
Co-Exploring Neural Architecture and Network-on-Chip Design for Real-Time
Artificial Intelligence

Lei Yang∗, Weiwen Jiang†, Weichen Liu‡, Edwin H. M. Sha§, Yiyu Shi†, Jingtong Hu∗
∗Department of Electrical and Computer Engineering, University of Pittsburgh, US
†Department of Computer Science and Engineering, University of Notre Dame, US

‡School of Computer Science and Engineering, Nanyang Technological University Singapore, Singapore
§School of Computer Science and Software Engineering, East China Normal University, China

Abstract— Hardware-aware Neural Architecture Search
(NAS), which automatically finds an architecture that works best
on a given hardware design, has prevailed in response to the
ever-growing demand for real-time Artificial Intelligence (AI).
However, in many situations, the underlying hardware is not
pre-determined. We argue that simply assuming an arbitrary
yet fixed hardware design will lead to inferior solutions, and it is
best to co-explore neural architecture space and hardware design
space for the best pair of neural architecture and hardware
design. To demonstrate this, we employ Network-on-Chip (NoC)
as the infrastructure and propose a novel framework, namely
NANDS, to co-explore NAS space and NoC Design Search (NDS)
space with the objective to maximize accuracy and throughput.
Since two metrics are tightly coupled, we develop a multi-phase
manager to guide NANDS to gradually converge to solutions
with the best accuracy-throughput tradeoff. On top of it, we
propose techniques to detect and alleviate timing performance
bottleneck, which allows better and more efficient exploration of
NDS space. Experimental results on common datasets, CIFAR-
10, CIFAR-100 and STL-10, show that compared with state-
of-the-art hardware-aware NAS, NANDS can achieve 42.99%
higher throughput along with 1.58% accuracy improvement.
There are cases where hardware-aware NAS cannot find any
feasible solutions while NANDS can.

I. INTRODUCTION

Neural Architecture Search (NAS) has been proposed to

automatically generate neural networks for a machine learning

task [1–6]. By achieving competitive or even better accuracy

against human-invented solutions, it successfully breaks down

the expertise barrier and widens the use of neural networks.

Most recently, targeting a fixed hardware platform, hardware-

aware NAS has been proposed to respond to the rapid increase

of real-time AI, where the timing constraint is considered in

addition to NAS exploration, as shown in Figure 1(a).

On the other hand, an observation is that the architectures

automatically found by NAS are more irregular and compli-

cated than human-invented ones. For instance, there usually

exist a lot of skip connections between layers, which incurs a

large amount of data movement. Coupled with high throughput

and low latency requirement in real-time AI [7–12], it renders

a system with a single processing element hard to satisfy

the timing specifications. Network-on-Chip (NoC), which pro-

vides highly parallel computation and high-bandwidth on-

chip communication, has been explored to accelerate neural

architectures [13, 14]. Recently, Xilinx has released Versal

∗Lei Yang and Weiwen Jiang make equal contribution.

predict arch

… (a) Hardware-Aware NAS

NN2

Hardware-Aware Module

meet time?
Y

N

accuracy

Arch Search Space

update controller

train

child networkNN1 fixed hardware

time

Hardware Design Space

meet time?

(b) “NAS” Space and “NDS” Space Co-exploration

Arch Search Space

accuracy

train

child network

Design 1

Design 2

…

time

update controller
predict arch

design
hardware

N

Y

…

NN1

NN2

C

C

Design 3

PE

Processing
Element

(e.g. FPGA or
Mobile Phone)

Fig. 1. Comparison of (a) hardware-aware NAS with an arbitrary yet fixed
hardware design; (b) proposed NANDS in this work.

Platform [15], which employs NoC to connect processing

system (PS), AI Engines accelerators, and programmable logic

(PL).

The high design flexibility in NoC, however, brings about

a challenge for HW-aware NAS, which needs a fixed NoC

design to serve as the target hardware. This in turn requires

everything in Noc Design Search (NDS) space to be pre-

determined, including partition architectures, mapping par-

titions, and routing on NoC. However, all these cannot be

optimally decided until the neural architecture is known after

performing HW-aware NAS. To cope with it, a straightforward

way is to assume an arbitrary yet fixed NoC design as

the target platform to explore NAS space; however, it will

apparently result in inferior solutions due to the huge number

of candidates in NDS space.

