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Hardware/Software Co-Exploration of
Neural Architectures

Weiwen Jiang ', Lei Yang ~, Edwin Hsing-Mean Sha

Abstract—We propose a novel hardware and software co-
exploration framework for efficient neural architecture search
(NAS). Different from existing hardware-aware NAS which
assumes a fixed hardware design and explores the NAS space
only, our framework simultaneously explores both the architec-
ture search space and the hardware design space to identify the
best neural architecture and hardware pairs that maximize both
test accuracy and hardware efficiency. Such a practice greatly
opens up the design freedom and pushes forward the Pareto
frontier between hardware efficiency and test accuracy for better
design tradeoffs. The framework iteratively performs a two-
level (fast and slow) exploration. Without lengthy training, the
fast exploration can effectively fine-tune hyperparameters and
prune inferior architectures in terms of hardware specifications,
which significantly accelerates the NAS process. Then, the slow
exploration trains candidates on a validation set and updates
a controller using the reinforcement learning to maximize the
expected accuracy together with the hardware efficiency. In this
article, we demonstrate that the co-exploration framework can
effectively expand the search space to incorporate models with
high accuracy, and we theoretically show that the proposed two-
level optimization can efficiently prune inferior solutions to better
explore the search space. The experimental results on ImageNet
show that the co-exploration NAS can find solutions with the same
accuracy, 35.24% higher throughput, 54.05% higher energy
efficiency, compared with the hardware-aware NAS.

Index Terms—Field-programmable gate array (FPGA),
hardware-software co-exploration, multicriteria optimization,
neural architecture search (NAS).

I. INTRODUCTION

NEURAL architecture search (NAS) has achieved great
success to liberate human labor in the design of neural
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Fig. 1. Comparison between (a) hardware-aware NAS; (b) the proposed
hardware/software co-exploration NAS. The red rectangles convey the metrics
that can be optimized in the exploration.

architectures for various tasks including image classification,
image segmentation, and language modeling [1]-[5]. Most
recently, targeting a fixed hardware platform, the hardware-
aware NAS [6]-[8] has been proposed to take into consid-
eration the estimated timing performance (such as latency or
throughput) in addition to accuracy [see Fig. 1(a)].

All of the existing NAS frameworks explore the architecture
search space only, without considering the hardware design
freedom available in many cloud and edge computing applica-
tions. For instance, the cloud platforms (e.g., Amazon AWS [9]
and Microsoft Azure [10]) employ field-programmable gate
array (FPGA) for neural network acceleration, while the
edge computing platforms typically take the programmable
FPGAs [11], [12] or application-specific integrated circuit
(ASIC) [13], [14]. In addition to neural architecture design,
those hardware platforms can also be programmed or even
fully customized for the best performance, expanding a hard-
ware design space.

Interestingly, the hardware design space is tightly coupled
with the architecture search space, i.e., the best neural archi-
tecture depends on the hardware (hardware-aware NAS), and
the best hardware depends on the neural architecture. It is,
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TABLE I
ON CIFAR-10 AND XILINX XC7Z015 FPGA: COMPARISONS OF THREE
NEURAL ARCHITECTURE AND HARDWARE DESIGN PAIRS IN ACCURACY,
THROUGHPUT, AND ENERGY EFFICIENCY (E.-E): A) OPTIMAL
ARCHITECTURE ON A FIXED HARDWARE IMPLEMENTATION
THROUGH HARDWARE-AWARE NAS; B) THE SAME ARCHITECTURE BUT
WITH FURTHER FPGA OPTIMIZATION; AND C) A JOINTLY OPTIMIZED
NEURAL ARCHITECTURE AND FPGA IMPLEMENTATION
THROUGH OUR CO-EXPLORATION.

Throughput E.-E
1D Approach Accuracy
(FPS) (GOPS/W)
A Hardware-Aware NAS 84.53% 16.2 0.84
B Sequential Optimization 84.53% 29.7 1.36
C Co-Exploration 85.19% 35.5 191

therefore, best to jointly explore both spaces to push for-
ward the Pareto frontier between hardware efficiency and
test accuracy for better design tradeoffs. This can be clearly
seen from the example in Table I, where three designs on
CIFAR-10 and Xilinx XC7Z015 FPGAs are presented: an
optimized neural architecture for a fixed FPGA implementa-
tion through hardware-aware NAS (design A), the hardware of
which is then further optimized through FPGA optimization
(design B) [15], and a jointly optimized neural architecture
and hardware through our co-exploration (design C). From
the table, we can see that further optimizing the hardware for
the architecture from hardware-aware NAS can lead to 45.45%
higher throughput, 38.24% higher energy efficiency with the
same accuracy. On the other hand, compared with such a
sequential optimization strategy, our co-exploration approach
can identify an architecture with higher accuracy and its tailor-
made hardware with 16.33% and 28.80% improvements in
throughput and energy efficiency, respectively.

Specifically, our architecture search space and hardware
design space co-exploration framework is shown in Fig. 1(b).
The proposed co-exploration can be built on any existing NAS
framework [8], [16]-[18] by expanding it to delve into the
hardware design space, where a two-level (fast and slow)
exploration is iteratively conducted. In the fast exploration,
the best hardware design is identified for the sampled neu-
ral architectures without lengthy training. The architectures
with inferior hardware efficiency will be quickly pruned,
which significantly accelerates the search process. Thereafter,
the superior candidates are trained in the slow exploration
(SE) for controller update using policy gradient reinforce-
ment learning to explore the coupled architecture search space.
The optimization objectives in the hardware design space
can be varied according to the design specifications, such
as area, monetary cost, energy efficiency, reliability, resource
utilization, etc.

