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Abstract— Hardware-aware Neural Architecture Search
(NAS), which automatically finds an architecture that works best
on a given hardware design, has prevailed in response to the
ever-growing demand for real-time Artificial Intelligence (AI).
However, in many situations, the underlying hardware is not
pre-determined. We argue that simply assuming an arbitrary
yet fixed hardware design will lead to inferior solutions, and it is
best to co-explore neural architecture space and hardware design
space for the best pair of neural architecture and hardware
design. To demonstrate this, we employ Network-on-Chip (NoC)
as the infrastructure and propose a novel framework, namely
NANDS, to co-explore NAS space and NoC Design Search (NDS)
space with the objective to maximize accuracy and throughput.
Since two metrics are tightly coupled, we develop a multi-phase
manager to guide NANDS to gradually converge to solutions
with the best accuracy-throughput tradeoff. On top of it, we
propose techniques to detect and alleviate timing performance
bottleneck, which allows better and more efficient exploration of
NDS space. Experimental results on common datasets, CIFAR-
10, CIFAR-100 and STL-10, show that compared with state-
of-the-art hardware-aware NAS, NANDS can achieve 42.99%
higher throughput along with 1.58% accuracy improvement.
There are cases where hardware-aware NAS cannot find any
feasible solutions while NANDS can.

1. INTRODUCTION

Neural Architecture Search (NAS) has been proposed to
automatically generate neural networks for a machine learning
task [1-6]. By achieving competitive or even better accuracy
against human-invented solutions, it successfully breaks down
the expertise barrier and widens the use of neural networks.
Most recently, targeting a fixed hardware platform, hardware-
aware NAS has been proposed to respond to the rapid increase
of real-time AI, where the timing constraint is considered in
addition to NAS exploration, as shown in Figure 1(a).

On the other hand, an observation is that the architectures
automatically found by NAS are more irregular and compli-
cated than human-invented ones. For instance, there usually
exist a lot of skip connections between layers, which incurs a
large amount of data movement. Coupled with high throughput
and low latency requirement in real-time Al [7-12], it renders
a system with a single processing element hard to satisfy
the timing specifications. Network-on-Chip (NoC), which pro-
vides highly parallel computation and high-bandwidth on-
chip communication, has been explored to accelerate neural
architectures [13, 14]. Recently, Xilinx has released Versal
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Fig. 1. Comparison of (a) hardware-aware NAS with an arbitrary yet fixed
hardware design; (b) proposed NANDS in this work.

Platform [15], which employs NoC to connect processing
system (PS), Al Engines accelerators, and programmable logic
(PL).

The high design flexibility in NoC, however, brings about
a challenge for HW-aware NAS, which needs a fixed NoC
design to serve as the target hardware. This in turn requires
everything in Noc Design Search (NDS) space to be pre-
determined, including partition architectures, mapping par-
titions, and routing on NoC. However, all these cannot be
optimally decided until the neural architecture is known after
performing HW-aware NAS. To cope with it, a straightforward
way is to assume an arbitrary yet fixed NoC design as
the target platform to explore NAS space; however, it will
apparently result in inferior solutions due to the huge number
of candidates in NDS space.

In this work, we propose to co-explore NAS space and
NDS space through a novel framework, namely NANDS, as
illustrated in Figure 1(b). It aims to identify the best neural
architecture and the NoC design, such that the accuracy can be
maximized while the system throughput can satisfy the real-
time constraint. Specifically, we use a reinforcement learning-
based NAS controller [1, 6] as the backbone to explore
NAS space. We then integrate it with a multi-phase manager,
which guides the exploration by changing the weights between
accuracy and throughput in the objective of each phase for en-
hanced efficiency. We explore NDS space by applying efficient
NoC design methodologies for task partition, mapping and
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Fig. 2. Timing performance of a neural network by NAS [1].

routing. In addition, we formulate a timing performance model
to capture the throughput of NoC design, based on which we
develop techniques to detect and alleviate the performance
bottleneck.

The main contributions of this work are:

1) We propose NANDS, a framework that opens up freedom
to co-explore NDS and NAS. To the best of the authors’
knowledge, this is the first work that explores NoC and
neural architecture co-design.

