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Abstract
We demonstrate the electrochemical oxidation of an anthracene derivative to a redox-active
anthraquinone at room temperature in a flow cell without the use of hazardous oxidants or noble
metal catalysts. The anthraquinone, generated in situ, was used as the active species in a flow
battery electrolyte without further modification or purification. This potentially scalable, safe,
green, and economical electrosynthetic method is also applied to another anthracene-based
derivative and may be extended to other redox-active aromatics.
Introduction

Aqueous redox flow batteries (ARFBs) represent a class of devices for storing electrical energy
that are especially well suited for large-scale stationary deployment.!:? Vanadium redox flow
batteries, the most developed ARFB technology, have been limited by the high and fluctuating
price of vanadium.?

Anthraquinone-based aqueous redox flow batteries are considered as one class of the most
promising alternatives to vanadium redox flow batteries because they can be composed of earth-
abundant elements such as C, H, O, and N while providing comparable electrochemical

performance.*® However, reducing the production cost of anthraquinone-based electrolytes and
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improving their chemical stability are two major challenges preventing them from being cost-
competitive.”!* Many factors can influence the synthesis cost of an organic molecule, including
the number, duration, complexity, and yields of the reaction steps, the reaction conditions (time,
temperature, and pressure), solvent and precursor costs, the cost of waste disposal, and economies
of scale. Likewise, a host of factors contributes to the stability, and by extension the long-term
viability, of redox-active organics including the chemical structure, solvent conditions, applied
potentials, and state of charge. Only through careful consideration of all of these factors can
commercial-scale organic ARFBs be viable storage solutions. Therefore, not only is the
development of a stable anthraquinone important, but the design of a potentially economical,
scalable, and green synthetic route toward targeted molecules is equally significant.!!> 13
Electrochemically-mediated synthesis (electrosynthesis) enables the replacement of hazardous
oxidizing and reducing agents by electric current, or “clean” electrons, through an electrode and
has attracted considerable attention for both laboratory and industrial applications in multiple
fields of research.!6-2! Compared to traditional thermochemical synthesis, electrosynthesis can be
significantly more environmentally benign due to reduced waste production and alternative
chemicals consumed.?> 2> However, the necessity of using specific solvents combined with
supporting electrolytes, along with their subsequent separations, are some of the primary hurdles
limiting the feasibility of electrosynthesis compared to thermochemical processes in many cases.'®
As an example, anthraquinone is typically produced from anthracene, an inexpensive and
abundant component of coal tar and petroleum.?* Typically, hazardous oxidants such as
cerium(IV), chromium(VI), and vanadium(V) compounds dissolved in strong acids, sometimes at
elevated temperatures, are used to facilitate this thermochemical conversion.?> To minimize the

use of hazardous materials, often these consumed oxidants are electrochemically regenerated and
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reused for chemical oxidations,>>-3° that is, a mediated or indirect electrochemical oxidation.
However, in both thermochemical conversion and mediated (indirect) electrochemical conversion,
isolating anthraquinone from these hazardous solutions can be time- and capital-intensive. Electro-
oxidations of anthracene and its derivatives at ~1 mM concentration have been performed
previously; however, the low concentrations of anthracene substrates and poor selectivity of the
reactions have prevented the method from being synthetically useful.3!-*¢

Using a scalable flow cell setup,?” we demonstrate the capability to electrochemically oxidize
water-soluble anthracenes directly to anthraquinones in electrolytes without the use of strong
oxidants or catalysts, producing the desired negolyte (negative electrolyte) and ferrocyanide
posolyte (positive electrolyte) in situ. Compared to conventional thermochemical and
electrochemical methods, the new method is safe and potentially inexpensive because it eliminates
both the use of hazardous oxidants and the necessity of post-synthesis isolation of the products
from the supporting electrolytes. Taking advantage of a flow cell and bulk electrolysis setup, the
demonstrated electrosynthetic method is amenable to both continuous and batch processing.
Furthermore, we confirmed that the electrosynthetic method can also be extended to other
anthracene derivatives.

3,3'-(9,10-anthraquinone-diyl)bis(3-methylbutanoic acid) (DPivOHAQ) was recently reported
as an extremely stable and potentially inexpensive negolyte active species for organic ARFBs.®
However, the use of CrOs in the synthesis can be highly toxic and explosive if produced in large
scale. Figure la shows the synthetic route for DPivOHAQ in three steps: 1) Through Birch
reduction, anthracene (AC) is converted to 9,10-dihydroanthracene (DHAC) at room temperature

(Figure S1). 2) After a Friedel-Crafts reaction and subsequent oxidation by air in one pot, two

water-soluble groups are introduced and DHAC is re-oxidized to an AC derivative (Figure S2),
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forming 3,3'-(anthracene-diyl)bis(3-methylbutanoic acid) (DPivOHAC). The DPivOHAC
powder was then dissolved in water by adding KOH to deprotonate the carboxylic acid groups. 3)
Lastly, DPivOHAQ negolyte active species is produced by electrochemical oxidation in an
aqueous electrolyte without the need for further purification. Figure 1b illustrates how
DPivOHAQ and ferrocyanide active species can be produced in situ in the flow cell’s
electrosynthesis mode. These materials can directly serve as the active species in the negolyte and

the posolyte, respectively, of a flow battery in the same cell as illustrated in Figure Ic.

a Na, Et,0, tbutanol O Y\COOH COOH
rt, N, 3-4h 1. AlCg, DCM, 8, Ny 48 1 HOOC ~
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anthracene (AC) dihydroanthracene (DHAC) DPivOHAC (2,6-, 2,7- isomers)
KOH H,0
}CQ?@K .
upporting elec(ro\yte KOH in water ooc
Electrodes: carbun/carbon
DPivOHAQ(COO") DPiVOHAC(COO")
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Fe. L 4-
’ 0 SN Fe(CN)s*/ ; 0 e \\CN Fe(CN)g*/
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Figure 1. Preparation of DPivOHAQ and the corresponding flow battery. (a) The
DPivOHAQ synthetic route and conditions starting from anthracene. (b) The setup for
electrosynthesis of DPivOHAQ and ferrocyanide. (c) The flow battery setup with DPivOHAQ
negolyte (generated in situ) and ferrocyanide posolyte (generated in situ). DPivOHAC: 3,3'-
(anthracene-diyl)bis(3-methylbutanoic acid); DPivOHAC(COQ") is deprotonated DPivOHAC.
DPivOHAQ: 3,3'-(9,10-anthraquinone-diyl)bis(3-methylbutanoic acid); DPivOHAQ(COQ") is
deprotonated DPivOHAQ.

