

1 **STRUCTURE-PRESERVING FUNCTION APPROXIMATION VIA
2 CONVEX OPTIMIZATION***

3 VIDHI ZALA[†], ROBERT M. KIRBY[‡], AND AKIL NARAYAN[§]

4 **Abstract.**

5 Approximations of functions with finite data often do not respect certain “structural” properties
6 of the functions. For example, if a given function is non-negative, a polynomial approximation
7 of the function is not necessarily also non-negative. We propose a formalism and algorithms for
8 preserving certain types of such structure in function approximation. In particular, we consider
9 structure corresponding to a convex constraint on the approximant (for which positivity is one
10 example). The approximation problem then converts into a convex feasibility problem, but the
11 feasible set is relatively complicated so that standard convex feasibility algorithms cannot be directly
12 applied. We propose and discuss different algorithms for solving this problem. One of the features
13 of our machinery is flexibility: relatively complicated constraints, such as simultaneously enforcing
14 positivity, monotonicity, and convexity, are fairly straightforward to implement. We demonstrate
15 the success of our algorithm on several problems in univariate function approximation.

16 **Key words.** structure-preserving approximation, high-order accuracy

17 **AMS subject classifications.** 41A29, 65D15, 65K05, 90C25, 42A16

18 **1. Introduction.** The approximation of functions as a linear combination of
19 basis functions is a foundational technique in numerical analysis and scientific com-
20 puting. For example, such a linear combination or expansion is often used as an
21 emulator for the original function, or as an ansatz for the solution to a differential
22 equation. If, e.g., the original function is smooth, then such approximations are of-
23 ten accurate, but they may not adhere to other kinds of *structure* that the function
24 possesses. The simplest example of such a structure is positivity: if f is a positive
25 function, an accurate polynomial approximation of f need not also be positive. Other
26 types of structure that arise in practice are monotonicity or maximum and minimum
27 value constraints. If an approximation violates the implicit structure of a function, the
28 resulting computation may produce unphysical predictions, and may cause solvability
29 issues in numerical schemes for solving differential equations [26].

30 In this paper, we present a general framework for preserving structure in func-
31 tion approximation from a linear subspace. “Structure” in our context refers to fairly
32 general types of linear inequality constraints, including positivity and monotonicity.
33 However, we demonstrate that our setup can also handle more exotic types of con-
34 straints. The model by which we impose structure is straightforward: construct the
35 approximation that best fits the available data, subject to the structural constraints.
36 We observe that imposing our type of structure on the approximation corresponds to
37 a convex constraint on the vector of expansion coefficients (i.e., the coordinates of the
38 approximation in a basis of the linear space). Thus, our notion of structure-preserving
39 approximation corresponds to a convex optimization problem. Unfortunately, the re-
40 sulting convex set is “complicated”, and we cannot utilize standard algorithms to
41 solve this problem. We therefore develop two algorithms to solve this problem, each

*Submitted to the editors DATE.

[†]Scientific Computing and Imaging Institute and School of Computing, University of Utah, Salt
Lake City, UT 84112 (vidhi.zala@utah.edu).

[‡] Scientific Computing and Imaging Institute and School of Computing, University of Utah, Salt
Lake City, UT 84112 (kirby@cs.utah.edu).

[§] Scientific Computing and Imaging Institute and Department of Mathematics, University of
Utah, Salt Lake City, UT 84112 (akil@sci.utah.edu).

42 of which is advantageous in different situations. We subsequently formulate a hybrid
 43 algorithm that achieves superior performance compared to the original two algorithms.
 44 In summary, the contributions of this paper are as follows:

- 45 • We formalize a new model for computing structure-preserving approximations
 46 of functions. This model can successfully compute function approximations
 47 that respect canonical structure such as positivity and/or monotonicity, but
 48 can also embed much richer, nontrivial structure, cf. Figure 11. A particular
 49 advantage of our approach is that the formalism is identical for all these
 50 structure; e.g., the procedure for preserving positivity versus monotonicity is
 51 fundamentally the same.
- 52 • We show that this model corresponds to a finite-dimensional convex optimiza-
 53 tion problem. We subsequently characterize the feasible set as an intersection
 54 of conic sets (Theorem 3.1), and show that the optimization problem, and
 55 hence our structure-preserving approximation model, has a unique solution.
 See Theorem 3.2.
- 56 • Our convex optimization problem can be cast as a problem of projecting onto
 57 a convex set (the feasible set). Unfortunately the feasible set is not, in gen-
 58 eral, a polytopic region in coefficient space. Hence, a finite number of linear
 59 inequality constraints cannot characterize the feasible set. We instead charac-
 60 terize the convex feasible set as one with an (uncountably) infinite number of
 61 supporting hyperplanes. We use this characterization to develop two types of
 62 algorithms for computing the solution to the optimization problem. We also
 63 combine these two algorithms into a hybrid approach that is more efficient
 64 than either algorithm alone. These three approaches are detailed in Section
 65 4.
- 66 • We demonstrate with numerical results in one dimension with polynomial ap-
 67 proximations that the resulting algorithm produces approximations satisfying
 68 desired constraints. We also show that, for our examples, rates of convergence
 69 of polynomial approximation are unchanged compared to the unconstrained
 70 case.

71 Our problem formulation (along with its mathematical properties) holds in the multi-
 72 variate approximation case; the major drawback in such cases is that our algorithms
 73 require global optimization of multivariate functions, which is a difficult problem
 74 in general. In order to compute solutions to the constrained optimization problem,
 75 our algorithms iteratively “correct” an unconstrained initial guess. For one of our
 76 algorithms, these corrections are essentially Dirichlet kernels for the approximation
 77 space. We visualize some correction functions for enforcing positivity in polynomial
 78 approximation in Figure 1.

79 In Section 2, we introduce notation, describe the types of constraints we consider,
 80 and present the structure-preserving approximation model. Section 3 analyzes the
 81 feasible set of the model and shows that a unique solution exists. Section 4 presents our
 82 proposed algorithms for computing solutions. Finally, Section 5 contains numerical
 83 results and demonstrations.

85 **1.1. Existing and alternative approaches.** There are several existing tech-
 86 niques for building special kinds of structure-preserving approximations. We will
 87 frequently use positivity as an explicit example below to make notions clear.

88 One simple technique in enforcing positivity in function approximation is to en-
 89 force positivity as a finite number of points in the domain. This technique makes the
 90 feasible set much easier to characterize and results in applicability of several off-the-

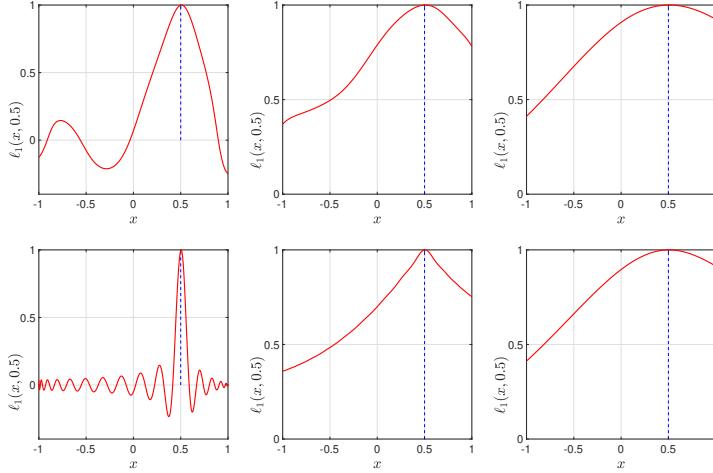


Fig. 1: Correction functions used to enforce positivity in a univariate polynomial approximation. Our algorithm adds scaled/combined versions of these functions to enforce constraints. Shown are corrections targeted to enforce positivity at $x = 0.5$. Correction functions are shown for polynomials of degree 5 (top) and 30 (bottom). The columns correspond to corrections in different ambient Hilbert spaces. Left: $L^2([-1, 1])$. Center: $H^1([-1, 1])$. Right: $H^2([-1, 1])$.

91 shelf algorithms [7]. However, these approaches do not guarantee positivity on the
 92 entire domain, which our structure-preserving model does enforce. Another class of
 93 techniques uses mapping methods. For example, if we approximate \sqrt{f} and square the
 94 resulting approximation, then the squared approximation is guaranteed to be positive.
 95 Finally, there are more complicated successful approaches to construct positive ap-
 96 proximations [10]. Although these approaches are attractive, such mapping functions
 97 are not easy to construct for more complicated constraints.

98 Another approach is to adapt the basis; for example, by expanding a function in
 99 Bernstein polynomials that are positive on some domain, we can ensure the positivity
 100 of the approximation on that domain if all the expansion coefficients are non-negative.
 101 Therefore, one forms an approximation subject to the positivity of the coefficients.
 102 However, this approach does not yield polynomial reproduction even in simple cases.
 103 Consider the following basis for quadratic polynomials in one dimension: $v_1(x) =$
 104 $1 - x^2$, $v_2(x) = (1 - x)(x + 3)$ and $v_3(x) = (x + 1)(3 - x)$. Note that on $[-1, 1]$, these
 105 three functions are all non-negative. However, the (unique) representation of $f \equiv 1$
 106 (that is also non-negative) in this basis is

$$107 \quad 108 \quad f(x) = -\frac{1}{2}v_1(x) + \frac{1}{4}v_2(x) + \frac{1}{4}v_3(x),$$

109 which clearly does not have positive expansion coefficients. Alternative approaches
 110 use an adaptive construction scheme for certain kinds of constraints [5]; our framework
 111 allows much more general constraints and is not restricted by dimension, although in
 112 this paper we consider only univariate examples.

113 In general, each of the techniques above is different, and they must usually be
 114 nontrivially adapted when a new kind of structure is desired, or if a different approxi-

115 mation space is used. The model we employ in this work is general-purpose, handling
 116 rather general types of constraints and very general approximation spaces. Finally, we
 117 note the prior theoretical investigation of error estimates for best structure-preserving
 118 approximation [14, 4, 3, 21].

119 Our formulation constructs an optimization problem of the form

120 (1.1)
$$\min_{\hat{\mathbf{v}} \in \mathbb{R}^N} \|\mathbf{A}\hat{\mathbf{v}} - \mathbf{b}\|_2^2, \quad \text{such that } g(\hat{\mathbf{v}}, y) \leq 0 \quad \forall y \in \Omega,$$

 121

122 where \mathbf{A} and \mathbf{b} are a given matrix and vector (of appropriate sizes), and $g(\cdot, y)$ is
 123 a scalar-valued function depending on a parameter y that takes values in an infinite
 124 set Ω . Hence, our problem is a *semi-infinite programming* (SIP) problem [17] since
 125 the feasible set is described by an infinite number of constraints. As is well-known
 126 in SIP methods, even assessing feasibility of a candidate $\hat{\mathbf{v}}$ would require certifying
 127 satisfaction of the constraints, i.e., certifying that the maximum of $g(\hat{\mathbf{v}}, \cdot)$ over all
 128 Ω is non-positive. Globally solving this so-called lower-level problem is typically
 129 the main challenge in SIP algorithms, and is frequently circumvented by means of
 130 either discretization approaches (that replace Ω by a finite set) or by local reduction
 131 approaches (which partition Ω into subdomains and use specialized approaches on each
 132 subdomain). In both cases, there is a discrete approximation of Ω that is constructed
 133 (and perhaps refined). For generating positive approximations, this would correspond
 134 to requiring positivity at only a finite set of points on the domain.