In order to illustrate our framework, we choose to use
FPGA as a vehicle in this article, as it has gradually
become one of the most popular platforms to implement deep
neural networks (DNNs) due to its programmability, high
performance, and energy efficiency, in particular for low-batch
inferences [19], [20]. Our co-exploration concept and the gen-
eral framework, however, can also be easily extended to other
hardware platforms such as ASICs. Since timing performance
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on a single FPGA is limited by its restricted resource, it is
prevalent to organize multiple FPGAs in a pipelined fash-
ion [21]-[24] to provide high throughput (frame per second,
FPS). In such a system, the pipeline efficiency is one of the
most important metrics needing to be maximized, since it
determines the hardware utilization, as well as energy effi-
ciency. As such, we use accuracy and pipeline efficiency to
guide the exploration of the neural architecture space and
hardware design space, respectively, while satisfying a given
throughput specifications (e.g., >30FPS for the ordinary cam-
era). The experimental results show that the co-exploration
approach can significantly push forward the Pareto frontier. On
ImageNet, the proposed co-exploration framework can identify
architecture and hardware pairs to achieve the same accu-
racy, 35.42% higher throughput, and 54.05% higher energy
efficiency with the reduced search time, compared with the
hardware-aware NAS.

II. BACKGROUND AND PROBLEM DEFINITION
A. Neural Architecture Search

Although the research on the automatic prediction of neu-
ral network architectures can trace back to the 1980s [25],
after DNNs have achieved great success in Al domains, there
have been growing interests in generating good neural archi-
tectures for the interested dataset recently. With the fact
that the architectures are growing deeper, the search space
expands exponentially, leading to more difficulties in exploring
the search space. In the existing work, there are two main-
streams of architecture search: 1) employing reinforcement
learning [2], [16], [26] and 2) applying evolutionary algo-
rithms [3], [27], [28]. The basic idea is to iteratively update
hyperparameters to generate better “child networks” in terms
of accuracy.

Fig. 1(a), without the hardware-aware module, illustrates a
typically used reinforcement learning-based NAS [16] frame-
work. As shown in this figure, the RNN controller in NAS
iteratively predicts child networks from the architecture search
space. These child networks will be trained on a held-out
dataset to obtain its accuracy. Then, accuracy will be used
as reward to update the RNN controller.

Existing work has demonstrated that the automatically
resulting architectures can achieve close or even higher
accuracy to the best human-invented architectures [2], [16].
However, there are two important problems in searching archi-
tectures. First, the search process is inefficient. Zoph and
Le [16] reported that 20 000 networks were trained across 500
P100 GPUs over four days to find the desired network. Second,
since the search process is hardware oblivious, neither the time
performance nor the hardware efficiency can be guaranteed.

Recently, hardware-aware NAS [6]-[8] has been proposed
to search architectures for a target hardware platform, as
shown in Fig. 1(a). They always assume a fixed hardware
design (e.g., mobile chips) and only explore the architec-
ture search space. However, the hardware design freedom is
commonly available in many cloud and edge computing appli-
cations, like FPGA in cloud platforms [9], [10] and ASIC in
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edge computing platforms [13], [14]. Without the considera-
tion of hardware design space will lead to inferior designs in
hardware efficiency, because the hardware design space and
the architecture search space are tightly coupled.

Compared with the existing work, the main contribution of
this article is to propose a framework to co-explore the archi-
tecture search space and the hardware design space, as shown
in Fig. 1(b). More specifically, this framework determines the
best hardware during the search process, which is tailor-made
for the candidate architectures. In this way, the framework
can obtain a set of superior architecture and hardware design
pairs on the Pareto frontier in terms of accuracy and hard-
ware efficiency tradeoffs. In addition, the search time can
be significantly reduced, since we can efficiently prune infe-
rior architectures according to multiple design specifications
compared with the hardware-aware NAS.

B. Implementation of DNNs on FPGAs

This article will employ FPGA as a vehicle to study
how to co-explore neural architectures and hardware designs.
FPGA has demonstrated its excellent ability to achieve high
performance and energy efficiency for low-batch real-time
inferences [19], [20]. Hence, a large amount of work is
made in implementing neural networks on FPGAs, in which
tools are developed to automatically design accelerators on
FPGAs for a given network architecture. In the early stage,
research efforts are mainly focusing on designing acceler-
ators on a single FPGA [29]-[32]. Most recently, imple-
mentations on multiple FPGAs has become the mainstream
[15], [19]-[21], [23], [24], since limited resource on a single
FPGA becomes the performance bottleneck.

To fully utilize the computation power provided by
multiple FPGAs, a typical technique is to implement the
neural network on multiple FPGAs in a pipelined fashion
[15], [21], [23], [24]. Fig. 2 demonstrates one such example,
in which a 5-layer network is partitioned into three pipeline
stages, and each pipeline stage is mapped to a certain FPGA
in an available pool. Finally, those FPGAs are connected as a
linear array to function in the pipelined fashion.

Kindly note that this is the first work on the co-exploration
of NAS and multiple FPGAs, which is extended from our
previous work in [33] for single FPGA. The co-design idea is
also verified in [34], which also targets a single FPGA.

