
Co-Exploration of Neural Architectures and Heterogeneous
ASIC Accelerator Designs Targeting Multiple Tasks

Lei Yang1 Zheyu Yan1 Meng Li2 Hyoukjun Kwon3 Liangzhen Lai2 Tushar Krishna3 Vikas Chandra2

Weiwen Jiang1,∗ Yiyu Shi1

1 University of Notre Dame 2 Facebook 3 Georgia Institute of Technology

Abstract—Neural Architecture Search (NAS) has demonstrated its
power on various AI accelerating platforms such as Field Programmable
Gate Arrays (FPGAs) and Graphic Processing Units (GPUs). However, it
remains an open problem how to integrate NAS with Application-Specific
Integrated Circuits (ASICs), despite them being the most powerful AI
accelerating platforms. The major bottleneck comes from the large design
freedom associated with ASIC designs. Moreover, with the consideration
that multiple DNNs will run in parallel for different workloads with
diverse layer operations and sizes, integrating heterogeneous ASIC sub-
accelerators for distinct DNNs in one design can significantly boost
performance, and at the same time further complicate the design space.
To address these challenges, in this paper we build ASIC template
set based on existing successful designs, described by their unique
dataflows, so that the design space is significantly reduced. Based on
the templates, we further propose a framework, namely ASICNAS,
which can simultaneously identify multiple DNN architectures and
the associated heterogeneous ASIC accelerator design, such that the
design specifications (specs) can be satisfied, while the accuracy can be
maximized. Experimental results show that compared with successive
NAS and ASIC design optimizations which lead to design spec violations,
ASICNAS can guarantee the results to meet the design specs with 17.77%,
2.49×, and 2.32× reductions on latency, energy, and area and less than
1.6% accuracy loss. To the best of the authors’ knowledge, this is the first
work on neural architecture and ASIC accelerator design co-exploration.

I. INTRODUCTION

Recently, Neural Architecture Search (NAS) [1]–[3] successfully
opens up the design freedom to automatically identify neural architec-
tures with the maximum accuracy; in addition, hardware-aware NAS
[4]–[7] further enables hardware design space to jointly identify the
best architecture and hardware designs to maximize network accuracy
and hardware efficiency. Most of existing hardware-aware NAS focus
on GPUs or Field Programmable Gate Arrays (FPGAs).

On the other hand, among all AI accelerating platforms, application-
specific integrated circuits (ASICs), composed of processing elements
(PEs) connected in different topologies, can provide incomparable
energy efficiency, latency, and form factor [8], [9]. Most existing
ASIC accelerators, however, target common neural architectures [8],
[10], [11] and do not reap the power of NAS. Though seemingly
straightforward, integrating NAS with ASIC designs is not a simple
matter, as can be seen from image classification in Fig. 1. Neural
architecture search space is formed by ResNet9 [12] with adjustable
hyperparameters. Hardware design space is formed by ASICs with
adjustable number of PEs and interconnections. Results are depicted
in a three-dimensional space, where three axes represent different
hardware metrics and each point represents a solution of paired neural
architecture and ASIC design. We can see that when NAS and ASIC
design are performed successively, all solutions (denoted by circles)
violate user-defined hardware design specifications (design specs,
denoted by diamond). When NAS is done in aware of a particular
ASIC design, the resulting solution (denoted by triangle) has lower

* Weiwen Jiang is the corresponding author (wjiang2@nd.edu)

NAS®ASIC design: 94.17%

Design Specs.

MC Search

Architecture Search Space:
 Workload: classification

 Backbone Arch.: ResNet-9

 Hyperparameters for ith block:

 FN
i
: á32, 64, 128, 256ñ

 SK
i
: á0,1,2ñ

Hardware Design Space:
 Maximum PE num: 4096

 PE connections

(cycles)

(n
J)

(m
m

2
)

Optimal solution: 92.58%

Design Specs.

Heuristic solution: 89.95%

HW-aware NAS: 90.64%

Figure 1: Neural architecture search space and hardware design space
exploration: solutions from successive NAS and ASIC design; solution
from NAS in aware of an ASIC design; the closest-to-spec solution;
and the optimal solution from 10,000 Monte Carlo (MC) runs. (Best
viewed in color)

accuracy compared with the optimal one (denoted by star) from 10,000
Monte Carlo runs, which uses a different ASIC design. A simple
heuristic to pick a solution with latency, energy and area closest to
the design specs (denoted by square) would also be sub-optimal. It
is therefore imperative to jointly explore neural architecture search
space and hardware design space to identify the optimal solution.

However, such a task is quite challenging, primarily due to the
large design space of ASICs where a same set of PEs can constitute
numerous topologies (and thus dataflows). Enumeration is simply out
of the question. In addition, when ASIC accelerators are deployed on
edge, they usually need to handle multiple tasks involving multiple
DNNs. For instance, tasks like object detection, image segmentation,
and classification can be triggered simultaneously on augmented reality
(AR) glasses [13], each of which relies on one kind of DNN. Since
DNNs for different tasks can have distinct architectures, one dataflow
cannot fit all of them; meanwhile, multiple tasks need to be executed
concurrently, which requires task-level parallelism. As such, it is best
to integrate multiple heterogeneous sub-accelerators (corresponding
to different dataflows) into one accelerator to improve performance
and energy efficiency, which has been verified in [14]. Yet this further
complicates the design space.