135 Our formulation, upon discretization/division of Ω , can certainly leverage SIP
 136 algorithms. However, our aim in this paper is to discuss the solution of this problem
 137 *without* discretization of Ω , and hence we do not rely on existing SIP algorithms.
 138 In particular, we propose algorithms to solve the original SIP problem that presume
 139 the ability to compute global solutions to the SIP lower-level problem. Thus, our
 140 algorithms differ from many existing SIP algorithms [15, 23], but also inherit the
 141 general challenge that global solutions to lower-level SIP problems must be provided.

142 **2. Setup.** Let $\Omega \subset \mathbb{R}^d$ be a spatial domain. Whereas our setup and theoretical
 143 results are valid for general Ω and $d \geq 1$, our numerical examples in this paper
 144 will primarily be restricted to $d = 1$ with $\Omega = [-1, 1]$. The restriction affects only
 145 algorithms and not the model or mathematical properties of our discussion. Consider
 146 a Hilbert space formed from scalar-valued functions over Ω :

147
$$H = H(\Omega) := \{f : \Omega \rightarrow \mathbb{R} \mid \|f\| < \infty\}, \quad \|f\|^2 := \langle f, f \rangle,$$

149 with $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_H$ the inner product on H . We are mostly concerned with “stan-
 150 dard” function spaces such as $L^2(\Omega)$ or Sobolev spaces¹. Let V be an N -dimensional
 151 subspace of H , with $\{v_n\}_{n=1}^N$ a collection of orthonormal basis functions,

153
$$V = \text{span} \{v_1, \dots, v_N\}, \quad \langle v_j, v_k \rangle = \delta_{jk},$$

154 for $j, k = 1, \dots, N$ and δ_{jk} the Kronecker delta function. For example, if H is $L^2(\Omega)$
 155 with $\Omega = [-1, 1]$ and V is spanned by polynomials up to degree $N-1$, then one choice
 156 for the v_j basis functions are orthonormal Legendre polynomials. We will consider
 157 this particular case as an example several times in this paper.

158 **2.1. Riesz representors.** We consider the dual V^* of V , i.e., the space of
 159 all bounded linear functionals mapping V to \mathbb{R} . The Riesz representation theorem

¹We formally define L^2 and some Sobolev spaces in Section 5.

160 guarantees that a functional $L \in V^*$ can be associated with a unique V -representor
 161 $\ell \in V$ satisfying

$$162 \quad L(u) = \langle u, \ell \rangle, \quad \forall u \in V.$$

164 Furthermore, this $L \leftrightarrow \ell$ identification is an isometry. We will use these facts in
 165 what follows. Given L that identifies ℓ , we consider the coordinates $\widehat{\ell}_j$ of ℓ in a
 166 V -orthonormal basis,

$$167 \quad \ell(x) = \sum_{j=1}^N \widehat{\ell}_j v_j(x), \quad \widehat{\ell}_j = \langle \ell, v_j \rangle = L(v_j).$$

169 Then we have the following relations:

$$170 \quad \|L\|_{V^*} = \|\ell\|_V = \|\widehat{\ell}\|_2, \quad \widehat{\ell} = \left(\widehat{\ell}_1, \widehat{\ell}_2, \dots, \widehat{\ell}_N \right)^T,$$

172 where $\|\cdot\|_2$ is the Euclidean norm on vectors in \mathbb{R}^N .

173 **2.2. Least squares problems.** We are interested in a common least squares-
 174 type approximation problem. Suppose that $u \in H$ is an unknown function for which
 175 we have M pieces of data. We wish to construct an approximation $p \in V$ to u that
 176 best matches these data points. We now formulate this abstractly. Let ϕ_1, \dots, ϕ_M be
 177 M linear functionals on H that are bounded on V . We assume that the observations
 178 $\{u_j\}_{j=1}^M = \{\phi_j(u)\}_{j=1}^M \subset \mathbb{R}$ are available to us (and also bounded), and we seek to
 179 solve the optimization problem,

$$180 \quad p = \operatorname{argmin}_{v \in V} \sum_{j=1}^M (\phi_j(v) - u_j)^2.$$

182 For example, if ϕ_j is a point-evaluation (the Dirac mass) at some location $x_j \in \Omega$ for
 183 all $j = 1, \dots, M$, then the problem above is equivalent to

$$184 \quad p = \operatorname{argmin}_{v \in V} \sum_{j=1}^M (v(x_j) - u(x_j))^2.$$

186 This problem has a unique solution if the matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$ with entries

$$187 \quad (A)_{m,n} = \phi_m(v_n), \quad 1 \leq n \leq N, 1 \leq m \leq M,$$

189 has the rank equal to $\dim V = N$; otherwise, infinitely many solutions exist. This
 190 least squares problem is well understood and computational algorithms to solve it
 191 given data $\phi_j(u)$ are ubiquitous [8].

192 For an overdetermined system, where $M > N$, the method of ordinary least
 193 squares can be used to find an approximate solution. Details for this case are discussed
 194 in 2.4 after the discrete formulation of this problem.

195 **2.3. Constraints.** The previous section explains how a function p can be con-
 196 structed from data. However, we are interested in a particular kind of *constrained*
 197 approximation. Our investigation can be motivated by the following examples of types
 198 of constraints:

199

- Positivity: $p(x) \geq 0$ for all $x \in \Omega$

- Monotonicity: $p'(x) \geq 0$ for all $x \in \Omega \subset \mathbb{R}$
- Boundedness: $0 \leq p(x) \leq 1$ for all $x \in \Omega$.

Thus, the central focus of this paper is solving a *linearly constrained* least squares problem, where constraints of the above type are imposed. We now give the abstract setup of our constraints, which specializes to the examples above.

Our abstraction defines K *families* of linear constraints; for fixed $k \in \{1, 2, \dots, K\}$, the family k is prescribed by the tuple (L_k, r_k, ω_k) :

- ω_k : a subset of Ω .
- r_k : an element of V
- L_k : for $y \in \omega_k$ fixed, $L_k(\cdot, y)$ is a y -parameterized *unit norm* element of V^* .

Our k th family of constraints on v is

$$(2.1) \quad L_k(v, y) \leq L_k(r_k, y), \quad y \in \omega_k.$$

The subset of V that satisfies constraint family k is

$$(2.2) \quad E_k := \{v \in V \mid L_k(v, y) \leq L_k(r_k, y) \text{ for all } y \in \omega_k\}.$$

The elements in V that satisfy all K families of constraints simultaneously are

$$(2.3) \quad E := \bigcap_{k=1}^K E_k.$$

We assume that E is nonempty, i.e., that the constraints are consistent. Constraints can be inconsistent, e.g., simultaneously enforcing $f(x) \leq 0$ and $f(x) \geq 1$. However, one can create more subtle inconsistencies in more complicated settings. Our procedure does not provide a means to detect inconsistent constraints (and in this case the algorithm will simply not converge). Thus, we rely on the user to ensure consistent constraints. (Note that a corresponding constrained problem has no solution if inconsistent constraints are prescribed.)

Particularly important later will be the formula for the $\{v_j\}_{j=1}^N$ -coordinates of the Riesz representor L_k . As in Section 2.1, $L_k(\cdot, y)$ for fixed (k, y) can be identified with its Riesz representor $\ell_k(\cdot, y) \in V$ and its corresponding expansion coefficients $\widehat{\ell}_k(y)$. The unit norm condition of L_k then implies

$$(2.4) \quad \|L_k(\cdot, y)\|_{V^*}^2 = \left\| \widehat{\ell}_k(y) \right\|_2^2 = \sum_{j=1}^N (L_k(v_j, y))^2 = 1.$$

We consider some examples.

EXAMPLE 2.1 (Positivity). Consider $\Omega = [-1, 1]$, and let V be any N -dimensional subspace of $L^2(\Omega) \cap L^\infty(\Omega)$. We seek to impose $p(x) \geq 0$ for all $x \in \Omega$. Thus, we have $K = 1$, and the linear operator L_1 should be point evaluation, appropriately normalized. Note that point evaluation is not a bounded functional in L^2 , but it is on the finite-dimensional space V . Formally, this is

$$(2.5) \quad L_1(v, y) := -\lambda(y)v(y), \quad v \in V,$$

where $\lambda(y)$ is chosen so that L_1 has unit norm for every $y \in \omega_1$; the negative sign is chosen so that we can reverse the inequality in (2.1). We set $\omega_1 = \Omega$, and choose $r_1 \equiv 0 \in V$. Then, the constraint (2.1) is equivalent to $v(y) \geq 0$ for every $y \in \Omega$. The constraint set E_1 defined in (2.2) is

$$(2.6) \quad E_1 = \{u \in V \mid -u(y) \leq 0 \text{ for all } y \in \omega_1\}.$$

245 It will be useful here to also demonstrate how $\hat{\ell}_1(y)$ can be computed. For fixed y , we
 246 can identify $L_1(\cdot, y)$ via its Riesz representor $\ell_1(\cdot, y)$:

247 (2.5)
$$\ell_1(\cdot, y) := -\lambda(y) \sum_{j=1}^N v_j(y) v_j(\cdot) \in V, \quad \lambda(y) = \left[\sum_{j=1}^N v_j^2(y) \right]^{-1/2},$$

 248

249 so that $\{-\lambda(y)v_j(y)\}_{j=1}^N$ are the entries of $\hat{\ell}_1(y)$. The formula for λ results from the
 250 normalization condition (2.4). Thus, the coefficient vector $\hat{\ell}_1(y) \in \mathbb{R}^N$ has explicit
 251 entries in terms of y and the orthonormal basis $\{v_j\}_{j=1}^N$.

252 EXAMPLE 2.2 (Monotonicity). With the same setup as the previous example, we
 253 take V as any N -dimensional subspace of $L_\mu^2(\Omega) \cap W^{1,\infty}(\Omega)$, where $W^{1,\infty}(\Omega)$ is the
 254 Sobolev space of functions that are in $L^\infty(\Omega)$ and whose derivatives are also in $L^\infty(\Omega)$.
 255 Again with $K = 1$, we define L_1 and its corresponding Riesz representor as

256
$$L_1(v, y) := -\tau(y)v'(y), \quad v \in V,$$

 257
$$\ell_1(\cdot, y) := -\sum_{n=1}^N \tau(y)v'_n(y)v_n \in V, \quad \tau(y) = \left[\sum_{j=1}^N (v'_j)^2(y) \right]^{-1/2},$$

 258

259 where again τ is determined using the normalization condition (2.4). With $r_1 \equiv 0$,
 260 then (2.2) enforces $v'(y) \geq 0$ for all $y \in \Omega$.

261 EXAMPLE 2.3 (Boundedness). With the same setup as Example 2.1, we take V
 262 as any N -dimensional subspace of $L_\mu^2 \cap L^\infty$, and we further assume that V contains
 263 constant functions. Let $K = 2$, and define the operators L_1 and L_2 as

264
$$L_1(v, y) := -v(y), \quad v \in V,$$

 265
$$L_2(v, y) := v(y), \quad v \in V,$$

266 for each $y \in \omega_1 = \omega_2 = [-1, 1]$. Then, with constraint functions $r_1 \equiv 0$ and $r_2 \equiv 1 \in$
 267 V , we have that E_k , $k = 1, 2$ are the sets

268
$$E_1 = \{u \in V \mid -u(y) \leq 0 \forall y \in [-1, 1]\}, \quad E_2 = \{u \in V \mid u(y) \leq 1 \forall y \in [-1, 1]\},$$

269 so that their intersection E in (2.3) is the set of elements u in V such that $0 \leq u(x) \leq$
 270 1 for each $x \in \Omega$.

271 EXAMPLE 2.4. We can also form constraints on different subsets of Ω . With all
 272 the notation in the previous example, we change only:

273
$$\omega_1 = [-1, 0], \quad \omega_2 = (0, 1],$$

274 so that E contains functions u satisfying $u(x) \geq 0$ for $x \in [-1, 0)$ and $u(x) \leq 1$ for
 275 $x \in (0, 1]$.