C. Definitions and Problem Statement

The goal of the proposed framework is to find both the
neural architectures with the highest test accuracy and hard-
ware design with the guaranteed performance (e.g., timing
requirement and hardware efficiency). In this article, we will
employ the conventional convolutional neural network (CNN)
based on the multi-FPGA infrastructure as an example to illus-
trate such a framework, which is the base for other related
problems. In the following, we will first present the relevant
definitions. Then, we will formally define the problem. Finally,
we will discuss the possible extension.

The child network is the bridge between the architecture
search space and the hardware design space. Specifically, in
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Fig. 2. Overview of implementing a child network onto multiple FPGAs to
be organized in the pipelined fashion.

each iteration, the controller RNN will predict child networks
from the architecture search space, and then determine their
implementations in the hardware design space. We will intro-
duce the hardware design space as follows.

@ PFartition Child Network to Pipeline Stages: Let P(C)
be a set of partitions for the child network C. P(C) =
{P1, Py, ..., Py}, where P; is a nonempty subset of set L.
We have the following two properties: 1) | p,cpc) = L and 2)
VP;, P; € P(C),if i # j, then P;NP; = (). After the partitioning,
each set in P(C) corresponds to a pipeline stage. For example,
in Fig. 2 @, we partition the given child network into three
pipeline stages, P; = {l1}, P> = {l», 3}, and P3 = {l4, I5}.

® Assign Pipeline Stages to FPGAs: Then, we can assign
each pipeline stage to a specific FPGA in an available FPGA
pool, as shown in Fig. 2 ®. An FPGA pool with n FPGAs
can be represented by a set F = {fy, f1,...,f:}. Each FPGA,
fi» has a set of attributes, including memory mem;, DSP slices
dsp;, etc. These attributes will be utilized to model the timing
performance for a child network.

We define the assignment function « from the partition set
P(C) to FPGA pool F. We have a(P;) = f; to indicate the
ith pipeline stage P; is assigned to the jth FPGA f; to be
implemented. After pipeline stages are assigned to FPGA pool
according to o, each FPGA will process one or multiple layers.
All FPGAs work together in the pipelined fashion.

@ Pipelined FPGAs: The pipelined executions of multiple
FPGAs are illustrated in Fig. 2 @. The system will continu-
ously obtain inputs from the dataset with a fixed rate (frame
per second), and generate output data from the last pipeline
stage. The input rate of the system reflects the throughput spec-
ification TS, which implies that the latency of each pipeline
stage should be no more than 1/7§.

The latency of a pipeline stage under an assignment function
can be easily captured with a performance model [29]. For
FPGA f;, its latency is denoted as Lat;. After obtaining the
latency of each FPGA, we introduce pipeline efficiency, which
is composed of the hardware utilization in each pipeline stage
(corresponding to an FPGA). The utilization of FPGA f; is
equal to Lat; x TS. Higher utilization of an FPGA indicates
the less idle time in processing and higher energy efficiency.
Therefore, high average utilization of all FPGAs is always
desired.

Problem Statement: Based on the above definitions, we for-
mally define the problem of “hardware/software co-exploration
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of neural architectures” as: Given a dataset, a pool of
FPGAs F, and a throughput specification 7S, we are going
to co-explore architecture search space and hardware design
space to find a child network C.

1) para: Parameters of all layers in the child network.

2) P: The partition of layer set L in the child network.

3) «: The assignment of pipeline stages to set F.

Such that the accuracy of child network C is maximized,
the pipeline FPGA system can meet the required throughput
TS, and the average utilization of all FPGAs is maximized.

Extensions: The targeting problem is the basis for more
general problems. Therefore, the proposed framework in the
next section can be applied to different scenarios with little or
no modifications. In the following, we will discuss different
extensions from both hardware and software perspectives.

From the hardware perspective, the fundamental problem
of mapping child network onto multiple FPGAs is equivalent
to that of mapping child network onto multiple processing
elements (PEs) in one FPGA, where each PE indicates a pro-
cessor for one data tile (also known as layer processor in [30]).
Splitting one FPGA to multiple PEs [30] is a promising solu-
tion when the single FPGA is large enough or the size of neural
architecture is relatively small. In this scenario, a PE can be
regarded as an FPGA in the hardware pool in Fig. 2. To apply
the proposed technique, we only need to iteratively generate
a PE pool (i.e., the number of PEs and the size of each PE)
according to the FPGA resource, and conduct co-exploration
to identify the best solution for each PE pool.

From the software perspective, first, the proposed frame-
work can handle neural networks with residual connections
by integrating techniques in [35] to partition DAG-based child
network; second, it can explore different operations (e.g.,
group convolutions, depthwise separable convolution, etc.)
for each node in a child network by adding one additional
parameter in para; to determine a specific operation for the
node.

Finally, throughput (frame per second, FPS) in the above
problem is set as a constraint. But we can wrap a binary
search procedure to maximize throughput together with the
pipeline utilization. Kindly note that by replacing the metrics
of FPS to operation per seconds (OPSs), the proposed frame-
work can also be applied to optimize other efficiency metrics,
like OPS/LUT or OPS/DSP.

In the following of this article, we will focus on determin-
ing the best neural architectures and hardware implementations
with the conventional CNN structure and multi-FPGA sce-
nario, using the throughput as a constraint and maximizing
the hardware utilization.