Figure 2a lists three different oxidation methods for DPivOHAQ synthesis. Conventionally,
anthracene derivatives can be chemically oxidized to their anthraquinone forms by oxidants such

as chromium oxide (CrO3) in strong acidic media at elevated temperature.*® To minimize the use
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of hazardous oxidants, the strategy of mediated electrochemical oxidation can be performed by
regenerating oxidants such as cerium(IV) compounds.?® 2° However, in both of these
thermochemical and indirect electrochemical oxidation processes, tedious and expensive isolation
of anthraquinone-based products from oxidants and acids is required. Taking advantage of the high
solubility of DPivOHAC in base, we demonstrate a synthetic route via direct electrochemical
oxidation in alkaline electrolyte with a flow cell. This method allows the complete elimination of

hazardous oxidants and costly separation processes.

a H
COOH _HOAc
i N 2 CrOg + 6 HOAC —0AC } Ac)s+ 4 H
The(r)Ti%(;r;igwlcal HOOCj" OO + 3 + 90°C, 11 HOOC +2 Cr(OAc)3 + 4 H,O
H

Supporting electrolyte: ~2 M CH3SO3H; anode: platlnum sheet; cathode: 316 stainless steel

Mediated (indirect) \>L COOH H,0 } COOH :
electrochem|cal HOOC +6 Ce( CHSSOS)Z(OH)2 +6 CH3SOzH <G T HOOC +6 Ce(CH3S03)3 + 10 H0

oxidation

Direct Ccoo Supporting electrolyte: 1-8 M KOH; anode/cathode: carbon Co0
irec _ X ) 7 j_ N _
electrochemical 00C—~ C OO jasCl 7 0oc— U__ +4H0+6e
H (o}

oxidation

b * Nowaste » High atom efficiency
Advantages of direct electrochemical oxidation: + No purification * Room temperature reaction
» No toxic oxidants » Safe, green, and economical chemistry

Figure 2. Comparison of DPivOHAQ synthetic methods. (a) Thermochemical, mediated
(indirect) electrochemical, and direct electrochemical oxidation reactions to synthesize
DPivOHAQ. (b) Advantages of direct electrochemical oxidation in sifu.

Experimental

Cell hardware

Glassy carbon was used as the working electrode for all three-electrode cyclic voltammetry (CV)
tests with a 5 mm diameter glassy carbon working electrode, an Ag/AgCl reference electrode
(BASI, pre-soaked in 3 M NaCl solution), and a graphite counter electrode. Both undivided cell
and divided cell were built for electrosynthesis. Flow battery experiments were constructed with

cell hardware from Fuel Cell Tech (Albuquerque, NM) assembled into a zero-gap flow cell

configuration. Pyrosealed POCO graphite flow plates with serpentine flow patterns were used for
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both electrodes. Each electrode comprised a 5 cm? geometric surface area covered by AvCarb
HCBA woven carbon fiber without pretreatment, or Pt-coated Toray carbon paper without
pretreatment. The membrane is pre-soaked (1 M KOH for 24 hours) Nafion 212.

Undivided electrolytic cell setup (electrochemical oxidation vs. the HER)

Working electrode: carbon felt, where DPivOHAC(COO") was oxidized to DPivOHAQ(COQO");
counter electrode: carbon rod, where water was reduced to hydrogen gas. While the electrolyte
was stirred, a constant potential (1.1 V vs. Ag/AgCl) was applied to the divided electrolytic cell
until 120% of the required coulombs were extracted from the working electrode.

Divided electrolytic cell setup (electrochemical oxidation vs. the ORR)

Anode: Commercial AvCarb HCBA (woven carbon cloth), where DPivOHAC(COO™) was
oxidized to DPivOHAQ(COQO); cathode: platinum coated Toray carbon paper, where humidified
air/oxygen was reduced to hydroxide. A constant voltage (1.8 V) was applied to the divided
electrolytic cell until the current decreased to 2 mA/cm?. The number of extracted electrons was
~1.2 times higher than the theoretical value.

Divided electrolytic cell setup (electrochemical oxidation vs. the reduction of ferricyanide)
Anode: AvCarb HCBA (woven carbon cloth), where DPivOHAC(COO™) was oxidized to
DPivOHAQ(COQO"); cathode: AvCarb HCBA (woven carbon cloth), where potassium
ferricyanide was reduced to potassium ferrocyanide. A constant current density (20 mA/cm?) was
applied to the divided cell for at most 1.5 hours with a 1.2 V voltage cutoff; when either time or
voltage reached the limit, the potential was held (1.2 V vs. ferro-/ferricyanide) until the current
decreased to 2 mA/cm?. The number of extracted electrons was ~1.2 times higher than the

theoretical value.
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An aliquot (~250 pL) was transferred from the as-prepared anolyte to an Eppendorf® tube
(capacity: 1.5 mL) and acidified by a drop of concentrated HCI to obtain DPivOHAQ precipitate.
The final DPivOHAQ precipitate was re-dissolved in DMSO-ds for 'H NMR measurement. The
yield was determined by peak integrations of spectrum. Faradaic efficiency (%) = yield (%) / 1.2.
More detailed information can be found in the Supplementary information.
Results and Discussion

In an electrolytic cell, an anodic oxidation half reaction must be accompanied by a cathodic
reduction half reaction. As shown in Table 1, we devise three different reduction half reactions to
be coupled with direct DPivOHAC electrochemical oxidation, i.e., the hydrogen evolution
reaction (HER), the oxygen reduction reaction (ORR), and the Fe(CN)s*~ to Fe(CN)s* reduction
reaction. The corresponding oxidation or reduction potentials for these reactions are listed in Table

1.

For the electrochemical oxidation of DPivOHAC to DPivOHAQ, two cell types are used, as
diagramed and described in Figures S3 and S4. A divided cell uses an ion exchange membrane to
separate the two half reactions, resembling the architecture of traditional fuel cells and ARFBs.
An undivided cell employs two electrodes suspended in electrolyte without the use of a membrane,
reflecting a bulk electrolysis cell.

Comparing these three overall reactions, the first one paired with the HER requires the highest
voltage; the second one paired with the ORR is known to have slow reaction kinetics and a high
overpotential;*® the third one paired with Fe(CN)¢*~ to Fe(CN)s*~ reduction exhibits the lowest
overall reaction cell voltage, suggesting the least amount of energy will be required for
electrosynthesis. Another merit of the third reaction is the in situ generation of the desired negolyte

active species (DPivOHAQ) and posolyte active species Fe(CN)¢* simultaneously. The
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disadvantage is that at least six equivalents of ferricyanide and hydroxide are used. Given the
similar reduction potentials of the ORR and of ferricyanide to ferrocyanide, an important direction
for future research is the concurrent reduction of oxygen and ferricyanide in order to achieve high
yields as well as lower ferricyanide usage. By using the same full cell configuration without
changing electrolyte reservoirs, carbon-based electrodes, or ion-exchange membranes, we can
immediately switch from electrosynthesis mode to flow battery mode for electrochemical energy
storage. In this configuration, neither hazardous oxidants nor purification steps are needed, nor is
waste generated. Furthermore, the reaction may proceed at room temperature with high atom

efficiency. The new synthesis is therefore potentially safe, green, economical, and scalable.

Table 1. Anodic, cathodic, and overall reactions for direct electrochemical oxidation.