276 The above examples illustrate the generality of our notation and the intuitive
 277 simplicity of the types of constraints that we consider. A constrained version of a
 278 least squares problem thus is formulated as

279 (2.6)
$$p = \operatorname{argmin}_{v \in E} \sum_{j=1}^M (\phi_j(v) - u_j)^2.$$

 280

2.4. Problem discretization. We now formulate the constrained problem (2.6) via coordinates in the basis $\{v_j\}_{j=1}^N$, which results in a discrete form amenable to numerical computation. Any $v \in V$ has the expansion

$$v(x) = \sum_{j=1}^N \widehat{v}_j v_j(x),$$

and the expansion coefficient vector $\hat{\mathbf{v}} := (\hat{v}_1, \dots, \hat{v}_N)^T \in \mathbb{R}^N$ uniquely identifies the element $v \in V$. This identification defines subsets of \mathbb{R}^N corresponding to the sets E_k :

$$(2.7) \quad C_k := \left\{ \mathbf{c} \in \mathbb{R}^N \mid \sum_{j=1}^N c_j v_j \in E_k \right\} \subset \mathbb{R}^N, \quad C := \bigcap_{k=1}^K C_k.$$

294 Then, the optimization problem (2.6) is equivalent to

$$(2.8) \quad \mathbf{c} = \underset{\tilde{\mathbf{v}} \in C}{\operatorname{argmin}} \|\mathbf{A}\tilde{\mathbf{v}} - \mathbf{b}\|_2^2, \quad b_j = \phi_j(u).$$

297 This problem is again a least squares problem and so is easily solved in principle, but
 298 unfortunately in practice the set C is a quite complicated subset of \mathbb{R}^N . Nevertheless,
 299 C is convex, which is a fact we exploit.

300 We now consider the case of an overdetermined system, where $M > N$ in (2.8).
 301 The method of ordinary least squares can be used to find an approximate solution to
 302 (2.8) in this case. This is achieved with the normal equations by decomposition of A
 303 as [1],

$$\hat{\mathbf{v}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

2.5. Geometry of sets. We recall some basic properties of cones and convex sets and functions that we utilize. In all the discussion below, the ambient space is \mathbb{R}^N . A set C is convex if, for every $x, y \in \partial C$,

$$309 \quad \lambda x + (1 - \lambda)y \in C \quad \forall \lambda \in (0, 1).$$

310 A set C is a convex cone if, for every $x, y \in C$,

$$ax + by \in C \quad \forall \ a, b \geq 0.$$

312 The set C is an affine convex cone if it is the rigid translate of a convex cone, i.e., if
 313 $C = D + z$, where $z \in \mathbb{R}^N$ and D is a convex cone. In this case, we call z the vertex
 314 of the cone.

315 The convex sets we consider are generated by an uncountably infinite number of
 316 supporting hyperplanes. Given $y \in \mathbb{R}^N$ and $a \in \mathbb{R}$, a hyperplane H_0 is a set given by
 317 $H_0 = \{x \mid \langle x, y \rangle = a\}$. The hyperplane H_0 separates \mathbb{R}^N into two halfspaces, one of
 318 which is

$$H(y, a) := \{x \in \mathbb{R}^N \mid \langle x, y \rangle \leq a\}$$

320 Note that $H(y, a)$ is a closed set in \mathbb{R}^N . A hyperplane $H_0(y, a)$ with an associated
 321 halfspace $H(y, a)$ is a supporting hyperplane for a closed convex set C if $C \subset H(y, a)$
 322 and if $H_0(y, a) \cap \partial C \neq \emptyset$.

323 **3. Constrained optimization.** The main task in this paper is solving the op-
 324 timization problem (2.8). This optimization problem appears simple since it features
 325 a quadratic objective, and the feasible set C is convex (which we show in the next
 326 section). The main difficulty here is that C is not a computationally simple convex
 327 set in \mathbb{R}^N , and hence computing, e.g., projections onto this set, is difficult. To begin,
 328 we establish that C is convex.

329 **3.1. Constraint set properties.** This section is devoted to establishing that
 330 the sets C_k and C are convex cones in \mathbb{R}^N . These properties will be used in the
 331 construction of algorithms for solving (2.8).

332 Before proceeding, we note that each inequality function $r_k \in V$ for $k = 1, \dots, K$,
 333 can be translated into its vector of expansion coefficients:

$$334 \quad (3.1) \quad r_k(x) = \sum_{j=1}^N \hat{r}_{k,j} v_j(x), \quad \hat{\mathbf{r}}_k = (\hat{r}_{k,1}, \dots, \hat{r}_{k,N})^T.$$

336 Now the definitions of C and C_k immediately yield convexity and conic properties of
 337 these sets.

338 THEOREM 3.1. *The set C is a closed convex set in \mathbb{R}^N , and each for $k = 1, \dots, K$,
 339 C_k is a closed, affine convex cone in \mathbb{R}^N with vertex located at $\hat{\mathbf{r}}_k$.*

340 *Proof.* Convexity, closure, and conic structure are preserved under isometries.
 341 Due to the isometric relation between V and \mathbb{R}^N , we can thus prove properties in one
 342 space, which extends to the other space. We first show that C_k is closed directly in
 343 \mathbb{R}^N : Rewriting (2.7) using the definition of E_k , we have

$$344 \quad C_k = \bigcap_{y \in \omega_k} \left\{ \mathbf{c} \in \mathbb{R}^N \mid L_k \left(\sum_{j=1}^N c_j v_j, y \right) \leq L_k(r_k, y) \right\} =: \bigcap_{y \in \omega_k} c_k(y).$$

346 By definition, $c_k(y)$ is actually a halfspace in \mathbb{R}^N ,

$$347 \quad c_k(y) = H \left(\hat{\mathbf{r}}_k(y), L_k(r_k, y) \right)$$

349 and hence $c_k(y)$ is a closed set. Therefore, $C_k = \bigcap_y c_k(y)$ is also a closed set, and thus
 350 $C = \bigcap_k C_k$ is a closed set.

351 We will now show the convexity and conic properties in V : fix $k \in \{1, \dots, K\}$ and
 352 $y \in \omega_k$. Let $v, w \in V$ be two elements in E_k . For any $\lambda \in [0, 1]$,

$$353 \quad L_k(\lambda v + (1 - \lambda)w, y) = \lambda L_k(v, y) + (1 - \lambda)L_k(w, y) \leq L_k(r_k, y),$$

355 where the inequality is true since $v, w \in E_k$. Therefore E_k , and hence C_k , is convex.
 356 Thus we also have that C is convex since it's an intersection of convex sets.

357 We next show that E_k is a cone with the vertex at r_k , i.e., we must show that for
 358 any $\tau \geq 0$ and $v \in V$, we have $L_k(r_k + \tau(v - r_k)) \leq L_k(r_k)$. This is true since

$$359 \quad L_k(r_k + \tau(v - r_k)) = L_k(r_k) + \tau [L_k(v) - L_k(r_k)] \leq L_k(r_k),$$

361 so indeed, E_k is a convex cone with the vertex at r_k , and hence C_k is a convex cone
 362 with the vertex at $\hat{\mathbf{r}}_k$. \square

363 Despite their conic convexity, the sets C_k are not polyhedral in general, and are
 364 hence “complicated” to computationally encode. Consider the setup of Example 2.1.
 365 If we change the definition of ω_1 to

$$366 \quad \tilde{\omega}_1 = \{x_1, \dots, x_P\} \subset \Omega = [-1, 1].$$

368 for any arbitrary $P < \infty$, the new constraint set $\tilde{C}_1 = C(L_1, r_1, \tilde{\omega}_1)$ is strictly larger
 369 than the constraint set C_1 in Example 2.1. In particular, $p \in V$ satisfying $p(x_j) \geq 0$ for
 370 $j = 1, \dots, P$ does not imply that $p(x) \geq 0$ for all $x \in [-1, 1]$ unless V has very special
 371 properties (for example, if V contains only certain piecewise constant functions). Note
 372 that the supporting hyperplanes of the constraint set \tilde{C} are $P < \infty$ halfspaces in \mathbb{R}^N
 373 and hence \tilde{C} is polyhedral (if nonempty). However, if V contains polynomials, it is
 374 easy to construct a polynomial that is non-negative on $\tilde{\omega}_1$ but *not* non-negative on Ω .
 375 Hence, the constraint set C_1 defined by (L_1, r_1, ω) in example 2.1 is strictly smaller
 376 than \tilde{C}_1 , here defined by $(L_1, r_1, \tilde{\omega})$.

377 Nevertheless, such discretization approaches, i.e. approaches that use a finite set
 378 $\tilde{\omega}_1$ as a surrogate for an infinite set Ω , are common and frequently effective algorithms
 379 for solving (2.8), as is commonly done in semi-infinite programming problems. How-
 380 ever, in this manuscript we present algorithms that insist on global satisfaction of the
 381 constraints, and hence adopt alternative approaches. Thus, the main computational
 382 difficulty of our optimization problem is that the set C cannot be exactly represented
 383 as a polyhedron in general, and in particular that projections onto C are in general
 384 difficult to compute.

385 **3.2. Solutions to (2.8).** Our main goal in this section is to demonstrate the
 386 unique solution to our constrained optimization problem. The result is straightforward
 387 from the closed convexity of the constraint set and strict convexity of the objective
 388 function.

389 **THEOREM 3.2.** *Assume that the design matrix \mathbf{A} has rank N and the feasible
 390 set C is nonempty. Then, the constrained optimization problem (2.8) has a unique
 391 solution.*

392 *Proof.* The first step is to observe that since \mathbf{A} has full column rank, we can write
 393 the problem in transformed coordinates as a convex feasibility problem (specifically as
 394 a projection problem). Let $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$ be the *reduced* singular value decomposition
 395 of \mathbf{A} . Since $\text{rank}(\mathbf{A}) = N \leq M$, Σ is $N \times N$, diagonal, and invertible; \mathbf{V} is $N \times N$
 396 and orthogonal; and \mathbf{U} is $M \times N$ with orthonormal columns.

397 With $\mathcal{P}_{\mathcal{W}}$ the \mathbb{R}^N -orthogonal projector onto a subspace \mathcal{W} , and $\mathcal{R}(\mathbf{A})$ the range
 398 of \mathbf{A} , then (2.8) can be written as

$$399 \quad \begin{aligned} \underset{\hat{\mathbf{v}} \in C}{\text{argmin}} \|\mathbf{A}\hat{\mathbf{v}} - \mathbf{b}\|_2^2 &= \underset{\hat{\mathbf{v}} \in C}{\text{argmin}} \|\mathcal{P}_{\mathcal{R}(\mathbf{A})^\perp}\mathbf{b}\|_2^2 + \|\mathbf{A}\hat{\mathbf{v}} - \mathcal{P}_{\mathcal{R}(\mathbf{A})}\mathbf{b}\|_2^2 \\ 400 &= \underset{\hat{\mathbf{v}} \in C}{\text{argmin}} \|\Sigma\mathbf{V}^*\hat{\mathbf{v}} - \mathbf{U}^*\mathbf{b}\|_2^2 \\ 401 (3.2) \quad &= \mathbf{V}\Sigma^{-1} \underset{\mathbf{z} \in \Sigma\mathbf{V}^*C}{\text{argmin}} \|\mathbf{z} - \mathbf{U}^*\mathbf{b}\|_2^2, \\ 402 \end{aligned}$$

403 where $\Sigma\mathbf{V}^*C := \{\Sigma\mathbf{V}^*\mathbf{y} \in \mathbb{R}^N \mid \mathbf{y} \in C\}$. Thus, (2.8) has a unique solution if and
 404 only if

$$405 (3.3) \quad \underset{\mathbf{z} \in \Sigma\mathbf{V}^*C}{\text{argmin}} \|\mathbf{z} - \mathbf{U}^*\mathbf{b}\|_2^2$$

407 has a unique solution. Theorem 3.1 establishes that C is closed and convex; thus,
 408 $\Sigma V^* C$ is a linear transformation of a closed convex set, so it is also closed and
 409 convex. Therefore, (3.3) seeks the $\ell^2(\mathbb{R}^N)$ -closest point to $U^* b$ from a nonempty,
 410 closed, convex set. The Hilbert Projection Theorem guarantees the existence and
 411 uniqueness of such a point. \square

412 The study of existence and uniqueness of approximations under convex constraints is
 413 not new [22, 19]. Indeed, our result is a corollary of these earlier results, but we have
 414 presented a brief proof above in order to be self-contained.

