So, we see that

kb
λ,x = Ψf

for some f ∈ L2
+(μ).

Comparing the formula (8.4) for Ψ with the formula (8.5) for kb
λ,x we can conclude 

that f is supported at the point λ only. More precisely f = 1{λ} x̃, where μ{λ}x̃ = x. 
But this exactly means that x ∈ Ran μ{λ}. �
Remark. If b(0) = 0 the operator Ψ used in this proof is exactly the first component of 
the adjoint Clark operator Φ∗ from [15], which we also used in (7.5). For the general 
case (when b(0) �= 0) it differs slightly from the one in [15] as the measure there does 
not have the same normalization as ours.

Lemma 8.4. The operator Ψ, restricted to L2
+(μ) is a unitary operator between L2

+(μ)
and the de Branges–Rovnyak space H (b).

Proof. Define

k̃w(ξ) := In − b(w)∗

1 − wξ
, w ∈ D, ξ ∈ T .
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We will show that for any x ∈ Cn there holds

Ψk̃wx = kb
wx = In − b(ξ)b(w)∗

1 − wξ
x, (8.6)

where, recall, kb
w is the reproducing kernel for the de Branges–Rovnyak space H (b), and

〈
k̃wx, k̃zy

〉
L2(μ)

=
(

In − b(z)b(w)∗

1 − wz
x, y

)
Cn

=
〈
kb

wx, kb
zy

〉
H (b) . (8.7)

That means Ψ is an isometry from a dense set in L2
+(μ) (linear combinations of functions 

k̃wx) to H (b). The subspace ΨL2
+(μ) contains linear combinations of functions kb

wx, 
w ∈ D, x ∈ Cn, and such linear combinations are dense in H (b). Indeed, if f ∈ H (b) is 
orthogonal to all kb

wx, then

(f(w), x)
Cn

= 〈f, kb
wx〉

H (b) = 0,

for all w ∈ D and all x ∈ Cn. So we have f ≡ 0.
So, Ψ : L2

+(μ) → H (b) is indeed a unitary operator.
To prove (8.6) let us compute Ψk̃w by computing Ψk̃wek, where (ek)n

k=1 is the stan-
dard basis in Cn. Using the formula

1
1 − wξ

· 1
1 − zξ

= 1
1 − wz

· 1
2 ·

(
1 + wξ

1 − wξ
+ 1 + zξ

1 − zξ

)
,

where w, z ∈ D, ξ ∈ T , we can see that

[Ψk̃w](z) = (In − b(z))

⎛⎝∫
T

1
1 − wξ

· 1
1 − zξ

dμ(ξ)

⎞⎠ (In − b(w)∗)

= 1
2 · In − b(z)

1 − wz
(C2μ(w)∗ + C2μ(z)) (In − b(w)∗), (8.8)

where C2 is the Herglotz transform,

C2ν(z) :=
∫
T

1 + zξ

1 − zξ
dν(ξ).

Using (2.2) we see that

C2μ(z) = In + b(z)
In − b(z) − i Im In + b(0)

In − b(0) ,

(we write the product (In + b(z))(In − b(z))−1 as fraction to emphasize that terms 
commute), so
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C2μ(w)∗ + C2μ(z) = In + b(w)∗

In − b(w)∗ + In + b(z)
In − b(z) .

Therefore

(In − b(z)) (C2μ(w)∗ + C2μ(z)) (In − b(w)∗) = 2 · (In − b(z)b(w)∗),

and (8.8) gives us

[Ψk̃w](z) = In − b(z)b(w)∗

1 − zw
= kb

w, (8.9)

so (8.6) is proved.
To prove (8.7) let us notice that〈

k̃wx, k̃zy
〉

L2(μ)
=

(
[Ψk̃w](z)x, y

)
Cn

.

But Ψk̃w is already computed, see (8.9), so (8.7) follows immediately. �
Remark. In the above proof it is essential that both z, w ∈ D.
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