Reactions Potential at pH 14 (V vs SHE) /
Cell voltage (V)
Anodic DPivOHAC(COO") + 6 OH™ —~DPivOHAQ(COO") + 4 H,0 + 6 &~ 1.14*
6H0+6 e ——3H,+6OH™ (divided or undivided cell) -0.83
Cathodic 1.5 0, +6 €™ +3 H,0— 6 OH- (divided or undivided cell) 0.40
6 Fe(CN)¢® +6 & —— 6 Fe(CN)g* (divided cell) 0.44
DPivOHAC(COO") + 2 H,O — DPivOHAQ(COO0") + 3 H, 1.97
Overall DPivOHAC(COO") + 1.5 O, — DPivOHAQ(COO") + H,0 0.74
DPivOHAC(COO") + 6 OH™ + 6 Fe(CN)>~ —— DPivOHAQ(COO") + 6 Fe(CN)g* + 4 H,0 0.70

*: The electro-oxidation potential at peak current

The cyclic voltammogram (CV) of DPivOHAC at pH 14 (Figure 3a) indicates a peak oxidation
current at 1.14 V vs. SHE. This value is more positive than the standard redox potential of 0.40 V
vs. SHE for the oxygen evolution reaction (OER), and we expect that the OER will be a major side
reaction of electrosynthesis.

We then assembled a flow cell with DPivOHAC as the anolyte and KsFe(CN)s as the catholyte.
Galvanostatic electrolysis with a potentiostatic hold after reaching a potential limit of 1.2 V was

performed for ~4.5 hours to complete the electrosynthesis. The OER side reaction, evidenced by
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the observation of bubbles generated in the anolyte, precludes a faradaic efficiency of 100%. Thus,
the number of electrons extracted from the anolyte was ~1.2 times higher than the theoretical
number for complete conversion. A plateau appears at ~0.8 V against KsFe(CN)s (0.44 V vs. SHE)

in the voltage profile (Figure 3b).

Reaction time (h)
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Figure 3. Electrosynthesis and characterization of DPivOHAQ. (a) The cyclic voltammogram
(CV) of 0.1 M DPivOHAC in 1.0 M KCI + 1.0 M KOH aqueous solution. Scan rate: 0.1 V/s. (b)
The electrochemical oxidation was conducted by using a constant current (20 mA/cm?) with a
subsequent potential hold (1.2 V) until the current density decreased to 2 mA/cm?. (¢) CV of
10 mM electrosynthesized DPivOHAQ (against Fe(CN)e*") without purification and 10 mM
chemically synthesized DPivOHAQ with purification in 1 M KOH aqueous solutions,
respectively. Scan rate: 0.1 V/s. (d) "H NMR spectra of (bottom to top): chemically synthesized
DPivOHAC (black); chemically synthesized DPivOHAQ (red); electrosynthesized DPivOHAQ
in an undivided cell (purple), 17.3% of DPivOHAC remained unreacted according to the
integration, yield: 82.7%; electro-synthesized DPivOHAQ in a divided cell against Fe(CN)¢*~
(blue), 7.0% of DPivOHAC remained unreacted according to the integration, yield: 93.0%;
electrosynthesized DPivOHAQ in a divided cell against O (green), 0 % of DPivOHAC remained
unreacted according to the integration, yield: 100%. The deuterated solvent is DMSO-ds, and the
solvent peaks (DMSO and H>O) were removed to better display the peaks of interest. The

©
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electrosynthetic details are described under the headings Electrosynthesis I, II, and III in the
Supporting Information.

We compared the CV of DPivOHAQ produced by electrosynthesis against the reduction of
Fe(CN)6>~ to that of the chemically synthesized product at the same concentration to verify that
the reaction products are the same regardless of the synthetic procedure employed (Figure 3c). The
two CV curves show identical redox peaks and similar peak currents, indicating a high-yield
electrosynthesis process. 'H nuclear magnetic resonance (NMR) spectroscopy was used to further
examine the structure of electrosynthesized DPivOHAQ when using either a divided or undivided
cell (Figure S3) and to compare the spectra with those of the starting material, DPivOHAC, and
the chemically synthesized DPivOHAQ. The top three spectra in Figure 3d are the 'H NMR
spectra from electrosynthesized DPivOHAQ, in which the dominating peaks have the same
chemical shifts as those in the spectrum of chemically synthesized DPivOHAQ, further suggesting
the desired product was achieved.

Slightly different yields of DPivOHAQ were obtained when paired with the HER in an
undivided cell or with Fe(CN)¢*~ reduction or the ORR in a divided cell (Figure S4). The 82.7%
yield when paired with the HER in an undivided cell could be explained by a molecular shuttling
effect; i.e., the electrosynthesized DPivOHAQ can first migrate to the cathode where it is reduced,
then diffuse back to the anode for re-oxidation. As a result, double counting of electrons can occur.
When paired with the Fe(CN)¢*~ reduction half reaction, a yield of 93.0% was obtained. The
incomplete yield is likely due to the consumption and therefore decreased concentration of both
DPivOHAC and OH™ as the electrosynthesis continues, making further oxidation increasingly

difficult.

10
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The use of the ORR half reaction achieved almost 100.0% yield. This exceptional yield may be
attributed to the as-formed OH™ ions on the cathode (ORR) side crossing over to the anolyte and
compensating for any loss of OH™ ions on the anode side. Overall yields in excess of 80.0% for all

three conditions exceed many conventional reactions and are acceptable for direct flow battery use

without purification or separation.
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Figure 4. Full cell performance evaluation from Electrosynthesis III and IV. (a) A
representative charge—discharge profile with 0.1 M DPivOHAQ. Negolyte: 5 mL of 0.1 M
DPivOHAQ pH =~13.5. Posolyte: 100 mL of 0.1 M potassium ferro-/ferricyanide solution [~0.06
M K4Fe(CN)s and ~0.04 M KzFe(CN)g] pH = ~13.6. (b) Discharge capacity (C) and coulombic
efficiency (%) vs. cycle number and time (days). Negolyte: 4.5 mL of 0.1 M DPivOHAQ. Posolyte:
100 mL of 0.1 M ferro-/ferricyanide solution [~0.06 M K4Fe(CN)s and ~0.04 M KzFe(CN)g].
Current density: 30 mA/cm? with potential hold (cutoffs: 0.6 V, 1.2 V) until current decreased to
2 mA/cm?. (c) A representative charge—discharge profile with 0.5 M DPivOHAQ. Negolyte: 6
mL of 0.5 M DPivOHAQ. Posolyte: 100 mL of 0.5 M potassium ferro-/ferricyanide solution [~0.3

11



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

M K4Fe(CN)g and ~0.2 M K3Fe(CN)g]. Current density: 100 mA/cm? with potential hold (cutoff:
0.4 V, 1.4 V) until current decreased to 2 mA/cm?. (d) Polarization curves of the 0.5 M
DPivOHAQ at the SOC of 20%, 40%, 60%, 80%, and ~100% respectively. Descriptions of
Electrosynthesis III and IV can be found in the Supporting Information.

