
4154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Standing on the Shoulders of Giants: Hardware and
Neural Architecture Co-Search With Hot Start

Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi

Abstract—Hardware and neural architecture co-search that
automatically generates artificial intelligence (AI) solutions from
a given dataset are promising to promote AI democratization;
however, the amount of time that is required by current co-search
frameworks is in the order of hundreds of GPU hours for one
target hardware. This inhibits the use of such frameworks on
commodity hardware. The root cause of the low efficiency in
existing co-search frameworks is the fact that they start from a
“cold” state (i.e., search from scratch). In this article, we pro-
pose a novel framework, namely, HotNAS, that starts from a
“hot” state based on a set of existing pretrained models (also
known as model zoo) to avoid lengthy training time. As such,
the search time can be reduced from 200 GPU hours to less
than 3 GPU hours. In HotNAS, in addition to hardware design
space and neural architecture search space, we further integrate
a compression space to conduct model compressing during the
co-search, which creates new opportunities to reduce latency, but
also brings challenges. One of the key challenges is that all of
the above search spaces are coupled with each other, e.g., com-
pression may not work without hardware design support. To
tackle this issue, HotNAS builds a chain of tools to design hard-
ware to support compression, based on which a global optimizer
is developed to automatically co-search all the involved search
spaces. Experiments on ImageNet dataset and Xilinx FPGA show
that, within the timing constraint of 5 ms, neural architectures
generated by HotNAS can achieve up to 5.79% Top-1 and 3.97%
Top-5 accuracy gain, compared with the existing ones.

Index Terms—FPGA, HW/SW co-design, neural network.

I. INTRODUCTION

THE SUCCESS of deep neural networks (DNNs), has pro-
pelled artificial intelligence (AI) in entering every aspect

of our lives and is being widely employed for diverse applica-
tions on different types of hardware. neural architecture search
(NAS), a successful product of automatic machine learning
(AutoML), has paved the way from a given dataset to a neural
architecture with state-of-the-art accuracy. Moving forward, to

Manuscript received April 17, 2020; revised June 12, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This work was supported in part by the National Science
Foundation under Grant CCF-1919167, Grant CCF-1820537, and Grant CNS-
1822099. This article was presented in the International Conference on
Hardware/Software Codesign and System Synthesis 2020 and appears as part
of the ESWEEK-TCAD special issue. (Corresponding author: Weiwen Jiang.)

Weiwen Jiang and Yiyu Shi are with the Department of Computer Science
and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
(e-mail: wjiang2@nd.edu).

Lei Yang is with the Department of Electrical and Computer Engineering,
University of New Mexico, Albuquerque, NM 87131 USA.

Sakyasingha Dasgupta is with Edgecortix Inc., Tokyo 1410031, Japan.
Jingtong Hu is with the Department of Electrical and Computer

Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA.
Digital Object Identifier 10.1109/TCAD.2020.3012863

be able to use AI for enabling and accelerating different appli-
cation, we need to be able to design the neural network in a
way that the design specifications are met on our target hard-
ware; for instance, real-time constraints for edge devices, low
power budgets for IoT devices, etc.

Recently, neural architecture and hardware design
(architecture-hardware) co-search frameworks [1]–[9] have
been proposed to bridge the gap between neural architecture
and hardware design. These frameworks have demonstrated
promising results in generating high-accuracy and low-cost
systems. However, their search efficiency is low: existing
co-search frameworks commonly take hundreds of GPU hours
per target hardware. This may become the bottleneck in many
emerging applications where fast turn around or short time
to market is desired. On the other hand, it has already been
shown that the carbon footprint (pounds of CO2) of NAS
for one model is nearly equivalent to five times the lifetime
emissions of a car [10]. In this article, we are revisiting
the default setting used by existing co-search frameworks,
where: the exploration always starts from scratch (i.e., cold
start), which results in large search time and low efficiency.
However, is a cold start really necessary?

We claim that the architecture-hardware co-search could
stand on the shoulders of giants and start the search from
a hot state, i.e., using an existing pretrained model in a
model zoo. The model zoo can be efficiently created, con-
sisting of the existing neural architectures manually designed
by domain experts, identified by NAS, or transferred from
models from different datasets. To make full use of the can-
didates in the model zoo, in this article, we propose a novel
co-search framework, namely “HotNAS,” to start searching
from a hot state. In this way, compared with the cold-start
co-search, HotNAS can reduce the search time from hundreds
of GPU hours to less than 3 GPU hours for ImageNet and 20
GPU minutes for CIFAR-10 without proxy; while achieving
accuracy comparable with the state-of-the-art models.

Fig. 1 shows the results of co-search using a model zoo with
24 models on ImageNet dataset, targeting a system with 5 ms
on Xilinx ZCU 102 FPGA. From the top figure, there are only
four models that can satisfy the timing constraint and the high-
est accuracy is 87.50%; however, within the range from 5 to
10 ms, there are a lot of good candidates with accuracy higher
than 90%. The existing co-search frameworks ignore these
candidates and search from scratch, leading to hundreds of
GPU hours. Viewing from the opposite angle, HotNAS takes
full use of these pretrained models and customize the mod-
els that violate time constraints but have high accuracy to the

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: STANDING ON SHOULDERS OF GIANTS: HARDWARE AND NEURAL ARCHITECTURE CO-SEARCH WITH HOT START 4155

Fig. 1. Architecture-hardware co-search by HotNAS: (top) latency and accu-
racy of models in the model zoo; (bottom) architectures in model zoo and
that identified by HotNASwith 5-ms timing constraint (Best viewed in color).

target hardware. As such, HotNAS can avoid lengthy train-
ing procedure to generate the solution in a couple of hours,
which is guaranteed to meet timing constraints while greatly
improving accuracy to 91.47%, as shown in the bottom figure.

Seemingly straightforward, the architecture-hardware co-
search from a hot start is not a simple matter: a fundamental
challenge is the discovery of the best search space. Some of the
prior co-search works [4]–[6], [11] consider hardware design
space of loop tiling and loop order, and NAS space with flex-
ibility across the number of channels, filter size, and model
quantization. However, we observe that one of the most effi-
cient techniques, model pruning [12]–[15], has hitherto not
been combined in the co-search. Integrating model pruning
faces a lot of challenges: First, without the full consideration of
hardware design, the model pruning can easily become useless
since it introduces overheads. Second, one compression tech-
nique does not work for all performance bottlenecks. Finally,
the model compression techniques are tightly coupled with
hardware design and NAS: As such, a difficult challenge is to
simultaneously optimize all these spaces.

In HotNAS, we address the above challenges by collab-
oration among four subcomponents: 1) iSearch; 2) iSpace;
3) iDesign; and 4) iDetect. First, iDesign provides hardware
design support for different compression techniques. Second,
following the observation that different pruning techniques
work for different types of bottlenecks; iDetect is developed to
identify performance bottleneck for each layer so that we can
select the most suitable compression techniques to alleviate
performance bottlenecks. According to the detected bottle-
necks, iSpace creates a dedicated search space for each layer.
Finally, iSearch is devised to jointly search the hardware, neu-
ral architecture, and model compression using specification
from iSpace.

The main contributions of this article are threefold.

Fig. 2. Implementation from the model zoo to hardware: (top) the given
pretrained model and design spec.; (middle) four components in the proposed
HotNAS framework; (bottom) outputting the best neural architecture and
hardware design.

