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Abstract.4
Approximations of functions with finite data often do not respect certain “structural” properties5

of the functions. For example, if a given function is non-negative, a polynomial approximation6
of the function is not necessarily also non-negative. We propose a formalism and algorithms for7
preserving certain types of such structure in function approximation. In particular, we consider8
structure corresponding to a convex constraint on the approximant (for which positivity is one9
example). The approximation problem then converts into a convex feasibility problem, but the10
feasible set is relatively complicated so that standard convex feasibility algorithms cannot be directly11
applied. We propose and discuss di↵erent algorithms for solving this problem. One of the features12
of our machinery is flexibility: relatively complicated constraints, such as simultaneously enforcing13
positivity, monotonicity, and convexity, are fairly straightforward to implement. We demonstrate14
the success of our algorithm on several problems in univariate function approximation.15
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1. Introduction. The approximation of functions as a linear combination of18

basis functions is a foundational technique in numerical analysis and scientific com-19

puting. For example, such a linear combination or expansion is often used as an20

emulator for the original function, or as an ansatz for the solution to a di↵erential21

equation. If, e.g., the original function is smooth, then such approximations are of-22

ten accurate, but they may not adhere to other kinds of structure that the function23

possesses. The simplest example of such a structure is positivity: if f is a positive24

function, an accurate polynomial approximation of f need not also be positive. Other25

types of structure that arise in practice are monotonicity or maximum and minimum26

value constraints. If an approximation violates the implicit structure of a function, the27

resulting computation may produce unphysical predictions, and may cause solvability28

issues in numerical schemes for solving di↵erential equations [26].29

In this paper, we present a general framework for preserving structure in func-30

tion approximation from a linear subspace. “Structure” in our context refers to fairly31

general types of linear inequality constraints, including positivity and monotonicity.32

However, we demonstrate that our setup can also handle more exotic types of con-33

straints. The model by which we impose structure is straightforward: construct the34

approximation that best fits the available data, subject to the structural constraints.35

We observe that imposing our type of structure on the approximation corresponds to36

a convex constraint on the vector of expansion coe�cients (i.e., the coordinates of the37

approximation in a basis of the linear space). Thus, our notion of structure-preserving38

approximation corresponds to a convex optimization problem. Unfortunately, the re-39

sulting convex set is “complicated”, and we cannot utilize standard algorithms to40

solve this problem. We therefore develop two algorithms to solve this problem, each41
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2 VIDHI ZALA, ROBERT M. KIRBY, AND AKIL NARAYAN

of which is advantageous in di↵erent situations. We subsequently formulate a hybrid42

algorithm that achieves superior performance compared to the original two algorithms.43

In summary, the contributions of this paper are as follows:44

• We formalize a new model for computing structure-preserving approximations45

of functions. This model can successfully compute function approximations46

that respect canonical structure such as positivity and/or monotonicity, but47

can also embed much richer, nontrivial structure, cf. Figure 11. A particular48

advantage of our approach is that the formalism is identical for all these49

structure; e.g., the procedure for preserving positivity versus monotonicity is50

fundamentally the same.51

• We show that this model corresponds to a finite-dimensional convex optimiza-52

tion problem. We subsequently characterize the feasible set as an intersection53

of conic sets (Theorem 3.1), and show that the optimization problem, and54

hence our structure-preserving approximation model, has a unique solution.55

See Theorem 3.2.56

• Our convex optimization problem can be cast as a problem of projecting onto57

a convex set (the feasible set). Unfortunately the feasible set is not, in gen-58

eral, a polytopic region in coe�cient space. Hence, a finite number of linear59

inequality constraints cannot characterize the feasible set. We instead charac-60

terize the convex feasible set as one with an (uncountably) infinite number of61

supporting hyperplanes. We use this characterization to develop two types of62

algorithms for computing the solution to the optimization problem. We also63

combine these two algorithms into a hybrid approach that is more e�cient64

than either algorithm alone. These three approaches are detailed in Section65

4.66

• We demonstrate with numerical results in one dimension with polynomial ap-67

proximations that the resulting algorithm produces approximations satisfying68

desired constraints. We also show that, for our examples, rates of convergence69

of polynomial approximation are unchanged compared to the unconstrained70

case.71

Our problem formulation (along with its mathematical properties) holds in the multi-72

variate approximation case; the major drawback in such cases is that our algorithms73

require global optimization of multivariate functions, which is a di�cult problem74

in general. In order to compute solutions to the constrained optimization problem,75

our algorithms iteratively “correct” an unconstrained initial guess. For one of our76

algorithms, these corrections are essentially Dirichlet kernels for the approximation77

space. We visualize some correction functions for enforcing positivity in polynomial78

approximation in Figure 1.79

In Section 2, we introduce notation, describe the types of constraints we consider,80

and present the structure-preserving approximation model. Section 3 analyzes the81

feasible set of the model and shows that a unique solution exists. Section 4 presents our82

proposed algorithms for computing solutions. Finally, Section 5 contains numerical83

results and demonstrations.84

1.1. Existing and alternative approaches. There are several existing tech-85

niques for building special kinds of structure-preserving approximations. We will86

frequently use positivity as an explicit example below to make notions clear.87

One simple technique in enforcing positivity in function approximation is to en-88

force positivity as a finite number of points in the domain. This technique makes the89

feasible set much easier to characterize and results in applicability of several o↵-the-90
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Fig. 1: Correction functions used to enforce positivity in a univariate polynomial
approximation. Our algorithm adds scaled/combined versions of these functions to
enforce constraints. Shown are corrections targeted to enforce positivity at x = 0.5.
Correction functions are shown for polynomials of degree 5 (top) and 30 (bottom).
The columns correspond to corrections in di↵erent ambient Hilbert spaces. Left:
L
2([�1, 1]). Center: H1([�1, 1]). Right: H2([�1, 1]).

shelf algorithms [7]. However, these approaches do not guarantee positivity on the91

entire domain, which our structure-preserving model does enforce. Another class of92

techniques uses mapping methods. For example, if we approximate
p
f and square the93

resulting approximation, then the squared approximation is guaranteed to be positive.94

Finally, there are more complicated successful approaches to construct positive ap-95

proximations [10]. Although these approaches are attractive, such mapping functions96

are not easy to construct for more complicated constraints.97

Another approach is to adapt the basis; for example, by expanding a function in98

Bernstein polynomials that are positive on some domain, we can ensure the positivity99

of the approximation on that domain if all the expansion coe�cients are non-negative.100

Therefore, one forms an approximation subject to the positivity of the coe�cients.101

However, this approach does not yield polynomial reproduction even in simple cases.102

Consider the following basis for quadratic polynomials in one dimension: v1(x) =103

1� x
2, v2(x) = (1� x)(x+ 3) and v3(x) = (x+ 1)(3� x). Note that on [�1, 1], these104

three functions are all non-negative. However, the (unique) representation of f ⌘ 1105