415 **4. Algorithms: Convex Feasibility.** We now concentrate on solving the prob-
 416 lem defined by (2.8), equivalently (3.3). To simplify the presentation, we will assume
 417 first that $A = I$ so that both (3.3) and (2.8) reduce to

$$418 \quad (4.1) \quad \underset{\mathbf{c} \in C}{\operatorname{argmin}} \|\mathbf{c} - \mathbf{b}\|_2^2,$$

420 i.e., a standard problem of projecting \mathbf{b} onto a convex set C . The main bottleneck to
 421 applying standard optimization tools is that the feasible set C is not easily defined in
 422 terms of a finite number of conditions on \mathbf{c} . The difficulty in our problem is not in
 423 minimizing the objective function, but instead the convex feasibility problem, i.e., to
 424 identify points in the convex feasible set.

425 Some of the most successful algorithms for solving the convex feasibility problem
 426 are alternating- or splitting-type algorithms. If C_1, \dots, C_r are convex sets with non-
 427 empty intersection C , these algorithms assume that projection onto any one of these
 428 sets is computationally feasible. A solution to (4.1) can be computed by alternating
 429 these individual projections. The original projection onto convex sets algorithm via
 430 iteration is due to Von Neumann [25], and much work has proceeded from this [9,
 431 16, 2, 12, 18, 13]. When $r > 2$, the alternating algorithm becomes a cyclic one, and
 432 these cyclic projection algorithms have substantial theoretical underpinning, including
 433 convergence guarantees.

434 The difficulty in applying these algorithms to our situation is that they character-
 435 ize the feasible region with a *finite* number of convex sets. Although our collection of
 436 sets $\{C_j\}_{j=1}^K$ is finite, we do not know how to project onto any of them individually.
 437 However, we have

$$438 \quad (4.2) \quad C = \bigcap_{k=1}^K C_k = \bigcap_{k=1}^K \bigcap_{y \in \omega_k} H_k(y),$$

$$438 \quad H_k(y) := H(\ell_k(y), L_k(r_k, y)),$$

441 so that C is comprised of an (in general uncountably) *infinite* intersection of half-
 442 spaces, each of which is straightforward to project onto, see Figure 2 for a geometric
 443 visual. Our strategy here is to generalize certain types of cyclic/alternating algorithms
 444 to the case of an infinite number of convex sets (halfspaces). We broadly employ two
 445 strategies: greedy projection and averaged projection.

446 The major ingredient in our approaches is the ability to project onto any halfspace
 447 $H_k(y)$. Since the functionals $L_k(\cdot, y)$ are unit norm, a computation shows that the
 448 signed distance between some point $\mathbf{c} \in \mathbb{R}^N$ and $H_k(y)$ is

$$449 \quad (4.3) \quad \text{sdist}(\mathbf{c}, H_k(y)) = L_k(r_k, y) - \langle \hat{\ell}_k(y), \mathbf{c} \rangle,$$

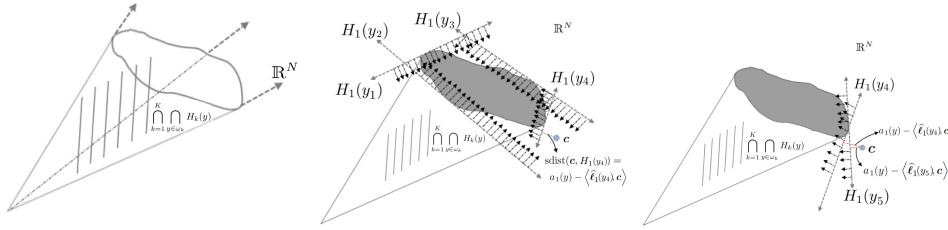


Fig. 2: Left: The hatched volume represents the closed convex cone C_1 . Middle: Geometric depiction of intersecting hyperspaces $H_1(y)$ and their respective boundaries defined by hyperplanes parameterized by $y \in \Omega$. Also shown is the distance calculation corresponding to (4.3). Right: A scenario that demonstrates the greedy strategy to select the direction in which y moves in the next step of the algorithm: $H_1(y_4)$ is farther away from \mathbf{c} than $H_1(y_5)$. The optimization (4.5) seeks the hyperplane that is farthest away from \mathbf{c} .

451 which is positive if $\mathbf{c} \in H_k(y)$ and negative otherwise. Thus, the nearest-distance
 452 projection of \mathbf{c} onto $H_k(y)$ is

$$453 \quad 454 \quad P_{H_k(y)}\mathbf{c} = \mathbf{c} + \ell_k(y) \min \{0, \text{sdist}(\mathbf{c}, H_k(y))\}.$$

455 We consider an example to illustrate that these projections are easily computable.

456 **EXAMPLE 4.1.** Consider the positivity constraint setup of Example 2.1. The con-
 457 straint functional $L_1(\cdot, y)$ is a (normalized, negative) point evaluation at y , and $\{v_n\}_{n=1}^N$ are the first N orthonormal Legendre polynomials on $[-1, 1]$. Then, the Riesz repre-
 458 sentor $\ell_1(y) \in V$ and its coordinates $\{\hat{\ell}_{1,j}(y)\}_{j=1}^N$ are explicit in terms of the Legendre
 459 polynomials via (2.5). In the context of harmonic analysis, $\ell_1(y)$ is the y -centered,
 460 negative, normalized Dirichlet kernel for V . The function r_1 describing the constraint
 461 is $r_1 \equiv 0$, so that $\hat{\mathbf{r}}_1 = \mathbf{0}$ and $L_1(r_1, y) = 0$. Now let $v \in V$ be any element with
 462 coordinates $\mathbf{c} \in \mathbb{R}^N$ in the orthonormal Legendre polynomials. Then,

$$464 \quad 465 \quad (4.4) \quad \text{sdist}(\mathbf{c}, H_1(y)) = -\langle \hat{\ell}_1(y), \mathbf{c} \rangle = \lambda(y)v(y).$$

466 Thus, the signed distance at $y \in \Omega$ is simply scaled evaluation of the original function
 467 v . The projection of \mathbf{c} onto the halfspace defined by $H_k(y)$ is therefore

$$468 \quad P_{H_k(y)}\mathbf{c} = \mathbf{c} + \hat{\ell}_1(y) \min \{0, v(y)\lambda(y)\}.$$

470 Note that since $\lambda(y) > 0$, this projection equals \mathbf{c} if $v(y) \geq 0$, as expected.

471 **4.1. Greedy projections.** Since projections onto individual halfspaces defined
 472 by $H_k(y)$ are relatively simple to compute, we can devise one algorithm for com-
 473 puting the solution to (4.1) as a modification of cyclic projections. Although cyclic
 474 projection-type algorithms proceed by cycling through the enumerable constraint sets,
 475 our (uncountably) infinite collection of sets prevents such a simple cycling. Instead,
 476 we can project onto the *farthest* or most violated constraint, i.e., with

$$477 \quad 478 \quad (4.5) \quad (y^*, k^*) := \underset{y \in \omega_k, k \in [K]}{\text{argmin}} \text{sdist}(\mathbf{c}, H_k(y)),$$

479 We can update \mathbf{c} via

480 (4.6)
$$\mathbf{c} \leftarrow \mathbf{c} + \ell_{k^*}(y^*) \min \{0, \text{sdist}(\mathbf{c}, H_{k^*}(y^*))\}.$$

482 The geometric picture associated to (4.5) is shown in the right panel of Figure 2.
 483 The update process (4.6) can be repeated, resulting in an iterative algorithm. We
 484 summarize this procedure in Algorithm 4.1. This algorithm proceeds by iteratively
 485 “correcting” the vector \mathbf{c} in (4.6). The associated operation in the function space V
 486 is that an unconstrained function is additively augmented by the Riesz representor
 487 correction function $\ell_{k^*}(y^*) \in V$. These corrections are visualized in Figure 1 for
 488 polynomials. A more detailed understanding of these function is provided in Figures
 489 4 and 5 where we show $\ell_k(y)(x)$ as a function of (x, y) for polynomials.

Algorithm 4.1 Iterative greedy projection algorithm to compute the solution to (4.1). The unspecified “extra termination criteria” can be standard metrics, such as number of iterations, improvement in objective function, etc.

```

1: Input: constraints  $(L_k, r_k, \omega_k)_{k=1}^K$ 
2: Input: coordinates  $\mathbf{c} \in \mathbb{R}^N$  of a function  $v \in V$ 
3: while True do
4:   Compute  $(y^*, k^*)$  via (4.5).
5:   if  $\text{sdist}(\mathbf{c}, H_{k^*}(y^*)) \geq 0$  or extra termination criteria triggered then
6:     Break
7:   end if
8:   Update  $\mathbf{c}$  via (4.6).
9: end while
10: return  $\mathbf{c}$ 
```

490 Note that the bulk of the computational effort in Algorithm 4.1 corresponds to
 491 line 4 where the Ω -global optimization problem (4.5) must be solved, which can be of
 492 considerable expense at each iteration. We explain in Appendix A how we accomplish
 493 this optimization for univariate polynomial spaces V .

494 It is straightforward to establish that under a special kind of termination in
 495 Algorithm 8, we obtain the solution to (4.1).

496 **PROPOSITION 4.1.** *If Algorithm 4.1, without any extra termination criteria, terminates after one only iteration of line 8, then the output \mathbf{c} is the solution to (4.1).*

498 *Proof.* Assume without loss that the input to algorithm 4.1 \mathbf{c} is not in C . By
 499 (4.2), we have

500
$$\text{dist}(\mathbf{c}, C) \geq \text{dist}(\mathbf{c}, H_k(y)),$$

502 for any (y, k) . Let (y^*, k^*) be the solution to (4.5), and note that since $\mathbf{c} \notin C$,

503
$$\text{dist}(\mathbf{c}, H_k(y)) = -\text{sdist}(\mathbf{c}, H_{k^*}(y^*)) > 0.$$

505 The assumption that Algorithm 4.1 terminates after one iteration implies that

506
$$\mathbf{d} := \mathbf{c} + \widehat{\ell}_{k^*}(y^*) \text{sdist}(\mathbf{c}, H_{k^*}(y^*)) \in C.$$

508 Note \mathbf{d} is returned by the algorithm. $\mathbf{c} \notin C$, $\mathbf{d} \in C$, $\|\widehat{\ell}_{k^*}(y^*)\|_2 = 1$, and that

509
$$\text{dist}(\mathbf{c}, C) \geq -\text{sdist}(\mathbf{c}, H_{k^*}(y^*)),$$

511 all imply that the above inequality is actually an equality, and thus \mathbf{d} solves (4.1). \square

512 In standard cyclic projection algorithms, it is well known that directly projecting
 513 onto each set in each iteration produces a suboptimal trajectory for the iterates. The
 514 greedy algorithm described in this section suffers from this as well, which we show
 515 in the numerical results section. An improvement that somewhat ameliorates this
 516 deficiency is accomplished by averaging these projections.