III. HW/SW Co0-EXPLORATION FRAMEWORK

In this section, we will present the proposed framework.
We will use the NAS discussed in [16] as the backbone
framework and FPGA as the hardware platform to demon-
strate our concept. It can be integrated with any existing NAS
techniques [8], [16]-[18] or extended to incorporate other
hardware platforms.
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Fig. 3. Overview of HW/SW co-exploration framework: The controller con-
tains multiple reconfigurable RNN cells and predicts the hyperparameters in
a child network; the fast exploration level prunes child networks with inferior
hardware utilization; the SE level updates controller using hardware utilization
and accuracy obtained by training child networks.

A. Framework Overview

Fig. 3 shows the HW/SW co-exploration framework. The
framework contains an RNN-based controller and two levels
of explorations. Unlike that in [16], the controller has multiple
RNN cells instead of one. More specifically, each layer in
a child network has a corresponding RNN cell. During the
exploration, cells will be reorganized to support different
optimization goals.

In the first level, a fast exploration is carried out in four
steps: 1) it first predicts an architecture with probability p;
2) then, it explores the design space to generate a pipelined
FPGA system to meet the throughput requirement; 3) accord-
ing to the pipeline structure, it then reorganizes RNN cells
in the controller; and 4) it updates the controller using rein-
forcement learning to maximize the pipeline efficiency. This
level explores the hardware design space without training child
networks, therefore, it performs efficiently.

In the second level, we train the child network obtained
from the first level on the held-out validation set. After that,
we generate a reward based on both the yielded accuracy and
pipeline efficiency, which is used to update the RNN controller.
In case that no child network can meet the required throughput
specification in the first level, we generate a negative reward
to update the controller. After this level, the controller will
predict a new child network from the architecture search space
for the fast exploration level.

The proposed controller integrated with multiple RNNs,
operated in two levels of optimizations as shown in Fig. 3,
can make a better tradeoff between efficiency and accuracy.
First, in Level 1, RNNs operate independently to optimize a
given architecture for each pipeline stage. As a result, it can
explore the search space more efficiently. On the other hand,
RNNs will work together in Level 2 to determine the backbone
architecture and pipeline structure. Specifically, let D; = 103
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Fig. 4. FE: organize RNN cells in the controller according to the partition
for pipeline stages; independently update multiple RNNs in the controller to
predict parameters of layers assigned to each pipeline stage.

be the size of search space for pipeline stage p;. The proposed
controller with multiple RNN can optimize each pipeline stage
independently, and, therefore, the design space is O(}_;{D;})
[i.e., O(10%) in the example]. On the contrary, for the controller
with only one RNN, it will jointly determine substructure for
all pipeline stages, leading the search space to be O([[; D)
[i.e., 0(10%)]. Kindly note that a huge design space will not
only significantly prolong the exploration time but also make
it difficult to find the best solution. The advantages of the
proposed framework in both efficiency and effectiveness will
be verified in the experimental results.

B. Fast Exploration for High Resource Utilization

In the first level, namely fast exploration (FE), the objec-
tive is to maximize pipeline efficiency under the throughput
specification TS. FE takes three types of inputs: 1) a set of
available FPGAs F; 2) hyperparameters of a child network
H; and 3) a throughput specification 7S. It will generate a
new child network, whose throughput at the inference phase
can meet 7S using a subset of FPGAs in F. In addition, the
average hardware utilization of FPGAs can be maximized. In
FE, there are two challenges needing to be addressed: first,
how to partition a given child network and assign each parti-
tion to a specific FPGA (Partition and Assignment); second,
how to reorganize the RNN cells in the controller and then
update them to generate child networks with higher pipeline
efficiency (Reorganize and Update Controller).

Partition and Assignment: In the search process, a number
of candidate child networks need to go through the partition
and assignment process. Consequently, an efficient automatic
tool should be employed to avoid performance degradation on
the search process. In this article, we employ the BLAST algo-
rithm in [21]. BLAST takes child network H, FPGAs F, the
throughput specification 7S, and the attributes of each FPGA
as inputs. It outputs a serial of FPGAs, each of which will
implement one or multiple layers in a pipeline stage. The
resultant system will satisfy 7S with the maximum pipeline
efficiency. As shown in Fig. 4, layers in a child network are
divided into M partitions, and each partition is assigned to one
specific type of FPGA under function «.
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Reorganize and Update Controller: According to the gener-
ated pipeline structure, we then reorganize the controller and
iteratively update the controller to generate child networks
with higher hardware utilization. Our goal is to maximize the
average hardware utilization, which is equivalent to maximize
the utilization of each hardware. However, the design space of
maximizing the average hardware utilization is exponentially
larger than that of maximizing the utilization of each hard-
ware. To efficiently explore the design space, we choose to
maximize the hardware utilization of different pipeline stage
independently. Therefore, we reorganize RNN cells in the con-
troller according to the determined pipeline structure. More
specifically, for multiple layers in one pipeline stage, their cor-
responding RNN cells will be configured to form one RNN
and their weights and states are shared (e.g., RNN 2 in Fig. 4).
In consequence, there will be N RNNs for N pipeline stages. In
this way, each RNN can be trained to maximize the hardware
utilization for each FPGA pipeline stage.