To address these challenges, in this paper, we establish a link
between NAS and ASIC accelerator design. Instead of a full-blown
exploration of the design space, we observe that there already exist a
few great ASIC accelerator designs such as Shidiannao [10], NVDLA
[11], and Eyeriss [8]. Each of these designs has its unique dataflow, and
the accelerator is determined once the hardware resource associated
with the dataflow is given. As such, we can create a set of ASIC
templates, where each template corresponds to one specific dataflow,
so that the design space can be significantly narrowed down to the
selection of templates to form a heterogeneous accelerator, and the

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:29:31 UTC from IEEE Xplore. Restrictions apply.

allocation of hardware resource (e.g., the number of PEs and NoC
bandwidth) to the selected templates.

Based on the template concept, we then further propose a neural
architecture and ASIC design co-exploration framework, namely
ASICNAS, for edge devices with multiple tasks. The objective is
to identify the best neural architectures for each task and ASIC
design, such that all design specs can be met while the accuracy of
neural architectures can be maximized. Specifically, we devise a novel
controller that can simultaneously predict hyperparameters of multiple
DNNs together with the parameters of hardware resource allocation for
different template selections. Based on state-of-the-art cost model [15],
we separately explore mapping and scheduling of neural architectures
onto ASIC templates. Finally, a reward is generated to update the
controller. To accelerate the search process, we apply the early
pruning technique to remove neural architectures that cannot satisfy
design specs without training. Experimental results on three workloads
with different tasks show that compared with solutions generated by
successive NAS and ASIC design optimization which cannot satisfy
design specs, those from ASICNAS can guarantee to meet design specs
with 17.77%, 2.49×, and 2.32× reductions in latency, energy, and
area and less than 1.6% accuracy loss. Furthermore, compared with
hardware-aware NAS for a fixed ASIC design, ASICNAS can achieve
3.65% higher accuracy. To the best of authors’ knowledge, this is the
first work on neural architecture and ASIC design co-exploration.

II. BACKGROUND AND CHALLENGES

We are now witnessing the rapid growth of NAS. Since the very
first work for NAS with reinforcement learning [1], there has been
tremendous work to study efficient neural architecture search [2],
[3]. Integrating hardware awareness in the search loop opens a new
research direction, which attracts research efforts on hardware-aware
NAS [4], [5]. Taking one step further, most recently, co-exploration
of neural architecture and hardware design is proposed [6], [7].
Unlike the original NAS with mono-objective on maximizing accuracy,
those hardware-aware NAS frameworks take inference latency into
consideration, and push forward the deployment of DNNs on edge
devices. NAS has been applied to GPUs and FPGAs but not ASICs,
though they are the most efficient ones among all AI accelerating
platforms. Two so-far-unseen but urgent-to-solve challenges exist.

Challenge 1: How to enable the co-exploration of neural architec-
tures and ASIC accelerator designs?

The large design space of ASIC accelerators hinders the application
of NAS to ASIC accelerators. Unlike GPUs with fixed hardware or FP-
GAs with well-structured hardware, ASIC designs grant the maximum
flexibility to designers to determine the hardware organization. This
enables to pursue the maximum efficiency; however, it significantly
enlarges the design space. Fortunately, there exist extensive research
works in designing ASIC AI accelerators [8], [10], [11], making it
possible to shrink the design space on top of existing designs.

Among all ASIC accelerator designs, one of the key observations
is that each design has a specific dataflow, such as Shidiannao [10],
NVDLA [11] , and Eyeriss [8] styles. For instance, NVDLA [11]
involves an adder-tree to calculate the partial sum of output feature
maps. Inspired by this, we build a set of accelerator templates, each
of which has a dataflow style, resulting in a fixed hardware structure.
On top of it, we only need to allocate resource for templates, without
changing hardware structures. Thus, design space can be significantly
shrunk, and in turn, it enables co-exploration of neural architectures
and ASIC designs by incorporating hardware allocation parameters.

Challenge 2: Multiple neural architectures need to be identified
under the unified design spec.

DF 2: NVDLA Style

A
p

p
li

ca
ti

o
n

DF1: Shidiannao Style

A
cc

el
er

a
to

r

1

2

…

3

Synthesis Resultant
Accelerator

aic1: DF2 aic2: DF1
of PEs
NoC BWs
NN layers

of PEs
NoC BWs
NN layers

Mapping & Scheduling

Resource Allocator

DF3

…

aic3

… …

T1: Image Classification

ResNet1

ResNet2

ResNet3 …

CH

R

C

CH

CH

U-Net1

U-Net2

…

T2: Image Segmentation W3

…
…

R

C

R

C

Figure 2: Overview: co-exploration with three layers of optimizations.

Another challenge is that realistic applications on edge devices
require the collaboration of multiple tasks, which involves multiple
DNNs. In addition, all these DNNs will be executed on the accelerator
with unified design specs, including latency, energy, and area. In
consequence, sequentially optimizing each DNN using hardware-
aware NAS will not work; instead, the multiple neural architectures
need to be simultaneously optimized under the unified design specs.