(that is also non-negative) in this basis is106

f(x) = �
1

2
v1(x) +

1

4
v2(x) +

1

4
v3(x),107

108

which clearly does not have positive expansion coe�cients. Alternative approaches109

use an adaptive construction scheme for certain kinds of constraints [5]; our framework110

allows much more general constraints and is not restricted by dimension, although in111

this paper we consider only univariate examples.112

In general, each of the techniques above is di↵erent, and they must usually be113

nontrivially adapted when a new kind of structure is desired, or if a di↵erent approxi-114
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mation space is used. The model we employ in this work is general-purpose, handling115

rather general types of constraints and very general approximation spaces. Finally, we116

note the prior theoretical investigation of error estimates for best structure-preserving117

approximation [14, 4, 3, 21].118

Our formulation constructs an optimization problem of the form119

min
bv2 N

kAbv � bk22 , such that g(bv, y)  0 8y 2 ⌦,(1.1)120
121

where A and b are a given matrix and vector (of appropriate sizes), and g(·, y) is122

a scalar-valued function depending on a parameter y that takes values in an infinite123

set ⌦. Hence, our problem is a semi-infinite programming (SIP) problem [17] since124

the feasible set is described by an infinite number of constraints. As is well-known125

in SIP methods, even assessing feasibility of a candidate bv would require certifying126

satisfaction of the constraints, i.e., certifying that the maximum of g(bv, ·) over all127

⌦ is non-positive. Globally solving this so-called lower-level problem is typically128

the main challenge in SIP algorithms, and is frequently circumvented by means of129

either discretization approaches (that replace ⌦ by a finite set) or by local reduction130

approaches (which partition ⌦ into subdomains and use specialized approaches on each131

subdomain). In both cases, there is a discrete approximation of ⌦ that is constructed132

(and perhaps refined). For generating positive approximations, this would correspond133

to requiring positivity at only a finite set of points on the domain.134

Our formulation, upon discretization/division of ⌦, can certainly leverage SIP135

algorithms. However, our aim in this paper is to discuss the solution of this problem136

without discretization of ⌦, and hence we do not rely on existing SIP algorithms.137

In particular, we propose algorithms to solve the original SIP problem that presume138

the ability to compute global solutions to the SIP lower-level problem. Thus, our139

algorithms di↵er from many existing SIP algorithms [15, 23], but also inherit the140

general challenge that global solutions to lower-level SIP problems must be provided.141

2. Setup. Let ⌦ ⇢
d be a spatial domain. Whereas our setup and theoretical142

results are valid for general ⌦ and d � 1, our numerical examples in this paper143

will primarily be restricted to d = 1 with ⌦ = [�1, 1]. The restriction a↵ects only144

algorithms and not the model or mathematical properties of our discussion. Consider145

a Hilbert space formed from scalar-valued functions over ⌦:146

H = H(⌦) :=
�
f : ⌦ !

�� kfk < 1
 
, kfk

2 := hf, fi ,147148

with h·, ·i = h·, ·iH the inner product on H. We are mostly concerned with “stan-149

dard” function spaces such as L2(⌦) or Sobolev spaces1. Let V be an N -dimensional150

subspace of H, with {vn}
N

n=1 a collection of orthonormal basis functions,151

V = span {v1, . . . , vN} , hvj , vki = �jk,152153

for j, k = 1, . . . , N and �jk the Kronecker delta function. For example, if H is L2(⌦)154

with ⌦ = [�1, 1] and V is spanned by polynomials up to degree N�1, then one choice155

for the vj basis functions are orthonormal Legendre polynomials. We will consider156

this particular case as an example several times in this paper.157

2.1. Riesz representors. We consider the dual V
⇤ of V , i.e., the space of158

all bounded linear functionals mapping V to . The Riesz representation theorem159

1We formally define L2 and some Sobolev spaces in Section 5.
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STRUCTURE-PRESERVING FUNCTION APPROXIMATION 5

guarantees that a functional L 2 V
⇤ can be associated with a unique V -representor160

` 2 V satisfying161

L(u) = hu, `i , 8 u 2 V.162163

Furthermore, this L $ ` identification is an isometry. We will use these facts in164

what follows. Given L that identifies `, we consider the coordinates b̀
j of ` in a165

V -orthonormal basis,166

`(x) =
NX

j=1

b̀
jvj(x), b̀

j = h`, vji = L(vj).167

168

Then we have the following relations:169

kLk
V ⇤ = k`k

V
= k b̀k2, b̀=

⇣
b̀
1,

b̀
2, . . . ,

c̀
N

⌘T

,170
171

where k · k2 is the Euclidean norm on vectors in N .172

2.2. Least squares problems. We are interested in a common least squares-173

type approximation problem. Suppose that u 2 H is an unknown function for which174

we have M pieces of data. We wish to construct an approximation p 2 V to u that175

best matches these data points. We now formulate this abstractly. Let �1, . . . ,�M be176

M linear functionals on H that are bounded on V . We assume that the observations177

{uj}
M

j=1 = {�j(u)}
M

j=1 ⇢ are available to us (and also bounded), and we seek to178

solve the optimization problem,179

p = argmin
v2V

MX

j=1

(�j(v)� uj)
2
.180

181

For example, if �j is a point-evaluation (the Dirac mass) at some location xj 2 ⌦ for182

all j = 1, . . . ,M , then the problem above is equivalent to183

p = argmin
v2V

MX

j=1

(v(xj)� u(xj))
2
.184

185

This problem has a unique solution if the matrix A 2
M⇥N with entries186

(A)m,n = �m(vn), 1  n  N,1  m  M,187188

has the rank equal to dimV = N ; otherwise, infinitely many solutions exist. This189

least squares problem is well understood and computational algorithms to solve it190

given data �j(u) are ubiquitous [8].191

For an overdetermined system, where M > N , the method of ordinary least192

squares can be used to find an approximate solution. Details for this case are discussed193

in 2.4 after the discrete formulation of this problem.194

2.3. Constraints. The previous section explains how a function p can be con-195

structed from data. However, we are interested in a particular kind of constrained196

approximation. Our investigation can be motivated by the following examples of types197

of constraints:198

• Positivity: p(x) � 0 for all x 2 ⌦199
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• Monotonicity: p0(x) � 0 for all x 2 ⌦ ⇢200

• Boundedness: 0  p(x)  1 for all x 2 ⌦.201

Thus, the central focus of this paper is solving a linearly constrained least squares202

problem, where constraints of the above type are imposed. We now give the abstract203

setup of our constraints, which specializes to the examples above.204

Our abstraction definesK families of linear constraints; for fixed k 2 {1, 2, . . . ,K},205

family k is prescribed by the tuple (Lk, rk,!k):206

• !k: a subset of ⌦.207

• rk: an element of V208

• Lk: for y 2 !k fixed, Lk(·, y) is a y-parameterized unit norm element of V ⇤.209

Our kth family of constraints on v is210

Lk(v, y)  Lk(rk, y), y 2 !k.(2.1)211212

The subset of V that satisfies constraint family k is213

(2.2) Ek :=
�
v 2 V

�� Lk(v, y)  Lk(r, y) for all y 2 !k

 
.214

The elements in V that satisfy all K families of constraints simultaneously are215

E := \
K

k=1Ek.(2.3)216217

We assume that E is nonempty, i.e., that the constraints are consistent. Constraints218

can be inconsistent, e.g., simultaneously enforcing f(x)  0 and f(x) � 1. However,219

one can create more subtle inconsistencies in more complicated settings. Our pro-220

cedure does not provide a means to detect inconsistent constraints (and in this case221

the algorithm will simply not converge). Thus, we rely on the user to ensure consis-222

tent constraints. (Note that a corresponding constrained problem has no solution if223

inconsistent constraints are prescribed.)224

Particularly important later will be the formula for the {vj}Nj=1-coordinates of the225

Riesz representor Lk. As in Section 2.1, Lk(·, y) for fixed (k, y) can be identified with226

its Riesz representor `k(·, y) 2 V and its corresponding expansion coe�cients b̀
k(y).227

