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STRUCTURE-PRESERVING FUNCTION APPROXIMATION VIA
CONVEX OPTIMIZATION*

VIDHI ZALAt, ROBERT M. KIRBY#, AND AKIL NARAYANS$

Abstract.

Approximations of functions with finite data often do not respect certain “structural” properties
of the functions. For example, if a given function is non-negative, a polynomial approximation
of the function is not necessarily also non-negative. We propose a formalism and algorithms for
preserving certain types of such structure in function approximation. In particular, we consider
structure corresponding to a convex constraint on the approximant (for which positivity is one
example). The approximation problem then converts into a convex feasibility problem, but the
feasible set is relatively complicated so that standard convex feasibility algorithms cannot be directly
applied. We propose and discuss different algorithms for solving this problem. One of the features
of our machinery is flexibility: relatively complicated constraints, such as simultaneously enforcing
positivity, monotonicity, and convexity, are fairly straightforward to implement. We demonstrate
the success of our algorithm on several problems in univariate function approximation.

Key words. structure-preserving approximation, high-order accuracy

AMS subject classifications. 41A29, 65D15, 656K05, 90C25, 42A16

1. Introduction. The approximation of functions as a linear combination of
basis functions is a foundational technique in numerical analysis and scientific com-
puting. For example, such a linear combination or expansion is often used as an
emulator for the original function, or as an ansatz for the solution to a differential
equation. If; e.g., the original function is smooth, then such approximations are of-
ten accurate, but they may not adhere to other kinds of structure that the function
possesses. The simplest example of such a structure is positivity: if f is a positive
function, an accurate polynomial approximation of f need not also be positive. Other
types of structure that arise in practice are monotonicity or maximum and minimum
value constraints. If an approximation violates the implicit structure of a function, the
resulting computation may produce unphysical predictions, and may cause solvability
issues in numerical schemes for solving differential equations [26].

In this paper, we present a general framework for preserving structure in func-
tion approximation from a linear subspace. “Structure” in our context refers to fairly
general types of linear inequality constraints, including positivity and monotonicity.
However, we demonstrate that our setup can also handle more exotic types of con-
straints. The model by which we impose structure is straightforward: construct the
approximation that best fits the available data, subject to the structural constraints.
We observe that imposing our type of structure on the approximation corresponds to
a convex constraint on the vector of expansion coefficients (i.e., the coordinates of the
approximation in a basis of the linear space). Thus, our notion of structure-preserving
approximation corresponds to a convex optimization problem. Unfortunately, the re-
sulting convex set is “complicated”, and we cannot utilize standard algorithms to
solve this problem. We therefore develop two algorithms to solve this problem, each
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2 VIDHI ZALA, ROBERT M. KIRBY, AND AKIL NARAYAN

of which is advantageous in different situations. We subsequently formulate a hybrid
algorithm that achieves superior performance compared to the original two algorithms.
In summary, the contributions of this paper are as follows:

e We formalize a new model for computing structure-preserving approximations
of functions. This model can successfully compute function approximations
that respect canonical structure such as positivity and/or monotonicity, but
can also embed much richer, nontrivial structure, cf. Figure 11. A particular
advantage of our approach is that the formalism is identical for all these
structure; e.g., the procedure for preserving positivity versus monotonicity is
fundamentally the same.

e We show that this model corresponds to a finite-dimensional convex optimiza-
tion problem. We subsequently characterize the feasible set as an intersection
of conic sets (Theorem 3.1), and show that the optimization problem, and
hence our structure-preserving approximation model, has a unique solution.
See Theorem 3.2.

e Our convex optimization problem can be cast as a problem of projecting onto
a convex set (the feasible set). Unfortunately the feasible set is not, in gen-
eral, a polytopic region in coefficient space. Hence, a finite number of linear
inequality constraints cannot characterize the feasible set. We instead charac-
terize the convex feasible set as one with an (uncountably) infinite number of
supporting hyperplanes. We use this characterization to develop two types of
algorithms for computing the solution to the optimization problem. We also
combine these two algorithms into a hybrid approach that is more efficient
than either algorithm alone. These three approaches are detailed in Section
4.

e We demonstrate with numerical results in one dimension with polynomial ap-
proximations that the resulting algorithm produces approximations satisfying
desired constraints. We also show that, for our examples, rates of convergence
of polynomial approximation are unchanged compared to the unconstrained
case.

Our problem formulation (along with its mathematical properties) holds in the multi-
variate approximation case; the major drawback in such cases is that our algorithms
require global optimization of multivariate functions, which is a difficult problem
in general. In order to compute solutions to the constrained optimization problem,
our algorithms iteratively “correct” an unconstrained initial guess. For one of our
algorithms, these corrections are essentially Dirichlet kernels for the approximation
space. We visualize some correction functions for enforcing positivity in polynomial
approximation in Figure 1.

In Section 2, we introduce notation, describe the types of constraints we consider,
and present the structure-preserving approximation model. Section 3 analyzes the
feasible set of the model and shows that a unique solution exists. Section 4 presents our
proposed algorithms for computing solutions. Finally, Section 5 contains numerical
results and demonstrations.

1.1. Existing and alternative approaches. There are several existing tech-
niques for building special kinds of structure-preserving approximations. We will
frequently use positivity as an explicit example below to make notions clear.

One simple technique in enforcing positivity in function approximation is to en-
force positivity as a finite number of points in the domain. This technique makes the
feasible set much easier to characterize and results in applicability of several off-the-
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STRUCTURE-PRESERVING FUNCTION APPROXIMATION 3

Fig. 1: Correction functions used to enforce positivity in a univariate polynomial
approximation. Our algorithm adds scaled/combined versions of these functions to
enforce constraints. Shown are corrections targeted to enforce positivity at x = 0.5.
Correction functions are shown for polynomials of degree 5 (top) and 30 (bottom).
The columns correspond to corrections in different ambient Hilbert spaces. Left:
L?([-1,1]). Center: H'([-1,1]). Right: H?([-1,1]).

shelf algorithms [7]. However, these approaches do not guarantee positivity on the
entire domain, which our structure-preserving model does enforce. Another class of
techniques uses mapping methods. For example, if we approximate v/f and square the
resulting approximation, then the squared approximation is guaranteed to be positive.
Finally, there are more complicated successful approaches to construct positive ap-
proximations [10]. Although these approaches are attractive, such mapping functions
are not easy to construct for more complicated constraints.