In this work, we propose to co-explore NAS space and

NDS space through a novel framework, namely NANDS, as

illustrated in Figure 1(b). It aims to identify the best neural

architecture and the NoC design, such that the accuracy can be

maximized while the system throughput can satisfy the real-

time constraint. Specifically, we use a reinforcement learning-

based NAS controller [1, 6] as the backbone to explore

NAS space. We then integrate it with a multi-phase manager,

which guides the exploration by changing the weights between

accuracy and throughput in the objective of each phase for en-

hanced efficiency. We explore NDS space by applying efficient

NoC design methodologies for task partition, mapping and

978-1-7281-4123-7/20/31.00 c©2020IEEE
85

2B-1

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:33:29 UTC from IEEE Xplore. Restrictions apply.

a The neural network architecture found by NAS

b The timing performance of network implementations on different platforms

Fig. 2. Timing performance of a neural network by NAS [1].

routing. In addition, we formulate a timing performance model

to capture the throughput of NoC design, based on which we

develop techniques to detect and alleviate the performance

bottleneck.

The main contributions of this work are:

1) We propose NANDS, a framework that opens up freedom

to co-explore NDS and NAS. To the best of the authors’

knowledge, this is the first work that explores NoC and

neural architecture co-design.

2) We devise a multi-phase manager to guide exploration to

gradually converge to solutions with the best accuracy-

throughput tradeoff.

3) We propose bottleneck detection and alleviation tech-

niques to better explore NDS space for higher timing

performance.

Evaluation results on common datasets, including CIFAR-

10, CIFAR-100 and STL-10, show that the proposed co-

exploration framework can significantly outperform the state-

of-the-art HW-aware NAS. Specifically, NANDS can achieve

an average of 42.99% higher throughput together with 1.58%

accuracy improvement on STL-10, compared with HW-aware

NAS. In addition, there exist cases where HW-aware NAS

cannot find any feasible solutions, while NANDS can due to

the adequate exploration of the large NDS space.

II. MOTIVATION

This section will show the motivations of (1) employing

NoC as the infrastructure for the neural architectures identified

by NAS, and (2) co-exploring NAS space and NDS space.

A. NoC infrastructure for NAS implementation
The architectures automatically explored by NAS have more

irregular and complicated structures than the human-invented

ones. For instance, as shown in Figure 2(a), for the neural

network with 15 layers obtained by NAS in [1], we observe

that the generated architecture (1) contains up to 8 different

types of kernels leading the use of a uniform design to be

inefficient; (2) involves a lot of skip connections between

layers resulting in a large amount of data movement. These

coupled with the high throughput and low latency requirement

in real-time AI [8, 9] render a system with a single processing

element (e.g., a single FPGA) hard to satisfy timing spec-

ifications. NoC, which provides highly parallel computation

and efficient on-chip communication, is a promising platform

to address these challenges. This can be observed from the

results in Figure 2(b), where the timing performance of the

(c) HW-aware NAS

(a) Resulant neural network architectures after considering hardware efficiency

(b) A fixed design
using X-Y routing

(d) Our design with
more flexible routing

0

2.0

4.0

6.0

0

2.0

4.0

6.0

(e) NANDS

Fig. 3. Comparison results of HW-aware NAS and the proposed NANDS.

neural network on 2-D Mesh NoC (6.2ms) outperforms that

on single-PE (12.4ms) and bus-based (14.7ms) platforms by

2× and 2.37×.

B. Co-Exploration outperforms SOTA HW-aware NAS
NAS techniques with mono-objective of accuracy can easily

become useless in scenario with tight timing constraints. To

address this problem, state-of-the-art (SOTA) NAS framework

considers timing performance of the explored architectures on

fixed hardware in NAS process (HW-aware NAS). It can find a

simpler architecture for better timing performance. Targeting

on a 2 × 2 NoC with fixed hardware configuration by X-Y

routing in Figure 3(b), HW-aware NAS can identify a simpler

architecture in Figure 3(a) with only 0.32% accuracy loss.

As a result, the latency is reduced from 6.2ms to 5.1ms (by

17.07%) as shown in Figure 3(c). The proposed co-exploration

approach NANDS can further improve timing performance by

opening freedom to jointly explore NAS and NDS spaces. As

shown in Figure 3(d)(e), NANDS can identify a better NoC

design (with customized routing) to further reduce the latency

to 3.5ms.