517 **4.2. Averaged projections.** A simple strategy to mitigate the oscillatory iteration
 518 trajectory produced by iterative greedy projections is via averaging. Precisely,
 519 given a current iterate \mathbf{c} , we identify the subset of Ω where our constraints are violated:

520 (4.7)
$$\omega_k^- := \{y \in \omega_k \mid \text{sdist}(\mathbf{c}, H_k(y)) < 0\}.$$

522 Under mild assumptions on V , e.g., that it contains only piecewise continuous functions,
 523 ω_k^- is either the trivial (empty) set, or of positive Lebesgue measure. (In other
 524 words, it cannot be a discrete or nontrivial measure-0 set.) Assume for simplicity that
 525 ω_k^- has a positive Lebesgue measure for each k . We then produce an update by a
 526 normalized average of corrections corresponding to values of y in ω_k^- :

527 (4.8)
$$\mathbf{c} \leftarrow \mathbf{c} + \sum_{k=1}^K \frac{1}{K|\omega_k^-|} \int_{\omega_k^-} \widehat{\ell}_k(y) \text{sdist}(\mathbf{c}, H_k(y)) dy.$$

529 Above, $|\omega_k^-|$ is the measure of $\omega_k^- \subset \Omega$. We again illustrate with an example that
 530 these quantities are computable.

531 *EXAMPLE 4.2.* Consider the positivity constraint setup of Example 2.1. As we
 532 saw in Example 4.1, the signed distance for our single constraint is given by (4.4).
 533 Note that in this one-dimensional setup with finite-degree polynomials, the set ω_k^- is
 534 a finite union of subintervals of $[-1, 1]$, and hence the measure $|\omega_k^-|$ is just the sum
 535 of the lengths of these subintervals. Then, the correction term on right-hand side of
 536 the update scheme (4.8) is

537
$$-\frac{1}{|\omega_k^-|} \int_{\omega_k^-} \widehat{\ell}_1(y) \lambda(y) v(y) dy = -\frac{1}{|\omega_k^-|} \sum_{j=1}^N \mathbf{e}_j \int_{\omega_k^-} \lambda^2(y) v(y) v_j(y) dy,$$

539 where \mathbf{e}_j , $j \in [N]$ are the cardinal unit vectors in \mathbb{R}^N . Thus, the integrals that must
 540 be computed have smooth integrands and can be efficiently approximated by standard
 541 quadrature rules, assuming the endpoints of the subintervals defining ω_k^- can be iden-
 542 tified.

543 A variation of Algorithm 4.1 that uses this averaging approach is nearly identical: the
 544 only change required is that the update of the coefficient vector \mathbf{c} in line 8 should be
 545 replaced by the update in (4.8).

546 Figure 3 visually depicts both the greedy and averaged projections idea where
 547 V is a univariate space of polynomials and the constraint is positivity (i.e., Example
 548 2.1). In particular, the value y^* that solves the greedy optimization problem (4.5) is
 549 shown, along with the averaging set ω_1^- identified in (4.7).

550 **4.3. Hybrid algorithms.** In experimentation, we have found that hybrid com-
 551 binations of the greedy approach of Section 4.1 and the averaged approach of Section
 552 4.2 work better than any algorithm alone. In particular, the greedy algorithm works
 553 well when \mathbf{c} is “close” to the solution, but the averaged algorithm works better for
 554 an iterate that is “far” away. Thus, we utilize a standard switching procedure in
 555 optimization depending on the proximity to a basin of attraction.

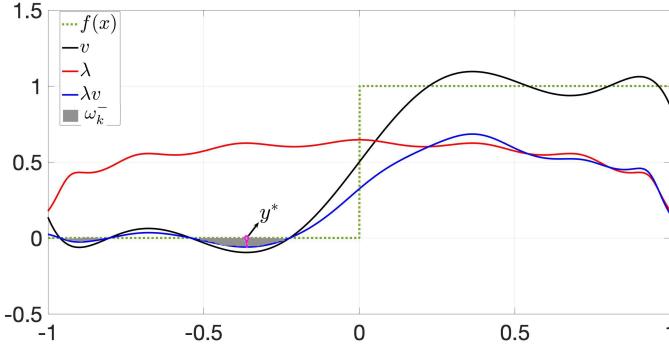


Fig. 3: v is the unconstrained $L^2([-1, 1])$ projection of the step function $f(x)$ onto the space of degree-7 polynomials. For the positivity setup of Example 2.1, the greedy point y^* defined in (4.5) is shown, and the averaging set $\omega_k^- \subset [-1, 1]$ defined in (4.7). Also plotted is the signed distance $\lambda(y)v(y)$ of v to $H_1(y)$.

556 Through experimentation, we have found that the following switching mechanism
 557 works well: We perform averaged projections until the norm of the correction (4.8)
 558 reaches a certain tolerance. After a condition is met, we switch to greedy projections.
 559 The switching condition is the following: if i is the iteration index, consider the ratio,

$$560 \quad \alpha_i = \frac{\text{sdist}(\mathbf{c}_i, H_{k_i^*}(y_i^*))}{\text{sdist}(\mathbf{c}_{i-1}, H_{k_{i-1}^*}(y_{i-1}^*))}.$$

562 Our switching condition is triggered when $|\alpha_i - \alpha_{i-1}| \leq \epsilon$, for a user-specified ϵ . At
 563 this point, we perform one more averaged update of the form (4.8), but multiply the
 564 right-hand side correction by $1/\alpha_i$. Subsequently, greedy projections as in (4.6) are
 565 performed. While this procedure is quite *ad hoc*, we have observed that it consistently
 566 performs better than other hybrid variants we have tried.

567 **4.4. Algorithms for polynomial subspaces.** As described in previous sec-
 568 tions, the main computational expense in our convex optimization algorithm is the
 569 minimization of the signed distance function in (4.5) (for the greedy and hybrid algo-
 570 rithms) and identification and integration over the set ω_k^- in (4.7) (for the averaged
 571 and hybrid algorithms). Such problems for *general* function spaces are difficult to
 572 solve, and efficient algorithms will likely depend on what kinds of functions the sub-
 573 space V contains.

574 When V contains univariate polynomials, all the tasks in the algorithm can be
 575 reduced to the problem of computing roots of polynomials, and hence are feasible
 576 in principle. We accomplish this computationally by computing the spectrum of a
 577 confederate matrix, although more sophisticated and practically effective methods
 578 are known. We describe this formulation and details of the approach in Appendix A.

579 **4.5. Nonidentity matrices \mathbf{A} .** The optimization problem we seek to solve is
 580 (2.8); the algorithms in this section have proceeded under the assumption that $\mathbf{A} = \mathbf{I}$.
 581 When this is not the case, we must first solve (3.3), so that the full solution is (3.2).
 582 Thus, we focus on the problem

$$583 \quad (4.9) \quad \underset{\mathbf{z} \in \Sigma \mathbf{V}^* \mathbf{C}}{\text{argmin}} \|\mathbf{z} - \mathbf{U}^* \mathbf{b}\|_2.$$

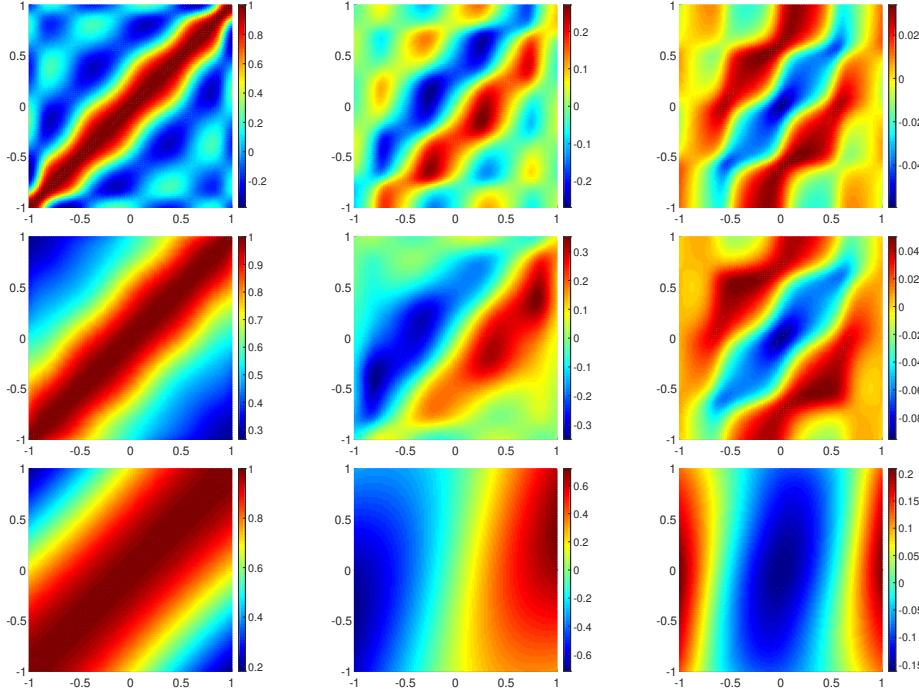


Fig. 4: Correction functions for degree-5 polynomial approximation. Plots of $\ell_k(y)(x)$ are shown as functions of (x, y) for various constraints enforcing positivity of the k th derivative (rows) and ambient Hilbert spaces (columns). Top: $k = 0$ positivity; middle: $k = 1$ monotonicity; bottom: $k = 2$ convexity. Left: $L^2([-1, 1])$; middle; $H^1([-1, 1])$; bottom: $H^2([-1, 1])$.

585 Note that the only difference between this optimization and the simplified version
 586 (4.1) is that the feasible set is $\Sigma V^* C$ instead of C so that we need only address the
 587 presence of the linear map ΣV^* . Since C is closed and convex, then $\Sigma V^* C$ is also
 588 closed and convex, and in particular is defined as the intersection of closed, conic,
 589 convex sets \tilde{C}_k :

$$590 \quad \Sigma V^* C =: \tilde{C} = \bigcap_{k=1}^K \tilde{C}_k \coloneqq \bigcap_{k=1}^K \Sigma V^* C_k.$$

592 Thus, all our previous algorithms apply, except that we need to only transform
 593 (L_k, r_k, ω_k) for C_k into the appropriate quantities for \tilde{C}_k . These transformations
 594 are straightforward but technical, so we omit showing them explicitly.

595 **5. Numerical results.** In all that follows, f is a given function in a Hilbert space
 596 H . Given a finite-dimensional space $V \subset H$, the function v is the H -best projection
 597 onto V , which does not in general satisfy any structural constraints. (Note from
 598 discussion in Section 4.5 that extensions to, e.g., collocation-based approximations,
 599 are straightforward.) The function \tilde{v} is the output of the constrained optimization
 600 procedure.