We devise a multi-phase manager to guide exploration to
gradually converge to solutions with the best accuracy-
throughput tradeoff.

We propose bottleneck detection and alleviation tech-
niques to better explore NDS space for higher timing
performance.

2)

3)

Evaluation results on common datasets, including CIFAR-
10, CIFAR-100 and STL-10, show that the proposed co-
exploration framework can significantly outperform the state-
of-the-art HW-aware NAS. Specifically, NANDS can achieve
an average of 42.99% higher throughput together with 1.58%
accuracy improvement on STL-10, compared with HW-aware
NAS. In addition, there exist cases where HW-aware NAS
cannot find any feasible solutions, while NANDS can due to
the adequate exploration of the large NDS space.

II. MOTIVATION

This section will show the motivations of (1) employing
NoC as the infrastructure for the neural architectures identified
by NAS, and (2) co-exploring NAS space and NDS space.
A. NoC infrastructure for NAS implementation

The architectures automatically explored by NAS have more
irregular and complicated structures than the human-invented
ones. For instance, as shown in Figure 2(a), for the neural
network with 15 layers obtained by NAS in [1], we observe
that the generated architecture (1) contains up to 8 different
types of kernels leading the use of a uniform design to be
inefficient; (2) involves a lot of skip connections between
layers resulting in a large amount of data movement. These
coupled with the high throughput and low latency requirement
in real-time Al [8, 9] render a system with a single processing
element (e.g., a single FPGA) hard to satisfy timing spec-
ifications. NoC, which provides highly parallel computation
and efficient on-chip communication, is a promising platform
to address these challenges. This can be observed from the
results in Figure 2(b), where the timing performance of the
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Fig. 3. Comparison results of HW-aware NAS and the proposed NANDS.

neural network on 2-D Mesh NoC (6.2ms) outperforms that
on single-PE (12.4ms) and bus-based (14.7ms) platforms by
2x and 2.37x.

B. Co-Exploration outperforms SOTA HW-aware NAS
NAS techniques with mono-objective of accuracy can easily
become useless in scenario with tight timing constraints. To
address this problem, state-of-the-art (SOTA) NAS framework
considers timing performance of the explored architectures on
fixed hardware in NAS process (HW-aware NAS). It can find a
simpler architecture for better timing performance. Targeting
on a 2 x 2 NoC with fixed hardware configuration by X-Y
routing in Figure 3(b), HW-aware NAS can identify a simpler
architecture in Figure 3(a) with only 0.32% accuracy loss.
As a result, the latency is reduced from 6.2ms to 5.1ms (by
17.07%) as shown in Figure 3(c). The proposed co-exploration
approach NANDS can further improve timing performance by
opening freedom to jointly explore NAS and NDS spaces. As
shown in Figure 3(d)(e), NANDS can identify a better NoC
design (with customized routing) to further reduce the latency
to 3.5ms.

III. NANDS FRAMEWORK AND IMPLEMENTATION

In this section, we will present NANDS, a multi-phase
framework to identify the best pair of neural architecture and
NoC design, such that the accuracy of machine learning tasks
can be maximized while achieving real-time performance.
A. Problem Definition and Design Principles

We aim to co-explore NAS space and NDS space to find
neural architecture and NoC design pairs with the maximized
accuracy and efficiency. Formally, given a specific dataset
and a NoC platform, the problem is how to automatically
and efficiently generate a pair of neural architecture and NoC
design, such that both the accuracy for machine learning task
on the given dataset and the inference throughput on NoC can
be maximized. The neural architecture is represented by a set
of hyperparameters, including the number of channels, kernel
size, strides, etc.; while the NoC design needs to determine
the partitioning, mapping and routing. The above problem is
a bi-criteria optimization problem. In this paper, we focus on
maximizing accuracy with a throughput constraint. However,
the proposed techniques can be applied for the counterpart
problem to maximize throughput with an accuracy constraint.

To achieve the above goal, we highlight three principles:
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Fig. 4. An overview of two exploration loops in NANDS.