III. NANDS FRAMEWORK AND IMPLEMENTATION

In this section, we will present NANDS, a multi-phase

framework to identify the best pair of neural architecture and

NoC design, such that the accuracy of machine learning tasks

can be maximized while achieving real-time performance.

A. Problem Definition and Design Principles
We aim to co-explore NAS space and NDS space to find

neural architecture and NoC design pairs with the maximized

accuracy and efficiency. Formally, given a specific dataset
and a NoC platform, the problem is how to automatically
and efficiently generate a pair of neural architecture and NoC
design, such that both the accuracy for machine learning task
on the given dataset and the inference throughput on NoC can
be maximized. The neural architecture is represented by a set

of hyperparameters, including the number of channels, kernel

size, strides, etc.; while the NoC design needs to determine

the partitioning, mapping and routing. The above problem is

a bi-criteria optimization problem. In this paper, we focus on

maximizing accuracy with a throughput constraint. However,

the proposed techniques can be applied for the counterpart

problem to maximize throughput with an accuracy constraint.

To achieve the above goal, we highlight three principles:

86

2B-1

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:33:29 UTC from IEEE Xplore. Restrictions apply.

NAS
Evaluator

NAS

Explorer

NDS

Explorer

NDS
Evaluator

I II

Fig. 4. An overview of two exploration loops in NANDS.

P1. Accelerate the search process by improving the efficiency
of NDS exploration. In NAS, the long training time will

limit its implementation. When it comes to co-exploration,

if NDS exploration can be conducted efficiently, it enables us

to immediately terminate the training process once it detects

that the architecture cannot satisfy the timing constraint.

P2. Balance the computation workload and network traffic to
avoid performance bottleneck. Unlike the existing approaches

targeting on a uniprocessor system, when it comes to NoC,

system throughput cannot be optimized by independently

maximizing computation efficiency on processors; moreover,

the computation workload and network traffic should be well

balanced.

P3. Minimize contention of inter-processor data transmission
on NoCs. Architectures explored by NAS have complicated

dependencies and irregular structures. Directly applying them

on NoC with a deterministic routing strategy (e.g., X-Y) may

cause a large number of NoC contentions, which will further

become timing performance bottleneck. To achieve the maxi-

mum throughput, we aim to minimize network congestion.

We will first present NANDS, and then introduce the detail

implementations which follows the above design principles.

B. NANDS Framework
We propose a multi-phase framework, namely NANDS, to

jointly explore NAS space and NDS space. As illustrated in

Figure 4, NANDS contains two explorations loops, which

further involve four components: NAS Explorer, NDS Ex-

plorer, NAS Evaluator, and NDS Evaluator. Two evaluators

are designed to assist the explorers: (1) NAS Evaluator takes a

neural architecture from NAS Explorer as input, and generates

architecture accuracy; (2) NDS Evaluator takes a hardware

implementation from NDS Explorer as input, and generates

system throughput. Results from two evaluators will be feed-

back to NAS Explorer to generate neural architectures, called

child networks. Then, NDS Explorer takes child network

as input to generate its tailored hardware implementation.

Overall, the above processes follow two exploration loops,

Loop I and II.

Loop I: neural architecture search. NAS Evaluator will train

the child networks generated by NAS Explorer, and verify

their accuracy. The accuracy will be the reward “RA” and

sent back to NAS Explorer to update hyperparameters.

Loop II: automatic hardware design. NDS Evaluator tests

the throughput of the resultant implementation from NDS

Explorer. The throughput will be another reward “RT ” and

sent back to NAS Explorer to update hyperparameters.

Next, a matched management is required to control the

action flow in NANDS, that is, determining which loops to

take effect in the exploration. In this paper, we first figure out

three possible exploration patterns, based on which we propose

a multi-phase management strategy to switch patterns.

Pattern 1: Pure NAS. We only conduct Loop I. NAS Explorer

will only receive the reward from NAS Evaluator for updating

hyperparameters. This pattern is time-consuming since NAS

Evaluator needs to train child networks from scratch.

Pattern 2: Pure NDS. We only perform Loop II. NAS Explorer

updates hyperparameters only based on the reward from NDS

Evaluator. Benefiting from the avoidance of training child

networks and the efficiency of evaluating system throughput,

this pattern will be much faster than Pattern 1.