Another approach is to adapt the basis; for example, by expanding a function in
Bernstein polynomials that are positive on some domain, we can ensure the positivity
of the approximation on that domain if all the expansion coefficients are non-negative.
Therefore, one forms an approximation subject to the positivity of the coefficients.
However, this approach does not yield polynomial reproduction even in simple cases.
Consider the following basis for quadratic polynomials in one dimension: vi(x) =
1— 22, va(z) = (1 —z)(x + 3) and v3(x) = (z + 1)(3 — z). Note that on [—1, 1], these
three functions are all non-negative. However, the (unique) representation of f =1
(that is also non-negative) in this basis is

f(2) = —5un(@) + Joa(a) + Tos(a),
which clearly does not have positive expansion coefficients. Alternative approaches
use an adaptive construction scheme for certain kinds of constraints [5]; our framework
allows much more general constraints and is not restricted by dimension, although in
this paper we consider only univariate examples.
In general, each of the techniques above is different, and they must usually be
nontrivially adapted when a new kind of structure is desired, or if a different approxi-
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4 VIDHI ZALA, ROBERT M. KIRBY, AND AKIL NARAYAN

mation space is used. The model we employ in this work is general-purpose, handling
rather general types of constraints and very general approximation spaces. Finally, we
note the prior theoretical investigation of error estimates for best structure-preserving
approximation [14, 4, 3, 21].

Our formulation constructs an optimization problem of the form

(1.1) min ||Av — b||§7 such that ¢(v,y) <0Vy € Q,
veER

where A and b are a given matrix and vector (of appropriate sizes), and g(-,y) is
a scalar-valued function depending on a parameter y that takes values in an infinite
set Q. Hence, our problem is a semi-infinite programming (SIP) problem [17] since
the feasible set is described by an infinite number of constraints. As is well-known
in SIP methods, even assessing feasibility of a candidate ¥ would require certifying
satisfaction of the constraints, i.e., certifying that the maximum of g(v,-) over all
Q is non-positive. Globally solving this so-called lower-level problem is typically
the main challenge in SIP algorithms, and is frequently circumvented by means of
either discretization approaches (that replace 2 by a finite set) or by local reduction
approaches (which partition €2 into subdomains and use specialized approaches on each
subdomain). In both cases, there is a discrete approximation of Q that is constructed
(and perhaps refined). For generating positive approximations, this would correspond
to requiring positivity at only a finite set of points on the domain.

Our formulation, upon discretization/division of €, can certainly leverage SIP
algorithms. However, our aim in this paper is to discuss the solution of this problem
without discretization of (2, and hence we do not rely on existing SIP algorithms.
In particular, we propose algorithms to solve the original SIP problem that presume
the ability to compute global solutions to the SIP lower-level problem. Thus, our
algorithms differ from many existing SIP algorithms [15, 23], but also inherit the
general challenge that global solutions to lower-level SIP problems must be provided.

2. Setup. Let Q C R? be a spatial domain. Whereas our setup and theoretical
results are valid for general 2 and d > 1, our numerical examples in this paper
will primarily be restricted to d = 1 with Q = [—1,1]. The restriction affects only
algorithms and not the model or mathematical properties of our discussion. Consider
a Hilbert space formed from scalar-valued functions over €Q:

H=HQ)={f: Q= R||fll <o}, I£112 = (£, £)

with (-,-) = (-,-)g the inner product on H. We are mostly concerned with “stan-
dard” function spaces such as L?({2) or Sobolev spaces'. Let V be an N-dimensional
subspace of H, with {v,,}2_; a collection of orthonormal basis functions,

V =span{vi,...,on}, (vj,vk) = VLA

for j,k =1,...,N and &5 the Kronecker delta function. For example, if H is L*(Q2)
with @ = [—1, 1] and V is spanned by polynomials up to degree N —1, then one choice
for the v; basis functions are orthonormal Legendre polynomials. We will consider
this particular case as an example several times in this paper.

2.1. Riesz representors. We consider the dual V* of V, i.e., the space of
all bounded linear functionals mapping V to R. The Riesz representation theorem

We formally define L? and some Sobolev spaces in Section 5.
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STRUCTURE-PRESERVING FUNCTION APPROXIMATION 5

guarantees that a functional L € V* can be associated with a unique V-representor
¢ €V satisfying

L(u):<ua€>7 VueV.

Furthermore, this L <« ¢ identification is an isometry. We will use these facts in
what follows. Given L that identifies ¢, we consider the coordinates £; of £ in a
V-orthonormal basis,

N
() = L(x), ;= (¢, v;) = L(vj).
j=1
Then we have the following relations:

~ ~ ~ o~ —~\T
IZlly- = llelly =[]l R GRS

where || - |2 is the Euclidean norm on vectors in RY.

2.2. Least squares problems. We are interested in a common least squares-
type approximation problem. Suppose that v € H is an unknown function for which
we have M pieces of data. We wish to construct an approximation p € V to u that
best matches these data points. We now formulate this abstractly. Let ¢1,..., ¢ be
M linear functionals on H that are bounded on V. We assume that the observations
{uj}jj\il = {(bj(u)}jjvil C R are available to us (and also bounded), and we seek to
solve the optimization problem,

M
. 2
p= argmlnz (p;(v) —uy)”.
veV -
Jj=1
For example, if ¢, is a point-evaluation (the Dirac mass) at some location z; € €2 for
all j =1,..., M, then the problem above is equivalent to

M
p= arvger?/inz (v(xj) — u(:L'j))2 .

RMXN

This problem has a unique solution if the matrix A € with entries

(A)m7n:¢m(vn)7 1§’I’L§N,1SmSM7

has the rank equal to dimV = N; otherwise, infinitely many solutions exist. This
least squares problem is well understood and computational algorithms to solve it
given data ¢;(u) are ubiquitous [8].

For an overdetermined system, where M > N, the method of ordinary least
squares can be used to find an approximate solution. Details for this case are discussed
in 2.4 after the discrete formulation of this problem.

2.3. Constraints. The previous section explains how a function p can be con-
structed from data. However, we are interested in a particular kind of constrained
approximation. Our investigation can be motivated by the following examples of types
of constraints:

e Positivity: p(x) > 0 for all z €

This manuscript is for review purposes only.
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6 VIDHI ZALA, ROBERT M. KIRBY, AND AKIL NARAYAN

e Monotonicity: p/'(z) >0 forallz € Q CR

e Boundedness: 0 < p(z) <1 for all z € Q.
Thus, the central focus of this paper is solving a linearly constrained least squares
problem, where constraints of the above type are imposed. We now give the abstract
setup of our constraints, which specializes to the examples above.

Our abstraction defines K families of linear constraints; for fixed k € {1,2,..., K} ]

family k is prescribed by the tuple (Lg, rg, wg):

e wy: a subset of Q.

e 7. an element of V

o L;: for y € wy, fixed, Li(,y) is a y-parameterized unit norm element of V*.
Our kth family of constraints on v is

(2.1) Li(v,y) < Li(re, y), Y € wg.

The subset of V' that satisfies constraint family & is

(2.2) Epy={veV | Ly(v,y) < Li(r,y) for all y € wy } .

The elements in V' that satisfy all K families of constraints simultaneously are
(2.3) E =0k Ey.