P1. Accelerate the search process by improving the efficiency
of NDS exploration. In NAS, the long training time will
limit its implementation. When it comes to co-exploration,
if NDS exploration can be conducted efficiently, it enables us
to immediately terminate the training process once it detects
that the architecture cannot satisfy the timing constraint.

‘P2. Balance the computation workload and network traffic to
avoid performance bottleneck. Unlike the existing approaches
targeting on a uniprocessor system, when it comes to NoC,
system throughput cannot be optimized by independently
maximizing computation efficiency on processors; moreover,
the computation workload and network traffic should be well
balanced.

‘P3. Minimize contention of inter-processor data transmission
on NoCs. Architectures explored by NAS have complicated
dependencies and irregular structures. Directly applying them
on NoC with a deterministic routing strategy (e.g., X-Y) may
cause a large number of NoC contentions, which will further
become timing performance bottleneck. To achieve the maxi-
mum throughput, we aim to minimize network congestion.

We will first present NANDS, and then introduce the detail
implementations which follows the above design principles.
B. NANDS Framework

We propose a multi-phase framework, namely NANDS, to
jointly explore NAS space and NDS space. As illustrated in
Figure 4, NANDS contains two explorations loops, which
further involve four components: NAS Explorer, NDS Ex-
plorer, NAS Evaluator, and NDS Evaluator. Two evaluators
are designed to assist the explorers: (1) NAS Evaluator takes a
neural architecture from NAS Explorer as input, and generates
architecture accuracy; (2) NDS Evaluator takes a hardware
implementation from NDS Explorer as input, and generates
system throughput. Results from two evaluators will be feed-
back to NAS Explorer to generate neural architectures, called
child networks. Then, NDS Explorer takes child network
as input to generate its tailored hardware implementation.
Overall, the above processes follow two exploration loops,
Loop I and II.

Loop I: neural architecture search. NAS Evaluator will train
the child networks generated by NAS Explorer, and verify
their accuracy. The accuracy will be the reward “R4” and
sent back to NAS Explorer to update hyperparameters.

Loop II: automatic hardware design. NDS Evaluator tests
the throughput of the resultant implementation from NDS
Explorer. The throughput will be another reward “Rz” and
sent back to NAS Explorer to update hyperparameters.

Next, a matched management is required to control the
action flow in NANDS, that is, determining which loops to
take effect in the exploration. In this paper, we first figure out
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three possible exploration patterns, based on which we propose
a multi-phase management strategy to switch patterns.
Pattern 1: Pure NAS. We only conduct Loop I. NAS Explorer
will only receive the reward from NAS Evaluator for updating
hyperparameters. This pattern is time-consuming since NAS
Evaluator needs to train child networks from scratch.
Pattern 2: Pure NDS. We only perform Loop II. NAS Explorer
updates hyperparameters only based on the reward from NDS
Evaluator. Benefiting from the avoidance of training child
networks and the efficiency of evaluating system throughput,
this pattern will be much faster than Pattern 1.
Pattern 3: Co-Exploration. We co-explore two search spaces
and update NAS Explorer by the rewards from both NAS and
NDS Evaluators. Since two exploration loops are conducted
simultaneously, we can prune the invalid child networks (in
terms of throughput) at the early stage, and terminate their
training process. Hence, this pattern is faster than Pattern 1.
Based on three patterns, we present a management strategy
to switch patterns in NANDS. Pattern switch is analog to
determine which kind of reward (from NAS Evaluator R4
and/or NDS Evaluator Rr) to be used in calculating reward
fﬁfl{or NAS Explorer. Specifically, reward can be calculated as
ollows:

R=axRa+(1—a)xRr (1)

where « is a regulate variable. It is clear that (1) a = 1 stands
for Pattern 1; (2) while a = 0 stands for Pattern 2; otherwise,
(3) 0 < «a < 1 stands for Pattern 3.