1) We propose a novel NAS mechanism to search from
a hot state (i.e., a pretrained model), which allows us
to reduce search time from 200 GPU hours to 3 GPU
hours; meanwhile, the solution can improve the Top-1
and Top-5 accuracy on the ImageNet dataset by 5.79%
and 3.97%, respectively.

2) An automated HotNAS framework is proposed to link
the hardware design, NAS, and model compression to
automatically generate the architecture and hardware
pair, such that the timing constraint can be met with
the maximum model accuracy.

3) In HotNAS, dedicated hardware designs to support the
existing model compression are proposed, without which
the model compression techniques may not achieve any
performance gain at all.

The remainder of this article is organized as fol-
lows. Section II presents design challenges and motivation.
Section III presents the proposed HotNAS. Experimental
results are shown in Section IV. Finally, concluding remarks
are given in Section V.

II. CHALLENGES AND MOTIVATION

This section demonstrates the challenges in the architecture-
hardware co-search, and gives the motivation of this article.

Fig. 2 demonstrates the architecture-hardware co-search
problem, where we have a set of pretrained models (called
model zoo), the hardware design templates and the design
specifications (e.g., constraints on the resource, area, and
latency) as inputs. The co-search is to optimize neural archi-
tectures in the model zoo and hardware design to guarantee
all design constraints to be met while maximizing accuracy,
as shown in the bottom part in Fig. 2

HotNAS framework is proposed in this article to solve the
above problem. As illustrated in the middle part of Fig. 2,
it is composed of four subcomponents: ➀ iSearch, starting

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

4156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE I
SEARCH COST (GPU HOURS) OF NAS IS TOO HIGH. NOTE THAT THE

HARDWARE-AWARE APPROACH NEEDS AN ENTIRE SEARCH FOR EACH

SPECIFIC HARDWARE

the co-search from hot instead of cold; ➁ iSpace, building
an integrated search space which is in accordance with the
performance bottleneck in the implementation; ➂ iDesign,
providing the design to support compression techniques on
FPGAs; and ➃ iDetect, detecting the performance bottleneck
to guide the creation of iSpace. In the following text, we will
show that there exists a couple of challenges in architecture-
hardware co-search and all components work collaboratively
to address these challenges.

Challenge 1 (How to Efficiently Explore Neural
Architectures): The order of hundreds of GPU hours in
architecture-hardware co-search cannot satisfy the short time-
to-market requirements in many applications; as reported in
Table I, the state-of-the-art hardware agnostic NAS tech-
niques (DARTS [16]) requires 90 GPU hours, while the NAS
for a specific type of hardware (MnasNet [3], FNAS [5],
FBNet [1], and ProxylessNAS [2]) requires over 200 GPU
hours. Considering that the current computing system is
composed of a large variety of hardware, the search process
is simply unacceptable. In addition, the long search time
leads to excessive CO2 emission, which has already been
known as a serious problem of existing NAS techniques [10].

We observe that the long search time in the NAS framework
is caused by the cold start. This leads to more than 40 000
GPU hours for MnasNet and NASNet to train a large num-
ber of potential architectures from scratch, and over 200 GPU
hours when the hardware is considered. However, there exists a
large set of pretrained neural networks. We revisit the default
configuration in the co-search framework: i.e., whether it is
necessary to start the exploration from scratch, which results
in low efficiency. In ➀ iSearch, we propose to make full use
of the existing models and start the exploration from a hot
state (e.g., pretrained models).

Challenge 2 (Meet Real-Time Constraint on Specific
Hardware): Arbitrarily picking neural networks from the
model zoo and plugging into the given hardware will lead to
violations of the design specification, e.g., missing deadline in
real-time systems. On the other hand, due to the large vari-
ety of hardware (different types of CPU, GPU, FPGA), it is
infeasible to conduct co-search for all off-the-shelf hardware
in advance.

From results in Fig. 1(a) and (b), we observe that only four
models can satisfy the timing constraints with the highest accu-
racy of 87.50%; while there are a group of networks whose
accuracy is much higher, over 92%, with the latency slightly
exceeding the timing constraint.

The challenge here is, how can we compress the models
to satisfy the timing constraints using its pretrained weights,
while a competitive model accuracy can be achieved. ➁ iSpace

is developed to involve model compression in the search
space, together with the hardware design space and neural
architectures search space.

III. PROPOSED FRAMEWORK: HOTNAS

In response to all the challenges described in the previous
section, we propose HotNAS framework in this section. As
shown in Fig. 2, HotNAS is composed of four subcomponents,
➀ iSearch, ➁ iSpace, ➂ iDesign, and ➃ iDetect. This section
will introduce these subcomponents in detail.

➀ iSearch: Search from Hot Start Fig. 3 illustrates the
overview of iSearch, which conducts the NAS in two steps:
1) (top part of figure), it selects backbone architectures to be
optimized and then 2) (bottom part of figure), an optimizer
tunes hyperparameters of neural architecture and hardware
design simultaneously. The goal of iSearch is to find the
architecture with the highest accuracy while meeting hardware
design specifications. In the following texts, we will formally
define the problem, and introduce the optimizer at the end of
this section.

Neural Architectures and Model Zoo: A neural architecture
is defined as A = 〈V, E, r, c, ch, o, f , para, acc〉, composed of
a set of nodes V representing the intermediate data [i.e., input
and output feature maps (OFMs)], a set of edges E ⊆ V × V
representing the dependency between a pair of nodes. For a
node vi in V , it has three hyperparameters ri, ci, and chi repre-
senting the number of row, column, and channel of vi. For an
edge ej ∈ E, an operator oj (e.g., convolution, depthwise con-
volution, or pooling, etc.) is associated to it. fj represents the
filter (i.e., weights) used in operator oj, which is composed of
a set of kernels. Each filter is associated with two hyperparam-
eters: 1) s(fi) indicates the size of the filter (e.g., 1 × 1, 3 × 3
etc.) and 2) p(fi) is a pattern applied to prune fi. Both the size
and the pattern of the filter are tunable, which will be intro-
duced in ➁ iSpace. After all the above hyperparameters are
determined and the neural architecture A is identified, it can
be trained/fine-tuned on the training datasets (e.g., ImageNet)
to obtain the parameters/weights para(A), and finally we can
obtain its test accuracy acc(A) on the test dataset.

A pretrained neural architecture is also called a model, and
a model zoo M = {A0, A1, . . . , AN−1} is composed of N mod-
els. These models can be manually designed by experts, like
AlexNet, VGGNet, ResNet, automatically searched via NAS,
like MnasNet, ProxylessNas, FBNet, or transferred from mod-
els for other datasets, like BiT [17]. In this article, we use
the existing model zoo from torchvison, and collect the state-
of-the-art pretrained models from github; hence, the cost of
building the model zoo can be neglected. Kindly note that,
how to create the model zoo is out of the scope of this article;
related works can be found in [18] and [19].

FPGA and Accelerator Design: The hardware efficiency is
not only related to the neural architecture but also the resource
on the FPGA and the accelerator design on it. An FPGA fp has
three attributes: 1) memfp; 2) compfp; and 3) BWfp, referring to
the on-chip memory size, the number of computing resources
(e.g., DSPs), and the bandwidth between off-chip and on-chip
memories, respectively.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: STANDING ON SHOULDERS OF GIANTS: HARDWARE AND NEURAL ARCHITECTURE CO-SEARCH WITH HOT START 4157

Fig. 3. iSearch, iSpace, iDesign, and iDetect: (top) iSearch selects an archi-
tecture from the model zoo for optimization based on the results of iDesign
and iDetect; (bottom) iSpace creates the search space in terms of performance
bottlenecks, and iSearch determines hyperparameters for each search space.