Integrating multiple DNNs in one accelerator brings one further
challenge. DNNs for different tasks have distinct architectures, yet one
dataflow is not suitable for all architectures. For instance, NVDLA
style [11] (DF2 in Fig. 2) loads one pixel from each activation channel
for one computation. In order to fully use the computation resource,
it favors convolution layers with large activation channel but low
activation resolution; while Shidiannao style [10] (DF1 in Fig. 2) is
on the opposite. As a result, NVDLA style works better for ResNets,
while Shidiannao works better for U-Nets. As demonstrated in [14],
we can integrate multiple heterogeneous sub-accelerators using a
network-on-chip style through Network Interface Controller (NIC) in
one AISC accelerator, which further complicates the design space.

In this work, we will address the above challenges.

III. PROBLEM DEFINITION

In this section we will first define multi-task workloads and
heterogeneous accelerators, and then formulate the problem of neural
architecture and ASIC design co-exploration.

Fig. 2 demonstrates an overview of the co-exploration problem,
which involves three exploration layers: Ê “Application”, Ë “Acceler-
ator”, and Ì “Synthesis”. The application layer determines the neural
architectures to be applied, while the accelerator layer creates the
ASIC template set based on the dataflow style of existing accelerator
designs. Acting as the bridge, the synthesis layer allocates a template
together with the resource to each sub-accelerator, and maps/schedules
network layers to sub-accelerators. In the following text, we will define
each exploration layer in detail.

Ê Application. The application workload considered in this work
has multiple AI tasks which involve a DNN model for each task. A
workload with m tasks is defined as W = 〈T1, T2, · · · , Tm〉. Fig. 2
shows an example with two tasks (i.e., T1 for classification and T2 for
segmentation). Task Ti ∈W corresponds to a DNN architecture Di,
which forms a set D with m DNN architectures. We define a DNN
architecture as Di = 〈Bi, Li, Hi, acci〉, which is composed of a
backbone architecture Bi, a set of layers Li, a set of hyperparameters
Hi, and an accuracy acci. For example, in Fig. 2, B1 for classification

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:29:31 UTC from IEEE Xplore. Restrictions apply.

…

aic1: DF2 aic2: DF1

alloc(aic1)
sch(aic1)

NIC NIC NIC

Global Interconnect

Global Buffer

To/From DRAM

alloc(aic2)
sch(aic2)

aic3

……

Architecture Search Space:
W1: Classification (CIFAR-10)

Hyperparameters for ith block:

 FN
i
: á32, 64, 128, 256ñ; SK

i
: á0,1,2ñ

W2: Segmentation (Nuclei)

Hyperparameters:

 Height: [1-5]; FN
i
: á4´2i-1, 8´2i-1, 16´2i-1ñ

Design Space:
 Dataflow:

 shidiannao, nvdla, rs;

 Maximum PE num:

 4096;

` Maximum bandwidth:

 64 GB/s

Figure 3: Left: search spaces for both NAS and ASIC accelerator
designs. Right: the resultant heterogeneous ASIC accelerator.

task T1 is ResNet9 [12], and its hyperparameters include the number
of filter (FN) and the number of skip layers (SK) for each residual
block, as shown in Fig. 3 (left); while for segmentation task T2,
the backbone architecture B2 is U-Net [16] whose hyperparameters
include the height (Height) and filter numbers (FN) for each layer.

Based on above definition, we define the neural architecture search
function Hi = nas(Di), which determines hyperparameters Hi in
DNN Di to identify one neural architecture. Kindly note that NAS
[1] is to determine nas(Di) with the mono-objective of maximizing
accuracy acci. As shown in Fig. 2, each set of hyperparameters
corresponds to one neural architecture, and we will determine nas(Di)
to identify a specific neural architecture for task Ti (colored ones).

Ë ASIC Accelerator. A heterogeneous ASIC accelerator formed
by multiple sub-accelerators connected in a Network-on-Chip (NoC)
style through NIC is shown in Fig. 3 (right). Define AIC =
〈aic1, aic2, · · · aick〉 to be a set of k sub-accelerators. A sub-
accelerator aici = 〈dfi, pei, bwi〉 has three properties: the dataflow
style dfi, the number of processing elements pei, and the NoC
bandwidth bwi. With a set of predefined dataflow templates to choose
from, as shown in Fig. 2, the ASIC design space is significantly
narrowed down from choosing specific unrolling, mapping and data
reuse patterns to allocating resources (one template with associated
PEs and bandwidth) to each sub-accelerator. Kindly note that according
to the template and mapped network layers, the memory sizes can be
determined to support the full use of hardware, as in [15]. Therefore,
memory sizes are not appeared in the search space.

Ì Synthesis. Based on the definition of applications and accelera-
tors, next, we present the synthesis optimization.

Resource allocation. On the hardware side, we design each sub-
accelerator in set AIC = 〈aic1, aic2, · · · aick〉, given a set of
dataflow templates DF = 〈DF1, DF2, · · ·DFq〉, the maximum
number of PEs (e.g., NP = 4096) and the maximum bandwidth
(e.g., BW64GB/s. Note that since DF contains different dataflows,
the resultant accelerator will be heterogeneous if more than one type
of dataflows are mapped to AIC. By reducing the size of DF to
one, the proposed techniques can be used for homogeneous designs.

We define an allocation function alloc(aici) to determine the
dataflow template from DF , and the PEs and bandwidth used for aici,
such that

∑
i=1···|AIC|{pei} ≤ NP and

∑
i=1···|AIC|{bwi} ≤ BW .