Based on the regulator, we manage the exploration in multi-
phase control flow. We adjust o by a predefined function like
adjusting learning rate. Let IV be the total number of iterations
that NANDS will explore. First, when iteration I < - N (§
is a regulated variable, as well as vy in the following text), we
aim to improve accuracy, and initialize o as a small number
(e.g., 0.9). Then, when I > - N and I <~ - N, we decrease
« to around 0.5. Third, we set a = 0 to explore the best
throughput. Note that we do not use Pattern I (o = 1) since
it is the slowest one and cannot guarantee hardware efficiency.
C. NANDS Implementation

Figure 5 reveals the details of Explorers in Figure 4, which
contains three main components. In NAS Explorer, @ “NAS
Controller” is responsible for taking rewards from evaluators
to predict hyperparameters to generate child networks. In
NDS Explorer, @ “NoC Design” is to generate hardware
design (including partition, mapping and routing) for the
input network on the given NoC. ® “Bottleneck Detection
and Alleviation ” in NDS Explorer is designed to maximize
throughput of NoC.

© NAS Controller. As shown on the left part of Figure 5,
NAS controller will explore NAS space to identify new child
networks. In this paper, we implement NAS controller based
on reinforcement learning approach. RNN is employed to
predict the hyperparameters, and the weights of RNN will be
updated based on the reinforcement learning using the rewards
from evaluators. Unlike the implementation in [1] with mono-
criteria (accuracy), NAS controller in NANDS will take both
accuracy and throughput to update RNN. Specifically, we
employ Formula 1 to generate reward. Not limited to rein-
forcement learning-based controllers, our framework can also
support other approaches, such as evolutionary algorithms.
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Fig. 5. An overview of the implementation of NANDS framework.

® NoC Design. Followed by P1-P3, child network will
be deployed to NoC in three steps: (1) partition a child
network to balance computation, (2) map each partition to
a processing element in NoC, (3) determine routing path for
data transmission according to data dependency among layers.

The fundamental of computation balanced partition is a
multi-way graph partition problem [16]. We apply the algo-
rithm proposed in [16] to get the partitions in time complexity
of O(|E|). Then, the partitions will be assigned to processors
on NoCs by Dominant Sequence Clustering (DSC) approach
[17] with time complexity of O(| E|log|E|). On top of that, we
employ X-Y routing algorithm to construct the routing path
for a pair of partitions having data dependency. We simply
employ above techniques in the implementation, while our
presented framework is applicable for any partition, mapping,
and routing algorithms.

© Bottleneck Detection and Alleviation. In the imple-
mentation of NANDS framework, we take a further step to
detect the bottleneck of system throughput, and then alleviate
it by re-partition and re-routing, to maximize the throughput.

Bottleneck Detection. After NoC design, network layers are
partitioned and assigned onto NoC. Data transmission paths
are built by X-Y routing. Based on the network structure, we
can obtain the volume of data between a pair of partitions, and
then calculate the accumulate latency on each link (using the
bandwidth divided by the sum of data on link), denoted as L;j,
for link k. Then, in terms of hardware properties (e.g., DSPs,
bandwidth for FPGA-based processing element) in NoC, we

can obtain computation latency [18], denoted as L, for pe.

NoC is performed in a pipelined fashion, the overall system
throughput is determined by the slowest computation or com-
munication (as shown in Figure 3). Let LINK and PFE be a
set of links and processing elements in NoC, respectively, and
BIT;, be the total bits in one input image. Throughput TP
is defined as the number of bits of input can be processed in
second (bit per second, bps) calculated by:

BIT;

TP
max{maxpecpr (Lpe), maxikerink (Lik)}

@)

Based on the above performance model, we identify three
kinds of throughput bottlenecks in a NoC system.

Given an NoC, a neural architecture, a NoC design, there
are three kinds of throughput (TP) bottlenecks:
BI: TP is determined by a processing element;
B2: TP is determined by a NoC link, and the link is occupied
by only one data transmission path;
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B3: TP is determined by a NoC link, where there are multiple
routing paths will go through.

Based on Formula 2 and Corollary III, we can easily detect
B1. Besides, we can classify B2 and B3 by analyzing the
number of routing paths that cover the identified NoC link.

Bottleneck Alleviation. After detection, we propose Re-
partition and Re-routing techniques to resolve all kinds of
performance bottlenecks as presented in Algorithm 1.