After we form the RNNs, we apply reinforcement learning
to update the parameters in those N RNNs, and use these
RNNs to predict the hyperparameters of child networks. In
each iteration, we will predict T child networks, which can
be viewed as a list of actions aj.7. Correspondingly, notation
a"l:T represents the hyperparameters of the ith pipeline stage
in these child networks. For each child network predicted by
the controller, we can obtain the utilization of the ith pipeline
stage (corresponding to one FPGA) using BLAST, denoted as
U;. Then, for RNN i, we utilize U; to generate a reward R;
to update its parameters 6;. The reward R; can be calculated
using the following formula:

U; U <1
R=11-U 1<U <2 (1)
-1 U;>2

where U; > 1 indicates that the required throughput cannot
be satisfied, and we give the negative reward. For each RNN,
our objective is to maximize the expected reward for actions
from time 1 to T, represented by J(6;) = EP(ailA 0, [R;]. Since
the reward is nondifferentiable, we apply the policy of gradient
method to update 6;. Specifically, the method of REINFORCE
rule [36] has been employed as in [8] and [16].

C. Slow Exploration for High Accuracy

After obtaining a child network meeting the timing spec-
ification through the fast exploration level, we now move to
the second level. In this level, we aim to update the controller
RNN to generate new child networks with higher accuracy
and pipeline efficiency. We will train the child network on the
held-out validate set, and, therefore, the exploration speed is
much slower than that of the first one. We call it SE.

As shown in Fig. 5, SE takes the generated child network,
the partition and the assignment from FE as the inputs.
The child network is first trained to obtain accuracy A.
Then, the average pipeline efficiency U of the child network
under the partition and assignment will be calculated. Finally,
we compute the reward to update the controller using the
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following formula:
Reward(A,U) =B xA+ (1 —-B) xU ()

where § is an adjustment parameter, which reflects the bias on
test accuracy and hardware utilization. The value of B ranges
from O to 1. We will discuss how to scale 8 in Section V. After
that, we update the controller using the reward by applying the
policy gradient reinforcement learning, which is the same as
that in FE level. As shown in Fig. 5, all RNN cells share the
same weights and states in this level, since we have only one
reward.

D. Interface Between Fast-Slow Explorations

Before updating the RNN cells in the controller in the
fast exploration level, we take a snapshot Snap of all RNN
cells. During the fast exploration level, we obtain the hardware
design (i.e., pipeline configuration) for the input child network.
Based on the determined pipeline structure, RNN cells are
reorganized as introduced in Section III-B. Reorganized cells
will be trained to generate better child networks for the
previously obtained hardware design (i.e., pipeline config-
uration). Finally, a child network with maximum hardware
efficiency on the determined pipeline will be sent to the SE
level.

After entering the SE level, the RNN cells in the controller
will be recovered using the previously saved snapshot Snap.
Then, SE will train the child network to obtain the accu-
racy, which will be used to calculate the reward. Using this
reward, we will update the recovered RNN. Then, the updated
RNN will be used to generate new child networks for the
next iteration. In this way, the SE process will always keep
improving the RNN accuracy while the FE process will always
generate the best hardware design for each iteration.

IV. EXPERIMENTS

Datasets: We use CIFAR-10 and ImageNet datasets to
study the efficacy of our approach and compare it with the
state-of-the-art. During the exploration of child networks, we
only use the training images in these datasets, while the test
images are used to test the accuracy of the resultant archi-
tectures. To evaluate the accuracy in the search process, we
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randomly select 10% of the samples from the training set
as a validation set. All the images undergo the data pre-
processing and augmentation procedure, including whitening,
upsampling, random cropping, and random horizontal flip,
which are common among the related work.

Architecture Search Space: For CIFAR-10, we use convolu-
tional architectures as the backbone. For every convolutional
layer, we first determine the filter size in [24, 36, 48, 64],
the kernel size in [1, 3, 5, 7], and the strides. Two sets of
experiments are carried out to determine the strides: 1) by
exploring the child networks with a fixed stride of 1 and
2) by allowing the controller to predict the strides in [1, 2].
After each layer, the rectified linear units [37] and the batch
normalization [38] are appended.

For ImageNet, the architecture repeats mobile inverted bot-
tleneck convolution layers instead of ordinary convolutional
ones, same as that in [8]. The controller explores the archi-
tectures with various kernel sizes [3, 5, 7], strides [1, 2], and
expansion ratios [3, 6].

Hardware Design Space: The hardware design space is
composed of up to three Xilinx FPGAs (XC7Z015), each of
which contains 74 K logic cells, 4.9-Mb on-chip memory,
and 150 DSP Slices. One reason for our selection is that
such an FPGA provides high-speed serial communication (up
to 16.8 Gb/s of bandwidth), so that a high-speed hardware
pipeline can be formed by multiple FPGAs. In the implemen-
tation, the child network is partitioned into pipeline stages,
and each stage is mapped to one FPGA. Kindly note that our
hardware exploration may not end up using all three FPGAs;
it is possible to use fewer for higher hardware efficiency.

In the experiments, we use pipeline efficiency as the met-
rics to measure the hardware efficiency. As stated in Section I,
the pipeline efficiency is one of the most important metrics,
since it is related to the hardware utilization, energy efficiency,
and timing performance. Then, the timing specifications are
set according to the desired processing speed of the data at
the inference phase, which are commonly decided by the data
collector (e.g., camera). For CIFAR-10, we set the through-
put specification to 35FPS, which can satisfy most cameras;
whereas for ImageNet, due to the more complicated archi-
tectures and the limited resource, we set the specification to
10FPS. Finally, for both data and weights, we apply the com-
monly used 16-bit fixed-point data, as that in [21], [29], [30],
and [39].