Pattern 3: Co-Exploration. We co-explore two search spaces

and update NAS Explorer by the rewards from both NAS and

NDS Evaluators. Since two exploration loops are conducted

simultaneously, we can prune the invalid child networks (in

terms of throughput) at the early stage, and terminate their

training process. Hence, this pattern is faster than Pattern 1.
Based on three patterns, we present a management strategy

to switch patterns in NANDS. Pattern switch is analog to
determine which kind of reward (from NAS Evaluator RA
and/or NDS Evaluator RT) to be used in calculating reward
R for NAS Explorer. Specifically, reward can be calculated as
follows:

R = α×RA + (1− α)×RT (1)

where α is a regulate variable. It is clear that (1) α = 1 stands

for Pattern 1; (2) while α = 0 stands for Pattern 2; otherwise,

(3) 0 < α < 1 stands for Pattern 3.

Based on the regulator, we manage the exploration in multi-

phase control flow. We adjust α by a predefined function like

adjusting learning rate. Let N be the total number of iterations

that NANDS will explore. First, when iteration I ≤ β ·N (β
is a regulated variable, as well as γ in the following text), we

aim to improve accuracy, and initialize α as a small number

(e.g., 0.9). Then, when I > β ·N and I ≤ γ ·N , we decrease

α to around 0.5. Third, we set α = 0 to explore the best

throughput. Note that we do not use Pattern 1 (α = 1) since

it is the slowest one and cannot guarantee hardware efficiency.

C. NANDS Implementation
Figure 5 reveals the details of Explorers in Figure 4, which

contains three main components. In NAS Explorer, � “NAS

Controller” is responsible for taking rewards from evaluators

to predict hyperparameters to generate child networks. In

NDS Explorer, � “NoC Design” is to generate hardware

design (including partition, mapping and routing) for the

input network on the given NoC. � “Bottleneck Detection

and Alleviation ” in NDS Explorer is designed to maximize

throughput of NoC.

� NAS Controller. As shown on the left part of Figure 5,

NAS controller will explore NAS space to identify new child

networks. In this paper, we implement NAS controller based

on reinforcement learning approach. RNN is employed to

predict the hyperparameters, and the weights of RNN will be

updated based on the reinforcement learning using the rewards

from evaluators. Unlike the implementation in [1] with mono-

criteria (accuracy), NAS controller in NANDS will take both

accuracy and throughput to update RNN. Specifically, we

employ Formula 1 to generate reward. Not limited to rein-

forcement learning-based controllers, our framework can also

support other approaches, such as evolutionary algorithms.

87

2B-1

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:33:29 UTC from IEEE Xplore. Restrictions apply.

...

...

2

3

...

...

1

C

...

C D

C

Fig. 5. An overview of the implementation of NANDS framework.

� NoC Design. Followed by P1-P3, child network will

be deployed to NoC in three steps: (1) partition a child

network to balance computation, (2) map each partition to

a processing element in NoC, (3) determine routing path for

data transmission according to data dependency among layers.

The fundamental of computation balanced partition is a

multi-way graph partition problem [16]. We apply the algo-

rithm proposed in [16] to get the partitions in time complexity

of O(|E|). Then, the partitions will be assigned to processors

on NoCs by Dominant Sequence Clustering (DSC) approach

[17] with time complexity of O(|E|log|E|). On top of that, we

employ X-Y routing algorithm to construct the routing path

for a pair of partitions having data dependency. We simply

employ above techniques in the implementation, while our

presented framework is applicable for any partition, mapping,

and routing algorithms.

� Bottleneck Detection and Alleviation. In the imple-

mentation of NANDS framework, we take a further step to

detect the bottleneck of system throughput, and then alleviate

it by re-partition and re-routing, to maximize the throughput.

Bottleneck Detection. After NoC design, network layers are

partitioned and assigned onto NoC. Data transmission paths

are built by X-Y routing. Based on the network structure, we

can obtain the volume of data between a pair of partitions, and

then calculate the accumulate latency on each link (using the

bandwidth divided by the sum of data on link), denoted as Llk

for link lk. Then, in terms of hardware properties (e.g., DSPs,

bandwidth for FPGA-based processing element) in NoC, we

can obtain computation latency [18], denoted as Lpe for pe.
NoC is performed in a pipelined fashion, the overall system

throughput is determined by the slowest computation or com-
munication (as shown in Figure 3). Let LINK and PE be a
set of links and processing elements in NoC, respectively, and
BITin be the total bits in one input image. Throughput TP
is defined as the number of bits of input can be processed in
second (bit per second, bps) calculated by:

TP =
BITin

max{maxpe∈PE (Lpe) ,maxlk∈LINK (Llk)} (2)

Based on the above performance model, we identify three

kinds of throughput bottlenecks in a NoC system.