The unit norm condition of Lk then implies228

kLk(·, y)k
2
V ⇤ =

���b̀k(y)
���
2

2
=

NX

j=1

(Lk(vn, y))
2 = 1.(2.4)229

230

We consider some examples.231

Example 2.1 (Positivity). Consider ⌦ = [�1, 1], and let V be any N -dimensional232

subspace of L2
µ
(⌦) \ L

1(⌦). We seek to impose p(x) � 0 for all x 2 ⌦. Thus, we233

have K = 1, and the linear operator L1 should be point evaluation, appropriately nor-234

malized. Note that point evaluation is not a bounded functional in L
2, but it is on the235

finite-dimensional space V . Formally, this is236

L1(v, y) := ��(y)v(y), v 2 V,237238

where �(y) is chosen so that L1 has unit norm for every y 2 !k; the negative sign239

is chosen so that we can reverse the inequality in (2.1). We set !k = ⌦, and choose240

rk ⌘ 0 2 V . Then, the constraint (2.1) is equivalent to v(y) � 0 for every y 2 ⌦. The241

constraint set E1 defined in (2.2) is242

E1 =
�
u 2 V

�� � u(y)  0 for all y 2 !1

 
.243244
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STRUCTURE-PRESERVING FUNCTION APPROXIMATION 7

It will be useful here to also demonstrate how b̀
1(y) can be computed. For fixed y, we245

can identify L1(·, y) via its Riesz representor `1(·, y):246

`1(·, y) := ��(y)
NX

j=1

vj(y)vj(·) 2 V, �(y) =

2

4
NX

j=1

v
2
j
(y)

3

5
�1/2

,(2.5)247

248

so that {��(y)vj(y)}
N

j=1 are the entries of b̀1(y). The formula for � results from the249

normalization condition (2.4). Thus, the coe�cient vector b̀
1(y) 2

N has explicit250

entries in terms of y and the orthonormal basis {vj}
N

j=1.251

Example 2.2 (Monotonicity). With the same setup as the previous example, we252

take V as any N -dimensional subspace of L2
µ
(⌦) \W

1,1(⌦), where W
1,1(⌦) is the253

Sobolev space of functions that are in L
1(⌦) and whose derivatives are also in L

1(⌦).254

Again with K = 1, we define L1 and its corresponding Riesz representor as255

L1(v, y) := �⌧(y)v0(y), v 2 V,256

`1(·, y) := �

NX

n=1

⌧(y)v0
n
(y)vn 2 V, ⌧(y) =

2

4
NX

j=1

�
v
0
j

�2
(y)

3

5
�1/2

,257

258

where again ⌧ is determined using the normalization condition (2.4). With r1 ⌘ 0,259

then (2.2) enforces v
0(y) � 0 for all y 2 ⌦.260

Example 2.3 (Boundedness). With the same setup as Example 2.1, we take V261

as any N -dimensional subspace of L2
µ
\ L

1, and we further assume that V contains262

constant functions. Let K = 2, and define the operators L1 and L2 as263

L1(v, y) := �v(y), v 2 V,264

L2(v, y) := v(y), v 2 V,265266

for each y 2 !1 = !2 = [�1, 1]. Then, with constraint functions r1 ⌘ 0 and r2 ⌘ 1 2267

V , we have that Ek, k = 1, 2 are the sets268

E1 =
�
u 2 V

�� � u(y)  0 8 y 2 [�1, 1]
 
, E2 =

�
u 2 V

�� u(y)  1 8 y 2 [�1, 1]
 
,269270

so that their intersection E in (2.3) is the set of elements u in V such that 0  u(x) 271

1 for each x 2 ⌦.272

Example 2.4. We can also form constraints on di↵erent subsets of ⌦. With all273

the notation in the previous example, we change only:274

!1 = [�1, 0), !2 = (0, 1],275276

so that E contains functions u satisfying u(x) � 0 for x 2 [�1, 0) and u(x)  1 for277

x 2 (0, 1].278

The above examples illustrate the generality of our notation and the intuitive279

simplicity of the types of constraints that we consider. A constrained version of a280

least squares problem thus is formulated as281

p = argmin
v2E

MX

j=1

(�j(v)� uj)
2
.(2.6)282

283
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2.4. Problem discretization. We now formulate the constrained problem (2.6)284

via coordinates in the basis {vj}
N

j=1, which results in a discrete form amenable to285

numerical computation. Any v 2 V has the expansion286

v(x) =
NX

j=1

bvjvj(x),287

288

and the expansion coe�cient vector bv := (bv1, . . . , bvN )T 2
N uniquely identifies the289

element v 2 V . This identification defines subsets of N corresponding to the sets290

Ek:291

Ck :=

8
<

:c 2
N
��

NX

j=1

cjvj 2 Ek

9
=

; ⇢
N
, C :=

K\

k=1

Ck.(2.7)292

293

Then, the optimization problem (2.6) is equivalent to294

c = argmin
bv2C

kAbv � bk22 , bj = �j(u).(2.8)295
296

This problem is again a least squares problem and so is easily solved in principle, but297

unfortunately in practice the set C is a quite complicated subset of N . Nevertheless,298

C is convex, which is a fact we exploit.299

We now consider the case of an overdetermined system, where M > N in (2.8).300

The method of ordinary least squares can be used to find an approximate solution to301

(2.8) in this case. This is achieved with the normal equations by decomposition of A302

as[1],303

bv = (ATA)�1AT b304305

2.5. Geometry of sets. We recall some basic properties of cones and convex306

sets and functions that we utilize. In all the discussion below, the ambient space is307
N . A set C is convex if, for every x, y 2 @C,308

�x+ (1� �)y 2 C 8 � 2 (0, 1),309

A set C is a convex cone if, for every x, y 2 C,310

ax+ by 2 C 8 a, b � 0.311

The set C is an a�ne convex cone if it is the rigid translate of a convex cone, i.e., if312

C = D + z, where z 2
N and D is a convex cone. In this case, we call z the vertex313

of the cone.314

The convex sets we consider are generated by an uncountably infinite number of315

supporting hyperplanes. Given y 2
N and a 2 , a hyperplane H0 is a set given by316

H0 =
�
x
�� hx, yi = a

 
. The hyperplane H0 separates N into two halfspaces, one of317

which is318

H(y, a) :=
�
x 2

N
�� hx, yi  a

 
319

Note that H(y, a) is a closed set in N . A hyperplane H0(y, a) with an associated320

halfspace H(y, a) is a supporting hyperplane for a closed convex set C if C ⇢ H(y, a)321

and if H0(y, a) \ @C 6= ;.322
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3. Constrained optimization. The main task in this paper is solving the op-323

timization problem (2.8). This optimization problem appears simple since it features324

a quadratic objective, and the feasible set C is convex (which we show in the next325

section). The main di�culty here is that C is not a computationally simple convex326

set in N , and hence computing, e.g., projections onto this set, is di�cult. To begin,327

we establish that C is convex.328

3.1. Constraint set properties. This section is devoted to establishing that329

the sets Ck and C are convex cones in N . These properties will be used in the330

construction of algorithms for solving (2.8).331

Before proceeding, we note that each inequality function rk 2 V for k = 1, . . . ,K,332

can be translated into its vector of expansion coe�cients:333

rk(x) =
NX

j=1

brk,jvj(x), brk = (brk,1, . . . , brk,N )T .(3.1)334

335

Now the definitions of C and Ck immediately yield convexity and conic properties of336

these sets.337

Theorem 3.1. The set C is a closed convex set in N , and each for k = 1, . . . ,K,338