Algorithm 1 Bottleneck Alleviation
Input: (1) NoC with PE and LIN K, (2) TP, (3) Bottleneck type, (4) latency
function L, (5) partition P, (6) mapping M: p to pe, (7) routine path R.
Output: A NoC design.
1: if Bottleneck is B1, and TP is determined by pey,:

2: Get partition p;, s.t., M(p;) = peg;

3: if p; has only 1 layer:

4: Cannot remove the bottleneck and terminate;

S: else if NoC has available processing element:

6: Partition p; — p;1 + pi2 to minimize their max latency;

7: else:

8: Find p;’s neighbor pj, with the minimum latency;

9: Move layers in p; to pj, to minimize maz(Las(p,)s Lar(p,))s
10: else if Bottleneck is B2, and the only routing path is pe; — pe;:

Merge partitions on pe; and pe; to hide communication;

. else if Bottleneck is B3, and the link is [k:
13: Obtain pe; — pe; passing [k with the maximum data volume;
14: Re-routing pe; — pe; to detour at lk;

Re-partition is developed to solve Bl and B2. For BI,
the performance is dominated by the critical PE (with the
maximum latency), which indicates that the corresponding
partition is too large. We reduce the computation load by re-
partitioning the involved layers (Line 1-9). For B2, there is
only one routing path through the critical link, where inter-
PE communication dominates the throughput. We merge cor-
responding partitions to avoid network communication (Line
10-11).

Re-routing will be employed to solve B3. Among multiple
routing paths go through the critical link lk, we identify one
with the maximum data volume (Line 12-14). We re-route this
path by detouring packets when arriving at (k. On 2-D Mesh
NoC, there are two squares contains [k, we select the one
has less traffic for detouring, where the detoured path will go
through other three links in the selected square except k.

Finally, if performance cannot be improved by Algorithm 1,
we will terminate alleviation process and directly employ the
previous design. Otherwise, we iteratively conduct Algorithm
1 until it reaches line 4 or a preset iteration upper bound.

IV. EXPERIMENT

This section will report the experimental results on evalu-
ating the efficiency of the proposed NANDS framework.
A. Experiment Setup
Datasets: Three image classification datasets are employed
(CIFAR-10, CIFAR-100, and STL-10) to verify the efficacy of
NANDS. During the search process, we only use the training
images, and randomly select 10% of them to build a validated
set. Test images are used to test accuracy of the resultant archi-
tectures. All images undergo the data augmentation, including
upsampling, random cropping and random horizontal flip.
NAS Space: We use ResNet as the backbone to search
network architectures. Search space is determined by three
decision variables: R, N and C, the number of residual layers,
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Fig. 6. Pareto frontiers of accuracy-throughput tradeoffs captured by NANDS
on CIFAR-10 can be significantly pushed forward with increasing NoC size.