We assume that F is nonempty, i.e., that the constraints are consistent. Constraints
can be inconsistent, e.g., simultaneously enforcing f(x) < 0 and f(z) > 1. However,
one can create more subtle inconsistencies in more complicated settings. Our pro-
cedure does not provide a means to detect inconsistent constraints (and in this case
the algorithm will simply not converge). Thus, we rely on the user to ensure consis-
tent constraints. (Note that a corresponding constrained problem has no solution if
inconsistent constraints are prescribed.)

Particularly important later will be the formula for the {v;}7_,-coordinates of the
Riesz representor L. As in Section 2.1, Ly (-, y) for fixed (k,y) can be identified with
its Riesz representor ¢ (-,y) € V and its corresponding expansion coefficients 0 (y).
The unit norm condition of Ly then implies

. 2 N
(2.4) 1246l = [ |, = 32 Eton ))* =1

We consider some examples.

EXAMPLE 2.1 (Positivity). Consider Q = [—1,1], and let V be any N -dimensionall]
subspace of Li(Q) N L>®(Q). We seek to impose p(x) > 0 for all x € Q. Thus, we
have K = 1, and the linear operator Ly should be point evaluation, appropriately nor-
malized. Note that point evaluation is not a bounded functional in L2, but it is on the
finite-dimensional space V. Formally, this is

Li(v,y) = =A(y)v(y), vev,

where A(y) is chosen so that Ly has unit norm for every y € wy; the negative sign
is chosen so that we can reverse the inequality in (2.1). We set wi, = Q, and choose
riy =0 € V. Then, the constraint (2.1) is equivalent to v(y) > 0 for everyy € Q. The
constraint set By defined in (2.2) is

Eli{UGV’ —u(y) <0 forally € wi}.

This manuscript is for review purposes only.
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It will be useful here to also demonstrate how 0 (y) can be computed. For fixed y, we
can identify Li(-,y) via its Riesz representor £1(-,y):

—~1/2
N /

N
(2.5) G(y) = =Aw) Y v () €V, Ay) = |D_vi) 7
=1

Jj=1

so that {—)\(y)vj(y)}é\]:1 are the entries of £1(y). The formula for X results from the

normalization condition (2.4). Thus, the coefficient vector Zl(y) € RY has explicit
entries in terms of y and the orthonormal basis {vj}évzl.

EXAMPLE 2.2 (Monotonicity). With the same setup as the previous example, we
take V' as any N-dimensional subspace of L7 (Q) N Wh™(Q), where W>°(Q) is the
Sobolev space of functions that are in L (§) and whose derivatives are also in L ().
Again with K =1, we define L1 and its corresponding Riesz representor as

Li(v,y) = —7(y)v'(y), vev,
N N -1/2
G(y) == ()L, €V, )= > @)’ w|

where again T is determined using the normalization condition (2.4). With r1 = 0,
then (2.2) enforces v'(y) > 0 for all y € Q.

ExXAMPLE 2.3 (Boundedness). With the same setup as Example 2.1, we take V
as any N -dimensional subspace of Li N L*°, and we further assume that V contains
constant functions. Let K = 2, and define the operators L1 and Lo as

Ly(v,y) = —v(y), vev,
La(v,y) = v(y), vev,
for each y € w1 = wy = [—1,1]. Then, with constraint functions 1 =0 and ry =1 €

V', we have that Ey, k = 1,2 are the sets
Ei={ueV| —uly)<0vVye[-1,1]}, Er={ucV|uly) <1Vye[-1,1]},

so that their intersection E in (2.3) is the set of elements w in V such that 0 < u(z) <
1 for each x € (.
ExXaMPLE 2.4. We can also form constraints on different subsets of Q. With all
the notation in the previous example, we change only:
w1 = [_170)a w2 = (07 1]a
so that E contains functions u satisfying u(z) > 0 for x € [-1,0) and u(x) < 1 for
x € (0,1].

The above examples illustrate the generality of our notation and the intuitive
simplicity of the types of constraints that we consider. A constrained version of a
least squares problem thus is formulated as

M
(2.6) p= argminz (p;(v) — uj)2 .
veEE j=1

This manuscript is for review purposes only.
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8 VIDHI ZALA, ROBERT M. KIRBY, AND AKIL NARAYAN

2.4. Problem discretization. We now formulate the constrained problem (2.6)
via coordinates in the basis {vj}é»v:l, which results in a discrete form amenable to
numerical computation. Any v € V' has the expansion

o(@) = > 70,()

and the expansion coefficient vector ¥ = (vy, ... 751\7)71 € RY uniquely identifies the
element v € V. This identification defines subsets of RY corresponding to the sets
Ek:

N K
(2.7) Cp =S ceRN | > ¢ € By CRY, C:={)Cu.
k=1

j=1
Then, the optimization problem (2.6) is equivalent to

(2.8) ¢ = argmin | AT — b||3, b; = b (u).
veC
This problem is again a least squares problem and so is easily solved in principle, but
unfortunately in practice the set C' is a quite complicated subset of R"Y. Nevertheless,
C' is convex, which is a fact we exploit.
We now consider the case of an overdetermined system, where M > N in (2.8).
The method of ordinary least squares can be used to find an approximate solution to

(2.8) in this case. This is achieved with the normal equations by decomposition of A
as[1],

v=(ATA)"1ATb

2.5. Geometry of sets. We recall some basic properties of cones and convex
sets and functions that we utilize. In all the discussion below, the ambient space is
RY. A set C is convex if, for every z,y € 0C,

A+ (1-XNyeC VY Xe(0,1),

A set C is a convex cone if, for every x,y € C,

ax+byeC V a,b>0.

The set C' is an affine convex cone if it is the rigid translate of a convex cone, i.e., if
C = D + z, where z € RN and D is a convex cone. In this case, we call z the vertex
of the cone.

The convex sets we consider are generated by an uncountably infinite number of
supporting hyperplanes. Given y € RY and a € R, a hyperplane Hy is a set given by
Hy = {CE ’ (x,y) = a}. The hyperplane Hy separates RY into two halfspaces, one of
which is

H(y,a) = {xE]RN | (z,y) §a}

Note that H(y,a) is a closed set in RY. A hyperplane Hy(y,a) with an associated
halfspace H(y,a) is a supporting hyperplane for a closed convex set C if C C H(y,a)
and if Ho(y,a) NOC # 0.

This manuscript is for review purposes only.
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3. Constrained optimization. The main task in this paper is solving the op-
timization problem (2.8). This optimization problem appears simple since it features
a quadratic objective, and the feasible set C' is convex (which we show in the next
section). The main difficulty here is that C' is not a computationally simple convex
set in RY, and hence computing, e.g., projections onto this set, is difficult. To begin,
we establish that C' is convex.

3.1. Constraint set properties. This section is devoted to establishing that
the sets Cj and C are convex cones in IRY. These properties will be used in the
construction of algorithms for solving (2.8).