As an example, Fig. 2 illustrates two kinds of dataflow templates:
shidiannao [10] and NVDLA [11]. The resultant accelerator (in Fig. 2
Ì) is composed of two heterogeneous sub-accelerators with different
dataflow templates, PE numbers and bandwidth.

Mapper and scheduler. On the software side, we map network
layers to sub-accelerators and determine their execution orders on
each sub-accelerator. We define a map function map(li,j) = aick,
which indicates the jth network layer li,j in the ith DNN Di to be
mapped to the kth sub-accelerator aick. Based on the mapping, we
determine the execution order of network layers on sub-accelerator
aick following a schedule function sch(aick).

The synthesis results can be evaluated via four metrics, including
accuracy, latency, energy, and area. In this work, we aim to maximize
the accuracy of DNNs under the given design specs on latency (LS),

1 Co-Exploration Controller

for Multi-DNN and Heter. ASICs

2 Optimizer Selector

Accelerator
Exploration

Architecture
Exploration

SA:
{0,1}

SH:
{0,1}

Cost Model

3 Evaluator

Training

Validating

Penalty: PAcc.: weighted(D)

Reward: R(D, P)

Mapping &

Scheduling

Figure 4: ASICNAS: parameters for neural architecture and accelerator
are first determined by controller; then the identified neural architecture
and accelerator will be evaluated; finally, a reward will be generated
by the evaluation results to feedback and update the controller.

energy (ES) and area (AS).
Problem Definition. Based on all the above definitions, we formally
define the optimization problem as follows: given a multi-task
workload W , the backbone neural architecture for each DNN in
set D, a set of sub-accelerators AIC, a set of dataflow templates
DF , the maximum number of PEs and bandwidth, and design specs
(LS, ES, AS), we will determine:
• nas(Di): the neural architecture of each DNN Di ∈ D;
• alloc(aick): the dataflow and resource allocation for each sub-

accelerator aick ∈ AIC;
• map(li,j) and sch(aick): the mapping of network layers to

sub-accelerators and their schedule orders;
such that the maximum accuracy of DNNs can be achieved
while all design specs and resource constraints can be met; i.e.,
max = weighted(D), s.t., rl ≤ LS, re ≤ ES, ra ≤ AS∑
i=1···|AIC|{pei} ≤ NP ,

∑
i=1···|AIC|{bwi} ≤ BW , where

rl, re, ra represent latency, energy, and area of the resultant acceler-
ator, and a weighted function defined in next section is to get the
accuracy of all networks, which can be functions like avg (maximize
the average accuracy) or min (maximize the minimum accuracy).

IV. PROPOSED CO-EXPLORATION FRAMEWORK: ASICNAS

This section will present the details of ASICNAS that addresses the
problem formulated in Section III. Fig. 4 demonstrates the overview
of ASICNAS. It contains three components, ¬ controller, ­ optimizer
selector, and ® evaluator. In general, the controller samples neural
architectures and hardware resource allocation in each episode (aka.
iteration). Then the predicted sample goes through the optimizer
selector and evaluator to generate accuracy and hardware cost. Finally,
a reward is generated to update controller. All components work
together to generate solutions with high weighted accuracy and to
meet all design specs. To illustrate ASICNAS, we apply reinforcement
learning approach in this paper. Based on the formulated reward
function, other optimization approaches, such as evolution algorithms,
can also be applied. Note that since hardware constraints are non-
differentiable, differentiable neural architecture search (DARTS)
cannot be applied. Then, we will introduce each component in detail.

¬ Multi-Task Co-Exploration Controller. The controller is the
key component in ASICNAS. Driven by the requirement of multi-
task in one application workload, we propose a novel reinforcement-
learning based Recurrent Neural Network (RNN) controller to
simultaneously predict multiple neural architectures. In addition, we
integrate accelerator design parameters into the controller to realize a
genuine co-exploration of neural architectures and hardware designs.

Fig. 5 demonstrates the proposed controller. It is composed of
N segments, where N is the sum of task number in workload
W = {T1, T2, · · · , Tm} and sub-accelerator number in set AIC =
{aic1, aic2, · · · , aick}; i.e., N = m + k. The first m segments
correspond to m DNNs, while the remaining segments correspond

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:29:31 UTC from IEEE Xplore. Restrictions apply.

Accelerator 1 Accelerator 2
shidiannao?

nvdla?
row-station?

shidiannao?
nvdla?

row-station?

of
filter

of
skip

Height
of
filter

…

of
PEs

NoC
BW

Type # of
PEs

Type

…

……

Network 1 Network 2

…

Accelerator Designs

of
filter

of
filter

Figure 5: Co-exploration controller for multiple tasks: determine neural
architecture hyperparameters, and hardware design parameters.

to k sub-accelerators. For the segment associated with a DNN, say
Di〉, its outputs determine Di’s hyperparameters, i.e., the nas(Di)
function. For instance, in Fig. 5, the first segment predicts the filter
numbers (FN) and skip layers (SK). Similarly, the segment for sub-
accelerator aick determines its hardware design parameters, i.e., the
alloc(aick) function, as shown in the right part of Fig. 5.