Ck is a closed, a�ne convex cone in N with vertex located at brk.339

Proof. Convexity, closure, and conic structure are preserved under isometries.340

Due to the isometric relation between V and N , we can thus prove properties in one341

space, which extends to the other space. We first show that Ck is closed directly in342
N : Rewriting (2.7) using the definition of Ek, we have343

Ck =
\

y2!k

8
<

:c 2
N
�� Lk

0

@
NX

j=1

cjvj , y

1

A  Lk(rk, y)

9
=

; =:
\

y2!k

ck(y).344

345

By definition, ck(y) is actually a halfspace in N ,346

ck(y) = H

⇣
b̀
k(y), Lk(rk, y)

⌘
347
348

and hence ck(y) is a closed set. Therefore, Ck = \yck(y) is also a closed set, and thus349

C = \kCk is a closed set.350

We will now show the convexity and conic properties in V : fix k 2 {1, . . . ,K} and351

y 2 !k. Let v, w 2 V be two elements in Ek. For any � 2 [0, 1],352

Lk(�v + (1� �)w, y) = �Lk(v, y) + (1� �)Lk(w, y)  Lk(rk, y),353354

where the inequality is true since v, w 2 Ek. Therefore Ek, and hence Ck, is convex.355

Thus we also have that C is convex since it’s an intersection of convex sets.356

We next show that Ek is a cone with the vertex at rk, i.e., we must show that for357

any ⌧ � 0 and v 2 V , we have Lk(rk + ⌧(v � rk))  Lk(rk). This is true since358

Lk(rk + ⌧(v � rk)) = Lk(rk) + ⌧ [Lk(v)� Lk(rk)]  Lk(rk),359360

so indeed, Ek is a convex cone with the vertex at rk, and hence Ck is a convex cone361

with the vertex at brk.362
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Despite their conic convexity, the sets Ck are not polyhedral in general, and are363

hence “complicated” to computationally encode. Consider the setup of Example 2.1.364

If we change the definition of !1 to365

e!1 = {x1, . . . , xP } ⇢ ⌦ = [�1, 1].366367

for any arbitrary P < 1, the new constraint set eC1 = C(L1, r1, e!1) is strictly larger368

than the constraint set C1 in Example 2.1. In particular, p 2 V satisfying p(xj) � 0 for369

j = 1, . . . , P does not imply that p(x) � 0 for all x 2 [�1, 1] unless V has very special370

properties (for example, if V contains only certain piecewise constant functions). Note371

that the supporting hyperplanes of the constraint set eC are P < 1 halfspaces in N372

and hence eC is polyhedral (if nonempty). However, if V contains polynomials, it is373

easy to construct a polynomial that is non-negative on e!1 but not non-negative on ⌦.374

Hence, the constraint set C1 defined by (L1, r1,!) in example 2.1 is strictly smaller375

than eC1, here defined by (L1, r1, e!).376

Nevertheless, such discretization approaches, i.e. approaches that use a finite set377

e!1 as a surrogate for an infinite set ⌦, are common and frequently e↵ective algorithms378

for solving (2.8), as is commonly done in semi-infinite programming problems. How-379

ever, in this manuscript we present algorithms that insist on global satisfaction of the380

constraints, and hence adopt alternative approaches. Thus, the main computational381

di�culty of our optimization problem is that the set C cannot be exactly represented382

as a polyhedron in general, and in particular that projections onto C are in general383

di�cult to compute.384

3.2. Solutions to (2.8). Our main goal in this section is to demonstrate the385

unique solution to our constrained optimization problem. The result is straightforward386

from the closed convexity of the constraint set and strict convexity of the objective387

function.388

Theorem 3.2. Assume that the design matrix A has rank N and the feasible389

set C is nonempty. Then, the constrained optimization problem (2.8) has a unique390

solution.391

Proof. The first step is to observe that since A has full column rank, we can write392

the problem in transformed coordinates as a convex feasibility problem (specifically as393

a projection problem). Let A = U⌃V ⇤ be the reduced singular value decomposition394

of A. Since rank(A) = N  M , ⌃ is N ⇥ N , diagonal, and invertible; V is N ⇥ N395

and orthogonal; and U is M ⇥N with orthonormal columns.396

With PW the N -orthogonal projector onto a subspace W, and R(A) the range397

of A, then (2.8) can be written as398

argmin
bv2C

kAbv � bk22 = argmin
bv2C

��PR(A)?b
��2
2
+
��Abv � PR(A)b

��2
2

399

= argmin
bv2C

k⌃V ⇤bv �U⇤bk22400

= V ⌃�1 argmin
z2⌃V ⇤C

kz �U⇤bk22 ,(3.2)401
402

where ⌃V ⇤
C :=

�
⌃V ⇤y 2

N
�� y 2 C

 
. Thus, (2.8) has a unique solution if and403

only if404

argmin
z2⌃V ⇤C

kz �U⇤bk22(3.3)405
406
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has a unique solution. Theorem 3.1 establishes that C is closed and convex; thus,407

⌃V ⇤
C is a linear transformation of a closed convex set, so it is also closed and408

convex. Therefore, (3.3) seeks the `
2( N )-closest point to U⇤b from a nonempty,409

closed, convex set. The Hilbert Projection Theorem guarantees the existence and410

uniqueness of such a point.411

The study of existence and uniqueness of approximations under convex constraints is412

not new [22, 19]. Indeed, our result is a corollary of these earlier results, but we have413

presented a brief proof above in order to be self-contained.414

4. Algorithms: Convex Feasibility. We now concentrate on solving the prob-415

lem defined by (2.8), equivalently (3.3). To simplify the presentation, we will assume416

first that A = I so that both (3.3) and (2.8) reduce to417

argmin
c2C

kc� bk22 ,(4.1)418
419

i.e., a standard problem of projecting b onto a convex set C. The main bottleneck to420

applying standard optimization tools is that the feasible set C is not easily defined in421

terms of a finite number of conditions on c. The di�culty in our problem is not in422

minimizing the objective function, but instead the convex feasibility problem, i.e., to423

identify points in the convex feasible set.424

Some of the most successful algorithms for solving the convex feasibility problem425

are alternating- or splitting-type algorithms. If C1, . . . , Cr are convex sets with non-426

empty intersection C, these algorithms assume that projection onto any one of these427

sets is computationally feasible. A solution to (4.1) can be computed by alternating428

these individual projections. The original projection onto convex sets algorithm via429

iteration is due to Von Neumann [25], and much work has proceeded from this [9,430

16, 2, 12, 18, 13]. When r > 2, the alternating algorithm becomes a cyclic one, and431

these cyclic projection algorithms have substantial theoretical underpinning, including432

convergence guarantees.433

The di�culty in applying these algorithms to our situation is that they character-434

ize the feasible region with a finite number of convex sets. Although our collection of435

sets {Cj}
K

j=1 is finite, we do not know how to project onto any of them individually.436

However, we have437

C =
K\

k=1

Ck =
K\

k=1

\

y2!k

Hk(y),(4.2)438

Hk(y) := H (`k(y), Lk(rk, y)) ,439440

so that C is comprised of an (in general uncountably) infinite intersection of half-441

spaces, each of which is straightforward to project onto, see Figure 2 for a geometric442

visual. Our strategy here is to generalize certain types of cyclic/alternating algorithms443

to the case of an infinite number of convex sets (halfspaces). We broadly employ two444

strategies: greedy projection and averaged projection.445

The major ingredient in our approaches is the ability to project onto any halfspace446