convolutional layers in one residual layer, and channels in
each convolutional layer, respectively. We set different search
ranges of decision variables in terms of datasets. For CIFAR-
10, we explore R in range [4,5], N in range [0, 2], and C in
set {32,064, 128, 256}. For CIFAR-100, we explore R in range
[4,5], N in range [0, 2], and C in set {64, 128,192, 256,512}.
For STL-10, we explore R in range [5,6], N in range
[0,3], and C in set {96,128,192,256,512}. We explore a
larger network for STL-10, because the size of the images
in STL-10 is larger (96 x 96 x 3 pixels) than that of CIFAR-
10/100 (32 x 32 x 3 pixels). To train child networks, we set
training parameters (e.g., learning rate, epoch) based on that
in ResNet9 [19].
NDS Space: According to the size of neural networks, we
employ 2 x 2 and 3 x 3 2-D Mesh NoCs. Experiments will
be also conducted in the system with one PE for comparison.
For target platforms, we adopt Zynq UltraScale XCZU9EG as
PEs, which contains 2520 DSPs, and communication among
FPGAs are carried out by Aurora IP core provided by Xilinx,
which provides a bandwidth of 10 Gb/s between PEs. Acceler-
ator design on each PE follows [18]. Finally, we employ roof-
line model to obtain computation and communication latency.
B. Comparison results
Scalability on NoC Sizes: Figure 6 compares the Pareto
frontiers on accuracy-throughput tradeoff obtained by NANDS
with three sizes of NoCs (different types of points) to demon-
strate the scalability. For each platform, we obtain its Pareto
frontiers by connecting the design points that are not inferior
to any others in terms of both throughput and accuracy.
Results in Figure 6 clearly demonstrate that with the
increasing NoC size, Pareto frontiers can be significantly
pushed forward. Compared with single PE based NAS, the
best accuracy can be improved from 88.39% to 90.68%
(2 x 2 NoC) and 93.59% (3 x 3 NoC). In addition, for
solutions with the maximum throughput, the accuracy and
throughput for single PE platform are (88.39%,0.50Gbps),
which are improved to (90.68%,0.72Gbps) for 2 x 2 NoC
and (91.58%, 2.40Gbps) for 3 x 3 NoC. The main reason is
that larger-size NoC provides more computation power, such
that it can accommodate larger neural networks with higher
accuracy to achieve the same or even higher throughput. This
verified the scalability of our proposed approaches. Note that
since 3 X 3 NoC has already provided sufficient hardware for
the target NAS space, there is no need to employ larger NoCs.
In the following texts, we base the experiments on 3 x 3 NoC.
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Fig. 7. Results comparison of the design space exploration.

Design Space Exploration: In this set of experiment, we
compare NANDS framework on CIFAR-10 with the original
NAS framework [1], and the state-of-the-art HW-aware NAS
[20]. Since NAS does not consider hardware, we collect the
explored architectures, and apply the proposed NoC Explorer
(the right part in Figure 5) to obtain throughput. For HW-
aware NAS, it needs a determined hardware design to predict
timing performance. To be fair, we employ the same partition,
mapping and routing algorithms as that in Section III-C @.
We set the throughput lower bound to be 0.5Gbps as the real-
time constraint, indicating that designs with throughput less
than 0.5Gbps are invalid (e.g., the left gray zone in Figure 7).

Figure 7 shows the exploration results, where x-axis and
y-axis represent throughput and accuracy, respectively. The
table in the bottom-right-corner reports the distributions of the
explored child networks by NANDS in terms of throughput.

Comparisons among frameworks. First, NAS cannot guar-
antee timing performance. Although NAS can find solution
with the highest accuracy (94.41%), its throughput is merely
0.22 Gbps, which violates timing requirements and is 4.00x
lower than that of feasible solution from NANDS (e.g.,
the throughput of 0.9 Gbps and accuracy of 93.59%). HW-
aware NAS and NANDS can meet throughput constraint of
0.5Gbps, but for a tighter constraint (e.g., > 1.5Gbps), only
NANDS can provide valid solutions. This is because HW-
aware NAS did not explore hardware design space. Second,
for child networks with the same throughput, NANDS can
achieve better accuracy than NAS and HW-aware NAS. For
solutions with the throughput of 0.82 Gbps, the best accuracy
of NANDS is 93.40%, which is much higher than 88.95%
and 89.95% obtained by NAS and HW-aware NAS. This is
because NANDS can benefit from exploring hardware design
space to accommodate more complicated structures with the
same throughput but higher accuracy.

Insights of multi-phase exploration. From table in Figure
7, we can draw another important conclusion: the proposed
multi-phase scheme can guide controller to make a better
tradeoff between accuracy and throughput. As described in
Section III, we applied a multi-phase exploration by adjusting
a regulation variable o . At the beginning, « is set to 0.9
for higher accuracy. The throughput of most architectures
explored in P1 lies between 0.5 to 1 Gbps. Then, in P2, we
adjust « to 0.5, and throughput of the architectures explored
gradually shift to interval of 1.0 to 1.5 Gbps. Finally, in P3
with o = 0, results mostly reside in high throughput range
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COMPARISON OF THE SEARCH TIME BETWEEN PURE NDS, NAS, HW-AWARE NAS, AND NANDS, ON THREE COMMON DATASETS