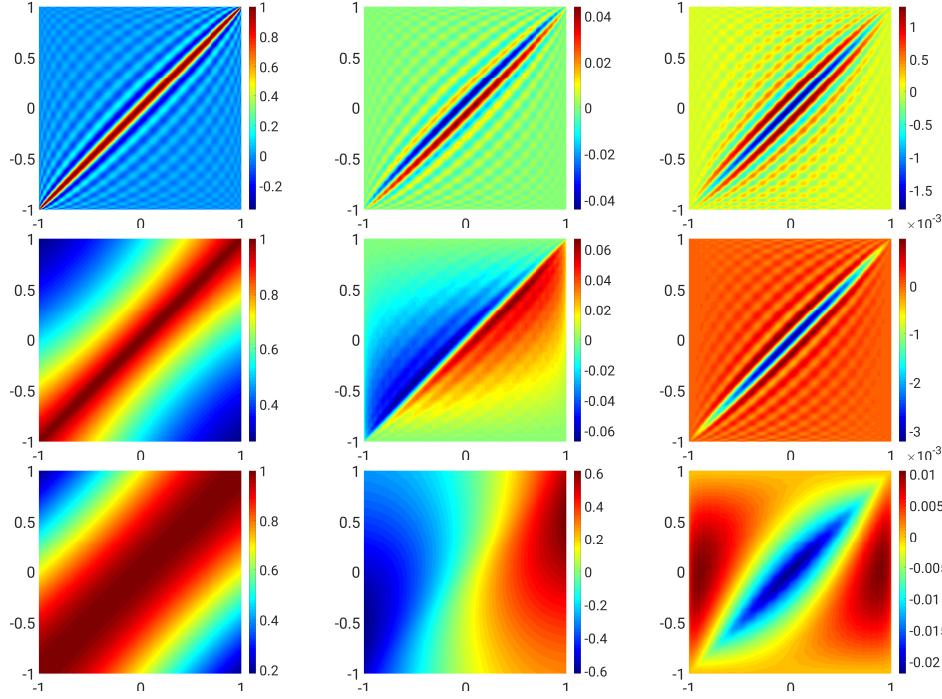


Fig. 5: Correction functions for degree-30 polynomial approximation. Plots of $\ell_k(y)(x)$ are shown as functions of (x, y) for various constraints enforcing positivity of the k th derivative (rows) and ambient Hilbert spaces (columns). Top: $k = 0$ positivity; middle: $k = 1$ monotonicity; bottom: $k = 2$ convexity. Left: $L^2([-1, 1])$; middle; $H^1([-1, 1])$; right: $H^2([-1, 1])$.

601 With the univariate Sobolev spaces,

602
$$H^q([-1, 1]) := \{f : [-1, 1] \rightarrow \mathbb{R} \mid \|f\|_{H^q} < \infty\}, \quad \|f\|_{H^q}^2 := \sum_{j=0}^q \int_{-1}^1 [f^{(j)}(x)]^2 dx,$$

603

604 our examples will consider the ambient Hilbert space H as $H^0 (= L^2)$, H^1 , or H^2 .
605 The subspace V in all our experiments is the space of polynomials up to degree $N-1$:

606
$$V = \{p : [-1, 1] \rightarrow \mathbb{R} \mid \deg p \leq N\}.$$

608 Our test functions f_j are defined iteratively for $j \geq 1$ as,

609
$$f_{j+1}(x) = c_{j+1} \int_{-1}^x f_j(t) dt, \quad f_0(x) = \begin{cases} 0, & x \leq 0, \\ 1, & x > 0 \end{cases},$$

610

611 where c_{j+1} are normalization constants chosen so that $f_{j+1}(1) = 1$. Thus, f_j has
612 j weak L^2 derivatives. Finally, most of our results will consider intersections of the
613 following four types of constraint sets in V :

614 • (Positivity) $F_0 := \{f \in H \mid f(x) \geq 0 \forall x \in [-1, 1]\}$
615 • (Boundedness) $G_0 := \{f \in H \mid f(x) \leq 1 \forall x \in [-1, 1]\}$

616 • (Monotonicity) $F_1 := \{f \in H \mid f'(x) \geq 0 \forall x \in [-1, 1]\}$
 617 • (Convexity) $F_2 := \{f \in H \mid f''(x) \geq 0 \forall x \in [-1, 1]\}$

618 Our final example considers a slightly more exotic set of constraints, which we discuss
 619 later.

620 In order to understand how much our algorithms “change” the input v when
 621 producing constrained approximation \tilde{v} , we measure the following quantity:

622 (5.1)
$$\eta := \frac{\|v - \tilde{v}\|_H}{\|f - v\|_H}.$$

623 Since $f - v$ is H -orthogonal to V , then

624
$$\|f - \tilde{v}\|_H^2 = (1 + \eta^2)\|f - v\|_H^2.$$

626 Thus, $\sqrt{1 + \eta^2}$ measures the error in the constrained approximation relative to the
 627 (best) unconstrained approximation. Values on the order of 1 imply that this optimi-
 628 zation problem commits an additional error that is approximately the same as the
 629 error committed by the best (unconstrained) approximation.

630 Algorithm 4.1 is the greedy algorithm, but it is the template for the averaging
 631 and hybrid algorithms as well. For example, a hybrid algorithm needs to replace only
 632 line 8 in that algorithm by the update (4.8). However, we have left some details of the
 633 termination criterion in line 5 unexplained. For example, we do not actually enforce
 634 $\text{sdist}(\mathbf{c}, H_{k^*}(y^*)) \leq 0$ as stated due to finite precision. Instead, we enforce

635 (5.2)
$$\text{sdist}(\mathbf{c}, H_{k^*}(y^*)) \leq \delta, \quad \delta > 0,$$

637 where we set $\delta = 10^{-10}$ and have implemented the procedure in double precision. In
 638 addition, the number of iterations I required before termination will also be reported.

639 **5.1. Algorithm comparison.** A short summary of all the experiments investi-
 640 gating the hybrid approaches and their comparison with the greedy and the averaging
 641 methods is given in the Table 1.

$N = 6$				$N = 31$				
ϵ	I		η		I		η	
	10^{-3}	10^{-5}	10^{-3}	10^{-5}	10^{-3}	10^{-5}	10^{-3}	10^{-5}
Greedy	20	20	1.147	1.147	23	23	0.986	0.986
Averaging	36	36	1.148	1.148	383	383	0.985	0.985
Hybrid	4	16	1.1464	1.148	2	3	1.142	1.054

Table 1: Performance summary of three proposed algorithms on the test function $f = f_2$ for different values of ϵ , where ϵ is as described in Section 4.3. The constraint set is $E = F_0$.

642 **5.2. Function approximation examples.** We present two examples of function
 643 approximation to preserve structure in this section. The first example takes
 644 $H = H^0$ and the test function $f = f_0$, which is a step (discontinuous) function. We
 645 present results for different N (the dimension of V) and different constraints. Figure
 646 6 illustrates the results of the greedy algorithm. We compare medium-degree polynomial
 647 approximation $N = 6$ with high-degree polynomial approximation $N = 31$. The
 648 three kinds of constraints are (a) positivity, (b) positivity and boundedness, and (c)
 649 positivity, boundedness, and monotonicity. We observe that both the positivity and
 650 monotonicity constraints accomplish what is desired: the approximation \tilde{v} satisfies
 651 the desired constraints, but still features Gibbs'-type oscillations. However, enforcing
 652 monotonicity as well results in a nonoscillatory approximation. All computed values of
 653 $\eta < 1$ show that the constrained approximation commits an error that is comparable
 654 to that of the H -best approximation.

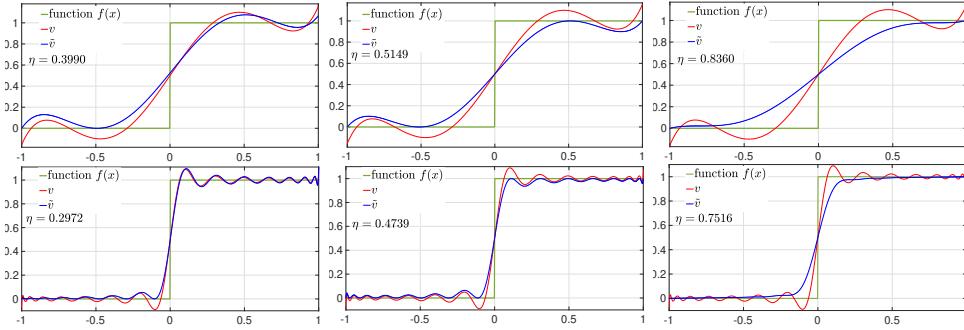


Fig. 6: Greedy algorithm results: Test function f_0 for different constraint sets E and polynomial spaces V . Top: $N = \dim V = 6$, bottom: $N = \dim V = 31$. Left: Constraint $E = F_0$. Center: Constraint $E = F_0 \cap G_0$. Right: Constraint $E = F_0 \cap G_0 \cap F_1$.

655 Our second experiment uses the test function $f = f_2$, which has a piecewise-
 656 constant second derivative. We use a fixed constraint: positivity, monotonicity, and
 657 convexity. Using again $N = 6$ and $N = 31$, we investigate the approximation for
 658 different ambient spaces $H = H^0$, H^1 , and H^2 . Results are displayed in Figure 7.
 659 We observe much larger values of η in this experiment, but note that the values of η
 660 decrease as the order of the Sobolev space increases. We also observe that the visual
 661 discrepancy between the constrained approximation and the underlying function is
 662 also considerably larger in this experiment. However, the approximation quality still
 663 appears good for the larger value of $N = 31$.

664 **5.3. Constrained approximation as a nonlinear filter.** The right-hand panels
 665 in Figure 6 show that the monotonicity constraint removes oscillations in the
 666 approximation. These empirical results suggest that the constrained optimization
 667 procedure is a type of spectral filter. There is a stronger theoretical motivation for
 668 this observation as well.

669 **PROPOSITION 5.1.** *Let $E \subset V$ be a nonempty, closed, convex set in H . Given
 670 some $v \in V$, let \tilde{v} be the solution to (2.6) (i.e., also the solution to (2.8)). If $0 \in E$,
 671 then, $\|\tilde{v}\| \leq \|v\|$.*

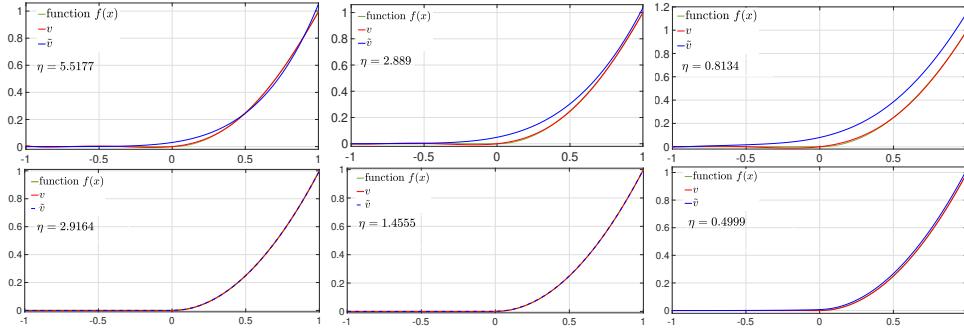


Fig. 7: Test function f_2 for different polynomial spaces V and ambient spaces H . The constraint is $E = F_0 \cap F_1 \cap F_2$. Top: $N = 6$, bottom: $N = 31$. Left: $H = H^0$. Center: $H = H^1$. Right: $H = H^2$.

672 *Proof.* Projections onto closed convex sets in Hilbert spaces are nonexpansive
 673 [11]. I.e., $\|\tilde{v} - P(0)\| \leq \|v - 0\|$, where $P : V \rightarrow E$ is the projection operator from V
 674 to E . Since $0 \in E$, then $P(0) = 0$. \square

675 In general, the assumption that E is closed and convex is automatically satisfied from
 676 our apparatus in Sections 2 and 3. The only nontrivial requirement is that $v = 0$ is a
 677 member of the constraint set E . All the examples in Figures 6 and 7 satisfy $0 \in E$,
 678 and thus we expect that the optimization problem decreases the norm of the function,
 679 just as a standard linear filter would. Note, however, that our “filter” (optimization)
 680 is a nonlinear map.

681 To illustrate this filter interpretation, we compare in Figures 8 and 9 the magni-
 682 tude of the before-optimization and after-optimization expansion coefficients. These
 683 figures correspond to the experiments in Figures 6 and 7, respectively.