We employ reinforcement learning method to update the controller
and predict new samples. Specifically, in each episode, the controller
first predicts a sample, and gets its reward R based on the evaluation
results form components ® and ¯. Then, we employ the Monte Carlo
policy gradient algorithm [17] to update the controller:

∇J(θ) = 1

m

m∑
k=1

T∑
t=1

γT−t∇θ log πθ(at|a(t−1):1)(Rk − b) (1)

where m is the batch size and T is the number of steps in each episode.
Rewards are discounted at every step by an exponential factor γ and
the baseline b is the average exponential moving of rewards.

­ Optimizer Selector. We integrate an optimizer selector in
ASICNAS to accelerate the search process. This is based on the
observation that the speed of hardware evaluation is much faster than
the training process. Specifically, as shown in Fig. 4, we add two
switches (SA for neural architecture exploration and SH for hardware
design exploration). In terms of the status of switches, the framework
can perform different functions listed as follows:
• SA = 1, SH = 0, it performs conventional NAS, like [1].
• SA = 0, SH = 1, it uses the previous neural architecture and

explore hardware designs only. In this case, we aim to obtain
valid accelerator design for the neural architecture, and therefore,
we do not consider the accuracy in reward.

• SA = 1, SH = 1, it predicts new neural architectures and
hardware designs.

ASICNAS repeatedly conducts the following two steps β times:
(1) both SA and SH are closed for 1 step, aiming to obtain new
neural architecture and hardware design; (2) the switch SA is opened
for φ steps, aiming to explore the best hardware for a previous
identified neural architecture. Kindly note that the first step is carried
out in a non-blocking scheme, such that one training and β times
hardware exploration can be conducted in parallel. Once all hardware
explorations are completed and no feasible hardware design is found,
it will terminate the training process to accelerate the search process.

® Evaluator. The evaluator contains two paths: (1) via the training
and validating to obtain networks’ accuracy; (2) via cost modeling,
mapping and scheduling to generate penalty in terms of design specs.

Training and validating In this path, we are given the hyperparam-
eters Hi for DNN architecture Di. For each DNN Di ∈ D, we train
it from scratch and obtain its accuracy acci on a held-out validation
dataset. Based on the accuracy, we obtain the weighted accuracy
weighted(D) for calculating the reward R as follows:

weighted(D) =
∑

i=1,2,··· ,|W |
{αi × acci} (2)

where |W | is the total number of tasks in the given workload, and αi
is a weight ranging from 0 to 1, such that

∑
i=1,2,··· ,|W |{αi} = 1.

Mapping and scheduling On this path, we are given a set of
identified DNN architectures D and a set of determined sub-accelerator
AIC. We need to get the hardware metrics including latency rl,
energy re, and area ra. ASICNAS incorporates the state-of-the-art
cost model, MAESTRO [15], and a mapping and scheduling algorithm
to obtain the above metrics. For area ra, we can directly obtain it
from MAESTRO with the given sub-accelerator AIC. The latency
rl and energy re are determined by the mapping and scheduling. To
develop an algorithm for mapping and scheduling, we need to obtain
the latency and energy of each layer on different sub-accelerators.
Let L =

⋃
Dk∈D

{Lk} be the layer set. For a pair of network layer
∀li ∈ L and sub-accelerator aicj ∈ AIC, we can input them to
MAESTRO to obtain the latency li,j and energy ei,j .

The problem can be proved to be equivalent to the traditional
heterogeneous assignment problem [18], [19]: given the latency
li,j and energy cost ei,j for each layer i on sub-accelerator j, the
dependency among layers, and a timing constraint LS, we are going
to determine the mapping and scheduling order of each layer on
one sub-accelerator, such that the energy cost re is minimized while
latency rs ≤ LS. We denote HAP to be an optimal solver, i.e.,
re = HAP (D,AIC,LS). Then, we have the following theorem.

Theorem Given a layer set D, a sub-accelerator set AIC, and
design specs on latency LS and energy ES, the design specs can be
met if and only if re = HAP (D,AIC,LS) ≤ ES.

The above theorem can be proved using contradiction. Due to the
space limitation, the detailed proof is omitted. Based on this theorem,
we can obtain latency rl and energy re by the solver HAP , which can
be instantiated by Integer-Linear Programming (ILP) for the optimal
solution; however, since ILP is time-consuming, this paper applies a
heuristic approach in [19] to accelerate the search process. On top
of the obtained hardware metrics and the given design specs, we
formulate a penalty function. Penalty is determined in terms of the
degree that the solution beyond the design specs, and no penalty if
all design specs are met, which is formulated as follows:

P =
max(rl − LS, 0)

(bl − LS) +
max(re− ES, 0)

(be− ES) +
max(ra−AS, 0)

(ba−AS)
(3)

where bl, be, ba is the upper bound for each metric, which can be
obtained by exploring the hardware design space using the neural
architecture identified by NAS, as the circles in Fig. 1.

Finally, based on all the above evaluation results, we calculate the
reward with a scaling variable ρ, listed as follows:

R(D,P) = weighted(D)− ρ× P (4)

V. EXPERIMENTAL EVALUATION

We evaluate the efficacy of the proposed framework, ASICNAS,
using different application workloads and hardware configurations.
Results reported in this section demonstrate that ASICNAS can
efficiently identify accurate neural architectures together with AISC
accelerator designs that are guaranteed to meet the given design specs,
while achieving high accuracy for multiple AI tasks.
A. Evaluation Environment
Application workloads: We use typical workloads on AR glasses to
demonstrate the efficacy of ASICNAS. In these workloads, the core
tasks involve classification and segmentation, where representative
datasets such as CIFAR-10, STL-10, and Nuclei are commonly
employed, along with light-weight neural architectures. We synthesize
the following three workloads.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:29:31 UTC from IEEE Xplore. Restrictions apply.