Before proceeding, we note that each inequality function rp, € V for k =1,..., K,
can be translated into its vector of expansion coefficients:

N
(3.1) re(@) =Y Frjvj(@), =Pt Pen)

j=1
Now the definitions of C' and C}, immediately yield convexity and conic properties of
these sets.

THEOREM 3.1. The set C is a closed conver set in RN, and each fork =1,... K,
Cy is a closed, affine convex cone in RN with vertex located at Ty,.

Proof. Convexity, closure, and conic structure are preserved under isometries.
Due to the isometric relation between V and RY, we can thus prove properties in one
space, which extends to the other space. We first show that Cj is closed directly in
RY: Rewriting (2.7) using the definition of Ej, we have

N
C = ﬂ ce RN | Ly chvj,y < Li(ry,y) p = m ek (y)-

YEWE Jj=1 YEWE

By definition, cx(y) is actually a halfspace in R”,

c(y) = H (Zk(y)yLk(Tk»y»

and hence ¢ (y) is a closed set. Therefore, Ci, = Ny (y) is also a closed set, and thus
C =nNiCy is a closed set.

We will now show the convexity and conic properties in V: fix k € {1,..., K} and
Yy € wg. Let v,w € V be two elements in Ej. For any A € [0,1],

LMo+ (1 = Nw,y) = ALg (v, y) + (1 = A L (w,y) < Li(7x, y),

where the inequality is true since v,w € Ej. Therefore Fj, and hence C}, is convex.
Thus we also have that C' is convex since it’s an intersection of convex sets.

We next show that Fj is a cone with the vertex at ry, i.e., we must show that for
any 7 > 0 and v € V, we have Li(rr + 7(v — r)) < Li(ry). This is true since

Li(ri + 7(v — 7)) = Li (%) + 7 [Li(v) — Li(rx)] < Li(7x),

so indeed, Fy is a convex cone with the vertex at rj, and hence C} is a convex cone
with the vertex at 7. 1]

This manuscript is for review purposes only.
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Despite their conic convexity, the sets Cy are not polyhedral in general, and are
hence “complicated” to computationally encode. Consider the setup of Example 2.1.
If we change the definition of w; to

w1 :{1‘1,...7$p} cQ= [—1,1].

for any arbitrary P < oo, the new constraint set Cy = C(Ly,r1,@1) is strictly larger
than the constraint set Cy in Example 2.1. In particular, p € V satisfying p(z;) > 0 for
j=1,..., P does not imply that p(z) > 0 for all x € [—1, 1] unless V has very special
properties (for example, if V' contains only certain piecewise constant functions). Note
that the supporting hyperplanes of the constraint set C are P < 0o halfspaces in RY
and hence C' is polyhedral (if nonempty). However, if V' contains polynomials, it is
easy to construct a polynomial that is non-negative on w; but not non-negative on Q.
Hence, the constraint set C; defined by (Li,71,w) in example 2.1 is strictly smaller
than Cy, here defined by (Ly,r1,&).

Nevertheless, such discretization approaches, i.e. approaches that use a finite set
w1 as a surrogate for an infinite set €2, are common and frequently effective algorithms
for solving (2.8), as is commonly done in semi-infinite programming problems. How-
ever, in this manuscript we present algorithms that insist on global satisfaction of the
constraints, and hence adopt alternative approaches. Thus, the main computational
difficulty of our optimization problem is that the set C' cannot be exactly represented
as a polyhedron in general, and in particular that projections onto C' are in general
difficult to compute.

3.2. Solutions to (2.8). Our main goal in this section is to demonstrate the
unique solution to our constrained optimization problem. The result is straightforward
from the closed convexity of the constraint set and strict convexity of the objective
function.

THEOREM 3.2. Assume that the design matrix A has rank N and the feasible
set C is nonempty. Then, the constrained optimization problem (2.8) has a unique
solution.

Proof. The first step is to observe that since A has full column rank, we can write
the problem in transformed coordinates as a convex feasibility problem (specifically as
a projection problem). Let A = UXV™ be the reduced singular value decomposition
of A. Since rank(A) = N < M, ¥ is N x N, diagonal, and invertible; V is N x N
and orthogonal; and U is M x N with orthonormal columns.

With Py the RN-orthogonal projector onto a subspace W, and R(A) the range
of A, then (2.8) can be written as

. ~ . 2 Iy 2
argmin ||Av — b||§ = argmin HPR(A)LbHQ + || Av — ’PR(A)b||2
veC veC
= argmin [|XV*0 — U*b||§
veC
(3.2) = VE~! argmin ||z - U"b|,
zeXVv*C

where ZV*C = {EV*'y e R | y € C}. Thus, (2.8) has a unique solution if and
only if

(3.3) argmin ||z — U*b||§
2ETV*C

This manuscript is for review purposes only.
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STRUCTURE-PRESERVING FUNCTION APPROXIMATION 11

has a unique solution. Theorem 3.1 establishes that C' is closed and convex; thus,
YV*C is a linear transformation of a closed convex set, so it is also closed and
convex. Therefore, (3.3) seeks the ¢2(R™)-closest point to U*b from a nonempty,
closed, convex set. The Hilbert Projection Theorem guarantees the existence and
uniqueness of such a point. O

The study of existence and uniqueness of approximations under convex constraints is
not new [22, 19]. Indeed, our result is a corollary of these earlier results, but we have
presented a brief proof above in order to be self-contained.

4. Algorithms: Convex Feasibility. We now concentrate on solving the prob-
lem defined by (2.8), equivalently (3.3). To simplify the presentation, we will assume
first that A = I so that both (3.3) and (2.8) reduce to

(4.1) aurgmim”c—ng7
ceC

i.e., a standard problem of projecting b onto a convex set C. The main bottleneck to
applying standard optimization tools is that the feasible set C'is not easily defined in
terms of a finite number of conditions on ¢. The difficulty in our problem is not in
minimizing the objective function, but instead the convex feasibility problem, i.e., to
identify points in the convex feasible set.

Some of the most successful algorithms for solving the convex feasibility problem
are alternating- or splitting-type algorithms. If C4,...,C, are convex sets with non-
empty intersection C', these algorithms assume that projection onto any one of these
sets is computationally feasible. A solution to (4.1) can be computed by alternating
these individual projections. The original projection onto convex sets algorithm via
iteration is due to Von Neumann [25], and much work has proceeded from this [9,
16, 2, 12, 18, 13]. When r > 2, the alternating algorithm becomes a cyclic one, and
these cyclic projection algorithms have substantial theoretical underpinning, including
convergence guarantees.

The difficulty in applying these algorithms to our situation is that they character-
ize the feasible region with a finite number of convex sets. Although our collection of
sets {C} }JKzl is finite, we do not know how to project onto any of them individually.
However, we have

K

K
(4.2) c=Ck=) ) HW),
k=1

k=1yEwg

Hy(y) = H (€(y), Li(rr,y))

so that C' is comprised of an (in general uncountably) infinite intersection of half-
spaces, each of which is straightforward to project onto, see Figure 2 for a geometric
visual. Our strategy here is to generalize certain types of cyclic/alternating algorithms
to the case of an infinite number of convex sets (halfspaces). We broadly employ two
strategies: greedy projection and averaged projection.