684 For the step function example shown in Figure 8, we see that when monotonicity
 685 is enforced, there is a steeper decay of the higher order coefficients in the constrained
 686 approximation. The stronger decay of coefficients is also observed when only positiv-
 687 ity/boundedness is enforced, but the increase in decay is less pronounced. All these
 688 observations are qualitatively consistent with Figure 6. We emphasize that this con-
 689 strained optimization procedure is nonlinear, so that our approximation cannot easily
 690 be written in coefficient space as a standard (linear) spectral filter.

691 **5.4. Convergence rates.** Optimal Hilbert space projections of smooth func-
 692 tions onto polynomial spaces converge at a rate commensurate with the function
 693 smoothness. We investigate in this section whether the corresponding *constrained*
 694 projections have similar convergence rates. In Figure 10 we show convergence of
 695 $H = L^2$ -optimal (unconstrained) polynomial projections versus the output from our
 696 constrained optimization procedure. Our constrained approximations are less accu-
 697 rate, but the convergence *rates* are unchanged.

698 **5.5. More complicated constraints.** Finally, we show that our formalism
 699 allows for more complicated constraints than the ones we have previously shown.
 700 With $H = H^0$ and V a space of degree- $(N - 1)$ polynomials as before, we consider
 701 two new kinds of constraints:

- 702 • $J_1 = \{f \in V \mid f(x) \geq |x| \ \forall x \in [-1, 1]\}$
- 703 • $J_2 = \{f \in V \mid -\text{sign}(x)f(x) \geq |x| \ \forall x \in [-1, 1]\}$

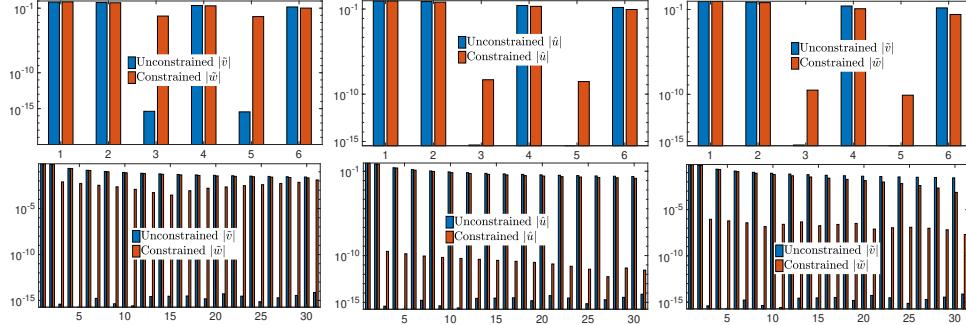


Fig. 8: Companion to Figure 6. Bar plot showing unconstrained projection coefficients magnitude $|\tilde{v}_j|$ vs various constrained projection coefficients magnitude $|\tilde{w}_j|$. Top: $N = 6$. Bottom: $N = 31$. Left: Constraint $E = F_0$. Center: Constraint $E = F_0 \cap G_0$. Right: Constraint $E = F_0 \cap G_0 \cap F_1$.

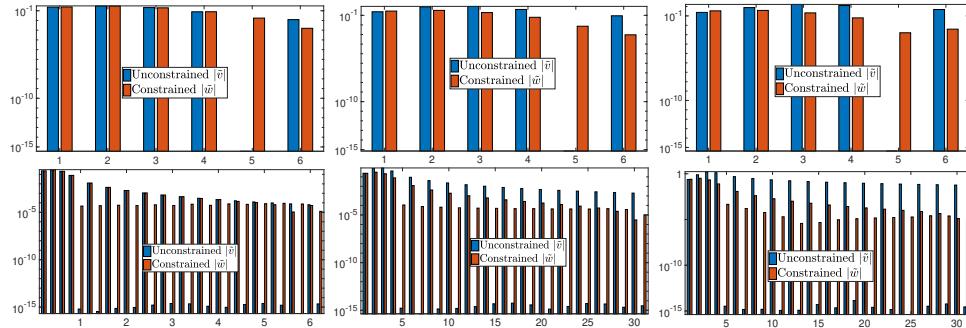


Fig. 9: Companion to Figure 7. Bar plot showing unconstrained projection coefficients magnitude $|\tilde{v}_j|$ vs various constrained projection coefficients magnitude $|\tilde{w}_j|$. Top: $N = 6$, bottom: $N = 31$. Left: $H = H^0$. Center: $H = H^1$. Right: $H = H^2$.

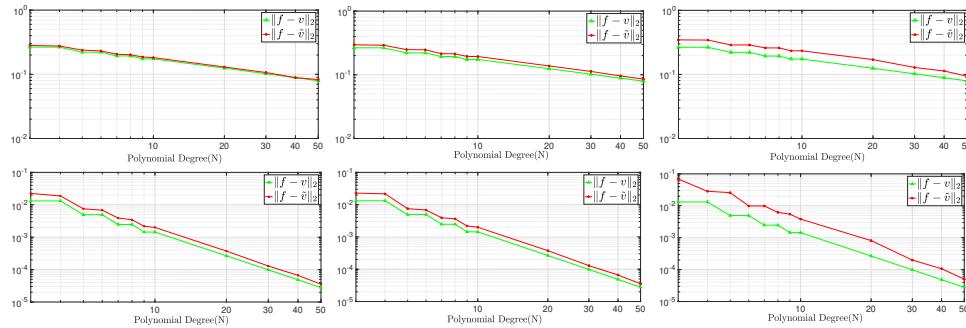


Fig. 10: $H = H^0$ convergence results for projection of test function $f = f_0$ (top row) and $f = f_2$ (bottom row). V is a space of polynomials of degree N . Left: Constraint $E = F_0$. Center: Constraint $E = F_0 \cap G_0$. Right: Constraint $E = F_0 \cap G_0 \cap F_1$.

704 Constraint set J_1 can be defined as the intersection of two conic constraints: for
 705 $x \in [-1, 0]$, we enforce $f(x) \geq -x$. For $x \in [0, 1]$ we enforce $f(x) \geq x$. Constraint
 706 set J_2 enforces $f(x) \geq -x$ for $x \in [-1, 0]$ as before, but now enforces $f(x) \leq x$ for
 707 $x \in [0, 1]$. Note that J_2 implicitly enforces $f(0) = 0$, but we do not explicitly require
 708 this in our algorithm. Since $x \in V$ when $N \geq 2$, we can handle these constraints with
 709 our setup.

710 We consider the test function $f(x) = |x|$; the optimization successfully terminates
 711 and results are shown in Figure 11.

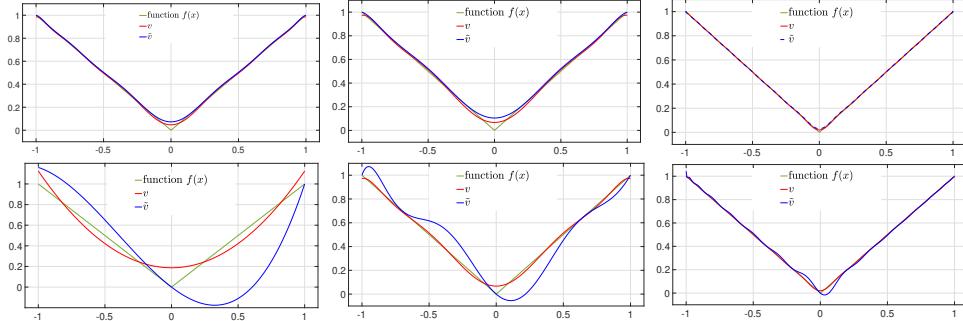


Fig. 11: Algorithm results from unusual constraints for $f(x) = |x|$. Top: Constraint set J_1 . Bottom: constraint set J_2 . Left: $N = 4$. Center: $N = 9$. Right: $N = 31$.

712 **6. Conclusions.** We have proposed a formalism for performing constrained
 713 function approximation. Restricting the class of possible constraints to those that are
 714 convex assures a unique solution to the constrained function approximation problem
 715 in Hilbert spaces. Typical constraints of interest such as positivity or monotonicity
 716 are specializations of our setup. We propose three iterative algorithms to compute
 717 solutions to the problem. Each algorithm requires minimization or level set detection
 718 on a weighted version of the current approximant, and thus can be expensive. In one
 719 dimension with polynomial approximation, our algorithms require only the ability
 720 to accurately compute roots of polynomials. We have demonstrated the flexibility,
 721 feasibility, and utility of our constrained approximation setup with many examples,
 722 including empirical investigation of convergence rates.

723 For higher dimensions, we require the ability to find the minimum of a non-
 724 polynomial multivariate function, and so our optimization problem becomes much
 725 more complex and expensive. Our difficulties in computing global minima corre-
 726 spond precisely to the known difficulty of globally solving the “lower-level” problem
 727 in semi-infinite programming methods, and our algorithms do not provide novel or
 728 constructive approaches to addressing this more general challenge in SIP algorithms.
 729 Therefore, identifying approaches to make our algorithm usable for multivariate ap-
 730 proximation problems is the subject of ongoing research.

731 **Acknowledgments.** Vidhi Zala and Robert M. Kirby acknowledge support from
 732 the National Science Foundation under DMS-1521748 and the Army Research Office
 733 under ARO W911NF-15-1-0222 (Program Manager Dr. Mike Coyle. Akil Narayan
 734 was partially supported by NSF DMS-1848508.).

735 Appendix A. Algorithms for univariate polynomial subspaces.

736 We present procedures for solving the greedy and averaging optimization proce-

737 dures in sections 4.1 and 4.2 under the assumption that V is a complete, univariate
 738 polynomial space. More formally, we make three specializing assumptions.

739 The first assumption is that H an L^2 -type space. A typical setup in one dimension
 740 is that Ω is a interval in (and possibly equal to) \mathbb{R} , and a weighted L^2 space is defined
 741 by a probability density function ρ :

$$742 \quad \langle u, v \rangle_{L^2_\rho} := \int_{\Omega} u(x)v(x)\rho(x)dx \\ 743$$

744 The second specializing assumption in this section is that V is a complete polynomial
 745 space. For a finite $N \in \mathbb{N}$, the space V contains polynomials up to degree $N-1$. Then,
 746 $\{v_j\}_{j=1}^N$ can be chosen as the first N orthonormal polynomials under the weight ρ on
 747 Ω . It is classical knowledge that such a family of polynomials satisfies the three-term
 748 recurrence:

$$749 \quad xv_n(x) = b_{n+1}v_{n+1}(x) + a_{n+1}v_n(x) + b_nv_{n-1}(x), \quad n \geq 1, \\ 750$$

751 with the starting conditions $v_0 \equiv 1$ and $v_{-1} \equiv 0$, where $a_n = a_n(\rho)$ and $b_n = b_n(\rho)$
 752 are the recurrence coefficients [24].

753 The third specializing assumption is that we are in the setup of Example 2.1
 754 where the constraints enforce positivity $v(x) \geq 0$ for every $x \in \Omega$. We will see that
 755 this assumption can be relaxed substantially; indeed we make this assumption here
 756 to only clarify some computations.