CIFAR-10(1): 93.23%

CIFAR-10(2): 91.11%

CIFAR-10: 92.62%

STL-10: 75.72%

89.76% / 72.86%

CIFAR-10: 92.85%

Nuclei (IOU): 0.8374

Design Specifications Explored Solutions by ASICNAS Best Solutions by ASICNASLower bounds by the smallest architectures

clo
se

 to
 la

ten
cy

 bound

close to
energy bound

(cycles)

(n
J)

(m
m

2
)

(m
m

2
)

(m
m

2
)

(n
J)(n

J)

(cycles)

(cycles)

CIFAR-10: 78.93%

Nuclei (IOU): 0.642
CIFAR-10: 78.93%

CIFAR-10: 78.93%

STL-10: 71.57%

Figure 6: Exploration results obtained by ASICNAS for three different workloads under design specs: (left) W1 with CIFAR-10 and STL-10
datasets; (middle) W2 with CIFAR-10 and Nuclei; (right) W3 with CIFAR-10 dataset. (Best viewed in color)

• W1: Tasks on one classification dataset (CIFAR-10) and one
segmentation dataset (Nuclei).

• W2: Tasks on two classification datasets (CIFAR-10, STL-10).
• W3: Tasks on the same classification dataset (CIFAR-10).

The backbone architectures and search space for above tasks are
defined as follows. For classification tasks, we select ResNet9 [12],
which contains multiple residual blocks, as architecture backbone.
During NAS, the number of convolution layer and the number of filter
channels for each residual block are searched and then determined. For
CIFAR-10, we employ 3 residual blocks, and parameter options for
each block are depicted in Fig. 1(a); while for STL-10, considering its
input images have higher resolution (i.e., 96× 96 pixels), we deepen
network to 5 residual blocks, and increase the maximum number
of convolution layers in each residual block to 3 and the maximum
number of filter channel to 512 for each block. For segmentation
tasks, we use U-Net [16] as architecture backbone. Search space for
this backbone architecture includes the number of height and filter
channel in each layer, as shown in Fig. 1. Note that we follow the
standard NAS [1] to hold out a part of data from training images to
be the validation set, and the training parameters (e.g., batch size,
learning rate, and etc.) follow ResNet9 [12] and U-Net [16].
Hardware configuration: Accelerator design includes hardware
resource allocation to sub-accelerators, and dataflow selection for each
sub-accelerator. For resource allocation, we set the maximum number
of PEs as 4096 and the maximum NoC bandwidth as 64GB/s, in
accordance to [14]. Note that, ASICNAS can support arbitrary number
of sub-accelerators; for simple demonstration, we make a case study by
integrating two sub-accelerators. Specifically, each sub-accelerator uses
one of the following dataflows: Shidiannao (abbr. shi) [10], NVDLA
(abbr. dla) [11], and row-stationary [8] style. In the case where one
sub-accelerator has no resource allocation, the design degenerates to a
single large accelerator; for another one, sub-accelerators have exactly
the same allocation to degenerate homogeneous accelerators.

Hardware constraints on latency, energy and area will be set by
designers (users), according to their own use cases. To evaluate
the effectiveness of ASICNAS, we set distinct and strict design
specs, including Latency (cycles), Energy (nJ), Area (µm2), for
each application workload as follows: 〈8e5, 2e9, 4e9〉 for W1;
〈1e6, 3.5e9, 4e9〉 for W2; 〈4e5, 1e9, 4e9〉 for W3.
ASICNAS setting: For exploration parameters, we set β = 500
and φ = 10, indicating that we explore the search space for 500
episodes and explore 10 accelerator designs in each episode. For
reward calculation parameters, we set α1 = α2 = 0.5 to calculate
the weighted accuracy, and ρ = 10. Controller RNN is trained using
RMSProp optimization, with the initial learning rate of 0.99 and

exponential decay of 0.5 for 50 steps. All experiments are conducted
on a server with a 48-thread Intel Xeon CPU and one P100 GPU.
ASICNAS only takes 3.5 GPU Hours to complete the exploration for
each workload, which mainly benefits from the early pruning from
optimizer selector component in ASICNAS (See Section IV ­).
B. Design Space Exploration

Fig. 6 demonstrates the exploration results of ASICNAS on three
application workloads. In this figure, the x-axis, y-axis, and z-axis
represent latency, energy and area, respectively. The black diamond
indicates the design specs (upper bound); each green diamond is a
solution (neural architecture-ASIC design pair) explored by ASICNAS;
each blue cross is a solution based on the smallest neural network in
the search space combined with different ASIC designs (lower bound);
and the red star refers to the best solution in terms of the average
accuracy explored by ASICNAS. The numbers in the rectangles with
blue, green, and red colors represent the accuracy of the smallest
network, the inferior solutions, and our best solutions, respectively.