Training Details: For CIFAR-10, the training settings for
both the RNN controller and the child networks are the same
as [16]. For the controller RNN, in both slow and fast explo-
rations, it is trained by using the calculated rewards with
the ADAM optimizer [40] with a learning rate of 0.0006.
Parameter § in (2) is set to 0.5 to equally optimize test accu-
racy and pipeline efficiency. For the child networks, we apply
Momentum Optimizer with a learning rate of 0.1, weight decay
of 107* and momentum of 0.9. Each child network is trained
for 50 epochs.

For ImageNet, we build the distributed GPU training envi-
ronment on top of Uber Horovod [41]. Training settings are
similar to those for CIFAR-10, with the exceptions that we
set the initial learning rate to 0.0125, decay 10x at selected
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Fig. 6. Percentages of valid architectures for different timing specifications.
(a) Fixed stride of 1. (b) Predictable strides.

epochs, and for the momentum optimizer the weight decay is
5 x 107> and the momentum is 0.9.

V. RESULTS

This section will report comparison results in four sets of
experiments: 1) we compare the proposed framework with dif-
ferent configurations; 2) we compare the proposed framework
with the existing NAS frameworks; 3) we compare the identi-
fied architectures with the existing ones; and 4) we show the
design space exploration in terms of model size and hardware
efficiency to demonstrate the importance of hardware/software
co-exploration.

A. Comparison Results With Different Configurations

Before reporting the results, we first introduce the setting for
the proposed framework, namely “Co-Exploration.” First, the
search spaces and training settings can be found in Section IV.
Second, the controller will iteratively search child networks
for 10000 episodes through the 2-level exploration. Third, in
each episode, the SE phase will obtain accuracy of 16 child
networks (train from scratch if one has never been trained or
obtain accuracy from a history table); these child networks
are identified by the fast exploration phase, where 100 trails
will be taken for each child network to optimize the hard-
ware efficiency. Since the proposed framework has multiple
optimization goals on both software (e.g., accuracy) and hard-
ware (e.g., pipeline efficiency), we record a set of superior
architecture and hardware design pairs during the exploration,
which forms the Pareto frontier. On the frontier, we denote
the solution with the maximum accuracy as “OptSW” and the
solution with the maximum pipeline efficiency as “OptHW.”

Impact of Timing Specifications: Fig. 6 reports the impact
of timing specifications for the Co-Exploration framework. We
randomly sample 10000 architectures for the layer size ranged
from 4 to 14, and obtain the percentage of valid architec-
tures that can meet the timing specification on the CIFAR-10
dataset. In Fig. 6, it is obvious that if the constraint is tight
(e.g., FPS = 100), only a few architectures can satisfy the
specification, indicating that the number of architectures with
high accuracy is reduced compared with the one without tim-
ing constraints. In this case, we can scale up the parameter
B in (2) to pursue higher accuracy. On the other hand, if the
constraint is loose (e.g., FPS = 20), there are a large number
of valid architectures. Correspondingly, we can scale down 8
to find more hardware efficient designs with high accuracy.
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TABLE II
CO-EXPLORATION WITH PREDICTABLE STRIDE PERFORMS BETTER
THAN THAT WITH FIXED STRIDE UNDER 35FPS TIMING SPECIFICATION

Models Depth  Accuracy  Pipeline Eff.
Co-Exploration fixed stride (OptSW) 13 81.50% 91.92%
Co-Exploration fixed stride (OptHW) 10 78.57% 98.56%
Co-Exploration pred. stride (OptSW) 14 85.19% 92.15%
Co-Exploration pred. stride (OptHW) 6 80.18% 99.69 %

Comparison Between Fixed Stride and Predictable Stride:
Table II reports the comparison between the exploration with
the fixed stride and that with the predictable stride on CIFAR-
10.! In the table, column “depth” indicates the number of
layers in the resulting architecture. As shown in this table, for
the exploration with the fixed stride, OptSW achieves 2.93%
higher accuracy but 6.64% loss in pipeline efficiency than
OptHW. These figures are 5.01% and 7.54% for the explo-
ration with the predictable strides. In addition, it is obvious
that compared with fixed stride, the stride prediction can help
controller to find better results in both accuracy and pipeline
efficiency. As such, in the following experiments we will use
predictable stride as the default setting for Co-Exploration.

B. Comparison Results With the Existing NAS Frameworks

Next, we compare the proposed Co-Exploration frame-
work with the existing NAS frameworks. To be fair, we
use the same setting as the Co-Exploration: exploring 10000
episodes and getting accuracy of 16 child networks in each
episode. Because the existing Hardware-Aware NAS frame-
works [6]-[8] target fixed hardware (e.g., GPU) instead of
programmable FPGAs, and they use various settings; for fair
evaluation, we use the NAS discussed in [16] as the back-
bone to implement a Hardware-Aware NAS for FPGA with
the same search spaces and training settings as described
in Section IV. Unlike the Co-Exploration framework, the
Hardware-Aware NAS assumes fixed accelerator designs (i.e.,
optimization parameters) in FPGAs. As shown in Fig. 1(a),
in the search loop, the controller will first predict a neural
architecture; second, the framework tests the hardware effi-
ciency of the predicted architecture on FPGAs; third, it trains
architecture to get its accuracy; finally, it utilizes hardware effi-
ciency and accuracy to update the controller. This framework
is denoted as Hardware-Aware NAS in the results.