Dataset Spec. Models Arch. Pr;)perly Accuracy Throughput ‘ 'Elapsed Tifne
(Gbps) Depth Para. (x10°) MACs (GOP) (%) degr. (Gbps) Sat. impr. (minute) impr.
NAS 9 0.89 0.70 94.41% 0.00% 0.22 X baseline 1115 baseline
HW-Aware NAS 8 0.19 0.05 90.95% -3.46% 0.66 v 2.94x 164 6.80x
CIFAR-10 | 0.50 NANDS (Opt TP) 8 0.20 0.06 91.58%  -2.83% | 2.40 v 10.66%
NANDS (Opt Acc.) 10 0.40 0.21 93.59% -0.82% 0.90 v 4.00 361 309%
NAS 12 1.04 1.02 76.58% 0.00% 0.22 X baseline 1863 baseline
HW-Aware NAS 8 0.19 0.07 71.43% -5.15% 0.28* X 1.25% 246 7.57x
CIFAR-100 | 045 NANDS (Opt TP) 8 0.25 0.15 7222%  -4.36% | 0.90 v 4.00x
NANDS (Opt Acc.) 12 0.63 0.46 75.58% -1.00% 0.45 v 2.00x 594 3.14x
NAS 11 2.95 2.13 76.45% 0.00% 0.45 X baseline 2928 baseline
HW-Aware NAS 12 1.70 0.50 74.25% -2.20% 0.61 v 1.25x 402 7.28%
STL-10 0.6 NANDS (Opt TP) 11 2.02 1.02 75.83%  -0.62% 1.07 v 2.37x
NANDS (Opt Acc.) 13 2.65 145 76.45% 0.00% 0.60 v 1.32% 1059 276X
“#: relax spec., HW-aware NAS cannot guarantee throughput of 0.45Gbps.
above 1.5 Gbps. ACKNOWLEDGEMENT

In conclusion, NANDS can guide controller to made better

tradeoffs between accuracy and efficiency.
Comparisons on Additional Datasets: Table I reports the
experimental results of NANDS and other approaches on three
different datasets, including CIFAR-10, CIFAR-100, and STL-
10. We report solutions by NANDS in the Pareto frontiers
with the maximum throughput (“Opt TP”) and the maximum
accuracy (“OptAcc.”). For NAS [1] and HW-aware NAS [20],
we report the finally identified architectures.

Table I shows the consistent results with that in Figure 7:
NANDS can make the better accuracy-throughput tradeoffs
against state-of-the-art NAS frameworks. Specifically, when
NAS generates solutions beyond the real-time constraint,
NANDS can find valid solutions with little or no accuracy
loss. In addition, NANDS achieves 3.09x, 3.14x, and 2.76x
speedup over NAS, respectively, on three different datasets.
Compared with HW-aware NAS, NANDS takes more time in
searching since HW-aware NAS does not thoroughly explore
the NoC design space, which reduces the quality of results.
On STL-10 datasets, NANDS (Opt TP) can achieve 42.99%
higher throughput and 1.58% improvement on accuracy. In
addition, for CIFAR-100, HW-aware NAS cannot find any
feasible solutions to meet 0.45Gbps throughput bound, but
our proposed NANDS can.

V. CONCLUSION

In this work, we focus on neural architecture and NoC-
based hardware co-design. We propose NANDS framework to
co-explore NAS space and NoC design search (NDS) space,
which can maximize network accuracy and system through-
put. A multi-phase manager is developed to hierarchically
explore NAS and NDS spaces, which can guide NANDS
to gradually converge to solutions with the best accuracy-
throughput tradeoff. On top of it, techniques proposed to detect
and alleviate timing performance bottleneck have effectively
explored NDS to further improve throughput. Experimental
results on CIFAR-10, CIFAR-100 and STL-10 verified the
effectiveness of the proposed approach by achieving 42.99%
higher throughput along with 1.58% higher accuracy than the
state-of-the-art. Besides, there are cases where hardware-aware
NAS cannot find any feasible solutions while NANDS can.

This work is partially supported by National Science Foun-
dation under Grant CCF-1820537 and CNS-1822099, and
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nological University, Singapore, and NSFC 61772094, China,
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