The accelerator design should meet all resource constraints
of a given FPGA. It is composed of two parts: 1) the design of
the computing subsystem and 2) the design of the communica-
tion subsystem. As the basic operators o in architecture A are
conducted in nested loops, the loop optimizations, in particu-
lar the loop tiling, are widely studied and used in the design
of the computing subsystem in FPGAs [20], [21]. In addi-
tion, with the consideration of the large amount of data (i.e.,
intermediate data and weights), and the limited on-chip buffer
in FPGA, it is infeasible to put all data on FPGA. Therefore,
data are moved between the off-chip and on-chip memories.
As such, the communication bandwidth for moving each type
of data needs to be determined in the design phase.

As a whole, the accelerator design is defined as
D = 〈Tm, Tn, Tr, Tc, Ib, Wb, Ob〉, containing the loop tiling
design 〈Tm, Tn, Tr, Tc〉 and bandwidth allocation 〈Ib, Ob, Wb〉.
Specifically, for an operator ok associated to a pair of nodes
vi → vj in an architecture, Tm, Tn, Tr, Tc are the tiling parame-
ters on OFM channels chj, input feature maps (IFMs) channels
chi, rows ri, and columns ci; while 〈Ib, Ob, Wb〉 are the band-
width allocated for moving IFM (i.e., vi), OFM (i.e., vj), and
weights (i.e., fk). For a design D and an architecture A, the
latency of each operator, say ok, can be determined with ➂
iDesign tool. Then, the summation of all operators will be the
latency of A, denoted as lat(A).

iSearch: Two-Step Exploration In iSearch, the first step is
to select a set of candidate backbone architectures to be opti-
mized. Given a neural architecture and an FPGA, it has already
been well studied to obtain the best accelerator design D, as
in [20]. Based on the design, HotNAS can generate the search
space iSpace (Section III ➁). iSearch will select models from
the model zoo to be the backbone architecture, which will be
the starting point of HotNAS, as shown in the top of Fig. 3.
The selection process is based on a Monte Carlo test, where
we are given a timing constraint TC and the search space
iSpace. We can prune the models whose minimum latency
in the test fails to meet TC. The feasible architectures will
be sorted in terms of a weighted reward [will be introduced

in (18)] in terms of the minimal latency and original accuracy.
Then, Top-K architectures will be selected as a starting point,
where K is a user-defined variable.

Now, iSearch gets into the second step to conduct the
NAS based on these selected models to make them meet the
given timing constraint with high accuracy. iSpace tool will
provide search spaces for iSearch, including the filter pattern-
ing P, channel cutting C, quantization Q, filter expansion X,
and hardware design H. All these search spaces are coupled
with each other. In iSearch tool, we develop a reinforcement
learning-based optimizer to simultaneously explore all these
spaces. Kindly note that other optimization techniques, such
as evolutionary algorithms [22] can be easily plugged into
the iSearch tool. For better understanding, we will present the
details of the optimizer at the end of this section.

Problem Definition: Based on all the above defini-
tions, we formally define the architecture-hardware co-search
optimization problem as follows: given a model zoo M, a spe-
cific FPGA FP, the accelerator design Di of model Ai in M
on FP, a target timing constraint T , and the baseline accuracy
acc_baseline we are going to determine.

1) S: Selection of architectures from zoo M, denoted as A0.
2) P, C, X, Q: Tuning architecture hyperarameters of A0.
3) H: Tuning hardware design hyperparameters on D0.

Such that a new architecture A′
0 with competitive accuracy

over acc_baseline can be identified, while A′
0 under hardware

design D′
0 can meet the timing constraint T .

➁ iSpace: An Integrated Search Space iSpace links the com-
pression technique with the NAS and hardware design. In
this article, we consider three model compression techniques:
(i) pattern pruning; (ii) channel pruning; and (iii) quantiza-
tion. In the NAS space, we consider iv) filter expansion; for
hardware design space, we mainly consider v) communication
bandwidth allocation and loop tiling, because FPGA acceler-
ator design has typical templates which provides the above
two kinds of hyperparameters in the design phase. Kindly note
that, HotNAS is an open framework, with designers having the
flexibility to modify or add new search parameters in terms of
design needs. As an example, dataflow and loop order can be
further integrated into hardware design space when it comes
to ASIC design. However, this is out the scope of this article.

i) P: Pattern Pruning The first search space is the pattern
pruning space, which prunes the filter in the neural archi-
tecture A. A pattern is defined as a mask matrix Mat[x][y];
Mat[x][y] = 0 indicating that the weights at position 〈x, y〉
will be pruned, while Mat[x][y] = 1 indicates that the weights
will remain. According to the number of 0 in Mat[x][y], we can
classify the pattern into different categories, and we use PATc

to indicate the number of 0 in the pattern, as shown in Fig. 4.
Among all patterns, one category will be selected for pruning.
Each pattern category is further composed of many patterns;
for instance, there are 84 potential patterns in the category of
PATc = 3, as shown in Fig. 4. For the hardware implemen-
tation, it simply cannot apply so many patterns as this will
results in a large number of multiplexers in hardware imple-
mentation, making the design inefficient. In consequence, we
will select a small number of patterns from the selected cate-
gory, denoted as PATn. Fig. 4 gives the example of the pattern

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

4158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 4. Patterns pruning for 3 × 3 filters with different pruning categories
(PATc); each big square represent a pattern, and each blank square in a pattern
indicates the weights in the corresponding position to be pruned. The last row
shows the number of patterns (PATn) and the specific patterns to be selected
for pruning filters.

pruning space for 3 × 3 filter, which selects the category of
PATc = 3 and applies PATn = 4 patterns among 84 candidates.

The selected patterns will be applied for a set of filters.
As demonstrated in [15], by applying the Euclidean norm,
we can specify one pattern for each kernel in a filter, i.e.,
the determination of p(fi) (see the definition in ➀ iSearch).
However, when implementing pattern pruning on hardware,
the following two questions needing to be answered.

1) How many kernels in a filter will be pruned by each
type of pattern.

2) Whether all layers need to be pruned or which layers
will be pruned.

For the first question, it is related to the tiling design param-
eters. In a tile, if multiple types of patterns are applied, it
will break the execution pipeline and pattern pruning cannot
improve performance at all. This will be shown in ➂ iDesign.
For the second question, applying patterns for the layers whose
performance bottleneck is at communication, it will not help
in improving performance but may reduce accuracy. Details
will be illustrated in ➃ iDetect.

ii) C: Channel Pruning Unlike pattern pruning that changes
the structure, the neural architecture will not be changed, with
the channel pruning modifying the number of channels for a
node vi ∈ V in architecture A. The left figure in Fig. 5 shows
the channel pruning, where CUTn represents the number of
channels to be cut off. We take CUTn = 2 in this example.
There are three consecutive nodes vi → vj → vk, and we
perform the channel pruning on vj. In this figure, the gray
channels in vj indicate the ones to be cut off. A ripple effect is
taken to both filters of fi→j and fj→k. However, as the channel
pruning may easily result in the accuracy drop since features
are directly removed, we carefully formulate its search space
for channel pruning only if the performance bottlenecks cannot
be alleviated by other techniques (details in ➃ iDetect).