In addition, for the final architectures obtained by the
Hardware-Aware NAS, we further optimize their hardware
implementation to achieve a better design in terms of hardware
efficiency. Such a heuristic approach is denoted as “Sequential
Optimization” in the results.

Impact of Different Exploration Frameworks on Pareto
Frontier: Fig. 7 reports the design space exploration assuming
the hardware design space contains up to (a) two FPGAs or
(b) three FPGAs. The x-axis and y-axis represent the accuracy
and pipeline efficiency, respectively. For clear demonstration,
we only include the architectures whose pipeline efficiency is
no less than 85% for two FPGAs in Fig. 7(a) and no less than

Models accessed at: https://github.com/PITT-JZ-COOP/Co-Explore-NAS.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:24:10 UTC from IEEE Xplore. Restrictions apply.



4812

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

TABLE III
COMPARISON AMONG CO-EXPLORATION, HARDWARE-AWARE NAS, AND SEQUENTIAL OPTIMIZATION ON CIFAR-10 AND IMAGENET DATASETS

Accuracy Accuracy - Energy Eff.
Dataset Models Depth Parameters Pipeline Eff. FPS
(Topl) (TopS) GOPS/W
Hardware-Aware NAS 13 0.53M 84.53% - 73.27% 16.2 0.84
Sequential Optimization 13 0.53M 84.53% - 92.20% 29.7 1.36
CIFAR-10
Co-Exploration (OptHW) 10 0.29M 80.18% - 99.69 % 35.5 2.55
Co-Exploration (OptSW) 14 0.61M 85.19% - 92.15% 35.5 1.91
Hardware-Aware NAS 15 0.44M 68.40% 89.84% 81.07% 6.8 0.34
Sequential Optimization 15 0.44M 68.40% 89.84% 86.75% 10.4 0.46
ImageNet
Co-Exploration (OptHW) 17 0.54M 68.00% 89.60% 96.15% 12.1 1.01
Co-Exploration (OptSW) 15 0.48M 70.24% 90.53% 93.89% 10.5 0.74
< 1.00 = 1.0 = — - TABLE IV
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Fig. 7. Pareto frontiers between accuracy and pipeline efficiency for

Hardware-Aware NAS and Co-Exploration, both of which are designed under
the timing specification of 35FPS. (a) Designs with two FPGAs. (b) Designs
with three FPGAs.

75% for three FPGAs in Fig. 7(b). In these figures, the circled
design points correspond to those in Table II. The red lines
represent the Pareto frontiers explored by Co-Exploration. The
green lines, on the other hand, represent the frontier obtained
by Hardware-Aware NAS (by examining the top architectures
identified). These figures clearly show that by exploring hard-
ware design space, our Co-Exploration can significantly push
forward the Pareto frontiers in the accuracy and efficiency
tradeoffs. It effectively identifies better designs not available
through architecture search space only, i.e., those between the
two frontiers.

Comparing the two exploration results in Fig. 7(a) and (b),
we can also see that the solution with the highest pipeline effi-
ciency is located in Fig. 7(a), while the one with the highest
accuracy is located in Fig. 7(b). In general, we can always
observe that the average accuracy on three FPGAs is higher
than that on two FPGAs, yet the pipeline efficiency is lower.
This is because more FPGAs can accommodate deeper archi-
tecture in layers for higher accuracy. On the other hand, more
layers will easily result in unbalanced pipeline stages, which
in turn reduces the pipeline efficiency.

Comparison Between Co-Exploration and Existing
Frameworks: Table III reports the comparison results on
accuracy, pipeline efficiency, throughput, and energy effi-
ciency on CIFAR-10 and ImageNet. All the architectures
identified have fewer than 1M parameters mainly due to
the hardware capacity. This inevitably leads to accuracy
loss; however, as we can see, the architecture explored by
OptSW can still achieve 85.19% test accuracy on CIFAR-10,

and 70.24% top-1 accuracy on ImageNet. These results
demonstrate the effectiveness of the Co-Exploration approach
in resource-limited scenarios. In addition, OptSW outper-
forms Hardware-Aware NAS by achieving 54.37% and
35.24% higher throughput, and 56.02% and 54.05% higher
energy efficiency on CIFAR-10 and ImageNet, respectively.
Compared with Sequential Optimization, OptSW achieves
16.34% and 28.79% improvements on CIFAR-10 in through-
put and energy efficiency, respectively; and on ImageNet, it
can also slightly improve throughput, and achieve 37.84%
improvements on energy efficiency.