The major ingredient in our approaches is the ability to project onto any halfspace
Hy.(y). Since the functionals L(-,y) are unit norm, a computation shows that the
signed distance between some point ¢ € RY and Hy(y) is

(4.3) sdist(c, Hy(y)) = Lu(ri,y) — (Bu(y) €.
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RV

| Hi(ya)

Hi(ys)

Fig. 2: Left: The hatched volume represents the closed convex cone C; Middle:
Geometric depiction of intersecting hyperspaces Hi (y) and their respective boundaries
defined by hyperplanes parameterized by y € Q. Also shown is the distance calculation
corresponding to (4.3). Right: A scenario that demonstrates the greedy strategy to
select the direction in which y moves in the next step of the algorithm: Hj(y4) is
farther away from ¢ than Hi(ys). The optimization (4.5) seeks the hyperplane that
is farthest away from c.

which is positive if ¢ € Hy(y) and negative otherwise. Thus, the nearest-distance
projection of ¢ onto Hy(y) is

P, (yyc = ¢+ £ (y) min {0, sdist(c, Hx(y))} -

We consider an example to illustrate that these projections are easily computable.

ExaMmpLE 4.1. Consider the positivity constraint setup of Example 2.1. The con-
straint functional Ly (-, y) is a (normalized, negative) point evaluation aty, and {v, }_i[}
are the first N orthonormal Legendre polynomials on [—1,1]. Then, the Riesz repre-
sentor £1(y) € V and its coordinates {?1](31)};\7:1 are explicit in terms of the Legendre
polynomials via (2.5). In the context of harmonic analysis, £1(y) is the y-centered,
negative, normalized Dirichlet kernel for V.. The function r1 describing the constraint
isry =0, so that ¥1 = 0 and Li(r1,y) = 0. Now let v € V be any element with
coordinates ¢ € RN in the orthonormal Legendre polynomials. Then,

(4.4) sdist(c, Hi(y) = — (£1(y), €) = Ap)o(y),

Thus, the signed distance at y € Q) is simply scaled evaluation of the original function
v. The projection of ¢ onto the halfspace defined by Hy(y) is therefore

Py, e = e+ & (y) min {0, 0(y)A(y)} -
Note that since A(y) > 0, this projection equals ¢ if v(y) > 0, as expected.

4.1. Greedy projections. Since projections onto individual halfspaces defined
by H(y) are relatively simple to compute, we can devise one algorithm for com-
puting the solution to (4.1) as a modification of cyclic projections. Although cyclic
projection-type algorithms proceed by cycling through the enumerable constraint sets,
our (uncountably) infinite collection of sets prevents such a simple cycling. Instead,
we can project onto the farthest or most violated constraint, i.e., with

(4.5) (y*, k%) = argmin sdist(c, Hg(y)),
yEwk,kE[K]
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We can update ¢ via
(4.6) ¢+ c+ L+ (y*) min {0, sdist (e, He- (y*))} .

The geometric picture associated to (4.5) is shown in the right panel of Figure 2.
The update process (4.6) can be repeated, resulting in an iterative algorithm. We
summarize this procedure in Algorithm 4.1. This algorithm proceeds by iteratively
“correcting” the vector ¢ in (4.6). The associated operation in the function space V
is that an unconstrained function is additively augmented by the Riesz representor
correction function ¢i-(y*) € V. These corrections are visualized in Figure 1 for
polynomials. A more detailed understanding of these function is provided in Figures
4 and 5 where we show £ (y)(x) as a function of (z,y) for polynomials.

Algorithm 4.1 Tterative greedy projection algorithm to compute the solution to
(4.1). The unspecified “extra termination criteria” can be standard metrics, such as
number of iterations, improvement in objective function, etc.

Input: constraints (Lg, 7, wk) e,
Input: coordinates ¢ € RY of a function v € V
while True do
Compute (y*, k*) via (4.5).
if sdist(e, Hi=(y*)) > 0 or extra termination criteria triggered then
Break
end if
Update ¢ via (4.6).
end while
return c

—_
=

Note that the bulk of the computational effort in Algorithm 4.1 corresponds to
line 4 where the Q-global optimization problem (4.5) must be solved, which can be of
considerable expense at each iteration. We explain in Appendix A how we accomplish
this optimization for univariate polynomial spaces V.

It is straightforward to establish that under a special kind of termination in
Algorithm 8, we obtain the solution to (4.1).

PROPOSITION 4.1. If Algorithm 4.1, without any extra termination criteria, ter-
minates after one only iteration of line 8, then the output c is the solution to (4.1).

Proof. Assume without loss that the input to algorithm 4.1 ¢ is not in C. By
(4.2), we have

dist (¢, C) > dist (e, Hi(y)) ,
for any (y, k). Let (y*,k*) be the solution to (4.5), and note that since ¢ & C,
dist (¢, Hi(y)) = —sdist(e, He- (y*)) > 0.
The assumption that Algorithm 4.1 terminates after one iteration implies that

d:=c+ Zk* (y*)sdist(c, Hi~ (y*)) eC.

Note d is returned by the algorithm. ¢ ¢ C, d € C, sz* (y*)

‘ =1, and that
2

dist (¢, C") > —sdist(e, Hg (y™)),
all imply that the above inequality is actually an equality, and thus d solves (4.1). O
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In standard cyclic projection algorithms, it is well known that directly projecting
onto each set in each iteration produces a suboptimal trajectory for the iterates. The
greedy algorithm described in this section suffers from this as well, which we show
in the numerical results section. An improvement that somewhat ameliorates this
deficiency is accomplished by averaging these projections.

2. Averaged projections. A simple strategy to mitigate the oscillatory iter-
ation trajectory produced by iterative greedy projections is via averaging. Precisely,
given a current iterate ¢, we identify the subset of 2 where our constraints are violated:

(4.7) wy = {y € wy | sdist(c, He(y)) <0} .

Under mild assumptions on V', e.g., that it contains only piecewise continuous func-
tions, w, is either the trivial (empty) set, or of positive Lebesgue measure. (In other
words, it cannot be a discrete or nontrivial measure-0 set.) Assume for simplicity that
w, has a positive Lebesgue measure for each k. We then produce an update by a
normalized average of corrections corresponding to values of y in w, :

(4.8) c+c+ Z / k(y)sdist (¢, Hx(y)) dy.

K|k|

Above, |w | is the measure of w, C Q. We again illustrate with an example that
these quantities are computable.