iii) Q: Quantization Quantization is another model com-
pression technique. In general, the original model applies the
data type of 32-b floating point, and we can convert it to the
16-b fixed point without accuracy loss. Such a fixed point rep-
resentation is composed of two parts, the integer and fraction

Fig. 5. Three architecture search spaces: (left) channel cutting with ratio
parameter CUTr , (middle) kernel expansion with size parameter EXPs, and
(right) weight quantization with fraction parameter Quanf .

parts represented by 〈I, F〉. For a given pretrained architecture
A, we can get the maximum and minimum parameters of one
operator. Then, we can analyze the number of bits required
by integer part I. Since the integer part is the most-significant
bits, we will keep its bit width, and further squeeze the frac-
tion part F only, denoted as Quanf as shown in the right part
of Fig. 5. As will show in ➃ iDetect, not all layers need to
perform quantization, since it cannot alleviate specific types
of performance bottlenecks.

iv) E: Filter Expansion The previous three search spaces
belong to model compression; while filter expansion belongs
to NAS space. This is motivated by the following two aspects:
1) many state-of-the-art neural architectures identified by NAS
contains larger sized filters and 2) for specific layers, the
increase of filter sizes will not add latency overhead. This
will be shown in ➃ iDetect. We define EXPn as the expansion
factor on a filter, as shown in the middle part of Fig. 5.

Furthermore, we have the following theorem to guarantee
that the accuracy will not be reduced by expanding the kernel.

Theorem 1: Given a pretrained model A =
〈V, E, r, c, ch, o, f , para, acc〉, for any operator oi on edge ei,
the expansion on filter fi with factor EXPn will not decrease
the accuracy, if the initial weights of the newly added weights
on fi are set to 0, and oi is padded by EXPn.

The proof of the above property is straightforward, since
all computations remain the same when we increase the kernel
size and padding with extra 0s. With the guarantee of no accu-
racy loss, the expanded kernel makes it possible to increase
accuracy after a fine-tuned process.

v) H: Hardware Design Space Finally, after the modifi-
cations to architectures, the original hardware design identi-
fied by the optimization algorithms may not be the optimal
one. In iSpace, we also provide flexibility to modify the
hardware design and build the hardware design space. In
particular, according to the existing performance bottleneck,
we create a search space to adjust bandwidth-related design
hyperparameters: 〈Ib, Ob, Wb〉, and computation-related design
hyperparameters, 〈Tm, Tn, Tr, Tc〉.

➂ iDesign: Compression-Aware Performance Model
Fig. 6 demonstrates the overview of system design, where

the left-hand part is the off-chip memory to hold IFM, OFM,
and weight; while the right-hand part is the on-chip accel-
erator design that implements both conventional convolution
and depthwise convolution using on-chip computing resource
(e.g., DSPs). In the accelerator design, say conventional convo-
lution, a set of multiplication-and-accumulation are computed
in parallel. Such a design has been using in many research
works [20], [23]; however, it still lacks a systematic model
to efficiently support depthwise convolution and different

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: STANDING ON SHOULDERS OF GIANTS: HARDWARE AND NEURAL ARCHITECTURE CO-SEARCH WITH HOT START 4159

Fig. 6. Illustration of accelerator architecture and design parameters: (left)
off-chip memory to hold intermediate data and weights; (right) on-chip buffer
and accelerator design.

compression techniques. In the following text, we will first
overview the performance model of the conventional convolu-
tion [23], and then we revise the performance model to support
depthwise convolution and compression.

First, we introduce the computing accelerator part. Let D

be the number of DSPs in the given FPGA, and K be the size
of the filter. As shown in the right-hand part in Fig. 6, the
conventional convolution involves Tm × Tn multiplication and
additions (MACs). For 16-b data, each MAC needs one DSP.
In addition, to consume all data in on-chip buffers, it needs to
repeat K · K · Tr · Tc times for computation; and the pipeline
initial interval (II) is optimized to 1 cycle. Therefore, we have
the following constraints on computing resources and latency:

Tm × Tn ≤ D (1)

tComp = K · K · Tr · Tc × 1 (2)

where tComp is the latency of computation for all data
provided by the on-chip buffer.

Second, the size of the on-chip buffer is limited by B. There
are three types of data in communication: 1) IFM; 2) OFM;
and 3) weights. We need to determine the on-chip buffer size
for each type of data, denoted as bI, bO, bW, which can
be easily obtained from the left part in Fig. 6. Kindly note
that the size of one on-chip buffer (BRAM) is limited, say
18Kb for ZCU102. For the dimension of data that needs to
be accessed in parallel (e.g., channels of IFM, i.e., Tn), they
need to be placed in different BRAMs. Hence, the amount of
data without a parallel requirement (e.g., Tr and Tc in IFM) is
divided by 18Kb. Finally, the size of the buffer is equal to two
times tile size, where 2 indicates the double buffer utilized to
hide communication by computation. We have the following
constraints:

bI = 2 × Tn ×
Tr · Tc · bitI/18Kb� (3)

bO = 2 × Tm ×
Tr · Tc · bitO/18Kb� (4)

bW = 2 × Tm × Tn ×
K · K · bitW/18Kb� (5)

bI + bO + bW ≤ B (6)

where bitI , bitW , and bitO are the bit width of the data type
used for IFM, weights, and OFM.

Third, based on the buffer size and the bandwidth (I_b,
W_b, O_b) allocated for each type of data buffer, we can get
the communication latency (tImem, tWmem, tOmem) as follows:

tImem =
Tn · Tr · Tc · bitI/Ib� (7)

tWmem =
Tm · Tn · K · K · bitW/Wb� (8)

tOmem =
Tm · Tr · bitO · Tc/Ob� (9)

(Ib + Wb + Ob) ≤ W (10)

where W is the maximum bandwidth between off-chip
memory and on-chip memory.

Finally, based on the above formulations, we can derive
the latency model. Let M, N, R, C be the number of OFM
channels, IFM channels, rows, and columns of the convolution
layer. We have the following models:

Lat1 = max{tComp, tImem, tWmem} (11)

Lat2 = max

{⌈
N

Tn

⌉
· Lat1, tOmem

}
(12)

Lat =
⌈

R

Tr

⌉
×

⌈
C

Tc

⌉
×

⌈
M

Tm

⌉
× Lat2 + (tOmem + Lat1).

(13)

Since OFM is reused and stay in on-chip, it will be flushed
to off-chip memory when IFM and weights are loaded for

N/Tn� times. Lat1 indicates the latency of computation,
loading IFM, loading weights to be fired once, and Lat2 indi-
cates the latency of OFM to be flushed to off-chip memory.
Finally, for one layer, OFM is flushed to off-chip memory for
B ×
R/Tr� ×
C/Tc� ×
M/Tm� times, and we have the total
latency Lat.

For the model of depthwise convolution, we only need to
modify Tm in the above formulas to be Tm(d) and Tn to be 1.
Kindly note that we consider the real-time scenario where the
batch size is 1, and therefore, the communication subsystem
[including on-chip buffer model (3)–(6), and off-chip memory
access model (7)–(9)] of two types of convolutions are shared.
However, the accelerators are independent; therefore, we revise
(1) as follows:

Tm × Tn + Tm(d) ≤ D. (14)

➃ iDetect: Performance Bottleneck Detector
Based on the iDesign, we have several observations for the

techniques introduced in ➁ iSpace, and we propose iDetect
tool to analyze these search spaces in turn. Kindly note that
all operators in a neural architecture will be implemented on
one board and reuse these resources. Before discussing each
search space, we first present the following corollary to detect
the performance bottleneck of a layer based on iDesign.