Finally, Table IV reports the comparison results on nor-
malized search time between the Hardware-Aware NAS and
the Co-Exploration. Results in this table show that the Co-
Exploration can significantly accelerate the search process,
achieving 159x and 136x fewer GPU hours on CIFAR-10
and ImageNet, respectively. The speedup is achieved from the
efficient early stage pruning in the fast exploration level. As
discussed in Section III-A, compared with the conventional
Hardware-Aware NAS with a single RNN in the controller,
the proposed Co-Exploration framework with multiple RNNs
can dramatically shrink the design space from O([[; D;) to
O(Zi D;), where D; is the size of design space for the
ith pipeline stage. Since the number of architecture to be
trained is proportional to the size of design space, from
column “arch for training” in Table IV, we can see that Co-
Exploration trains much fewer architectures compared with
the Hardware-Aware NAS. Therefore, our Co-Exploration
achieves significant speedup over the Hardware-Aware NAS.
From the table, we have another observation that the training
process takes much longer time than the hardware exploration
process, where the hardware exploration only occupies less
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TABLE V
COMPARISON WITH THE EXISTING ARCHITECTURES ON IMAGENET
WITH THE TIMING SPECIFICATION OF 10FPS

Accuracy  Accuracy
Models Depth FPS  Energy Eff.
(Top-1) (Top-5)
MobileNetV2 [42] 18 71.80% 91.00% 45 0.47
ProxylessNet [8] 21 74.60% 92.50% 3.1 0.41
Co-Exploration (OptHW) 17 68.14% 89.60% 12.1 1.01
Co-Exploration (OptSW) 15 70.24% 90.53% 10.5 0.74

than 1% GPU hours in the whole search process (1.9 GPU
hours for CIFAR-10 and 1.8 GPU hours for ImageNet).

C. Comparison Results With the Existing Architectures

In this section, we compare the neural architectures identi-
fied by the proposed Co-Exploration framework with the exist-
ing architectures: ProxylessNet [8] and MobileNetV2 [42]. We
set the throughput constraint as 10FPS for Co-Exploration
framework as a baseline. To obtain the hardware efficiency
(throughput, energy efficiency, etc.) of these architectures,
we apply the BLAST approach [21] to partition them onto
multiple FPGAs. For a fair comparison, all models involve 3
FPGAs.

Table V reports the results. As we can see, both
MobileNetV2 and ProxylessNet cannot meet the timing spec-
ification of 10 FPS, while ours can. In comparison with
the manually designed MobileNetV2 [42], OptSW with top-5
accuracy loss of 0.47% can achieve 2.33x and 1.57x improve-
ment on throughput and energy efficiency, respectively. On
the other hand, in comparison with ProxylessNet [8], whose
throughput is 3x lower than the specifications, OptSW can
find architectures that meet the specs with 90.53% top-5 accu-
racy against 92.50% from ProxylessNet. Results show that
the proposed framework can make a better tradeoff between
hardware efficiency and architecture accuracy. In addition, it
can guarantee that the final architecture identified can meet
the timing specification, which is important in real-time Al
systems.

D. Importance of Co-Exploration

Finally, we show the importance of co-exploration on NAS
and hardware design spaces, instead of: 1) using a heuristic
on restricting the size of models for only NAS exploration or
2) applying hardware-aware NAS exploration. Fig. 8 shows
the results of the design space exploration of architectures
with four layers.

In Fig. 8(a), the x-axis and y-axis represent the model size
and the hardware efficiency (i.e., pipeline efficiency). Each
point in this figure is a design, which is optimized using the
algorithm in [21]. We have marked the design points whose
model size ranges from 120 K to 150 K. From this figure, we
can see that, for the designs whose model size ranges from
120 K to 150 K, the optimized hardware efficiency ranges
from 1.29% to 98.35%. Moreover, for a much narrower range
from 149 K to 150 K, the efficiency still ranges from 7.02%
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Fig. 8. Design space of architectures with the depth of 4: (a) model size

versus hardware efficiency and (b) accuracy versus hardware efficiency using
co-exploration and hardware-aware NAS approaches.

to 98.35%. All the above results reflect that we cannot guaran-
tee the hardware efficiency by restricting the model size only.
This is mainly because there are a large number of designs
with similar model size, but their structures are quite different,
leading to different hardware efficiency. Therefore, it verifies
the NAS space and hardware design space are tightly coupled
and emphasizes the importance of conducting hardware and
software co-exploration.

In Fig. 8(b), we unveil the fundamental difference between
co-exploration and hardware-aware architecture search. In this
figure, the black crosses and red circles represent the valid
design points in HW-aware NAS and co-exploration search
spaces, respectively. We can observe that the HW-aware NAS
has a much narrower search space than the proposed co-
exploration approach. Basically, HW-aware NAS will prune
the architectures that violates hardware specifications on a
fixed hardware design. However, by opening the hardware
design space, it is possible to find a tailor-made hardware
design for the pruned architectures to make them meet the
hardware specifications. Therefore, compared with the HW-
aware NAS, the co-exploration approach enlarges the search
space. As a result, it can make better tradeoffs between
accuracy and hardware efficiency.

VI. CONCLUSION

We proposed the co-exploration framework to open up the
hardware design freedom in NAS. This is driven by the trend
that the hardware platform can be programmed or even fully
customized for the best performance in cloud and edge com-
puting applications. This article took the FPGA as a vehicle to
show that through jointly exploring architecture search space
and hardware design space, the design Pareto frontier on accu-
racy and hardware efficiency tradeoffs can be significantly
pushed forward.

The framework proposed in this article will be the base
for neural architecture and hardware co-exploration. Based on
the proposed co-exploration framework, we list two promis-
ing future directions as follows. First, mixed-precision was
recently proposed [43] for a fixed architecture; in the future,
we plan to further co-explore neural architectures, quantiza-
tions and hardware designs. Second, innovations on computing
architecture achieves great success for executing inference
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phase of neural networks [44], we plan to apply the proposed
framework to co-explore neural architectures with the novel
computing architectures (e.g., computing-in-memory).
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