Given an NoC, a neural architecture, a NoC design, there

are three kinds of throughput (TP) bottlenecks:

B1: TP is determined by a processing element;
B2: TP is determined by a NoC link, and the link is occupied
by only one data transmission path;

B3: TP is determined by a NoC link, where there are multiple
routing paths will go through.

Based on Formula 2 and Corollary III, we can easily detect

B1. Besides, we can classify B2 and B3 by analyzing the

number of routing paths that cover the identified NoC link.

Bottleneck Alleviation. After detection, we propose Re-

partition and Re-routing techniques to resolve all kinds of

performance bottlenecks as presented in Algorithm 1.

Algorithm 1 Bottleneck Alleviation

Input: (1) NoC with PE and LINK, (2) TP, (3) Bottleneck type, (4) latency
function L, (5) partition P , (6) mapping M : p to pe, (7) routine path R.

Output: A NoC design.
1: if Bottleneck is B1, and TP is determined by pek:
2: Get partition pi, s.t., M(pi) = pek;
3: if pi has only 1 layer:
4: Cannot remove the bottleneck and terminate;
5: else if NoC has available processing element:
6: Partition pi → pi1 + pi2 to minimize their max latency;
7: else:
8: Find pi’s neighbor pk with the minimum latency;
9: Move layers in pi to pk to minimize max(LM(pi)

, LM(Pk)
);

10: else if Bottleneck is B2, and the only routing path is pei → pej :
11: Merge partitions on pei and pej to hide communication;
12: else if Bottleneck is B3, and the link is lk:
13: Obtain pei → pej passing lk with the maximum data volume;
14: Re-routing pei → pej to detour at lk;

Re-partition is developed to solve B1 and B2. For B1,

the performance is dominated by the critical PE (with the

maximum latency), which indicates that the corresponding

partition is too large. We reduce the computation load by re-

partitioning the involved layers (Line 1-9). For B2, there is

only one routing path through the critical link, where inter-

PE communication dominates the throughput. We merge cor-

responding partitions to avoid network communication (Line

10-11).

Re-routing will be employed to solve B3. Among multiple

routing paths go through the critical link lk, we identify one

with the maximum data volume (Line 12-14). We re-route this

path by detouring packets when arriving at lk. On 2-D Mesh

NoC, there are two squares contains lk, we select the one

has less traffic for detouring, where the detoured path will go

through other three links in the selected square except lk.

Finally, if performance cannot be improved by Algorithm 1,

we will terminate alleviation process and directly employ the

previous design. Otherwise, we iteratively conduct Algorithm

1 until it reaches line 4 or a preset iteration upper bound.

IV. EXPERIMENT

This section will report the experimental results on evalu-

ating the efficiency of the proposed NANDS framework.

A. Experiment Setup
Datasets: Three image classification datasets are employed

(CIFAR-10, CIFAR-100, and STL-10) to verify the efficacy of

NANDS. During the search process, we only use the training

images, and randomly select 10% of them to build a validated

set. Test images are used to test accuracy of the resultant archi-

tectures. All images undergo the data augmentation, including

upsampling, random cropping and random horizontal flip.

NAS Space: We use ResNet as the backbone to search

network architectures. Search space is determined by three

decision variables: R, N and C, the number of residual layers,

88

2B-1

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:33:29 UTC from IEEE Xplore. Restrictions apply.

0.4 1.0
throughput (Gbps)

0.7 1.3 1.6 1.9 2.2 2.5
80%

ac
cu

ra
cy

83%

86%

89%

92%

95%
3×3 NoC2×2 NoC1×1 NoC (single PE)

Fig. 6. Pareto frontiers of accuracy-throughput tradeoffs captured by NANDS
on CIFAR-10 can be significantly pushed forward with increasing NoC size.

convolutional layers in one residual layer, and channels in

each convolutional layer, respectively. We set different search

ranges of decision variables in terms of datasets. For CIFAR-

10, we explore R in range [4, 5], N in range [0, 2], and C in

set {32, 64, 128, 256}. For CIFAR-100, we explore R in range

[4, 5], N in range [0, 2], and C in set {64, 128, 192, 256, 512}.