Property 1: Given a layer and design parameters, we can
detect the performance bottlenecks by considering Lat1 and
Lat2 as follows.

1) O: If Lat2 is dominated by tOmem, the performance
bottleneck is on transmitting OFM data, otherwise.

2) I: If Lat1 is dominated by tImem, the performance
bottleneck is on transmitting IFM data.

3) W: If Lat1 is dominated by tWmem, the performance
bottleneck is on transmitting weights.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

4160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 7. Reorder the IFMs to make the pattern pruning take effects in reducing
the computation latency.

4) C: If Lat1 is dominated by tComp, we have fully utilized
the involved computation resource.

Pattern Pruning can Reduce Computation Time: Now, we
are ready to answer the 1) question left in ➁ i): the number
of kernels pruned by each type of pattern is coupled with the
titling factor Tm and Tn. As we can see from Fig. 6, the data
movement from on-chip weight buffer to the accelerator is
conducted in a pixelwise way. As a result, it requires K × K
iterations to traverse the whole filter. To enable the effect of,
we need to make sure that all patterns in one data tile are
the same, as such we can skip these pruned weights in the
outer loop to reduce the computation time. In this way, we
can modify (2) as follows:

tComp = (K · K − PATn) · Tr · Tc (15)

where PATn is the number of 0s in the pattern mask.
Next, since the pattern selection for kernels is based on

the Euclidean norm, it cannot guarantee all patterns for same
type of data tiles. We propose the IFM reorder method to
solve this problem. As shown in Fig. 7, we can change the
third and fifth channels for the filter used in the operator oj,k.
Correspondingly, we need to switch the feature map in node vj.
It will also affect the operator from vi to vj, where we need to
switch the third and fourth filters. In this way, we can make
the pattern pruning take effects and reduce the computation
latency.

From (5) and 8, it may appear that pattern pruning can also
reduce the on-chip buffer size and latency of loading weights.
However, for buffer size, all layers reuse this buffer, and it can-
not be specialized for one layer; while for loading weights, the
pattern pruning will lead the loading procedure from sequen-
tial memory access to random access, as a result the latency
maybe even increased. Hence, we will keep the sequential
memory access to guarantee performance.

Property 2: By applying the proposed reorder technique,
pattern pruning can be employed to reduce the com-
puting latency, but cannot reduce the latency of loading
weights.

Channel Pruning can Conditionally Reduce Latency:
Channel pruning directly reduces the number of channels of
feature maps in a node, and it can potentially reduce the
latency. Let Cutn be the number of channels cut on the feature
maps of node vi. When vi acts as the IFMs for an operator,
we need to modify (12) as follows:

Lat2 = max

{⌈
N − Cutn

Tn

⌉
· Lat1, tOmem

}
. (16)

Then, when vi acts as the OFMs for an operator, we revise (13)
as follows:

Lat =
⌈

R

Tr

⌉
×

⌈
C

Tc

⌉
×

⌈
M − Cutn

Tm

⌉
× Lat2

+ (tOmem + Lat1). (17)

Property 3: Channel pruning can reduce the latency of a
layer if and only if (1)
(M − Cutn)/(Tm)� ≤
M/Tm� or
(2)
(N − Cutn)/Tn� <
N/Tn� and Lat2 is not dominated by
storing OFM data.

The above property indicates that pruning a small number
of channels may not make an impact. As such, it guides the
iSpace of channel pruning to take Tm or Tn as the step.

Quantization can Reduce the Latency of Loading Weights:
Quantization is widely used in the neural network-based FPGA
implementations. It is demonstrated hybrid quantization can
achieve good performance [24], where weights in different
layers have different bit widths. When we adopt such a hybrid
approach, what benefits can be achieved? From (8), we can see
that the quantization can take effects in reducing the latency
of loading weights. This can be implemented by composing
multiple weights into one package. As with computing latency,
since the initial interval is already optimized to 1 cycle as
shown in (2), the lower bit-width operations cannot further
reduce clock cycles. Lower bit width can reduce the number
of computing resources and have the potential to achieve high
clock frequency. However, when we consider an end-to-end
implementation, the computing engine is shared by all layers.
Therefore, the layer with the largest bit width dominates the
design performance.

Property 4: Quantization on a single layer can reduce the
latency of loading weights, but it may not reduce the com-
putation latency if there exists another layer with larger bit
width.

➄ Optimizer: Search Space Exploration
Finally, we introduce the RNN-based reinforcement learning

optimizer employed in iSearch. As shown in the bottom part
of Fig. 3, an RNN controller is designed based on the created
design space by the ➁ iSpace tool. Specifically, the controller
is composed of a softmax classifier to predict hyperparameters
for each search space in iSpace (e.g., quantization Quanf for
a layer). The predicted hyperparameters will identify a spe-
cific neural network and hardware design, which can derive
a reward in terms of accuracy and latency. The search pro-
cess will optimize the controller by tuning its parameters θc

to maximize the expectation of the reward. A policy gradient
method will be employed to update parameters θc, aiming to
predict better architectures over a series of episodes.

In each episode, the predicted hyperparameters can be
regarded as actions. Based on the actions, the optimized neu-
ral architecture A and hardware design D can be derived. In
order to update the controller for the next episode, we need
to compute the reward according to the following procedures.

1) Calculate latency lat of architecture A on design D by
using the performance models proposed in ➂ iDesign
and ➃ iDetect.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: STANDING ON SHOULDERS OF GIANTS: HARDWARE AND NEURAL ARCHITECTURE CO-SEARCH WITH HOT START 4161

2) Verify whether timing constraint T can be satisfied; if
lat > T , we will directly calculate the reward with-
out fine-tuning the model, otherwise, the reward is
calculated based on accuracy and latency in the next
step.

3) Fine-tune architecture A to obtain accuracy acc on a
hold-out dataset; since the model is pretrained, we do
not need to train the model from scratch; instead, we
fine-tune the model for a small number of data batches
(not epochs), say β = 10, to obtain acc.

Finally, the calculation of reward is based on the following
formula:

R(acc, lat) = α × r_acc + (1 − α) × r_lat (18)

where α is a scaling parameter to control with the search is for
higher accuracy (i.e., larger α) or lower latency (i.e., smaller
α). If lat > T indicating that the timing constraint cannot be
satisfied, we have r_acc = −1 and r_lat = T − lat; otherwise,
we normalize r_acc and r_lat to the range from -1 to 1, as
follows: r_acc = [(acc − A_ min)/(A_ori − A_ min)] × 2 − 1
and r_lat = [(T − lat)/(T − T_ min)] × 2 − 1, where A_ori
is the original accuracy of backbone architecture; T is the
timing constraint; A_ min and T_ min are the lower bounds
on accuracy and latency, which are involved for a better
normalization.

Based on the reward function, the optimizer will iteratively
work in two steps. First, the controller predicts a sample,
and gets its reward R. Then, the Monte Carlo policy gradient
algorithm [25] is employed to update the controller

∇J(θ) = 1

m

m∑
k=1

T∑
t=1

γ T−t∇θ log πθ

(
at|a(t−1):1

)
(Rk − b)(19)

where m is the batch size and T is the number of steps in each
episode. Rewards are discounted at every step by an exponen-
tial factor γ and baseline b is the average exponential moving
of rewards.