Hk(y). Since the functionals Lk(·, y) are unit norm, a computation shows that the447

signed distance between some point c 2
N and Hk(y) is448

sdist(c, Hk(y)) = Lk(rk, y)�
D
b̀
k(y), c

E
,(4.3)449

450
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Fig. 2: Left: The hatched volume represents the closed convex cone C1 Middle:
Geometric depiction of intersecting hyperspacesH1(y) and their respective boundaries
defined by hyperplanes parameterized by y 2 ⌦. Also shown is the distance calculation
corresponding to (4.3). Right: A scenario that demonstrates the greedy strategy to
select the direction in which y moves in the next step of the algorithm: H1(y4) is
farther away from c than H1(y5). The optimization (4.5) seeks the hyperplane that
is farthest away from c.

which is positive if c 2 Hk(y) and negative otherwise. Thus, the nearest-distance451

projection of c onto Hk(y) is452

PHk(y)c = c+ `k(y)min {0, sdist(c, Hk(y))} .453454

We consider an example to illustrate that these projections are easily computable.455

Example 4.1. Consider the positivity constraint setup of Example 2.1. The con-456

straint functional L1(·, y) is a (normalized, negative) point evaluation at y, and {vn}
N

n=1457

are the first N orthonormal Legendre polynomials on [�1, 1]. Then, the Riesz repre-458

sentor `1(y) 2 V and its coordinates {b̀1,j(y)}Nj=1 are explicit in terms of the Legendre459

polynomials via (2.5). In the context of harmonic analysis, `1(y) is the y-centered,460

negative, normalized Dirichlet kernel for V . The function r1 describing the constraint461

is r1 ⌘ 0, so that br1 = 0 and L1(r1, y) = 0. Now let v 2 V be any element with462

coordinates c 2
N in the orthonormal Legendre polynomials. Then,463

sdist(c, H1(y)) = �

D
b̀
1(y), c

E
= �(y)v(y).(4.4)464

465

Thus, the signed distance at y 2 ⌦ is simply scaled evaluation of the original function466

v. The projection of c onto the halfspace defined by Hk(y) is therefore467

PHk(y)c = c+ b̀
1(y)min {0, v(y)�(y)} .468469

Note that since �(y) > 0, this projection equals c if v(y) � 0, as expected.470

4.1. Greedy projections. Since projections onto individual halfspaces defined471

by Hk(y) are relatively simple to compute, we can devise one algorithm for com-472

puting the solution to (4.1) as a modification of cyclic projections. Although cyclic473

projection-type algorithms proceed by cycling through the enumerable constraint sets,474

our (uncountably) infinite collection of sets prevents such a simple cycling. Instead,475

we can project onto the farthest or most violated constraint, i.e., with476

(y⇤, k⇤) := argmin
y2!k,k2[K]

sdist(c, Hk(y)),(4.5)477

478
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We can update c via479

c  c+ `k⇤(y⇤)min {0, sdist(c, Hk⇤(y⇤))} .(4.6)480481

The geometric picture associated to (4.5) is shown in the right panel of Figure 2.482

The update process (4.6) can be repeated, resulting in an iterative algorithm. We483

summarize this procedure in Algorithm 4.1. This algorithm proceeds by iteratively484

“correcting” the vector c in (4.6). The associated operation in the function space V485

is that an unconstrained function is additively augmented by the Riesz representor486

correction function `k⇤(y⇤) 2 V . These corrections are visualized in Figure 1 for487

polynomials. A more detailed understanding of these function is provided in Figures488

4 and 5 where we show `k(y)(x) as a function of (x, y) for polynomials.489

Algorithm 4.1 Iterative greedy projection algorithm to compute the solution to
(4.1). The unspecified “extra termination criteria” can be standard metrics, such as
number of iterations, improvement in objective function, etc.

1: Input: constraints (Lk, rk,!k)Kk=1
2: Input: coordinates c 2

N of a function v 2 V

3: while True do
4: Compute (y⇤, k⇤) via (4.5).
5: if sdist(c, Hk⇤(y⇤)) � 0 or extra termination criteria triggered then
6: Break
7: end if
8: Update c via (4.6).
9: end while

10: return c

Note that the bulk of the computational e↵ort in Algorithm 4.1 corresponds to490

line 4 where the ⌦-global optimization problem (4.5) must be solved, which can be of491

considerable expense at each iteration. We explain in Appendix A how we accomplish492

this optimization for univariate polynomial spaces V .493

It is straightforward to establish that under a special kind of termination in494

Algorithm 8, we obtain the solution to (4.1).495

Proposition 4.1. If Algorithm 4.1, without any extra termination criteria, ter-496

minates after one only iteration of line 8, then the output c is the solution to (4.1).497

Proof. Assume without loss that the input to algorithm 4.1 c is not in C. By498

(4.2), we have499

dist (c, C) � dist (c, Hk(y)) ,500501

for any (y, k). Let (y⇤, k⇤) be the solution to (4.5), and note that since c 62 C,502

dist (c, Hk(y)) = �sdist(c, Hk⇤(y⇤)) > 0.503504

The assumption that Algorithm 4.1 terminates after one iteration implies that505

d := c+ b̀
k⇤(y⇤)sdist(c, Hk⇤(y⇤)) 2 C.506507

Note d is returned by the algorithm. c 62 C, d 2 C,
���b̀k⇤(y⇤)

���
2
= 1, and that508

dist (c, C) � �sdist(c, Hk⇤(y⇤)),509510

all imply that the above inequality is actually an equality, and thus d solves (4.1).511
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In standard cyclic projection algorithms, it is well known that directly projecting512

onto each set in each iteration produces a suboptimal trajectory for the iterates. The513

greedy algorithm described in this section su↵ers from this as well, which we show514

in the numerical results section. An improvement that somewhat ameliorates this515

deficiency is accomplished by averaging these projections.516

4.2. Averaged projections. A simple strategy to mitigate the oscillatory iter-517

ation trajectory produced by iterative greedy projections is via averaging. Precisely,518

given a current iterate c, we identify the subset of ⌦ where our constraints are violated:519

!
�
k
:=

�
y 2 !k

�� sdist(c, Hk(y)) < 0
 
.(4.7)520521

Under mild assumptions on V , e.g., that it contains only piecewise continuous func-522

tions, !�
k

is either the trivial (empty) set, or of positive Lebesgue measure. (In other523

words, it cannot be a discrete or nontrivial measure-0 set.) Assume for simplicity that524

!
�
k

has a positive Lebesgue measure for each k. We then produce an update by a525

normalized average of corrections corresponding to values of y in !
�
k
:526

c  c+
KX

k=1

1

K|!
�
k
|

Z

!
�
k

b̀
k(y)sdist (c, Hk(y)) dy.(4.8)527

528

Above, |!�
k
| is the measure of !�

k
⇢ ⌦. We again illustrate with an example that529

these quantities are computable.530

Example 4.2. Consider the positivity constraint setup of Example 2.1. As we531

saw in Example 4.1, the signed distance for our single constraint is given by (4.4).532