EXAMPLE 4.2. Consider the positivity constraint setup of Example 2.1. As we
saw in Example 4.1, the signed distance for our single constraint is given by (4.4).
Note that in this one-dimensional setup with finite-degree polynomials, the set w, is
a finite union of subintervals of [—1,1], and hence the measure |w, | is just the sum
of the lengths of these subintervals. Then, the correction term on right-hand side of
the update scheme (4.8) is

N
= [ B == S [ R,

|Wk‘ wy, ‘Wk‘j 1 k

where e;, j € [N] are the cardinal unit vectors in RY. Thus, the integrals that must
be computed have smooth integrands and can be efficiently approrimated by standard
quadrature rules, assuming the endpoints of the subintervals defining w, can be iden-
tified.

A variation of Algorithm 4.1 that uses this averaging approach is nearly identical: the
only change required is that the update of the coefficient vector ¢ in line 8 should be
replaced by the update in (4.8).

Figure 3 visually depicts both the greedy and averaged projections idea where
V is a univariate space of polynomials and the constraint is positivity (i.e., Example
2.1). In particular, the value y* that solves the greedy optimization problem (4.5) is
shown, along with the averaging set w; identified in (4.7).

4.3. Hybrid algorithms. In experimentation, we have found that hybrid com-
binations of the greedy approach of Section 4.1 and the averaged approach of Section
4.2 work better than any algorithm alone. In particular, the greedy algorithm works
well when ¢ is “close” to the solution, but the averaged algorithm works better for
an iterate that is “far” away. Thus, we utilize a standard switching procedure in
optimization depending on the proximity to a basin of attraction.
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Fig. 3: v is the unconstrained L?([—1,1]) projection of the step function f(x) onto the
space of degree-7 polynomials. For the positivity setup of Example 2.1, the greedy
point y* defined in (4.5) is shown, and the averaging set w; C [—1, 1] defined in (4.7).
Also plotted is the signed distance A(y)v(y) of v to Hy(y).

Through experimentation, we have found that the following switching mechanism
works well: We perform averaged projections until the norm of the correction (4.8)
reaches a certain tolerance. After a condition is met, we switch to greedy projections.
The switching condition is the following: if ¢ is the iteration index, consider the ratio,

~ sdist(e, Hy; (y7)
 sdist(e;_1, Hes  (yi,)

Our switching condition is triggered when |a; — a;—1| < €, for a user-specified e. At
this point, we perform one more averaged update of the form (4.8), but multiply the
right-hand side correction by 1/c;. Subsequently, greedy projections as in (4.6) are
performed. While this procedure is quite ad hoc, we have observed that it consistently
performs better than other hybrid variants we have tried.

4.4. Algorithms for polynomial subspaces. As described in previous sec-
tions, the main computational expense in our convex optimization algorithm is the
minimization of the signed distance function in (4.5) (for the greedy and hybrid algo-
rithms) and identification and integration over the set w, in (4.7) (for the averaged
and hybrid algorithms). Such problems for general function spaces are difficult to
solve, and efficient algorithms will likely depend on what kinds of functions the sub-
space V contains.

When V' contains univariate polynomials, all the tasks in the algorithm can be
reduced to the problem of computing roots of polynomials, and hence are feasible
in principle. We accomplish this computationally by computing the spectrum of a
confederate matrix, although more sophisticated and practically effective methods
are known. We describe this formulation and details of the approach in Appendix A.

4.5. Nonidentity matrices A. The optimization problem we seek to solve is
(2.8); the algorithms in this section have proceeded under the assumption that A = I.
When this is not the case, we must first solve (3.3), so that the full solution is (3.2).
Thus, we focus on the problem

(4.9) argmin ||z —U"b|,.
2ETV*C
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Fig. 4: Correction functions for degree-5 polynomial approximation. Plots of ¢4 (y)(z)
are shown as functions of (x,y) for various constraints enforcing positivity of the
kth derivative (rows) and ambient Hilbert spaces (columns). Top: k = 0 positivity;
middle: k& = 1 monotonicity; bottom: k = 2 convexity. Left: L?([—1,1]); middle;
H'([-1,1]); bottom: H?([-1,1]).

A 0.5 0

Note that the only difference between this optimization and the simplified version
(4.1) is that the feasible set is ZV*C instead of C' so that we need only address the
presence of the linear map XV™*. Since C is closed and convex, then XV *C is also
closed and convex, and in particular is defined as the intersection of closed, conic,
convex sets C:

_ K _ K
VO =C = ﬂ Cr = =V*C,.
k=1 k=1

Thus, all our previous algorithms apply, except that we need to only transform
(Li, Tk, wi) for Ck into the appropriate quantities for Ck. These transformations
are straightforward but technical, so we omit showing them explicitly.

5. Numerical results. In all that follows, f is a given function in a Hilbert space
H. Given a finite-dimensional space V' C H, the function v is the H-best projection
onto V, which does not in general satisfy any structural constraints. (Note from
discussion in Section 4.5 that extensions to, e.g., collocation-based approximations,
are straightforward.) The function o is the output of the constrained optimization
procedure.
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1 1

-1 -1 -0.6 -1

R n 1 R n 1 R n 1
Fig. 5: Correction functions for degree-30 polynomial approximation. Plots of ¢ (y)(z)
are shown as functions of (z,y) for various constraints enforcing positivity of the kth
derivative (rows) and ambient Hilbert spaces (columns). Top: k = 0 positivity;
middle: k& = 1 monotonicity; bottom: k = 2 convexity. Left: L?([—1,1]); middle;
Hl([_17 1])’ I‘ight: H2([_17 1])

With the univariate Sobolev spaces,
q 1 ) 2
HU(11) = {510 5 R Wl <o} =3 [ [0@)] de,
i=07"

our examples will consider the ambient Hilbert space H as H(= L?), H!, or H?.
The subspace V in all our experiments is the space of polynomials up to degree N —1:

V:{p:[—l,l]—ﬁR{ degpSN}’

Our test functions f; are defined iteratively for j > 1 as,

‘ 0, =<0,
fra@) = r [ o, pa=3 "=
] -

where ¢;;1 are normalization constants chosen so that fj11(1) = 1. Thus, f; has
j weak L? derivatives. Finally, most of our results will consider intersections of the
following four types of constraint sets in V:

o (Positivity) Fo == {f € H | f(z) > 0Vx € [-1,1]}

e (Boundedness) Gy :=={f € H | f(z) <1Vz € [-1,1]}
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e (Monotonicity) Fy == {f € H | f'(z) >0V € [-1,1]}
e (Convexity) Fp :={f € H | f'(z) >0Vz € [-1,1]}
Our final example considers a slightly more exotic set of constraints, which we discuss
later.
In order to understand how much our algorithms “change” the input v when
producing constrained approximation v, we measure the following quantity:

_ v —2[n

(5.1) =

Since f — v is H-orthogonal to V', then
1f = ol = (L +m)f =l

Thus, /1 + 12 measures the error in the constrained approximation relative to the
(best) unconstrained approximation. Values on the order of 1 imply that this opti-
mization problem commits an additional error that is approximately the same as the
error committed by the best (unconstrained) approximation.