To demonstrate the feasibility of switching from the electrosynthesis mode (when paired with
Fe(CN)6*~ reduction) to flow battery mode, we began charge—discharge cycling immediately upon
completion of the electrosynthesis, without performing any purification. Because other research
has reported that quinones and related compounds can decompose in the presence of light,**4? we
wrapped the electrolyte reservoirs with aluminum foil to avoid light-induced decomposition during
cell cycling (Figures S13—S15). Figure 4a shows the charge—discharge profile of a single cycle
with an open circuit voltage of ~1.0 V and a capacity of 84.0 coulombs. Given the 93.0% yield
found from the 'H NMR, the capacity utilization is 93.6%. Long-term cycling was then performed
to determine a temporal capacity fade rate of the full cell. Figure 4b demonstrates the discharge
capacity and coulombic efficiency over 33.2 days and 2271 cycles with a fitted fade rate of
0.014%/day and an average coulombic efficiency of 99.53%. This is consistent with the fade rate
of chemically synthesized DPivOHAQ.* The extremely low capacity fade rate is attributed to the
chemical stability of the molecular structure. The C—C covalent bond between the anthraquinone
core and the functionalizing chains is more robust in strong base and at elevated temperature than
the C—O bond demonstrated in previous work.* 3% Furthermore, the two branched methyl groups
on the carbon connected to the anthraquinone (AQ) core may increase the stability of the
solubilizing chain even when exposed to harsh conditions.!>

To examine the feasibility of this method for potential industry use, we further conducted
electrosynthesis with a higher concentration (0.5 M) of DPivOHAC at a higher current density

(100 mA/cm?) (See Figure S5). Figure 4c shows that 0.5 M electrosynthesized negolyte can deliver

72.9% of the theoretical capacity. We attribute the discrepancy between the delivered capacity and
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the theoretical capacity primarily to incomplete conversion (Figure S6). The capacity utilization is
81.9% if we consider that there is 11.0% unreacted DPivOHAC(COO") in the negolyte.
Additionally, the mass transport of active species at 0.5 M concentration may be another issue
limiting the full capacity utilization. The corresponding polarization curve at different states of
charge (SOC) is shown in Figure 4d. The peak power density exceeds 0.2 W/cm? when at ~100 %
of SOC.

Given the total transfer of six electrons during the electrosynthesis of DPivOHAC to
DPivOHAQ, the high yields achieved in this work might be surprising. We hypothesize a three-
step successive two-electron transfer mechanism?* 3> first, when a potential is applied, anthracene
(AC) may react with three OH™ ions and donate two electrons to produce two water molecules and
the anthrone anion (A7); second, A~ may further react with another three OH™ ions and donate
another two electrons to generate two water molecules and the deprotonated anthrahydroquinone
dianion (AQ?%"); third, AQ?™ may further release two electrons to afford the anthraquinone species
(AQ). Complete electrochemical conversion in the third step has been well-documented at

negative potentials vs. ferro-/ferricyanide!- % 43

and should therefore be rapid at positive potentials
vs. ferro-/ferricyanide. The reverse reaction of the second step has recently been identified as a
side reaction in ARFBs, and the forward reaction is chemically feasible when exposed to O or
air.!* 38 Given the high voltage applied to the cell, it is thus plausible that the forward reactions
(AC to A™ to AQ*/AQ) can electrochemically proceed completely and swiftly.

14.44 where

Our group has also previously proposed a side reaction pathway for anthraquinones,
the anthrone anion (A”) can be oxidatively dimerized to dianthrone (DA) chemically and/or

electrochemically. According to 'H NMR spectra (Figure 3d) and liquid chromatography—mass

spectrometry (LC-MS) results (Figure S7), neither DA nor Kolbe electrolysis-related byproducts*
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were detected (Scheme S1), suggesting that AC/AQ-related side reactions can be negligible when
a sufficient OH™ concentration is present to prevent dianthrone formation and a sufficiently low
voltage cutoff is chosen to prevent Kolbe electrolysis dimer formation. The major competing side
reaction is the OER, which, along with the reactions of AC to A~ to AQ?", will consume OH~and
may lead to the formation of DA as a result of insufficient OH ions in the DPivOHAC solution
(see Electrosynthesis V in the SI). Interestingly, the dianthrones (Scheme S2), detected by
LC-MS (Figure S11), are surprisingly redox-active when a broad voltage window is applied
(Figures S8 and S9 and Scheme S2). On the one hand, the OER can reduce faradaic efficiency; on
the other hand, the generated oxygen can serve as a mediator and chemically oxidize intermediates
(i.e., A=, AQ*) to the final AQ form, i.e., mediated (indirect) electrochemical oxidation. Because
the entire process involves not only electrochemical oxidations, but also chemical oxidations, it is
more appropriate to call it an electrochemical-chemical oxidation process.*®

In the proposed mechanism, the anthrone derivative is an intermediate in the electrochemical
oxidation. Anthrone formation has been identified as the major side reaction causing capacity fade
in previous work;!* 3% therefore, it is plausible that lost capacity of anthraquinone flow battery
systems may be recovered and anthraquinone lifetime extended by electrochemically oxidizing

anthrone to redox-active anthraquinone derivatives.
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Scheme 1. Proposed electrochemical oxidation mechanism. Three-step successive two-electron
transfer process from AC to A~, A~ to AQ?", and AQ?" to AQ. The generated oxygen from the
OER side reaction may incur chemical oxidation processes including A~ to AQ*", AQ* to AQ,
and oxidative dimerization (A™ to DA).

To demonstrate that the electrochemical oxidation can be applied to other anthracene
derivatives, we performed electrochemical oxidation of 4,4'-(9,10-dihydroanthracene-
diyl)dibutanoic acid (DBDHAC), where the molecular core is 9,10-dihydroanthracene.?® The 'H
NMR results indicate that DBDHAC can, like DPivOHAC, be electrochemically oxidized to the
final anthraquinone (Figure S12), DBAQ (4,4'-(9,10-anthraquinone-diyl)dibutanoic acid), which
has also been shown to be extremely stable.*®

The shared precursor of DPivOHAQ and DBAQ, anthracene, is abundant in crude petroleum
and coal tar, and can be synthesized from benzene and benzyl alcohol (Scheme S3).*” The
precursor of DPivOHAQ, 3,3’-dimethyl acrylic acid, can be industrially produced from malonic
acid, a food acid; the precursor of DBAQ, succinic anhydride, can be industrially hydrogenated
from maleic anhydride and used as an important intermediate on an industrial scale. Thus, both
DPivOHAQ and DBAQ can be readily synthesized from commodity chemicals. Although the

synthetic cost of DPivOHAQ or DBAQ should be somewhat higher than that of 2,6-
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dihydroxyanthraquinone (DHAQ) due to more steps and more chemicals involved, the capital cost
of AORFBs that utilize finite-lifetime electrolytes can be viewed as including the total active cost,
which is the sum of the initial cost of redox-active materials and the present value of the future

t.13 This can lead to an initial cost—Ilifetime trade-off in

costs of periodic electrolyte replacemen
the choice of electrolytes. Over an extended operational lifetime, the total active cost of