Note that in this one-dimensional setup with finite-degree polynomials, the set !�
k

is533

a finite union of subintervals of [�1, 1], and hence the measure |!
�
k
| is just the sum534

of the lengths of these subintervals. Then, the correction term on right-hand side of535

the update scheme (4.8) is536

�
1

|!
�
k
|

Z

!
�
k

b̀
1(y)�(y)v(y)dy = �

1

|!
�
k
|

NX

j=1

ej

Z

!
�
k

�
2(y)v(y)vj(y)dy,537

538

where ej, j 2 [N ] are the cardinal unit vectors in N . Thus, the integrals that must539

be computed have smooth integrands and can be e�ciently approximated by standard540

quadrature rules, assuming the endpoints of the subintervals defining !
�
k

can be iden-541

tified.542

A variation of Algorithm 4.1 that uses this averaging approach is nearly identical: the543

only change required is that the update of the coe�cient vector c in line 8 should be544

replaced by the update in (4.8).545

Figure 3 visually depicts both the greedy and averaged projections idea where546

V is a univariate space of polynomials and the constraint is positivity (i.e., Example547

2.1). In particular, the value y
⇤ that solves the greedy optimization problem (4.5) is548

shown, along with the averaging set !�
1 identified in (4.7).549

4.3. Hybrid algorithms. In experimentation, we have found that hybrid com-550

binations of the greedy approach of Section 4.1 and the averaged approach of Section551

4.2 work better than any algorithm alone. In particular, the greedy algorithm works552

well when c is “close” to the solution, but the averaged algorithm works better for553

an iterate that is “far” away. Thus, we utilize a standard switching procedure in554

optimization depending on the proximity to a basin of attraction.555
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Fig. 3: v is the unconstrained L
2([�1, 1]) projection of the step function f(x) onto the

space of degree-7 polynomials. For the positivity setup of Example 2.1, the greedy
point y⇤ defined in (4.5) is shown, and the averaging set !�

1 ⇢ [�1, 1] defined in (4.7).
Also plotted is the signed distance �(y)v(y) of v to H1(y).

Through experimentation, we have found that the following switching mechanism556

works well: We perform averaged projections until the norm of the correction (4.8)557

reaches a certain tolerance. After a condition is met, we switch to greedy projections.558

The switching condition is the following: if i is the iteration index, consider the ratio,559

↵i =
sdist(ci, Hk

⇤
i
(y⇤

i
)

sdist(ci�1, Hk
⇤
i�1

(y⇤
i�1)

.560

561

Our switching condition is triggered when |↵i � ↵i�1|  ✏, for a user-specified ✏. At562

this point, we perform one more averaged update of the form (4.8), but multiply the563

right-hand side correction by 1/↵i. Subsequently, greedy projections as in (4.6) are564

performed. While this procedure is quite ad hoc, we have observed that it consistently565

performs better than other hybrid variants we have tried.566

4.4. Algorithms for polynomial subspaces. As described in previous sec-567

tions, the main computational expense in our convex optimization algorithm is the568

minimization of the signed distance function in (4.5) (for the greedy and hybrid algo-569

rithms) and identification and integration over the set !
�
k

in (4.7) (for the averaged570

and hybrid algorithms). Such problems for general function spaces are di�cult to571

solve, and e�cient algorithms will likely depend on what kinds of functions the sub-572

space V contains.573

When V contains univariate polynomials, all the tasks in the algorithm can be574

reduced to the problem of computing roots of polynomials, and hence are feasible575

in principle. We accomplish this computationally by computing the spectrum of a576

confederate matrix, although more sophisticated and practically e↵ective methods577

are known. We describe this formulation and details of the approach in Appendix A.578

4.5. Nonidentity matrices A. The optimization problem we seek to solve is579

(2.8); the algorithms in this section have proceeded under the assumption that A = I.580

When this is not the case, we must first solve (3.3), so that the full solution is (3.2).581

Thus, we focus on the problem582

argmin
z2⌃V ⇤C

kz �U⇤bk2 .(4.9)583
584
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Fig. 4: Correction functions for degree-5 polynomial approximation. Plots of `k(y)(x)
are shown as functions of (x, y) for various constraints enforcing positivity of the
kth derivative (rows) and ambient Hilbert spaces (columns). Top: k = 0 positivity;
middle: k = 1 monotonicity; bottom: k = 2 convexity. Left: L

2([�1, 1]); middle;
H

1([�1, 1]); bottom: H2([�1, 1]).

Note that the only di↵erence between this optimization and the simplified version585

(4.1) is that the feasible set is ⌃V ⇤
C instead of C so that we need only address the586

presence of the linear map ⌃V ⇤. Since C is closed and convex, then ⌃V ⇤
C is also587

closed and convex, and in particular is defined as the intersection of closed, conic,588

convex sets eCk:589

⌃V ⇤
C =: eC =

K\

k=1

eCk :=
K\

k=1

⌃V ⇤Ck.590

591

Thus, all our previous algorithms apply, except that we need to only transform592

(Lk, rk,!k) for Ck into the appropriate quantities for eCk. These transformations593

are straightforward but technical, so we omit showing them explicitly.594

5. Numerical results. In all that follows, f is a given function in a Hilbert space595

H. Given a finite-dimensional space V ⇢ H, the function v is the H-best projection596

onto V , which does not in general satisfy any structural constraints. (Note from597

discussion in Section 4.5 that extensions to, e.g., collocation-based approximations,598

are straightforward.) The function ṽ is the output of the constrained optimization599

procedure.600
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Fig. 5: Correction functions for degree-30 polynomial approximation. Plots of `k(y)(x)
are shown as functions of (x, y) for various constraints enforcing positivity of the kth
derivative (rows) and ambient Hilbert spaces (columns). Top: k = 0 positivity;
middle: k = 1 monotonicity; bottom: k = 2 convexity. Left: L

2([�1, 1]); middle;
H

1([�1, 1]); right: H2([�1, 1]).

With the univariate Sobolev spaces,601

H
q([�1, 1]) :=

�
f : [�1, 1] !

�� kfkH2 < 1
 
, kfk

2
Hq :=

qX

j=0

Z 1

�1

h
f
(j)(x)

i2
dx,602

603

our examples will consider the ambient Hilbert space H as H
0(= L

2), H1, or H
2.604

The subspace V in all our experiments is the space of polynomials up to degree N�1:605

V =
�
p : [�1, 1] !

�� deg p  N
 
.606607

Our test functions fj are defined iteratively for j � 1 as,608

fj+1(x) = cj+1

Z
x

�1
fj(t)dt, f0(x) =

8
<

:
0, x  0,

1, x > 0
,609

610

where cj+1 are normalization constants chosen so that fj+1(1) = 1. Thus, fj has611

j weak L
2 derivatives. Finally, most of our results will consider intersections of the612

following four types of constraint sets in V :613

• (Positivity) F0 := {f 2 H
�� f(x) � 0 8x 2 [�1, 1]}614

• (Boundedness) G0 := {f 2 H
�� f(x)  1 8x 2 [�1, 1]}615
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• (Monotonicity) F1 := {f 2 H
�� f 0(x) � 0 8x 2 [�1, 1]}616

• (Convexity) F2 := {f 2 H
�� f 00(x) � 0 8x 2 [�1, 1]}617

Our final example considers a slightly more exotic set of constraints, which we discuss618

later.619

In order to understand how much our algorithms “change” the input v when620

producing constrained approximation ṽ, we measure the following quantity:621

(5.1) ⌘ :=
kv � ṽkH

kf � vkH
.622

Since f � v is H-orthogonal to V , then623

kf � ṽk
2
H

= (1 + ⌘
2)kf � vk

2
H
.624625

Thus,
p
1 + ⌘2 measures the error in the constrained approximation relative to the626