IV. EXPERIMENTAL RESULTS

The proposed HotNAS is evaluated on commonly used
datasets, ImageNet [26] and CIFAR-10 with Xilinx ZCU102
board. In the following texts, we will first introduce the
experimental setup. Then, we will compare HotNAS with the
state-of-the-art models to show that HotNAS can achieve up
to 5.79% top-1 accuracy gain with the same timing constraint.
Next, we will visualize the results explored by HotNAS, fol-
lowed by the design space exploration results to demonstrate
the importance of co-exploring all design spaces in iSpace.
Finally, we report results and detailed analysis on CIFAR-10,
showing that HotNAS can achieve consistent improvement on
different datasets.

A. Experimental Setup

Model Zoo: For ImageNet dataset, we apply all models in
torchvision, including AlexNet, VGGNet, ResNet, MobileNet-
v2, Mnasnet, etc., as shown in Fig. 1. We also include the
FBNet [1] and ProxylessNAS [2] for comparison. In the exper-
iments, we select a set of models to be optimized. According

TABLE II
MODEL SELECTION WITH 100 MONTE CARLO TESTS USING ISPACE,

WITH THE TIMING CONSTRAINT OF T ≤ 5 MS

to iDesign and iDetect, we run Monte Carlo Tests to get statis-
tic latency for 100 solutions in iSpace, as shown in Table II.
We prune the models whose minimum latency cannot sat-
isfy the timing constraints, say T ≤ 5 in our settings. Kindly
note that the maximum latency can be larger than the original
model latency, because we change the hardware configuration
during the search, which may reduce bandwidth for the data
movement which is the performance bottleneck. Based on the
results in Table II, we select ProxylessNAS (mobile), MnasNet
1.0 (depth multiplier of 1.0), and Resnet-18 (with 18 lay-
ers) [27] for optimization. We denote them as ProxylessNAS,
Mnasnet, and Resnet, respectively.

For CIFAR-10 dataset, we collect the four sets of pre-
trained models, including ResNet-18 [27], DenseNet-121 [28],
MobileNet-v2 [29], and BiT [17], among which BiT achieves
the state-of-the-art accuracy on CIFAR-10 dataset, which is
built on top of existing neural networks. In our experiments,
with the hardware performance consideration, we select the
ResNet-50-based version for BiT, which provides a baseline
with the accuracy of 97.07% and latency of 6.88 ms. For a
better presentation, we denote the above models as ResNet,
DenseNet, MobileNet, and BiTNet, respectively.

iSearch: In iSearch component, we first need to determine
parameters α and β. We set α = 0.7 to generate the reward as
shown in (18), and set the number of batch size β = 10 to be
used in the fine-tune phase. Furthermore, we will investigate
the effects on performance made by different configurations of
α and β on CIFAR-10. Second, we need to set the number of
episodes for reinforcement learning; here, we set the maximum
episode to be 2000 which can guarantee the convergence of
the controller. After running iSearch, we can obtain a set of
architectures, and we will select the best architectures, i.e., the
architecture with the highest accuracy under the given timing
constraints.

iSpace: A new module that supports pattern pruning, chan-
nel pruning, filter expansion, and quantization is implemented
in Pytorch by overriding the existing Conv2d module. During
the iSearch process, the module can be customized for each
layer in terms of the searched parameters, and automatically
integrated into the model with the original weights.

iDesign: We apply Xilinx ZCU102 board with XCZU9EG
chip as the implementation hardware, which is composed
of 600k logic cells, 32.1-Mb on-chip buffers, 2520 DSPs.
For data movement between on-chip and off-chip memory,
there are four HP ports with the bandwidth of 128 b for
each.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

4162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE III
ON IMAGENET, COMPARISON OF THE STATE-OF-THE-ART NEURAL ARCHITECTURES WITH TIMING CONSTRAINTS OF 5 MS

B. Results on ImageNet

1) Comparison with HotNAS: Table III reports the com-
parison results of HotNAS with the existing state-of-the-art
models. In the table, the column “Type” shows whether the
model is identified by NAS or manually designed. The column
“Sat.” shows whether the model satisfies the timing constraint
of 5 ms. Columns “Param. (#)” and “Param. (S)” reports the
number of parameters and the size of parameters, respectively.
Columns “Top-1,” “Top5,” “Top-1 Imp.,” and “Top-5 Imp.” are
model accuracy and accuracy gain to the baseline model on
ImageNet. Column “GPU Hours” shows the cost to identify
the model for all models identified by NAS. Finally, the rows
marked as bold are models identified by the proposed HotNAS.

From the results in Table III, we have three important
observations as follows.

1) Directly plugging the existing models onto the target
FPGA board will easily result in the latency to be vio-
lated; while the proposed HotNAS can guarantee to
find the architectures to meet the latency constraints,
meanwhile achieving high accuracy.

2) For the existing models that can directly satisfy the tim-
ing constraints, the highest top-1 accuracy and top-5
accuracy are merely 67.60% and 87.50%. In compar-
ison, HotNAS can achieve 5.79% and 3.97% accuracy
gain with 73.39% for top-1 and 91.47% for top-5.

3) The cost of the existing NAS is extremely high, which
is at least 200 GPU hours. In comparison, the proposed
HotNASonly takes less than 3 GPU hours to identify the
model.

Furthermore, compared with the existing co-exploration
method, the search time can be significantly reduced from
266 GPU hours with 2.97% Top-1 accuracy gain. All these
observations clearly demonstrate the superiority of HotNAS to
obtain solutions with high accuracy and low search cost.

Besides, from the results, we can see that HotNASperforms
good at reducing the latency while maintaining high accuracy.

Fig. 8. Pushing forward the Pareto frontier between latency and top-5 accu-
racy from the one built by the existing models to that by HotNASunder the
timing constraint of 5 ms.

For Resnet18, HotNAScan reduce the latency from 6.27ms to
4.22ms with 32.70% reduction, while the top-5 accuracy loss
is merely 0.25%; for ProxylessNAS, the latency reduction is
16.64% with only 0.53% top-5 accuracy loss; for Resnet18,
these figures are 15.9% and 0.14%. We will have a detailed and
visualized analysis in the latency reduction later in this section.
A further observation from the above result is that the manu-
ally designed Resnet18 can achieve larger reductions in latency
than the automatically identified ones. This is reasonable since
the automatically designed architectures have already be used
for optimizing for other platforms, while manually designed
architectures may have more redundant parameters. This can
also be observed by the reduction in both the number of
parameters and the size of parameters.

Fig. 8 further shows the comparison of Pareto frontiers built
by the existing models and HotNAS. In this figure, the x-axis
and y-axis represent the latency and accuracy, respectively. The
red line stands for the timing constraints. The solid points are
solutions identified by HotNAS, while the hollow ones are the
existing models. The arrows in this figure clearly demonstrate
that HotNAS can significantly push forward the Pareto fron-
tier between accuracy and latency in two directions: 1) vertical

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: STANDING ON SHOULDERS OF GIANTS: HARDWARE AND NEURAL ARCHITECTURE CO-SEARCH WITH HOT START 4163

TABLE IV
SOLUTION VISUALIZATION, USING THE MODIFIED LAYERS AND

LATENCY REDUCTION IN HOTNAS-RESNET18 AS AN EXAMPLE

direction: improving accuracy and 2) horizon direction: reduc-
ing latency. The results in this figure again demonstrate the
efficiency and effectiveness of the proposed HotNAS.