Algorithm 4.1 is the greedy algorithm, but it is the template for the averaging
and hybrid algorithms as well. For example, a hybrid algorithm needs to replace only
line 8 in that algorithm by the update (4.8). However, we have left some details of the
termination criterion in line 5 unexplained. For example, we do not actually enforce
sdist(e, Hi= (y*)) < 0 as stated due to finite precision. Instead, we enforce

(5.2) sdist(e, Hi= (y*)) < 4, d >0,

where we set § = 1071% and have implemented the procedure in double precision. In
addition, the number of iterations I required before termination will also be reported.

5.1. Algorithm comparison. A short summary of all the experiments investi-
gating the hybrid approaches and their comparison with the greedy and the averaging
methods is given in the Table 1.

N=6 N =31
I n I 7
€ 102 1075 103 107° 1072 105 10°% 10°°
Greedy 20 20 1.147  1.147 23 23 0.986 0.986
Averaging 36 36 1.148 1.148 383 383 0.985 0.985
Hybrid 4 16 1.1464 1.148 2 3 1.142 1.054

Table 1: Performance summary of three proposed algorithms on the test function
f = fo for different values of €, where € is as described in Section 4.3. The constraint
set is B = Fy.
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5.2. Function approximation examples. We present two examples of func-
tion approximation to preserve structure in this section. The first example takes
H = H° and the test function f = fo, which is a step (discontinuous) function. We
present results for different N (the dimension of V') and different constraints. Figure
6 illustrates the results of the greedy algorithm. We compare medium-degree polyno-
mial approximation N = 6 with high-degree polynomial approximation N = 31. The
three kinds of constraints are (a) positivity, (b) positivity and boundedness, and (c)
positivity, boundedness, and monotonicity. We observe that both the positivity and
monotonicity constraints accomplish what is desired: the approximation ¢ satisfies
the desired constraints, but still features Gibbs’-type oscillations. However, enforcing
monotonicity as well results in a nonoscillatory approximation. All computed values of
1 < 1 show that the constrained approximation commits an error that is comparable
to that of the H-best approximation.

; —function f(z) 4L ~function f(z) 4 jmction f(z)
JgL 7 =0.3990 0600149 06l 7= 0.8360
2.4 0.4 04
)2 02 02

0 0 0

-1 05 0 05 [ 05 0 05 [ 05 0 05 1
1 ~Tunction f(x) Ja\ A 1 —function f(z) N [ —function /()
b o o8l o /V 8l s
Joln=02072 s6ln = 04739 J671=0.7516
14 04 24
)2 0.2 22

0 0 0

E 05 0 05 [ 05 0 05 1o 05 0 05 1

Fig. 6: Greedy algorithm results: Test function fy for different constraint sets F
and polynomial spaces V. Top: N = dimV = 6, bottom: N = dimV = 31. Left:
Constraint £ = Fy. Center: Constraint £ = Fy N Gy. Right: Constraint £ =
FoNnGoN Fy.

Our second experiment uses the test function f = f5, which has a piecewise-
constant second derivative. We use a fixed constraint: positivity, monotonicity, and
convexity. Using again N = 6 and N = 31, we investigate the approximation for
different ambient spaces H = H°, H', and H2. Results are displayed in Figure 7.
We observe much larger values of n in this experiment, but note that the values of n
decrease as the order of the Sobolev space increases. We also observe that the visual
discrepancy between the constrained approximation and the underlying function is
also considerably larger in this experiment. However, the approximation quality still
appears good for the larger value of N = 31.

5.3. Constrained approximation as a nonlinear filter. The right-hand pan-
els in Figure 6 show that the monotonicity constraint removes oscillations in the
approximation. These empirical results suggest that the constrained optimization
procedure is a type of spectral filter. There is a stronger theoretical motivation for
this observation as well.

PROPOSITION 5.1. Let E C V be a nonempty, closed, convexr set in H. Given
some v € V, let ¥ be the solution to (2.6) (i.e., also the solution to (2.8)). If0 € E,
then, ||o[| < [lv].
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Fig. 7: Test function fy for different polynomial spaces V' and ambient spaces H. The
constraint is E = FyNFyNF,. Top: N = 6, bottom: N = 31. Left: H = H°. Center:
H = H'. Right: H = H%

Proof. Projections onto closed convex sets in Hilbert spaces are nonexpansive
[11]. Le., ||o — P(0)|| < ||v — 0], where P : V — E is the projection operator from V'
to E. Since 0 € E, then P(0) = 0. |

In general, the assumption that F is closed and convex is automatically satisfied from
our apparatus in Sections 2 and 3. The only nontrivial requirement is that v =0 is a
member of the constraint set E. All the examples in Figures 6 and 7 satisfy 0 € F,
and thus we expect that the optimization problem decreases the norm of the function,
just as a standard linear filter would. Note, however, that our “filter” (optimization)
is a nonlinear map.

To illustrate this filter interpretation, we compare in Figures 8 and 9 the magni-
tude of the before-optimization and after-optimization expansion coefficients. These
figures correspond to the experiments in Figures 6 and 7, respectively.

For the step function example shown in Figure 8, we see that when monotonicity
is enforced, there is a steeper decay of the higher order coefficients in the constrained
approximation. The stronger decay of coefficients is also observed when only positiv-
ity /boundedness is enforced, but the increase in decay is less pronounced. All these
observations are qualitatively consistent with Figure 6. We emphasize that this con-
strained optimization procedure is nonlinear, so that our approximation cannot easily
be written in coefficient space as a standard (linear) spectral filter.

5.4. Convergence rates. Optimal Hilbert space projections of smooth func-
tions onto polynomial spaces converge at a rate commensurate with the function
smoothness. We investigate in this section whether the corresponding constrained
projections have similar convergence rates. In Figure 10 we show convergence of
H = L*-optimal (unconstrained) polynomial projections versus the output from our
constrained optimization procedure. Our constrained approximations are less accu-
rate, but the convergence rates are unchanged.

5.5. More complicated constraints. Finally, we show that our formalism
allows for more complicated constraints than the ones we have previously shown.
With H = HY and V a space of degree-(N — 1) polynomials as before, we consider
two new kinds of constraints:

o i={feV|fx)=]z] Vzel[-11]}
o o={feV|-—sign(a)f(z)>|z| Vze[-1,1]}
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Fig. 8: Companion to Figure 6. Bar plot showing unconstrained projection coefficients
magnitude |v;| vs various constrained projection coefficients magnitude |w;|. Top:
N = 6. Bottom: N = 31. Left: Constraint £ = Fy. Center: Constraint £ = FyNGy.
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Fig. 9: Companion to Figure 7. Bar plot showing unconstrained projection coefficients
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Fig. 10: H = H° convergence results for projection of test function f = fo (top row)
and f = fo (bottom row). V is a space of polynomials of degree N. Left: Constraint
E = Fy. Center: Constraint E = Fy N Gy. Right: Constraint £ = Fy NGy N F;.
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Constraint set J; can be defined as the intersection of two conic constraints: for
x € [—1,0], we enforce f(x) > —z. For z € [0,1] we enforce f(x) > x. Constraint
set Jo enforces f(x) > —x for z € [—1,0] as before, but now enforces f(z) < z for
€ [0,1]. Note that Jy implicitly enforces f(0) = 0, but we do not explicitly require
this in our algorithm. Since z € V when N > 2, we can handle these constraints with
our setup.
We consider the test function f(z) = |x|; the optimization successfully terminates
and results are shown in Figure 11.