(best) unconstrained approximation. Values on the order of 1 imply that this opti-627

mization problem commits an additional error that is approximately the same as the628

error committed by the best (unconstrained) approximation.629

Algorithm 4.1 is the greedy algorithm, but it is the template for the averaging630

and hybrid algorithms as well. For example, a hybrid algorithm needs to replace only631

line 8 in that algorithm by the update (4.8). However, we have left some details of the632

termination criterion in line 5 unexplained. For example, we do not actually enforce633

sdist(c, Hk⇤(y⇤))  0 as stated due to finite precision. Instead, we enforce634

sdist(c, Hk⇤(y⇤))  �, � > 0,(5.2)635636

where we set � = 10�10 and have implemented the procedure in double precision. In637

addition, the number of iterations I required before termination will also be reported.638

5.1. Algorithm comparison. A short summary of all the experiments investi-639

gating the hybrid approaches and their comparison with the greedy and the averaging640

methods is given in the Table 1.641

N = 6 N = 31

I ⌘ I ⌘

✏ 10�3 10�5 10�3 10�5 10�3 10�5 10�3 10�5

Greedy 20 20 1.147 1.147 23 23 0.986 0.986

Averaging 36 36 1.148 1.148 383 383 0.985 0.985

Hybrid 4 16 1.1464 1.148 2 3 1.142 1.054

Table 1: Performance summary of three proposed algorithms on the test function
f = f2 for di↵erent values of ✏, where ✏ is as described in Section 4.3. The constraint
set is E = F0.
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5.2. Function approximation examples. We present two examples of func-642

tion approximation to preserve structure in this section. The first example takes643

H = H
0 and the test function f = f0, which is a step (discontinuous) function. We644

present results for di↵erent N (the dimension of V ) and di↵erent constraints. Figure645

6 illustrates the results of the greedy algorithm. We compare medium-degree polyno-646

mial approximation N = 6 with high-degree polynomial approximation N = 31. The647

three kinds of constraints are (a) positivity, (b) positivity and boundedness, and (c)648

positivity, boundedness, and monotonicity. We observe that both the positivity and649

monotonicity constraints accomplish what is desired: the approximation ṽ satisfies650

the desired constraints, but still features Gibbs’-type oscillations. However, enforcing651

monotonicity as well results in a nonoscillatory approximation. All computed values of652

⌘ < 1 show that the constrained approximation commits an error that is comparable653

to that of the H-best approximation.654
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Fig. 6: Greedy algorithm results: Test function f0 for di↵erent constraint sets E

and polynomial spaces V . Top: N = dimV = 6, bottom: N = dimV = 31. Left:
Constraint E = F0. Center: Constraint E = F0 \ G0. Right: Constraint E =
F0 \G0 \ F1.

Our second experiment uses the test function f = f2, which has a piecewise-655

constant second derivative. We use a fixed constraint: positivity, monotonicity, and656

convexity. Using again N = 6 and N = 31, we investigate the approximation for657

di↵erent ambient spaces H = H
0, H1, and H

2. Results are displayed in Figure 7.658

We observe much larger values of ⌘ in this experiment, but note that the values of ⌘659

decrease as the order of the Sobolev space increases. We also observe that the visual660

discrepancy between the constrained approximation and the underlying function is661

also considerably larger in this experiment. However, the approximation quality still662

appears good for the larger value of N = 31.663

5.3. Constrained approximation as a nonlinear filter. The right-hand pan-664

els in Figure 6 show that the monotonicity constraint removes oscillations in the665

approximation. These empirical results suggest that the constrained optimization666

procedure is a type of spectral filter. There is a stronger theoretical motivation for667

this observation as well.668

Proposition 5.1. Let E ⇢ V be a nonempty, closed, convex set in H. Given669

some v 2 V , let ṽ be the solution to (2.6) (i.e., also the solution to (2.8)). If 0 2 E,670

then, kṽk  kvk.671
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Fig. 7: Test function f2 for di↵erent polynomial spaces V and ambient spaces H. The
constraint is E = F0\F1\F2. Top: N = 6, bottom: N = 31. Left: H = H

0. Center:
H = H

1. Right: H = H
2.

Proof. Projections onto closed convex sets in Hilbert spaces are nonexpansive672

[11]. I.e., kṽ � P (0)k  kv � 0k, where P : V ! E is the projection operator from V673

to E. Since 0 2 E, then P (0) = 0.674

In general, the assumption that E is closed and convex is automatically satisfied from675

our apparatus in Sections 2 and 3. The only nontrivial requirement is that v = 0 is a676

member of the constraint set E. All the examples in Figures 6 and 7 satisfy 0 2 E,677

and thus we expect that the optimization problem decreases the norm of the function,678

just as a standard linear filter would. Note, however, that our “filter” (optimization)679

is a nonlinear map.680

To illustrate this filter interpretation, we compare in Figures 8 and 9 the magni-681

tude of the before-optimization and after-optimization expansion coe�cients. These682

figures correspond to the experiments in Figures 6 and 7, respectively.683

For the step function example shown in Figure 8, we see that when monotonicity684

is enforced, there is a steeper decay of the higher order coe�cients in the constrained685

approximation. The stronger decay of coe�cients is also observed when only positiv-686

ity/boundedness is enforced, but the increase in decay is less pronounced. All these687

observations are qualitatively consistent with Figure 6. We emphasize that this con-688

strained optimization procedure is nonlinear, so that our approximation cannot easily689

be written in coe�cient space as a standard (linear) spectral filter.690

5.4. Convergence rates. Optimal Hilbert space projections of smooth func-691

tions onto polynomial spaces converge at a rate commensurate with the function692

smoothness. We investigate in this section whether the corresponding constrained693

projections have similar convergence rates. In Figure 10 we show convergence of694

H = L
2-optimal (unconstrained) polynomial projections versus the output from our695

constrained optimization procedure. Our constrained approximations are less accu-696

rate, but the convergence rates are unchanged.697

5.5. More complicated constraints. Finally, we show that our formalism698

allows for more complicated constraints than the ones we have previously shown.699

With H = H
0 and V a space of degree-(N � 1) polynomials as before, we consider700

two new kinds of constraints:701

• J1 = {f 2 V |f(x) � |x| 8 x 2 [�1, 1]}702

• J2 = {f 2 V |� sign(x)f(x) � |x| 8 x 2 [�1, 1]}703
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Fig. 8: Companion to Figure 6. Bar plot showing unconstrained projection coe�cients
magnitude |evj | vs various constrained projection coe�cients magnitude | ewj |. Top:
N = 6. Bottom: N = 31. Left: Constraint E = F0. Center: Constraint E = F0\G0.
Right: Constraint E = F0 \G0 \ F1.
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Fig. 9: Companion to Figure 7. Bar plot showing unconstrained projection coe�cients
magnitude |evj | vs various constrained projection coe�cients magnitude | ewj |. Top:
N = 6, bottom: N = 31. Left: H = H

0. Center: H = H
1. Right: H = H
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Fig. 10: H = H
0 convergence results for projection of test function f = f0 (top row)

and f = f2 (bottom row). V is a space of polynomials of degree N . Left: Constraint
E = F0. Center: Constraint E = F0 \G0. Right: Constraint E = F0 \G0 \ F1.
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Constraint set J1 can be defined as the intersection of two conic constraints: for704

x 2 [�1, 0], we enforce f(x) � �x. For x 2 [0, 1] we enforce f(x) � x. Constraint705

set J2 enforces f(x) � �x for x 2 [�1, 0] as before, but now enforces f(x)  x for706

x 2 [0, 1]. Note that J2 implicitly enforces f(0) = 0, but we do not explicitly require707

this in our algorithm. Since x 2 V when N � 2, we can handle these constraints with708

our setup.709

We consider the test function f(x) = |x|; the optimization successfully terminates710

and results are shown in Figure 11.711
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Fig. 11: Algorithm results from unusual constraints for f(x) = |x|. Top: Constraint
set J1. Bottom: constraint set J2. Left: N = 4. Center: N = 9. Right: N = 31.