We have several observations from Fig. 6. First, ASICNAS can
guarantee that all the explored solutions meet design specs. Second, the
identified solutions have high accuracy. The accuracy on CIFAR-10 for
the four solutions are 92.85%, 92.62%, 93.23%, and 91.11%, while the
accuracy lower bounds from the smallest network is 78.93%. Similarly,
for STL-10, the accuracy is 75.72% compared with the lower bound
of 71.57%. For Nuclei, the IOU (Intersection Over Union) is 0.8374
compared with the lower bound of 0.6462. Third, we observe that
the best solutions of W1 and W3 identified by ASICNAS are quite
close to the boundary defined by one of the three design specs, which
indicates that in these cases the accuracy is bounded by resources. For
W1, the energy of the identified solution is 97.12% of the spec; while
for W3, the latency of the identified solution is 93.4%. This gives
designers insights on if/where hardware bottleneck is that prevents
the accelerator from getting higher accuracy, and thus they can loose
such constraint to increase accuracy if necessary. On the other hand,
for W2 (middle of Fig. 6), our best solution is farther away from the
specs compared with solution S pointed out by the arrow (S is one
of the explored solutions by ASICNAS). However, the accuracy of
S for CIFAR-10 and STL-10 are 2.86% and 2.91% lower than the
best solution. This reflects that the best solution may not always be
the one closest to the specs, and therefore, heuristics that select the
solution that is closest to the specs cannot work.
C. Results on Multiple Tasks for Multiple Datasets

Table I reports the comparison results on multi-dataset workloads.
We implement two additional approaches. 1) “NAS→ASIC” indicates
successive NAS [1] and brute-force hardware exploration. 2) in
“ASIC→HW-NAS”, a Monte Carlo search with 10,000 runs will

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:29:31 UTC from IEEE Xplore. Restrictions apply.

Table I: Comparison between successive NAS and ASIC design
(NAS→ASIC), ASIC design followed by hardware-aware NAS
(ASIC→HW-NAS), and ASICNAS.

Work. Approach Hardware Dataset Accuracy L /cycles E /nJ A /µm2

W1

NAS→ASIC 〈dla, 2112, 48〉
〈shi, 1984, 16〉

CIFAR-10 94.17% 9.45e5 3.56e9 4.71e9
Nuclei 83.94% × × ×

ASIC→ 〈dla, 1088, 24〉
〈shi, 2368, 40〉

CIFAR-10 91.98% 5.8e5 1.94e9 3.82e9
HW-NAS Nuclei 83.72% X X X

ASICNAS 〈dla, 576, 56〉
〈shi, 1792, 8〉

CIFAR-10 92.85% 7.77e5 1.43e9 2.03e9
Nuclei 83.74% X X X

W2

NAS→ASIC 〈dla, 2368, 56〉
〈shi, 1728, 8〉

CIFAR-10 94.17% 9.31e5 3.55e9 4.83e9
STL-10 76.50% X × ×

ASIC→ 〈dla, 2112, 24〉
〈shi, 1536, 40〉

CIFAR-10 92.53% 9.69e5 2.90e9 3.86e9
HW-NAS STL-10 72.07.% X X X

ASICNAS 〈dla, 2112, 40〉
〈shi, 1184, 24〉

CIFAR-10 92.62% 6.48e5 2.50e9 3.34e9
STL-10 75.72% X X X

×: violate design specs; X : meet design specs.

first be conducted to obtain the ASIC design closest to the design
specs. Then, for that specific ASIC design, we extend hardware-aware
NAS [20] to identify the best neural architecture under design specs.

Results in Table I demonstrate that for the neural architectures
identified by NAS, none of the accelerator designs explored by the
brute-force approach can provide a legal solution that satisfies all
design specs. On the contrary, for both workloads, ASICNAS can
guarantee the solutions to meet all specs with accuracy loss less than
1.6%. For workload W1, ASICNAS achieves 17.77%, 2.49×, and
2.32× reduction on latency, energy, and area, respectively, against
NAS→ASIC. For workload W2, the reduction numbers are 30.39%,
29.58%, and 30.85%. When comparing ASICNAS with ASIC→HW-
NAS, even though the solution of the latter is closer to the design
specs, for W1 ASICNAS achieves 0.87% higher accuracy for CIFAR10
and similar accuracy for Nuclei; for W2 3.65% higher accuracy for
STL-10 and similar accuracy for CIFAR-10.

All the above results have revealed the necessity and underscored
the importance of co-exploring neural architectures and ASIC designs.
D. From Single and Homogeneous to Heterogeneous ASIC Accelerator

The benefits of heterogeneous accelerators under heterogeneous
workloads are evident. Table II reports the comparison results of
different accelerator configurations under the homogeneous workload
CIFAR-10 (W3). In these approaches, “NAS” explores neural archi-
tectures without hardware awareness and the corresponding ASIC
applies the maximum hardware resource; “Single Acc.”, “Homo. Acc.”,
“Hetero. Acc” are ASICNAS with single accelerator design, two
homogeneous sub-acclerators, and two heterogeneous sub-accelerators.
Kindly note that, as discussed in Section V-A, ASICNAS can support
the exploration of a single accelerator. We set hardware configurations
as follows to guarantee single and homongeneous solutions to meet
design specs. For Single Acc., the network will be sequentially
executed twice, which indicates that the constraint on latency and
energy should be halved. For Homo. Acc., two homogeneous sub-
accelerators will run a same network simultaneously, which indicates
that the energy and area for each accelerator should be halved.