DPivOHAQ or DBAQ may be less than that of DHAQ due to their much longer lifetimes.'*

Conclusion

This work demonstrates a potentially scalable, safe, green, and economical in situ
electrosynthetic method for anthraquinone electrolytes in a flow cell without the use of hazardous
oxidants or precious metal catalysts. The as-generated electrolytes, which are extremely stable,
can be immediately used in a redox flow battery without separation or purification. Other low-cost
compounds may also be amenable to this approach, providing a pathway to lower the cost of
electrochemical grid storage systems, thereby accelerating the development of a renewable energy
economy. The technique extends the opportunities for direct aqueous electrosynthesis to replace
thermochemical synthesis of value-added organics.
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Supplementary Information can be found with this article online at
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General information for synthesis and characterization

All reagents were purchased from Sigma-Aldrich or Alfa Aesar and used as received unless
otherwise stated. All reactions sensitive to moisture or oxygen were carried out in oven-dried or
flame-dried and nitrogen-charged glassware. All anhydrous solvents were saturated with argon
and passed through a column of activated alumina immediately prior to use.

'H NMR spectra were recorded on Varian INOVA 500 spectrometers at 500 MHz. NMR spectra
were recorded in solutions of deuterated dimethyl sulfoxide (DMSO-ds) with the residual dimethyl
sulfoxide (J 2.25 ppm for 'TH NMR), or deuterated water (D20) with the residual H20 (6 4.79 ppm
for 'H NMR).

LC-MS was conducted on a Bruker microTOF-Q II mass spectrometer. The sample was diluted
by water/acetonitrile (V/V = 1:1) to the desired concentration (~20uM) before LC-MS
measurements.

Electrochemical characterization

Cyclic voltammetry measurements

Glassy carbon was used as the working electrode for all three-electrode CV tests with a 5 mm
diameter glassy carbon working electrode, an Ag/AgCl reference electrode (BASi, pre-soaked in
3 M NaCl solution), and a graphite counter electrode.

All electrochemical oxidation and flow cell cycling was conducted with Biologic equipment and
corresponding software.

Flow cell setup

Flow battery experiments were constructed with cell hardware from Fuel Cell Tech (Albuquerque,
NM) assembled into a zero-gap flow cell configuration. Pyrosealed POCO graphite flow plates
with serpentine flow patterns were used for both electrodes. Each electrode comprised a 5 cm?
geometric surface area covered by a piece of AvCarb HCBA woven carbon fiber. The membrane
is pre-soaked (1 M KOH for 24 hours) Nafion 212.

Brief description of electrosynthesis

Undivided electrolytic cell setup

Working electrode: carbon felt, where DPivOHAC(COO") was oxidized to DPivOHAQ(COO);
counter electrode: carbon rod, where water was reduced to hydrogen gas.

Divided electrolytic cell setup vs. the ORR

Anode: Commercial AvCarb HCBA (woven carbon cloth), where DPivOHAC(COO™) was
oxidized to DPivOHAQ(COO"); cathode: platinum coated carbon paper (SGL 39AA), where
humidified air/oxygen was reduced to hydroxide.



116  Divided electrolytic cell setup vs. the reduction of ferricyanide
117  Anode: AvCarb HCBA (woven carbon cloth), where DPivOHAC(COOQO™) was oxidized to

118  DPivOHAQ(COO"); cathode: AvCarb HCBA (woven carbon cloth), where potassium
119  ferricyanide was reduced to potassium ferrocyanide.
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Figure S4. Schematics of (a) undivided cell against the HER and divided cells against (b) the ORR
and (c) ferricyanide to ferrocyanide, respectively. (d) 'H NMR spectra of (bottom to top):
chemically synthesized DPivOHAC (black); chemically synthesized DPivOHAQ (red);
electrosynthesized DPivOHAQ in an undivided cell (purple), 17.3% of DPivOHAC remained
unreacted according to the integration, yield: 82.7%; electro-synthesized DPivOHAQ in a divided
cell against Fe(CN)s>~ (blue), 7.0% of DPivOHAC remained unreacted according to the
integration, yield: 93.0%; electrosynthesized DPivOHAQ in a divided cell against Oz (green), 0 %
of DPivOHAC remained unreacted according to the integration, yield: 100%. The deuterated
solvent is DMSO-ds, and the solvent peaks (DMSO and H20) were removed to better display the
peaks of interest. The electrosynthetic details are described under the headings Electrosynthesis
L, I, and III.
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146  No ion-selective membrane is needed in the undivided cell (against the HER), nor are hydroxides
147  required theoretically because the HER generates the required number of hydroxides for
148  DPivOHAQ electrosynthesis. Ideally, the divided cell against the ORR will not require hydroxides
149  either if all generated hydroxides from the ORR can immediately crossover to the DPivOHAC
150  anolyte side. The divided cell against ferri- to ferrocyanide reduction needs six equivalents of
151  hydroxide for electrosynthesis, the advantage of which is incorporating the electrosynthesis and
152  flow battery in one setup, and electrosynthesis becomes a part of the on-site setup and takes as
153  long as the energy/power ratio of the battery.

154

155  Electrosynthesis I. Electrochemical synthesis of DPivOHAQ(COO") in an undivided cell at 0.1
156 M concentration, against the hydrogen evolution reaction (HER).
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161  Anundivided cell was prepared with carbon felt (XF30A, Toyobo Co., volumetric porosity: 95%)
162  as the working electrode, a carbon rod as the counter electrode, and Ag/AgCl (3 M NacCl) as the
163  reference electrode.

164

165  Electrolyte preparation: 0.378 g DPivOHAC, 0.745 g KCl, and 0.561 g KOH were dissolved in
166  deionized water to obtain a 10 mL solution containing 0.1 M DPivOHAC, 1.0 M KCl, and 1.0 M
167 KOH.

168

169  On the working electrode: DPivOHAC(COQO™) was oxidized to DPivOHAQ(COQO"); on the
170  counter electrode: water was reduced to hydrogen gas.

171

172 Electrochemical oxidation of DPivOHAC(COO"): while the electrolyte was stirred, a constant
173 potential (1.1 V vs. Ag/AgCl) was applied to the divided electrolytic cell until 120% of the required
174  coulombs were extracted from the working electrode. [0.1 M * 0.01 L * 96485 C/mol * 6 *1.2 =
175  694.7 C, 6 electrons need to be extracted from every DPivOHAC molecule].

176

177  Characterization of anolyte: an aliquot (~250 uL) was transferred from the as-prepared anolyte to
178  an Eppendorf® tube (capacity: 1.5 mL) and acidified by a drop of concentrated HCI to obtain
179  DPivOHAQ precipitate. The final DPivOHAQ precipitate was re-dissolved in DMSO-ds for 'H
180  NMR measurement. According to the integration of the 'H NMR spectrum (Figure 3d), the yield
181  is 82.7%. The faradaic efficiency (%) = [yield (%) / 1.2] = 68.9%.