6. Conclusions. We have proposed a formalism for performing constrained712

function approximation. Restricting the class of possible constraints to those that are713

convex assures a unique solution to the constrained function approximation problem714

in Hilbert spaces. Typical constraints of interest such as positivity or monotonicity715

are specializations of our setup. We propose three iterative algorithms to compute716

solutions to the problem. Each algorithm requires minimization or level set detection717

on a weighted version of the current approximant, and thus can be expensive. In one718

dimension with polynomial approximation, our algorithms require only the ability719

to accurately compute roots of polynomials. We have demonstrated the flexibility,720

feasibility, and utility of our constrained approximation setup with many examples,721

including empirical investigation of convergence rates.722

For higher dimensions, we require the ability to find the minimum of a non-723

polynomial multivariate function, and so our optimization problem becomes much724

more complex and expensive. Our di�culties in computing global minima corre-725

spond precisely to the known di�culty of globally solving the “lower-level” problem726

in semi-infinite programming methods, and our algorithms do not provide novel or727

constructive approaches to addressing this more general challenge in SIP algorithms.728

Therefore, identifying approaches to make our algorithm usable for multivariate ap-729

proximation problems is the subject of ongoing research.730
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Appendix A. Algorithms for univariate polynomial subspaces.735

We present procedures for solving the greedy and averaging optimization proce-736
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dures in sections 4.1 and 4.2 under the assumption that V is a complete, univariate737

polynomial space. More formally, we make three specializing assumptions.738

The first assumption is thatH an L
2-type space. A typical setup in one dimension739

is that ⌦ is a interval in (and possibly equal to) , and a weighted L
2 space is defined740

by a probability density function ⇢:741

hu, vi
L2

⇢
:=

Z

⌦
u(x)v(x)⇢(x)dx742

743

The second specializing assumption in this section is that V is a complete polynomial744

space. For a finite N 2 , the space V contains polynomials up to degree N�1. Then,745

{vj}
N

j=1 can be chosen as the first N orthonormal polynomials under the weight ⇢ on746

⌦. It is classical knowledge that such a family of polynomials satisfies the three-term747

recurrence:748

xvn(x) = bn+1vn+1(x) + an+1vn(x) + bnvn�1(x), n � 1,749750

with the starting conditions v0 ⌘ 1 and v�1 ⌘ 0, where an = an(⇢) and bn = bn(⇢)751

are the recurrence coe�cients [24].752

The third specializing assumption is that we are in the setup of Example 2.1753

where the constraints enforce positivity v(x) � 0 for every x 2 ⌦. We will see that754

this assumption can be relaxed substantially; indeed we make this assumption here755

to only clarify some computations.756

An important technique that we will need to exploit for this special setup is the757

ability to compute roots of polynomials from their expansion coe�cients, i.e., if v 2 V758

has expansion coe�cients {bvj}Nj=1, then the N�1 (complex-valued) roots of v coincide759

with the spectrum of the (N � 1)⇥ (N � 1) confederate matrix T = T (v):760

T (v) = J �
bN�1

bvN
eN�1

ebv
T

, J =

0

BBBBBBBBB@

a1 b1

b1 a2 b2

b2 a3 b3

. . .
. . .

bN�2 aN�1

1

CCCCCCCCCA

(A.1)761

762

where eN�1 2
N�1 is the cardinal unit vector in the (N � 1)st direction and763

ebv
T

= (bv1, . . . , bvN�1). The matrix J is the Jacobi matrix and is independent of v.764

We use direct eigenvalue solvers to compute the spectrum of T (v) = v
�1(0). Note765

that there are backwards stable versions of the task of computing roots from the766

spectrum of related matrices [20]. An analogous approach that operates on expan-767

sion coe�cients in a monomial basis uses the spectrum of the companion matrix.768

Note that our strategy is rather rudimentary compared to more sophisticated meth-769

ods for computing roots of polynomials [6], e.g., one can compute polynomial roots770

on subintervals and perform refinement. However, this consideration is not the main771

innovation of our algorithm, and so we use the procedure above mainly for simplicity.772

We do perform a numerical stability check where we switch between companion and773

confederate matrices depending on which has smaller condition number. In all the774

examples we attempted for this manuscript, this check was su�cient to robustly and775

accurately compute roots of polynomials.776
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A.1. Greedy projections. With the setup of Example 2.1, the problem (4.5)777

requires us to compute778

y
⇤ = argmin

y2⌦
sdist (bv, H1(y))

(4.4)
= argmin

y2⌦
v(y)�(y).779

780

To minimize the last expression, we can compute the critical points, which are the781

roots of the derivative. Using (2.5), we have782

d

dy
[v(y)�(y)] = �

3(y)

2

4v0(y)
NX

j=1

v
2
j
(y)� v(y)

NX

j=1

vj(y)v
0
j
(y)

3

5 .783

784

Note that �
3 cannot vanish, so the critical points coincide with the roots of the785

bracketed expression above, which is a degree-(3N � 4) polynomial. Thus,786

d
dy [v(y)�(y)]

�3(y)
=

3N�3X

j=1

bgjvj(y) =: g(y),787

788

for some coe�cients bgj . The computation {bvj} 7! {bgj} can be accomplished using789

only the recurrence coe�cients in O(N2) time without resorting to, e.g., quadrature.790

In summary, the global minimum in (4.5) can be computed by first computing791

the bgj expansion coe�cients defined above, and then by computing the spectrum of792

the (3N �4)⇥ (3N �4) matrix T (g). To compute the global minimizer, we then need793

only evaluate the discrete minimum of v(y)�(y) over the eigenvalues located in ⌦.794

A.2. Averaged projections. The main task for the averaged projections pro-795

cedure is to compute the integral in (4.8). In our specialized setup, this task reduces796

to computing797

1

|!
�
1 |

Z

!
�
1

b̀
1(y)v(y)�(y)dy,798

799

which is an N -component vector, where component j of this vector has the entry800

1

|!
�
1 |

Z

!
�
1

vj(y)v(y)�(y)dy.(A.2)801

802

The first step is to identify the set !
�
1 defined in (4.7), which in this special case is803

equivalent to804

!
�
1 =

�
y 2 [�1, 1]

�� v(y) < 0
 
.805806

Therefore, this set can be identified by examining the roots of v, which are the eigen-807

values of T (v). Thus, we partition [�1, 1] into subintervals on which v is single-signed,808

after which determining the sign of v on an interval can be accomplished by evaluating809

v in this interval.810

After !�
1 is identified as a disjoint collection of subintervals of [�1, 1], we compute811

the components of the update (A.2) by employing an M -point Gaussian quadrature812

rule; since the integrand vjv� is a smooth function on [�1, 1], this can be completed813

e�ciently. We employ M = N + 1 quadrature points for this same computation.814
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