—function f(z) —function f(x)

—

v

-5

-1 05 ) 05 1 -1 0.5 0 0.5 1 1 0.5 0 0.5 1

—function f(x) —function f(z)

v

-8

—function f(x)
v
-5

—v

-5

-1 05 0 05 1 -1 0.5 0 0.5 1 -1 05 0 0.5 1

Fig. 11: Algorithm results from unusual constraints for f(z) = |z|. Top: Constraint
set J1. Bottom: constraint set Jo. Left: N = 4. Center: N =9. Right: N = 31.

6. Conclusions. We have proposed a formalism for performing constrained
function approximation. Restricting the class of possible constraints to those that are
convex assures a unique solution to the constrained function approximation problem
in Hilbert spaces. Typical constraints of interest such as positivity or monotonicity
are specializations of our setup. We propose three iterative algorithms to compute
solutions to the problem. Each algorithm requires minimization or level set detection
on a weighted version of the current approximant, and thus can be expensive. In one
dimension with polynomial approximation, our algorithms require only the ability
to accurately compute roots of polynomials. We have demonstrated the flexibility,
feasibility, and utility of our constrained approximation setup with many examples,
including empirical investigation of convergence rates.

For higher dimensions, we require the ability to find the minimum of a non-
polynomial multivariate function, and so our optimization problem becomes much
more complex and expensive. Our difficulties in computing global minima corre-
spond precisely to the known difficulty of globally solving the “lower-level” problem
in semi-infinite programming methods, and our algorithms do not provide novel or
constructive approaches to addressing this more general challenge in SIP algorithms.
Therefore, identifying approaches to make our algorithm usable for multivariate ap-
proximation problems is the subject of ongoing research.
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Appendix A. Algorithms for univariate polynomial subspaces.
We present procedures for solving the greedy and averaging optimization proce-
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dures in sections 4.1 and 4.2 under the assumption that V is a complete, univariate
polynomial space. More formally, we make three specializing assumptions.

The first assumption is that H an L2-type space. A typical setup in one dimension
is that €2 is a interval in (and possibly equal to) R, and a weighted L? space is defined
by a probability density function p:

(u, v)L% = /Q u(x)v(x)p(x)de

The second specializing assumption in this section is that V' is a complete polynomial
space. For a finite V € IN, the space V contains polynomials up to degree N —1. Then,
{v; }é\le can be chosen as the first N orthonormal polynomials under the weight p on
Q. Tt is classical knowledge that such a family of polynomials satisfies the three-term
recurrence:

20, () = bpp1Vn41(2) + anp10n (X)) + bpvp_1(x), n>1,

with the starting conditions vg = 1 and v_; = 0, where a,, = a,(p) and b, = b, (p)
are the recurrence coefficients [24].

The third specializing assumption is that we are in the setup of Example 2.1
where the constraints enforce positivity v(z) > 0 for every = € Q. We will see that
this assumption can be relaxed substantially; indeed we make this assumption here
to only clarify some computations.

An important technique that we will need to exploit for this special setup is the
ability to compute roots of polynomials from their expansion coefficients, i.e., if v € V
has expansion coefficients {7; }j.vzl, then the N —1 (complex-valued) roots of v coincide
with the spectrum of the (N — 1) x (N — 1) confederate matrix T = T'(v):

aq bl
b1 az by
by—1 <
(A ].) T(U) =J - — EN_1V J = bz as b3
UN

bnv—2 an—1

where ey_; € RM~! is the cardinal unit vector in the (N — 1)st direction and
~T

~

v = (v1,...,0n—1). The matrix J is the Jacobi matrix and is independent of v.
We use direct eigenvalue solvers to compute the spectrum of T'(v) = v~=1(0). Note
that there are backwards stable versions of the task of computing roots from the
spectrum of related matrices [20]. An analogous approach that operates on expan-
sion coefficients in a monomial basis uses the spectrum of the companion matrix.
Note that our strategy is rather rudimentary compared to more sophisticated meth-
ods for computing roots of polynomials [6], e.g., one can compute polynomial roots
on subintervals and perform refinement. However, this consideration is not the main
innovation of our algorithm, and so we use the procedure above mainly for simplicity.
We do perform a numerical stability check where we switch between companion and
confederate matrices depending on which has smaller condition number. In all the
examples we attempted for this manuscript, this check was sufficient to robustly and
accurately compute roots of polynomials.
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A.1. Greedy projections. With the setup of Example 2.1, the problem (4.5)
requires us to compute
. o (4.4) )
y* = argminsdist (v, Hy(y)) =" argminv(y)A(y).
yef ye
To minimize the last expression, we can compute the critical points, which are the
roots of the derivative. Using (2.5), we have

3 PO = X () [ () D 0T ) = v(y) D v W)Y (v) | -

Note that A3 cannot vanish, so the critical points coincide with the roots of the
bracketed expression above, which is a degree-(3N — 4) polynomial. Thus,

S 2
. = jUj( ) = ( )’
) ; divi(y) = gly

for some coefficients g;. The computation {v;} — {g;} can be accomplished using
only the recurrence coefficients in O(N?) time without resorting to, e.g., quadrature.
In summary, the global minimum in (4.5) can be computed by first computing
the g; expansion coefficients defined above, and then by computing the spectrum of
the (3N —4) x (3N —4) matrix T'(g). To compute the global minimizer, we then need
only evaluate the discrete minimum of v(y)A(y) over the eigenvalues located in Q.

A.2. Averaged projections. The main task for the averaged projections pro-
cedure is to compute the integral in (4.8). In our specialized setup, this task reduces
to computing

= [ B ww,

|y |
which is an IN-component vector, where component j of this vector has the entry

1

(A.2) o / A,

The first step is to identify the set w; defined in (4.7), which in this special case is
equivalent to

wy ={ye[-1,1]|v(y) <0}.

Therefore, this set can be identified by examining the roots of v, which are the eigen-
values of T'(v). Thus, we partition [—1, 1] into subintervals on which v is single-signed,
after which determining the sign of v on an interval can be accomplished by evaluating
v in this interval.

After wy is identified as a disjoint collection of subintervals of [—1, 1], we compute
the components of the update (A.2) by employing an M-point Gaussian quadrature
rule; since the integrand v;v is a smooth function on [—1, 1], this can be completed
efficiently. We employ M = N + 1 quadrature points for this same computation.
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