From the results in Table II, we observe that although NAS can
successfully identify the neural architectures with the highest accuracy
(94.17%), they cannot satisfy the specs even though all hardware
resources are used. In comparison, Single Acc. identifies a relatively
smaller neural architecture with less hardware resource, but can meet
the specs with the accuracy of 91.45%. Without exploring parallelism,
Single Acc. cannot further improve accuracy since it is bounded
by latency. After boosting performance, Homo. Acc. identifies the
neural architecture with 92.00% accuracy. Exploring the heterogeneous

Table II: On CIFAR-10 (W3), comparison results of architectures and
accelerator designs obtained by different accelerator configurations.

Approach Hardware Architecture Accuracy Sat.

NAS 〈dla, 4096, 64〉 〈32, 128, 2, 256, 2, 256, 2〉 94.17% ×
Single Acc. 〈dla, 3104, 24〉 〈8, 32, 2, 128, 1, 256, 1〉 91.45% X

Homo. Acc. 2× 〈dla, 1408, 32〉 2× 〈32, 32, 1, 128, 1, 256, 1〉 92.00% X

Hetero. Acc. 〈dla, 1760, 56〉
〈shi, 1152, 8〉

〈8, 64, 2, 256, 2, 256, 2〉 93.23%
X

(ASICNAS) 〈8, 32, 2, 128, 2, 128, 1〉 91.11%

〈FN0, FN1, Sk1, FN2, Sk2, FN3, SK3〉: For the ith block, FNi is filter
numbers, SKi is skip layer numbers. Block 0 is a standard conv instead of residual.

accelerators by ASICNAS, two distinct networks can be generated:
one is with accuracy of 93.23%, close to the best result identified by
NAS; and the other one with slightly lower accuracy of 91.11% is
comparable with that of Single Acc.. This solution will be useful in
Ensemble learning [21], and can provide more choices for designers.

VI. CONCLUSION

In this work, we have proposed a framework, namely ASICNAS, to
co-explore neural architectures and ASIC accelerator designs targeting
multiple AI tasks on edges devices. ASICNAS has filled the missing
link between NAS and ASIC by creating an accelerator template set
in terms of the dataflow style. In addition, a novel multi-task oriented
RNN controller has been developed to simultaneously determine
multiple neural architectures under a unified design spec. The efficacy
of ASICNAS is verified through a set of comprehensive experiments.

ACKNOWLEDGEMENT

This work is partially supported by National Science Foundation
(NSF) under grants CNS-1822099, SPX-1919167, and OAC-1909900.

REFERENCES

[1] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
In Proc. of ICLR, 2017.

[2] Hanxiao Liu et al. Darts: Differentiable architecture search. In Proc. of ICLR,
2019.

[3] Hieu Pham et al. Efficient neural architecture search via parameter sharing. In
Proc. of ICML, pages 4092–4101, 2018.

[4] Bichen Wu et al. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In Proc. of CVPR, pages 10734–10742, 2019.

[5] Han Cai et al. Proxylessnas: Direct neural architecture search on target task and
hardware. In Proc. of ICLR, 2019.

[6] Weiwen Jiang et al. Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search. In Proc. of DAC, 2019.

[7] Cong Hao et al. Fpga/dnn co-design: An efficient design methodology for iot
intelligence on the edge. In Proc. of DAC, 2019.

[8] Yu-Hsin Chen et al. Eyeriss: A spatial architecture for energy-efficient dataflow
for convolutional neural networks. In Proc. of ISCA, pages 367–379, 2016.

[9] Angshuman Parashar et al. Scnn: An accelerator for compressed-sparse convolu-
tional neural networks. In Proc. of ISCA, pages 27–40, 2017.

[10] Zidong Du et al. Shidiannao: Shifting vision processing closer to the sensor. In
Proc. of ISCA, pages 92–104, 2015.

[11] NVIDIA. Nvdla deep learning accelerator. http:// nvdla.org, 2017.
[12] Chuan Li. https://lambdalabs.com/blog/resnet9-train-to-94-cifar10-accuracy-in-100-

seconds. 2019. Accessed: 2019-11-24.
[13] Michael Abrash. https://www.oculus.com/blog/inventing-the-future/. 2019. Ac-

cessed: 2019-11-26.
[14] Hyoukjun Kwon et al. Herald: Optimizing heterogeneous dnn accelerators for edge

devices. arXiv preprint arXiv:1909.07437, 2019.
[15] Hyoukjun Kwon et al. Understanding reuse, performance, and hardware cost of

dnn dataflow: A data-centric approach. In Proc. of MICRO, pages 754–768, 2019.
[16] Olaf Ronneberger et al. U-net: Convolutional networks for biomedical image

segmentation. In Proc. of MICCAI, pages 234–241, 2015.
[17] Ronald J Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
[18] K. Ito et al. Ilp-based cost-optimal dsp synthesis with module selection and data

format conversion. IEEE Trans. TVLSI, 6(4):582–594, 1998.
[19] Zili Shao et al. Efficient assignment and scheduling for heterogeneous dsp systems.

IEEE Trans. TPDS, 16(6):516–525, 2005.
[20] Mingxing an et al. Mnasnet: Platform-aware neural architecture search for mobile.

In Proc. of CVPR, pages 2820–2828, 2019.
[21] Michael P Perrone and Leon N Cooper. When networks disagree: Ensemble

methods for hybrid neural networks. Technical report, 1992.

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:29:31 UTC from IEEE Xplore. Restrictions apply.