For STL-10, we explore R in range [5, 6], N in range

[0, 3], and C in set {96, 128, 192, 256, 512}. We explore a

larger network for STL-10, because the size of the images

in STL-10 is larger (96× 96× 3 pixels) than that of CIFAR-

10/100 (32 × 32 × 3 pixels). To train child networks, we set

training parameters (e.g., learning rate, epoch) based on that

in ResNet9 [19].

NDS Space: According to the size of neural networks, we

employ 2 × 2 and 3 × 3 2-D Mesh NoCs. Experiments will

be also conducted in the system with one PE for comparison.

For target platforms, we adopt Zynq UltraScale XCZU9EG as

PEs, which contains 2520 DSPs, and communication among

FPGAs are carried out by Aurora IP core provided by Xilinx,

which provides a bandwidth of 10 Gb/s between PEs. Acceler-

ator design on each PE follows [18]. Finally, we employ roof-

line model to obtain computation and communication latency.

B. Comparison results
Scalability on NoC Sizes: Figure 6 compares the Pareto

frontiers on accuracy-throughput tradeoff obtained by NANDS

with three sizes of NoCs (different types of points) to demon-

strate the scalability. For each platform, we obtain its Pareto

frontiers by connecting the design points that are not inferior

to any others in terms of both throughput and accuracy.

Results in Figure 6 clearly demonstrate that with the

increasing NoC size, Pareto frontiers can be significantly

pushed forward. Compared with single PE based NAS, the

best accuracy can be improved from 88.39% to 90.68%

(2 × 2 NoC) and 93.59% (3 × 3 NoC). In addition, for

solutions with the maximum throughput, the accuracy and

throughput for single PE platform are 〈88.39%, 0.50Gbps〉,
which are improved to 〈90.68%, 0.72Gbps〉 for 2 × 2 NoC

and 〈91.58%, 2.40Gbps〉 for 3 × 3 NoC. The main reason is

that larger-size NoC provides more computation power, such

that it can accommodate larger neural networks with higher

accuracy to achieve the same or even higher throughput. This

verified the scalability of our proposed approaches. Note that

since 3× 3 NoC has already provided sufficient hardware for

the target NAS space, there is no need to employ larger NoCs.

In the following texts, we base the experiments on 3×3 NoC.

80%

ac
cu

ra
cy

83%

86%

89%

92%

95%

0 0.5 1.0 1.5 2.0 2.5

throughput (Gbps)

NAS HW-aware NAS NANDS

Throughput

not meet

throughput lower bound: 0.5Gbps

phase
(1.5,+∞)(1.0,1.5](0.5,1.0]

P1 (α=0.9) 2.33%16.27%81.40%

P2 (α=0.5) 53.49% 11.63%34.88%

P3 (α=0) 1.16% 98.84%0%

throughput

Fig. 7. Results comparison of the design space exploration.

Design Space Exploration: In this set of experiment, we

compare NANDS framework on CIFAR-10 with the original

NAS framework [1], and the state-of-the-art HW-aware NAS

[20]. Since NAS does not consider hardware, we collect the

explored architectures, and apply the proposed NoC Explorer

(the right part in Figure 5) to obtain throughput. For HW-

aware NAS, it needs a determined hardware design to predict

timing performance. To be fair, we employ the same partition,

mapping and routing algorithms as that in Section III-C �.

We set the throughput lower bound to be 0.5Gbps as the real-

time constraint, indicating that designs with throughput less

than 0.5Gbps are invalid (e.g., the left gray zone in Figure 7).

Figure 7 shows the exploration results, where x-axis and

y-axis represent throughput and accuracy, respectively. The

table in the bottom-right-corner reports the distributions of the

explored child networks by NANDS in terms of throughput.