2) Results Visualization: Table IV shows the visualization
results of HotNAS-Resnet18. For other resultant architectures,
they have similar results, but the model is too large to demon-
strate. In this table, column “iDetect” shows the performance
bottleneck with the original design detected by HotNAS, and
column “iSpace” shows the built search spaces for these the
corresponding layers. The column “exploration results” show
the detailed changes from the original architecture to the resul-
tant model. Finally, the column “Red.” shows the latency
reduction contributed by each search space.

It is clearly shown in this table that the proposed
HotNAS can identify different types of performance bottleneck
in the architecture, and apply the matched techniques to allevi-
ate the performance bottlenecks. Specifically, pattern pruning
identifies four patterns in pattern category PATr = 3, and
achieves 0.57-ms latency reduction. Channel pruning, quan-
tization, and hardware modifications achieve a reduction of
0.15, 1.01, and 0.32 ms, respectively. As a whole, the reduc-
tion is 2.05 ms, from 6.27 to 4.22 ms, as shown in Table III.
Kindly note that since the latency of loading IFM and load-
ing weights are quite close for layer 4, iSpace creates search
spaces for both channel pruning and quantization.

3) No Space in iSpace can be Dispensed: There are a lot
of existing techniques that focus on devising a specific tech-
nique for model compression. We compare with the two most
effective methods using pattern pruning only [15], denoted
by PatternOnly; and hybrid quantization [15], denoted by
QuantOnly. However, as discussed in this iDetect, no tech-
nique can cover all kinds of performance bottlenecks. Results
in Fig. 9 verify this claim. Kindly note that the hardware space

Fig. 9. Comparison results in the latency reduction among three tech-
niques using the original architecture as baseline: 1) PatternOnly: apply pattern
pruning [15]; 2) QuantOnly: apply hybrid quantization [24]; and 3) HotNAS.

is kept for all techniques for a fair comparison. In this fig-
ure, the x-axis is the backbone architecture, and the y-axis is
the latency that can be achieved with the same accuracy con-
straint. The baseline is the original neural architecture without
optimization.

Results in Fig. 9 clearly demonstrate that without fully
considering the performance bottleneck and apply only one
technique for optimization will lead to inferior solutions.
Taking Resnet as an example, PatternOnly can reduce the
time from 6.27 to 5.34 ms, and QuantOnly can further reduce
it to 4.92 ms. By a full consideration of all kinds of bot-
tlenecks, HotNAS can achieve the architecture with 4 ms,
which achieves 25.09% and 18.71% latency reductions com-
pared with PatternOnly and QuantOnly, respectively. Results
from this group of experiments emphasizes the needs of an
automatic tool to analyze the model, detect the performance
bottlenecks, and alleviate each kind of bottlenecks using the
correct technique.

C. Results on CIFAR-10

1) Pushing Forward Accuracy-Latency Pareto Frontier:
HotNAS can consistently push forward the accuracy-latency
Pareto frontier for different datasets. On CIFAR-10 dataset, we
achieve similar results as ImageNet dataset. Table V reports
a detailed comparison of the best architectures identified by
HotNAS over the baseline model. The best architecture is
selected based on the architectures with the highest accuracy
while satisfying the timing constraint. Then, we fine-tune the
selected architecture for 10 epochs to obtain the final accuracy.
The accuracy and latency for the original model and the one
identified by HotNAS are reported in Columns “baseline” and
“HotNAS” under Columns “Accuracy” and “Latency.”

From Table V, it is clear to see that HotNAS can efficiently
reduce the latency which achieving accuracy gain on the
CIFAR-10 dataset. Specifically, for ResNet, HotNAS identifies
the solution with 43.90% latency reduction and 0.03% accu-
racy gain; these figures are 28.55% and 0.05% for DenseNet;
16.74% and 0.10% for MobileNet; and 48.26% and 0.06%
for BitNet. The above results demonstrate the efficiency and
effectiveness of HotNAS.

2) Exploration With Different Configurations: There are
two hyperparameters in the RNN-based optimizer: 1) β for
the batch size of fine-tuning in the search process and 2) α

for the weights in the reward formulation. In the following,
we will test different settings on both.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

4164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE V
ON CIFAR-10, COMPARISON OF THE BASELINE MODELS AND THE BEST

SOLUTIONS EXPLORED BY HOTNAS AFTER FINE-TUNING

TABLE VI
ON CIFAR-10, COMPARISON OF DIFFERENT SETTING IN HOTNAS ON

FINE-TINE BATCH SIZE β DURING THE SEARCH PROCESS; β = 195 FOR

1-EPOCH SEARCH AND β = 10 FOR FAST-SEARCH

(a) (b)

Fig. 10. On CIFAR-10, comparison of different settings on scaling parameters
α in optimizing ResNet.

First, we apply two settings on β: 1) β = 195 for “1-epoch
search” which will fine-tune the identified architecture using
the whole training set and 2) β = 10 for “fast-search” which
only use a portion of dataset as in ImageNet experiments;
Table VI reports the results. We can see that fast-search can
achieve competitive accuracy compare with 1-epoch search;
in particular, for DenseNet, fast-search achieves 0.11% higher
accuracy. In addition, for all models, fast-search can find solu-
tions in 20 min. These results demonstrate the efficiency of
HotNAS.

Second, from Fig. 10, we can see that the search processes
are converged after 160 and 120 episodes for the high-accuracy

setting and the low-latency setting, respectively. At the conver-
gence, the latency of solutions identified by low-latency setting
is lower than the high-accuracy setting; more interesting, the
high-accuracy setting finds solutions with latency near to the
threshold 2 ms. For accuracy, we can see that high-accuracy
setting finds solutions with higher accuracy, which is almost
the same with the baseline accuracy. As shown in the results
in Table V, after a fine-tuned process, the accuracy can even
higher than the baseline. One more thing noted by the accuracy
results is that there are several episodes having no accu-
racy. This is because the latency cannot be satisfied, and
we terminate the training procedure to accelerate the search
process.

V. CONCLUSION

In this article, we identify the last mile problem in cur-
rent NAS and hardware accelerator design and propose the
HotNAS toolset to solve the problem. Instead of search archi-
tectures from scratch, we propose to stand on the shoulders of
the existing models to conduct an incremental hardware-aware
NAS. In HotNAS, four components work collaboratively to
1) identify the hardware performance bottleneck by iDetect;
2) build search spaces iSpace in terms of results from iDe-
tect; and 3) co-design the neural architecture and hardware
accelerator by iSearch with the performance model provided
by iDesign. Experimental results on ImageNet dataset demon-
strate that HotNAS can guarantee the resultant system to
meet timing specifications, while achieving over 5.6% top-
1 and over 3.8% top-5 accuracy gain, compared with the
state-of-the-art models.

REFERENCES

[1] B. Wu et al., “FBNet: Hardware-aware efficient convnet design via dif-
ferentiable neural architecture search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 10734–10742.

[2] H. Cai, L. Zhu, and S. Han. (2018). ProxylessNAS: Direct Neural
Architecture Search on Target Task And Hardware. [Online]. Available:
https://arxiv.org/abs/1812.00332

[3] M. Tan et al., “MNASNet: Platform-aware neural architecture search
for mobile,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 2820–2828.

[4] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology
for IoT intelligence on the edge,” in Proc. IEEE 56th ACM/IEEE Design
Autom. Conf. (DAC), 2019, pp. 1–6.