182

183



184  Electrosynthesis II. Electrochemical synthesis of DPivOHAQ(COQ") in a divided cell at 0.1 M
185  concentration, against the oxygen reduction reaction (ORR).
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190 In a flow cell setup (divided electrolytic cell), where unbaked AvCarb HCBA was used on the
191  anode side, the carbon paper was used on the cathode side with coated platinum particles to
192  catalyze the ORR; Nafion® 212 was used as membrane. The high-frequency area specific
193  resistance (HF—ASR) was maintained in the range of 1.48-1.54 Q cm? before and after
194  electrosynthesis.

195

196  Anolyte preparation: 0.378 g DPivOHAC, 0.745 g KCI, and 0.561 g KOH were dissolved in
197  deionized water to obtain a 10 mL solution containing 0.1 M DPivOHAC, 1.0 M KCl, and 1.0 M
198  KOH.

199

200  Catholyte preparation: humidified oxygen or air was pumped into the flow cell to participate in
201 the electrochemical reaction.

202

203  Electrochemical oxidation of DPivOHAC(COO"): a constant voltage (1.8 V) was applied to the
204  divided electrolytic cell until the current decreased to 2 mA/cm?. The number of extracted electrons
205  was ~1.2 times higher than the theoretical value.

206

207  Characterization of anolyte: an aliquot (~250 pL) was transferred from the as-prepared anolyte to
208 an Eppendorf® tube (capacity: 1.5 mL) and acidified by concentrated HCI to obtain DPivOHAQ
209  precipitate. The final DPivOHAQ precipitate was re-dissolved in DMSO-ds for 'H NMR
210  measurement. According to the integration of the 'H NMR spectrum (Figure 3d), the yield is 100%.
211 The faradaic efficiency (%) = [yield (%) / 1.2] = 83.3%.

212

213 Electrosynthesis III. Electrochemical synthesis of DPivOHAQ(COO") in a divided cell at 0.1 M
214  concentration, against the reduction of ferricyanide.
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In a flow cell setup (divided electrolytic cell), unbaked AvCarb HCBA (woven carbon cloth) was
used as electrodes for both sides; Nafion® 212 was used as the membrane. The high-frequency
area specific resistance (HF-ASR) was maintained at ~1.12 Q cm? before and after
electrosynthesis.

Anolyte preparation: 0.378 g DPivOHAC, 0.745 g KCI, and 0.561 g KOH were dissolved in
deionized water to obtain a 10 mL solution containing 0.1 M DPivOHAC, 1.0 M KCI, and 1.0 M
KOH.

Catholyte preparation: 3.292 g KsFe(CN)s, 7.445 g KCIl, and 2.805 g KOH were dissolved in
deionized water to obtain a 100 mL solution containing 0.1 M K3Fe(CN)s, 1.0 M KCl, and 0.5 M
KOH.

The reason for which 0.5 M KOH was added to the catholyte is to counterbalance the added OH™ in
the anolyte, which is required for the electrosynthesis, thereby suppressing the loss of OH™ from
the anolyte to the catholyte due to crossover.

Electrochemical oxidation of DPivOHAC(COO"): a constant current density (20 mA/cm?) was
applied to the divided cell for at most 1.5 hours with a 1.2 V voltage cutoff; when either time or
voltage reached the limit, the potential was held (1.2 V vs. ferro-/ferricyanide) until the current
decreased to 2 mA/cm?. The number of extracted electrons was ~1.2 times higher than the
theoretical value.

Characterization of anolyte: an aliquot (~250 uL) was transferred from the as-prepared anolyte to
an Eppendorf® tube (capacity: 1.5 mL) and acidified by a drop of concentrated HCI to obtain
DPivOHAQ precipitate. The final DPivOHAQ precipitate was re-dissolved in DMSO-ds for 'H
NMR measurement. According to the integration of the 'TH NMR spectrum (Figure 3d), the yield
1s 93.0%. The faradaic efficiency (%) = [yield (%) / 1.2] = 77.5%.

Because a few aliquots were transferred and the volume of as-prepared DPivOHAQ changed, 5
mL of the DPivOHAQ solution was used as the negolyte and 100 mL of the ferro-/ferricyanide
solution [~0.06 M K4Fe(CN)s and ~0.04 M K3Fe(CN)s] generated from Electrosynthesis III was
used as the posolyte for charge—discharge cycling. Due to leakage, 4.5 mL of DPivOHAQ
remained for subsequent cycling.

Electrosynthesis IV. Electrochemical synthesis of DPivOHAQ(COQO") in a divided cell at 0.5 M
concentration with excess hydroxide, against the reduction of ferricyanide.

In a flow cell setup (divided electrolytic cell), unbaked AvCarb HCBA (woven carbon cloth) was
used as electrodes for both sides; Nafion® 212 was used as the membrane. The high-frequency
area specific resistance (HF—ASR) was maintained at ~1.1 Q cm? before and after electrosynthesis.

Anolyte preparation: 1.89 g DPivOHAC, 0.745 g KCI, and 0.567 g KOH were dissolved in
deionized water to obtain a 10 mL solution containing 0.5 M DPivOHAC, 1.0 M KCI, and 1.0 M
KOH. Although the DPivOHAC electrochemical oxidation requires OH™ ions, we observed that
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0.5 M DPivOHAC tends to crash out of solution when the concentration of KOH exceeds 1.5 M.
To circumvent this precipitation issue, we added 1.5 times the required amount of KOH pellets
(2.52 g) (i.e., 1.5 times 6 equivalents relative to DPivOHAC) into the anolyte over the course of
constant current charging. According to the Nernst equation, the cell voltage is a function of [OH];
thus, the voltage fluctuation reflects the addition of KOH in Figure S5.

Catholyte preparation: 16.46 g KsFe(CN)s, 7.445 g KCI, and 2.805 g KOH were dissolved in
deionized water to obtain a 100 mL solution containing 0.5 M K3Fe(CN)s, 1.0 M KCl, and 0.5 M
KOH.

Electrochemical oxidation of DPivOHAC(COO"): a constant current density (100 mA/cm?) was
applied to the divided cell for at most 1.7 hours with a 1.2 V voltage cutoff; when either time or
voltage reached the limit, the potential was held (1.2 V vs. ferro-/ferricyanide) until the current
decreased to 12 mA/cm?. The number of extracted electrons was ~1.2 times higher than the
theoretical value.