757 An important technique that we will need to exploit for this special setup is the
 758 ability to compute roots of polynomials from their expansion coefficients, i.e., if $v \in V$
 759 has expansion coefficients $\{\widehat{v}_j\}_{j=1}^N$, then the $N-1$ (complex-valued) roots of v coincide
 760 with the spectrum of the $(N-1) \times (N-1)$ *confederate* matrix $\mathbf{T} = \mathbf{T}(v)$:

$$761 \quad (A.1) \quad \mathbf{T}(v) = \mathbf{J} - \frac{b_{N-1}}{\widehat{v}_N} \mathbf{e}_{N-1} \tilde{\mathbf{v}}^T, \quad \mathbf{J} = \begin{pmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & \\ & b_2 & a_3 & b_3 & \\ & & \ddots & \ddots & \\ & & & b_{N-2} & a_{N-1} \end{pmatrix} \\ 762$$

763 where $\mathbf{e}_{N-1} \in \mathbb{R}^{N-1}$ is the cardinal unit vector in the $(N-1)$ st direction and
 764 $\tilde{\mathbf{v}}^T = (\widehat{v}_1, \dots, \widehat{v}_{N-1})$. The matrix \mathbf{J} is the Jacobi matrix and is independent of v .
 765 We use direct eigenvalue solvers to compute the spectrum of $\mathbf{T}(v) = v^{-1}(0)$. Note
 766 that there are backwards stable versions of the task of computing roots from the
 767 spectrum of related matrices [20]. An analogous approach that operates on ex-
 768 pansion coefficients in a monomial basis uses the spectrum of the *companion* matrix.
 769 Note that our strategy is rather rudimentary compared to more sophisticated meth-
 770 ods for computing roots of polynomials [6], e.g., one can compute polynomial roots
 771 on subintervals and perform refinement. However, this consideration is not the main
 772 innovation of our algorithm, and so we use the procedure above mainly for simplicity.
 773 We do perform a numerical stability check where we switch between companion and
 774 confederate matrices depending on which has smaller condition number. In all the
 775 examples we attempted for this manuscript, this check was sufficient to robustly and
 776 accurately compute roots of polynomials.

777 **A.1. Greedy projections.** With the setup of Example 2.1, the problem (4.5)
 778 requires us to compute

$$779 \quad y^* = \operatorname{argmin}_{y \in \Omega} \operatorname{sdist}(\widehat{\mathbf{v}}, H_1(y)) \stackrel{(4.4)}{=} \operatorname{argmin}_{y \in \Omega} v(y)\lambda(y).$$

781 To minimize the last expression, we can compute the critical points, which are the
 782 roots of the derivative. Using (2.5), we have

$$783 \quad \frac{d}{dy}[v(y)\lambda(y)] = \lambda^3(y) \left[v'(y) \sum_{j=1}^N v_j^2(y) - v(y) \sum_{j=1}^N v_j(y)v'_j(y) \right].$$

785 Note that λ^3 cannot vanish, so the critical points coincide with the roots of the
 786 bracketed expression above, which is a degree- $(3N - 4)$ polynomial. Thus,

$$787 \quad \frac{\frac{d}{dy}[v(y)\lambda(y)]}{\lambda^3(y)} = \sum_{j=1}^{3N-3} \widehat{g}_j v_j(y) =: g(y),$$

789 for some coefficients \widehat{g}_j . The computation $\{\widehat{v}_j\} \mapsto \{\widehat{g}_j\}$ can be accomplished using
 790 *only* the recurrence coefficients in $\mathcal{O}(N^2)$ time without resorting to, e.g., quadrature.

791 In summary, the global minimum in (4.5) can be computed by first computing
 792 the \widehat{g}_j expansion coefficients defined above, and then by computing the spectrum of
 793 the $(3N - 4) \times (3N - 4)$ matrix $\mathbf{T}(g)$. To compute the global minimizer, we then need
 794 only evaluate the discrete minimum of $v(y)\lambda(y)$ over the eigenvalues located in Ω .

795 **A.2. Averaged projections.** The main task for the averaged projections pro-
 796 cedure is to compute the integral in (4.8). In our specialized setup, this task reduces
 797 to computing

$$798 \quad \frac{1}{|\omega_1^-|} \int_{\omega_1^-} \widehat{\ell}_1(y)v(y)\lambda(y)dy,$$

800 which is an N -component vector, where component j of this vector has the entry

$$801 \quad (A.2) \quad \frac{1}{|\omega_1^-|} \int_{\omega_1^-} v_j(y)v(y)\lambda(y)dy.$$

803 The first step is to identify the set ω_1^- defined in (4.7), which in this special case is
 804 equivalent to

$$805 \quad \omega_1^- = \{y \in [-1, 1] \mid v(y) < 0\}.$$

807 Therefore, this set can be identified by examining the roots of v , which are the eigen-
 808 values of $\mathbf{T}(v)$. Thus, we partition $[-1, 1]$ into subintervals on which v is single-signed,
 809 after which determining the sign of v on an interval can be accomplished by evaluating
 810 v in this interval.

811 After ω_1^- is identified as a disjoint collection of subintervals of $[-1, 1]$, we compute
 812 the components of the update (A.2) by employing an M -point Gaussian quadrature
 813 rule; since the integrand $v_j v \lambda$ is a smooth function on $[-1, 1]$, this can be completed
 814 efficiently. We employ $M = N + 1$ quadrature points for this same computation.

816 [1] H. ANTON AND C. RORRES, *Elementary Linear Algebra, Binder Ready Version: Applications*
 817 *Version*, John Wiley & Sons, 2013.

818 [2] H. BAUSCHKE AND J. BORWEIN, *On Projection Algorithms for Solving Convex Feasibility*
 819 *Problems*, SIAM Review, 38 (1996), pp. 367–426, <https://doi.org/10.1137/S0036144593251710> (accessed 2018-02-15).

820 [3] R. BEATSON, *Restricted Range Approximation by Splines and Variational Inequalities*, SIAM
 821 *Journal on Numerical Analysis*, 19 (1982), pp. 372–380, <https://doi.org/10.1137/0719023>.

822 [4] R. K. BEATSON, *The degree of monotone approximation.*, Pacific Journal of Mathematics, 74
 823 (1978), pp. 5–14, <https://projecteuclid.org/euclid.pjm/1102810431> (accessed 2018-10-30).

824 [5] M. BERZINS, *Adaptive Polynomial Interpolation on Evenly Spaced Meshes*, SIAM Review, 49
 825 (2007), pp. 604–627, <https://doi.org/10.1137/050625667>.

826 [6] J. P. BOYD, *Computing Zeros on a Real Interval through Chebyshev Expansion and Polynomial*
 827 *Rootfinding*, SIAM Journal on Numerical Analysis, 40 (2003), pp. 1666–1682.

828 [7] S. BOYD AND L. VANDENBERGHE, *Convex Optimization, With Corrections 2008*, Cambridge
 829 University Press, Cambridge, UK ; New York, 1 edition ed., Mar. 2004.

830 [8] S. BOYD AND L. VANDENBERGHE, *Introduction to Applied Linear Algebra: Vectors, Matrices,*
 831 *and Least Squares*, Cambridge University Press, Cambridge, UK ; New York, NY, 1
 832 edition ed., Aug. 2018.

833 [9] L. BREGMAN, *The method of successive projection for finding a common point of convex sets*,
 834 Soviet Math Dokl., 6 (1965), pp. 688–692.

835 [10] M. CAMPOS-PINTO, F. CHARLES, AND B. DESPRÉS, *Algorithms For Positive Polynomial Ap-*
 836 *proximation*, SIAM Journal on Numerical Analysis, 57 (2019), pp. 148–172, <https://doi.org/10.1137/17M1131891>, <https://epubs.siam.org/doi/abs/10.1137/17M1131891> (ac-
 837 cessed 2019-11-06).

838 [11] W. CHENEY AND A. A. GOLDSTEIN, *Proximity Maps for Convex Sets*, Proceedings of the
 839 American Mathematical Society, 10 (1959), pp. 448–450, <https://doi.org/10.2307/2032864>,
 840 <https://www.jstor.org/stable/2032864> (accessed 2019-11-04).

841 [12] F. DEUTSCH AND H. HUNDAL, *The rate of convergence for the cyclic projections algorithm*
 842 *I: Angles between convex sets*, Journal of Approximation Theory, 142 (2006), pp. 36–55,
 843 <https://doi.org/10.1016/j.jat.2006.02.005>.

844 [13] F. R. DEUTSCH, *Best Approximation in Inner Product Spaces*, Springer Science & Business
 845 Media, Dec. 2012.

846 [14] R. A. DEVORE, *Degree of Monotone Approximation*, International Series of Numerical Math-
 847 ematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Interna-
 848 tionale D’Analyse Numérique, Birkhäuser Basel, Basel, 1974, https://doi.org/10.1007/978-3-0348-5991-2_26, https://doi.org/10.1007/978-3-0348-5991-2_26 (accessed 2019-10-
 849 17).

850 [15] *Semi-Infinite Programming: Recent Advances*, Nonconvex Optimization and Its Applications,
 851 Springer US, 2001, <https://doi.org/10.1007/978-1-4757-3403-4>.

852 [16] L. G. GUBIN, B. T. POLYAK, AND E. V. RAIK, *The method of projections for finding the common*
 853 *point of convex sets*, USSR Computational Mathematics and Mathematical Physics, 7
 854 (1967), pp. 1–24, [https://doi.org/10.1016/0041-5553\(67\)90113-9](https://doi.org/10.1016/0041-5553(67)90113-9).

855 [17] R. HETTICH AND K. O. KORTANEK, *Semi-Infinite Programming: Theory, Methods, and*
 856 *Applications*, SIAM Review, 35 (1993), pp. 380–429, <https://doi.org/10.1137/1035089>,
 857 <https://epubs.siam.org/doi/abs/10.1137/1035089> (accessed 2020-07-01). Publisher: Soci-
 858 ety for Industrial and Applied Mathematics.

859 [18] A. S. LEWIS, D. R. LUKE, AND J. MALICK, *Local Linear Convergence for Alternating*
 860 *and Averaged Nonconvex Projections*, Foundations of Computational Mathematics, 9
 861 (2009), pp. 485–513, <https://doi.org/10.1007/s10208-008-9036-y>, <https://doi.org/10.1007/s10208-008-9036-y> (accessed 2019-09-28).

862 [19] J. LEWIS, *Approximation with Convex Constraints*, SIAM Review, 15 (1973), pp. 193–217,
 863 <https://doi.org/10.1137/1015006>, <https://epubs.siam.org/doi/abs/10.1137/1015006>.

864 [20] Y. NAKATSUKASA AND V. NOFERINI, *On the stability of computing polynomial roots via con-*
 865 *federate linearizations*, Mathematics of Computation, 85 (2016), pp. 2391–2425, <https://doi.org/10.1090/mcom3049>, <https://www.ams.org/home/page/> (accessed 2018-08-28).

866 [21] R. NOCHETTO AND L. WAHLBIN, *Positivity preserving finite element approxi-*
 867 *mation*, Mathematics of Computation, 71 (2002), pp. 1405–1419, <https://doi.org/10.1090/S0025-5718-01-01369-2>, <https://www.ams.org/mcom/2002-71-240/S0025-5718-01-01369-2/> (accessed 2019-11-06).

868 [22] J. RICE, *Approximation with Convex Constraints*, Journal of the Society for Industrial and Ap-
 869 plied Mathematics, 11 (1963), pp. 15–32, <https://doi.org/10.1137/0111002>, <http://epubs.siam.org/doi/abs/10.1137/0111002>.

878 [23] O. STEIN, *How to solve a semi-infinite optimization problem*, European Journal of Operational
879 Research, 223 (2012), pp. 312–320, <https://doi.org/10.1016/j.ejor.2012.06.009>.
880 [24] G. SZEGÖ”, *Orthogonal Polynomials*, American Mathematical Soc., 4th ed., 1975.
881 [25] J. VON NEUMANN, *Functional Operators (AM-22), Volume 2*, 1951, <https://press.princeton.edu/titles/3136.html> (accessed 2018-11-13).
882 [26] X. ZHANG AND C.-W. SHU, *Maximum-principle-satisfying and positivity-preserving high-
883 order schemes for conservation laws: survey and new developments*, Proceedings of the
884 Royal Society of London A: Mathematical, Physical and Engineering Sciences, (2011),
885 p. rspa20110153, <https://doi.org/10.1098/rspa.2011.0153>.
886