[5] W. Jiang et al., “Accuracy vs. efficiency: Achieving both through FPGA-
implementation aware neural architecture search,” in Proc. 56th Annu.
Design Autom. Conf., 2019, pp. 1–6.

[6] W. Jiang et al., “Hardware/software co-exploration of neural architec-
tures,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., early
access, Apr. 8, 2020, doi: 10.1109/TCAD.2020.2986127.

[7] W. Jiang et al., “Device-circuit-architecture co-exploration for
computing-in-memory neural accelerators,” IEEE Trans. Comput., early
access, Apr. 30, 2020, doi: 10.1109/TC.2020.2991575.

[8] L. Yang et al. (2020). Co-Exploration of Neural Architectures and
Heterogeneous Asic Accelerator Designs Targeting Multiple Tasks.
[Online]. Available: https://arxiv.org/abs/2002.04116

[9] L. Yang, W. Jiang, W. Liu, H. Edwin, Y. Shi, and J. Hu, “Co-exploring
neural architecture and network-on-chip design for real-time artificial
intelligence,” in Proc. IEEE 25th Asia–South Pac. Design Autom. Conf.
(ASP-DAC), 2020, pp. 85–90.

[10] E. Strubell, A. Ganesh, and A. McCallum. (2019). Energy and
Policy Considerations for Deep Learning in NLP. [Online]. Available:
https://arxiv.org/abs/1906.02243

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2020.2986127
http://dx.doi.org/10.1109/TC.2020.2991575

JIANG et al.: STANDING ON SHOULDERS OF GIANTS: HARDWARE AND NEURAL ARCHITECTURE CO-SEARCH WITH HOT START 4165

[11] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu. (2019). On Neural
Architecture Search for Resource-Constrained Hardware Platforms.
[Online]. Available: https://arxiv.org/abs/1911.00105

[12] S. Han, H. Mao, and W. J. Dally. (2015). Deep Compression:
Compressing Deep Neural Networks With Pruning, Trained
Quantization and Huffman Coding. [Online]. Available:
https://arxiv.org/abs/1510.00149

[13] H. Mao et al. (2017). Exploring the Regularity of Sparse
Structure in Convolutional Neural Networks. [Online]. Available:
https://arxiv.org/abs/1705.08922

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[15] X. Ma et al., “PCONV: The missing but desirable sparsity in dnn weight
pruning for real-time execution on mobile devices,” in Proc. AAAI, 2020,
pp. 5117–5124.

[16] H. Liu, K. Simonyan, and Y. Yang. (2018). Darts: Differentiable
Architecture Search. [Online]. Available: https://arxiv.org/abs/1806.
09055

[17] A. Kolesnikov et al. (2019). Big Transfer (Bit): General Visual
Representation Learning. [Online]. Available: https://arxiv.org/abs/1912.
11370

[18] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-bench-101: Towards reproducible neural architecture search,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7105–7114.

[19] X. Dong and Y. Yang. (2020). NAS-Bench-102: Extending the Scope
of Reproducible Neural Architecture Search. [Online]. Available:
https://arxiv.org/abs/2001.00326

[20] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2015,
pp. 161–170.

[21] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient
cnn implementation on a deeply pipelined FPGA cluster,” in Proc. Int.
Symp. Low Power Electron. Design, 2016, pp. 326–331.

[22] E. Real et al. (2017). Large-Scale Evolution of Image Classifiers.
[Online]. Available: https://arxiv.org/abs/1703.01041

[23] W. Jiang et al., “Achieving super-linear speedup across multi-FPGA for
real-time dnn inference,” ACM Trans. Embedded Comput. Syst., vol. 18,
no. 5S, pp. 1–23, 2019.

[24] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware auto-
mated quantization with mixed precision,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 8612–8620.

[25] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit, 2009, pp. 248–255.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700–4708.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetv2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

Weiwen Jiang received the Ph.D. degree from
the Department of Computer Science, Chongqing
University, Chongqing, China.

He was a Research Scholar with the Department
of Electrical and Computer Engineering, University
of Pittsburgh, Pittsburgh, PA, USA, from October
2017 to June 2019. He is currently a Postdoctoral
Associate with the University of Notre Dame, Notre
Dame, IN, USA. His current research interests
include neural architecture search, FPGAs, non-
volatile memories, and HW/SW co-optimization.

Dr. Jiang was a recipient of the Best Paper Awards in ICCD’17 and
NVMSA’15, and the Best Paper Nominations in DAC’19, CODES+ISSS’19,
and ASP-DAC’20.

Lei Yang received the B.E. and Ph.D. degrees from
Chongqing University, Chongqing, China, in 2019
and 2013, respectively.

She was a Research Scholar with the University of
California at Irvine, Irvine, CA, USA, from October
2017 to February 2019, a Research Scholar with the
University of Pittsburgh, Pittsburgh, PA, USA, from
February 2019 to August 2019, and a Postdoctoral
Research Associate with the University of Notre
Dame, Notre Dame, IN, USA, from October 2019 to
August 2020. She is currently an Assistant Professor

with the Department of Electrical and Computer Engineering, University of
New Mexico, Albuquerque, NM, USA. Her research interests are in auto-
mated machine learning, embedded systems, and high-performance computing
architectures.

Sakyasingha Dasgupta received the master’s degree
in artificial intelligence from the University of
Edinburgh, Edinburgh, U.K., in 2010, the Ph.D.
degree in 2014, the degree from the MIT Sloan
School of Management, Cambridge, MA, USA,
in 2017, and the Dr.rer.nat doctoral degree from
the Max Planck Institute for Dynamics and Self
Organization, University of Göttingen, Göttingen,
Germany.

He was a Senior Research Scientist and lead at
IBM Research. He is the CEO and Founder of

Edgecortix Inc. a deep tech startup-based in Tokyo and Singapore, automating
machine learning driven AI hardware and software co-design for an intelligent
distributed edge ecosystem. He has held a Senior Research and Development
positions at organizations like RIKEN Center for Brain Science; Microsoft
and IBM Research; with over a decade of experience in AI, robotics and
brain-inspired computing. He has filed over 15 patents and published widely
in the areas of machine learning and neural computation.

Yiyu Shi received the B.S. degree (Hons.) in
electronic engineering from Tsinghua University,
Beijing, China, in 2005, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of California at Los Angeles, Los Angeles, CA,
USA, in 2007 and 2009, respectively.

He is currently an Associate Professor with the
Departments of Computer Science and Engineering
and Electrical Engineering, University of Notre
Dame, Notre Dame, IN, USA. His current research
interests include 3-D integrated circuits, hardware

security, and renewable energy applications.
Dr. Shi was a recipient of several best paper nominations in top conferences,

the IBM Invention Achievement Award in 2009, the Japan Society for the
Promotion of Science Faculty Invitation Fellowship, the Humboldt Research
Fellowship for Experienced Researchers, the National Science Foundation
CAREER Award, the IEEE Region 5 Outstanding Individual Achievement
Award, and the Air Force Summer Faculty Fellowship.

Jingtong Hu received the B.E. degree from the
School of Computer Science and Technology,
Shandong University, Jinan, China, in 2007, and
the Ph.D. degree in computer science from the
University of Texas at Dallas, Dallas, TX, USA, in
2013.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of Pittsburgh, Pittsburgh, PA, USA. His
current research interests include embedded systems,
nonvolatile memory, wireless sensor network, and
cyber-physical systems.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:43 UTC from IEEE Xplore. Restrictions apply.