Characterization of anolyte: an aliquot (~250 uL) was transferred from the as-prepared anolyte to
an Eppendorf® tube (capacity: 1.5 mL) and acidified by a drop of concentrated HCI to obtain
DPivOHAQ precipitate. The final DPivOHAQ precipitate was re-dissolved in DMSO-ds for 'H
NMR measurement; the yield is 89.0%. The faradaic efficiency (%) = [yield (%) / 1.2] = 74.2%.
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Figure S5. The electrochemical oxidation of 0.5 M DPivOHAC(COQ") (Electrosynthesis IV).
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Figure S6. 'H NMR spectrum of DPivOHAQ in DMSO-ds synthesized via the procedure
described in Electrosynthesis IV. From the aromatic peak integrations, we found that 89.0%
DPivOHAQ was generated (when the two set of peaks at chemical shifts of 7.95 and 8.10 ppm
were integrated), 11.0% DPivOHAC was remaining.
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Figure S7. Mass spectra of partially electrosynthesized DPivOHAQ (from Electrosynthesis IV)
measured by liquid chromatography—mass spectrometry (LC-MS). (a) The peak intensity and
retention time of partially electrosynthesized DPivOHAQ under negative mode. (b) The peak
intensity and retention time of DPivOHAQ under negative mode. (¢) The peak intensity and
retention time of DPivOHAC under negative mode. (d) The peak intensity and retention time of
the DPivOHAQ dianthrone under negative mode. No peak was found in the given retention time
region, which, in combination with the absence of impurities in the 'H NMR spectra in Figures 3d
and S6, indicates that no observable DPivOHAQ dianthrone was generated during the
electrosynthesis. (e)-(f) The peak intensity and retention time of DPivOHAQ(AC)-related Kolbe
electrolysis byproducts under negative mode. No peak was found in the given retention time region,
which, in combination with the absence of impurities in the 'H NMR spectra in Figures 3d and S6,
indicates that no observable DPivOHAQ(AC)-related Kolbe electrolysis byproducts were
generated during the electrosynthesis.
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Scheme S1. Kolbe electrolysis. Kolbe electrolysis-related byproducts are not expected in our cell,
as the decarboxylation and dimerization reactions usually require much higher voltages and
precious-metal-based electrodes.>! In our cell, we use carbon electrodes and an applied potential
of 1.2 V. Additionally, we did not detect any dimer formation from LC—MS measurements.

Electrosynthesis V. Electrochemical synthesis of DPivOHAQ(COO") in a divided cell at 0.5 M
concentration with a stoichiometric quantity of hydroxide, against the reduction of ferricyanide.

In a flow cell setup (divided electrolytic cell), unbaked AvCarb HCBA (woven carbon cloth) was
used as electrodes for both sides; Nafion® 212 was used as the membrane. The high-frequency
area specific resistance (HF-ASR) was maintained at ~1.45 Q cm? before and after
electrosynthesis.

Anolyte preparation: 1.89 g DPivOHAC, 0.745 g KCl, and 0.567 g KOH were dissolved in
deionized water to obtain a 10 mL solution containing 0.5 M DPivOHAC, 1.0 M KClI, and 1.01
M KOH. We added the stoichiometric quantity of KOH pellets (1.68 g) (i.e., 6 equivalents relative
to DPivOHAC) into the anolyte over the course of constant current charging.

Catholyte preparation: 16.46 g KsFe(CN)s, 7.445 g KCl, and 2.805 g KOH were dissolved in
deionized water to obtain a 100 mL solution containing 0.5 M KsFe(CN)e, 1.0 M KCI, and 0.5 M
KOH.

Electrochemical oxidation of DPivOHAC(COO"): a constant current density (100 mA/cm?) was
applied to the divided electrolytic cell for at most 1.7 hours with a 1.2 V voltage cutoff; when
either time or voltage reached the limit, the potential was held (1.2 V vs. ferro-/ferricyanide) until
the current decreased to 12 mA/cm?. The number of extracted electrons was ~1.2 times higher than
the theoretical value.

Characterization of anolyte: an aliquot (~250 pL) was transferred from the as-prepared anolyte to
an Eppendorf® tube (capacity: 1.5 mL) and acidified by a drop of concentrated HCI to obtain
DPivOHAQ precipitate. The final DPivOHAQ precipitate was re-dissolved in DMSO-ds for 'H
NMR measurement; the yield is 81.8%. The faradaic efficiency (%) = [yield (%) / 1.2] = 68.2%.
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Formation of dianthrone during electrosynthesis
Anthrone dimers can be produced during the electrosynthesis when insufficient hydroxide is
present.

When there is excess hydroxide in the solution, although some OH™ ions will be electrochemically
oxidized to oxygen via the OER, the remaining OH™ ions are sufficient for the conversion of A~ to
AQ*.

When there is no excess hydroxide, given that the OER side reaction is an inevitable competing
reaction, there will be insufficient OH™ ions for the conversion of A~ to AQ?*; instead, the

anthrone anion A~ may be oxidatively dimerized to the dianthrone DA. The following figures and
scheme illustrate how DA was identified and propose its corresponding electrochemistry.

During the electrochemical oxidation of the 10 mL 0.5 M DPivOHAC(COQ") at pH 12, only 1.68
g of KOH (10*0.001 L*0.5 M*6*56.1056 g/mol =1.68 g) were added to the solution. Although
there is some additional KOH added to the potassium ferricyanide side, hydroxide cannot cross
over to the DPivOHAC side of the cell sufficiently rapidly to offset its consumption by
DPivOHAC oxidation and the OER.
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Figure S8. Cell performance of 0.5 M electrosynthesized DPivOHAQ when a stoichiometric
quantity of hydroxide was added into the DPivOHAC(COQ") solution (Electrosynthesis V). (a)
The long-term cycling performance with adjusted lower voltage cutoffs. (b) The zoomed in
discharge capacity when 0.7—-1.25 V voltage cutoffs were applied; the fitted temporal fade rate

was 0.01%/day. (c) The voltage profiles at varying cycle numbers with different lower voltage
cutoffs.
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Figure S9. Voltage profiles of 0.5 M electrosynthesized DPivOHAQ when a stoichiometric
quantity of hydroxide was added into the DPivOHAC solution (Electrosynthesis V) with
different lower voltage cutoffs [(a) 0.6, (b) 0.2, (c) 0.6, and (d) 0.7 V]. The upper voltage cutoff is
kept constant at 1.25 V for the duration of cell cycling.