Comparisons among frameworks. First, NAS cannot guar-

antee timing performance. Although NAS can find solution

with the highest accuracy (94.41%), its throughput is merely

0.22 Gbps, which violates timing requirements and is 4.00×
lower than that of feasible solution from NANDS (e.g.,

the throughput of 0.9 Gbps and accuracy of 93.59%). HW-

aware NAS and NANDS can meet throughput constraint of

0.5Gbps, but for a tighter constraint (e.g., > 1.5Gbps), only

NANDS can provide valid solutions. This is because HW-

aware NAS did not explore hardware design space. Second,

for child networks with the same throughput, NANDS can

achieve better accuracy than NAS and HW-aware NAS. For

solutions with the throughput of 0.82 Gbps, the best accuracy

of NANDS is 93.40%, which is much higher than 88.95%

and 89.95% obtained by NAS and HW-aware NAS. This is

because NANDS can benefit from exploring hardware design

space to accommodate more complicated structures with the

same throughput but higher accuracy.

Insights of multi-phase exploration. From table in Figure

7, we can draw another important conclusion: the proposed

multi-phase scheme can guide controller to make a better

tradeoff between accuracy and throughput. As described in

Section III, we applied a multi-phase exploration by adjusting

a regulation variable α . At the beginning, α is set to 0.9

for higher accuracy. The throughput of most architectures

explored in P1 lies between 0.5 to 1 Gbps. Then, in P2, we

adjust α to 0.5, and throughput of the architectures explored

gradually shift to interval of 1.0 to 1.5 Gbps. Finally, in P3

with α = 0, results mostly reside in high throughput range

89

2B-1

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:33:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF THE SEARCH TIME BETWEEN PURE NDS, NAS, HW-AWARE NAS, AND NANDS, ON THREE COMMON DATASETS

Dataset
Spec.

Models
Arch. Property Accuracy Throughput Elapsed Time

(Gbps) Depth Para. (×106) MACs (GOP) (%) degr. (Gbps) Sat. impr. (minute) impr.

CIFAR-10 0.50

NAS 9 0.89 0.70 94.41% 0.00% 0.22 × baseline 1115 baseline

HW-Aware NAS 8 0.19 0.05 90.95% -3.46% 0.66 � 2.94× 164 6.80×
NANDS (Opt TP) 8 0.20 0.06 91.58% -2.83% 2.40 � 10.66×

361 3.09×NANDS (Opt Acc.) 10 0.40 0.21 93.59% -0.82% 0.90 � 4.00×

CIFAR-100 0.45

NAS 12 1.04 1.02 76.58% 0.00% 0.22 × baseline 1863 baseline

HW-Aware NAS 8 0.19 0.07 71.43% -5.15% 0.28∗ × 1.25× 246 7.57×
NANDS (Opt TP) 8 0.25 0.15 72.22% -4.36% 0.90 � 4.00×

594 3.14×NANDS (Opt Acc.) 12 0.63 0.46 75.58% -1.00% 0.45 � 2.00×

STL-10 0.6

NAS 11 2.95 2.13 76.45% 0.00% 0.45 × baseline 2928 baseline

HW-Aware NAS 12 1.70 0.50 74.25% -2.20% 0.61 � 1.25× 402 7.28×
NANDS (Opt TP) 11 2.02 1.02 75.83% -0.62% 1.07 � 2.37×

1059 2.76×NANDS (Opt Acc.) 13 2.65 1.45 76.45% 0.00% 0.60 � 1.32×
“*”: relax spec., HW-aware NAS cannot guarantee throughput of 0.45Gbps.

above 1.5 Gbps.

In conclusion, NANDS can guide controller to made better

tradeoffs between accuracy and efficiency.

Comparisons on Additional Datasets: Table I reports the

experimental results of NANDS and other approaches on three

different datasets, including CIFAR-10, CIFAR-100, and STL-

10. We report solutions by NANDS in the Pareto frontiers

with the maximum throughput (“Opt TP”) and the maximum

accuracy (“OptAcc.”). For NAS [1] and HW-aware NAS [20],

we report the finally identified architectures.

Table I shows the consistent results with that in Figure 7:

NANDS can make the better accuracy-throughput tradeoffs

against state-of-the-art NAS frameworks. Specifically, when

NAS generates solutions beyond the real-time constraint,

NANDS can find valid solutions with little or no accuracy

loss. In addition, NANDS achieves 3.09×, 3.14×, and 2.76×
speedup over NAS, respectively, on three different datasets.

Compared with HW-aware NAS, NANDS takes more time in

searching since HW-aware NAS does not thoroughly explore

the NoC design space, which reduces the quality of results.