In the 1* cycle, the region in (a) circled in cyan shows a small plateau, indicating some redox-
active byproducts were produced during the electrosynthesis. In the 67" cycle, after lowering the
lower cutoff from 0.6 to 0.2 V, we can clearly see the discharge plateau (in the region of 0.2-0.4
V) attributed to byproducts, and the charge plateau attributed to byproducts is also becoming
longer. In the 76™ cycle, after elevating the lower cutoff back to 0.6 V, the shape of the charge
profile becomes nearly the same as the one in the 1 cycle. After the lower voltage cutoff was
further increased to 0.7 V, in the 456" cycle, the small plateau attributed to the byproducts
disappeared.
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Figure S10. 'H NMR spectrum of cycled 0.5 M electrosynthesized DPivOHAQ when a
stoichiometric quantity of hydroxide was added into the DPivOHAC(COO") solution
(Electrosynthesis V). The solvent peak was removed to clearly show both aromatic and aliphatic
regions of the cycled DPivOHAQ solution. The deuterated solvent is D20. The dominating peaks
can be assigned to DPivOHAQ. Some small impurity peaks were observed, but they are difficult
to identify. The percentages of side products are very close to the detection limit of the 'H NMR
instrument.
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Figure S11. LC-MS results of cycled 0.5 M electrosynthesized DPivOHAQ when a
stoichiometric quantity of hydroxide was added into the DPivOHAC solution (Electrosynthesis
V). (a) The base peak chromatogram of the sample, showing all peaks observed by mass
spectrometry under negative mode. (b) The peak intensity and retention time of DPivOHAQ-1H
under negative mode. (c) The peak intensity and retention time of dianthrone+1H under negative
mode. (d) The peak intensity and retention time of dianthrone—1H under negative mode. (e¢) The
peak intensity and retention time of dianthrone—3H under negative mode. (f) The peak intensity
and retention time of anthrone—1H under negative mode (none observed). (g) The peak intensity
and retention time of DPivOHAC-1H under negative mode. By integrating the peak areas in (b),
(c), (d), (e), (f) and (g), we found the percentages of DPivOHAQ (81.8%), dianthrone+1H
(10.2%), dianthrone—1H (0.4%), dianthrone—-3H (1.3%), and DPivOHAC (6.3%).
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Scheme S2. Proposed possible redox reactions of dianthrones. Because the dianthrone+1H (exact
mass: 787.3488) and dianthrone—3H (exact mass: 783.3175) were detected and plateaus were
observed from the voltage profiles, we propose that there are three redox-active states for the
dianthrones.

Electrosynthesis VI. Electrochemical synthesis of DBAQ(COQ") in an undivided electrolytic
cell at 0.1 M concentration, against the HER.

H_ H
0 0 0ocC coo
OOC\/@@/\/\COO +80OH —— \/%ﬁj/\ﬁ +6H,0+86e
X
H H

DBDHAC (COO-) DBAQ (COO
8H,0+8e — 4 H,+ 8 OH"

An undivided electrolytic cell was prepared with carbon felt (XF30A, Toyobo Co., volumetric
porosity: 95%) as the working electrode, a carbon rod as the counter electrode, and Ag/AgCl (3 M
NaCl) as the reference electrode.

Electrolyte preparation: 0.35 g DBDHAC (synthesized by following our previous work), 0.745 g
KCl, and 0.561 g KOH were dissolved in deionized water to obtain a 10 mL solution containing
0.1 M DBDHAC, 1.0 M KCl, and 1.0 M KOH.

On the working electrode: DBDHAC was oxidized to DBAQ; on the counter electrode: water was
reduced to hydrogen gas.

Electrochemical oxidation of DBDHAC(COQO"): while the electrolyte was stirring, a constant
potential (1.1 V vs. Ag/AgCl) was applied to the divided electrolytic cell until 120% of the required
coulombs were extracted from the working electrode. [0.1 M * 0.01 L * 96485 C/mol * 8 * 1.2 =
926.3 C; 8 electrons need to be extracted from every DBDHAC molecule].
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Characterization of anolyte: an aliquot (250 pL) was transferred from the as-prepared anolyte to
an Eppendorf® tube (capacity: 1.5 mL) and acidified by a drop of concentrated HCI to obtain
DBAQ precipitate. The final DBAQ precipitate was re-dissolved in DMSO-ds for 'H NMR
measurement. According to the integration of the 'H NMR spectrum in the Figure S12, the yield
is 70%. The faradaic efficiency (%) = [yield (%) / 1.2] = 58.3%.
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Figure S12. 'H NMR spectra of DBDHAC (bottom), chemically synthesized DBAQ (top), and
electrochemically synthesized DBAQ in an undivided cell after varying extents of reaction.
DBDHAC: 4,4'-(9,10-dihydroanthracene-diyl)dibutanoic acid; DBAC: 4,4'-(anthracene-
diyl)dibutanoic acid; DBAQ: 4,4'-(9,10-anthraquinone-diyl)dibutanoic acid. The time interval
between successive measurements labeled electrochemical oxidation-1, 2, 3, and 4 is
approximately one hour. The deuterated solvent is DMSO-dé.

Light sensitivity experiments

It has been reported that quinones and related compounds can decompose in the presence of
light.5*56 In order to determine the light sensitivity of DPivOHAQ and DBAQ, we compared
solutions of each compound held in the presence of and in the absence of light for 1 week. Two
samples of DPivOHAQ (0.1 M, pH 12 in water with 1 M KCI, 1.5 mL each) and two samples of
DBAQ (0.1 M, pH 12 in water, 1.5 mL each) were prepared in separate FEP bottles (VWR Catalog
No. 16071-008). For each compound, one sample was wrapped in aluminum foil and stored in a
dark drawer for 1 week. The other sample was held for 1 week under a quartz halogen lamp with
a controllable output of 50—1000 W set to 500 W (CowboyStudio QL-1000 W HEAD; ePhotolnc
QL 1000Bulb). The samples exposed to light were allowed to float at the top of a water bath
containing approximately 16 L of water to dissipate excess heat produced by the lamp (the liquid
level decreased gradually due to evaporation and was replenished daily). The liquid level was
maintained at a distance of approximately 20 cm from the light source.

After 1 week, differences in color were observed between the samples of each compound stored
in the dark and exposed to light (Figure S13). The formation of a film was also observed in the
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DPivOHAQ sample exposed to light. "H NMR spectra of each sample demonstrate decomposition
of both compounds stored in the presence of light (Figures S14 and S15).

We therefore wrapped the electrolyte reservoirs with aluminum foil to avoid decomposition due
to light exposure during cell cycling.

DPivOHAQ DPlvOHAQ
— hv + hv

Figure S13. Samples of (a) DPivOHAQ (0.1 M, pH 12) stored for 1 week in the absence of light
(— hv) and under a 500 W lamp (+ hv) and of (b) DBAQ (0.1 M, pH 12) stored for 1 week in the
absence of light (— hv) and under a 500 W lamp (+ hv). Differences in color were observed between
the two samples of each compound. The formation of a film was also observed in the DPivOHAQ
sample exposed to light.
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475
476  Figure S14. '"H NMR spectra of samples of DPivOHAQ (0.1 M, pH 12) stored for 1 week in the

477  absence of light (— hv) and under a 500 W lamp (+ hv), each diluted (1:5.5) in pH 14 D20 (1 M
478  KOD) containing a 9 mM NaCH3SOs internal standard (8 2.6 ppm).
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479

480  Figure S15. '"H NMR spectra of samples of DBAQ (0.1 M, pH 12) stored for 1 week in the
481  absence of light (— hv) and under a 500 W lamp (+ hv), each diluted (1:5) in pH 12 D20 or in
482  DMSO-ds.
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484  Complete synthesis
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Scheme S3. Complete synthetic routes, conditions, and yields of DPivOHAQ and DBAQ when
commercially available commodity chemicals are used as starting materials.

HO
AlICl3, 60 °C, 3.5 h
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Synthesized anthracene from benzene and benzyl alcohol
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Figure S16. 'H NMR spectra of commercial and synthesized anthracene (AC) in DMSO-ds. The

peak at 7.37 ppm in the synthesized AC spectrum is from benzene.
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