On STL-10 datasets, NANDS (Opt TP) can achieve 42.99%

higher throughput and 1.58% improvement on accuracy. In

addition, for CIFAR-100, HW-aware NAS cannot find any

feasible solutions to meet 0.45Gbps throughput bound, but

our proposed NANDS can.

V. CONCLUSION

In this work, we focus on neural architecture and NoC-

based hardware co-design. We propose NANDS framework to

co-explore NAS space and NoC design search (NDS) space,

which can maximize network accuracy and system through-

put. A multi-phase manager is developed to hierarchically

explore NAS and NDS spaces, which can guide NANDS

to gradually converge to solutions with the best accuracy-

throughput tradeoff. On top of it, techniques proposed to detect

and alleviate timing performance bottleneck have effectively

explored NDS to further improve throughput. Experimental

results on CIFAR-10, CIFAR-100 and STL-10 verified the

effectiveness of the proposed approach by achieving 42.99%
higher throughput along with 1.58% higher accuracy than the

state-of-the-art. Besides, there are cases where hardware-aware

NAS cannot find any feasible solutions while NANDS can.

ACKNOWLEDGEMENT

This work is partially supported by National Science Foun-

dation under Grant CCF-1820537 and CNS-1822099, and

NAP M4082282 and SUG M4082087 from Nanyang Tech-

nological University, Singapore, and NSFC 61772094, China,

and Edgecortix Inc.

REFERENCES

[1] Barret Zoph et al. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[2] Barret Zoph et al. Learning transferable architectures for scalable image recogni-
tion. In In Proc. of CVPR, pages 8697–8710, 2018.

[3] Bowen Baker et al. Designing neural network architectures using reinforcement
learning. CoRR, abs/1611.02167, 2016.

[4] Esteban Real et al. Large-scale evolution of image classifiers. CoRR,
abs/1703.01041, 2017.

[5] Lingxi Xie et al. Genetic cnn. In In Proc. of ICCV, pages 1388–1397. IEEE, 2017.

[6] Weiwen Jiang et al. Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search. arXiv preprint arXiv:1901.11211,
2019.

[7] Weiwen Jiang et al. Heterogeneous fpga-based cost-optimal design for timing-
constrained cnns. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2542–2554, 2018.

[8] Jeremy Fowers et al. A configurable cloud-scale dnn processor for real-time ai. In
In Proc. of ISCA, pages 1–14, 2018.

[9] Eric Chung et al. Serving dnns in real time at datacenter scale with project
brainwave. IEEE Micro, 38(2):8–20, 2018.

[10] Weiwen Jiang et al. Xfer: A novel design to achieve super-linear performance
on multiple fpgas for real-time ai. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 305–305.
ACM, 2019.

[11] Weiwen Jiang et al. Achieving super-linear speedup across multi-fpga for real-
time dnn inference. ACM Transactions on Embedded Computing Systems (TECS),
18(5s):67, 2019.

[12] Weiwen Jiang et al. Integrating memristors and cmos for better ai. Nature
Electronics, 2(9):376–377, 2019.

[13] Wonje Choi et al. Hybrid network-on-chip architectures for accelerating deep
learning kernels on heterogeneous manycore platforms. In in Proc. of CASES,
page 13. ACM, 2016.

[14] Wonje Choi et al. On-chip communication network for efficient training of deep
convolutional networks on heterogeneous manycore systems. IEEE Transactions
on Computers, 67(5):672–686, 2018.

[15] Versal: The first adaptive compute acceleration platform (acap). Oct 2018.

[16] George Karypis et al. Multilevelk-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[17] N. Koziris et al. An efficient algorithm for the physical mapping of clustered task
graphs onto multiprocessor architectures. In In Proc. of EMPDP, pages 406–413,
2000.

[18] Chen Zhang et al. Optimizing fpga-based accelerator design for deep convolutional
neural networks. In In Proc. of FPGA, pages 161–170. ACM, 2015.

[19] Chuan Li. https://lambdalabs.com/blog/resnet9-train-to-94-cifar10-accuracy-in-
100-seconds. 2019.

[20] Bichen Wu et al. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. CoRR, abs/1812.03443, 2018.

90

2B-1

Authorized licensed use limited to: George Mason University. Downloaded on June 07,2021 at 16:33:29 UTC from IEEE Xplore. Restrictions apply.

