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Abstract

The task of repeatedly solving parametrized partial di↵erential equations (pPDEs)
in optimization, control, or interactive applications makes it imperative to design highly
e�cient and equally accurate surrogate models. The reduced basis method (RBM)
presents itself as such an option. Accompanied by a mathematically rigorous error esti-
mator, RBM carefully constructs a low-dimensional subspace of the parameter-induced
high fidelity solution manifold on which an approximate solution is computed. It can
improve e�ciency by several orders of magnitudes leveraging an o✏ine-online decom-
position procedure. However this decomposition, usually implemented with aid from
the empirical interpolation method (EIM) for nonlinear and/or parametric-nona�ne
PDEs, can be challenging to implement, or results in severely degraded online e�ciency.

In this paper, we augment and extend the EIM approach as a direct solver, as
opposed to an assistant, for solving nonlinear pPDEs on the reduced level. The result-
ing method, called Reduced Over-Collocation method (ROC), is stable and capable
of avoiding e�ciency degradation exhibited in traditional applications of EIM. Two
critical ingredients of the scheme are collocation at about twice as many locations as
the dimension of the reduced approximation space, and an e�cient L1-norm-based er-
ror indicator for the strategic selection of the parameter values whose snapshots span
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the reduced approximation space. Together, these two ingredients ensure that the
proposed L1-ROC scheme is both o✏ine- and online-e�cient. A distinctive feature is
that the e�ciency degradation appearing in alternative RBM approaches that utilize
EIM for nonlinear and nona�ne problems is circumvented, both in the o✏ine and on-
line stages. Numerical tests on di↵erent families of time-dependent and steady-state
nonlinear problems demonstrate the high e�ciency and accuracy of L1-ROC and its
superior stability performance.

1 Introduction

Numerical simulations of systems, often parametrized, arising from various engineering and
applied science disciplines are increasingly becoming of multi-query and/or real-time type.
For example, optimization and optimal control require multiple forward solves, and inter-
active applications demand real-time responses. Design of fast numerical algorithms with
certifiable accuracies for these settings has therefore continued to attract researchers’ atten-
tion. The parameters delineating these systems may include boundary conditions, material
properties, geometric settings, source properties etc. The wide variety, the complicated de-
pendence of the system on these parameters, and their potential high dimensionality are the
major challenges. In addition, the di↵erential equations governing these equations may be
nonlinear.

The reduced basis method (RBM) [43, 29] has proved an e↵ective option for this purpose.
RBM was first introduced for nonlinear structure problems [1, 40] in 1970s and has proven to
be e↵ective for a variety of di↵erential equations, including linear evolution equations [28],
viscous Burgers equation [47], the Navier-Stokes equations [18], and harmonic Maxwell’s
equation [15, 16]. The key to RBM’s success in realizing orders-of-magnitude e�ciency
gain is an o✏ine-online decomposition process where the basis selection and surrogate space
construction are performed o✏ine by a greedy algorithm, see review papers [44, 27] and
monographs [43, 29] for details. During the o✏ine process, the necessary preparations for
the online reduced solver are performed. The ultimate goal is that the complexity of the
reduced solver, called upon in a potentially real-time fashion during the online stage, is
independent of the number of degrees of freedom of the high-fidelity approximation of the
basis functions.

1.1 A key problem: Online e�ciency degradation due to (D)EIM

To achieve the e�ciency goals of RBM, the Empirical Interpolation Method (EIM) or its
discrete version (DEIM) [4, 25, 12, 42] is typically leveraged for nona�ne terms and/or
nonlinear equations. However, EIM is often not feasible due to strong nonlinearity and/or
nona�nity of the problem. Even when it is feasible, performing (D)EIM can severely degrade
the reduced solver’s online e�ciency when either the parameter dependence or the nonlin-
earity is complicated, such as when it encodes geometric variability [16, 5]. The reason for
the e�ciency di�culties is that the online complexity is dependent on the potentially large
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number of terms resulting from the EIM decomposition.
Let us use a simple system with a nona�ne parameter dependence as an example. As-

sume that we are solving a heat conduction problem with nona�ne parameter dependence
�r · (a(x;µ)ru) = f . For RBM to realize its intended e�ciency gain, we would first
apply EIM to approximate the function a(x;µ) by a linear combination of µ-independent
functions, a(x;µ) ⇡

PQa

q=1
✓q(µ)a(x;µq), where {µq}Qa

q=1
is an ensemble, typically chosen

through a greedy procedure. With the equation written in its weak form a(u, v;µ) :=
(a(x;µ)ru,rv) = (f, v), the number of terms Qa a↵ects the online solver as follows: Once
the o✏ine learning stage identifies an N -dimensional reduced-order solution space with basis
{⇠1, . . . , ⇠N}, the reduced solver is assembled for each µ, and the corresponding sti↵ness
matrix has entries

(a(⇠i, ⇠j;µ))
N
i,j=1

:= (a(x;µ)r⇠i,r⇠j)
N
i,j=1

=
QaX

q=1

✓q(µ) (a(x;µ
q)r⇠i,r⇠j)

N
i,j=1

.

The complexity of the online solver is therefore linearly dependent on the number of EIM
terms Qa, potentially su↵ering substantial reductions in e�ciency compared to situations
when EIM is not needed, i.e. Qa = 1. The reason is that Qa can be prohibitively large
(i.e. much larger than the reduced space dimension N) when the model involves geometric
parametrization, see e.g. [16, 5] even if the more e�cient matrix version of EIM [37] is
adopted. As far as we are aware, e↵orts to mitigate this drawback are limited and underde-
veloped.

1.2 The proposed approach

In this paper, we propose an L1-norm-based reduced over-collocation method (L1-ROC)
algorithm that is empirically stable and achieves full online e�ciency without su↵ering Qa-
based e�ciency degradation. Our main tools are an augmentation of EIM technique, a
further leveraging of the collocation philosophy originally explored in [13], and an extension of
the L1 importance indicator proposed in [17]. We summarize below the two major ingredients
of L1-ROC that, together, enable the method to circumvent this degradation.

The first ingredient is a strategy to augment the EIM framework and adopt the collocation
approach, in contrast to variational approaches (i.e. Galerkin or Petrov-Galerkin) [6, 9, 8]
when seeking the reduced solution. This so-called reduced collocation method is proposed
and documented to work well in circumventing the EIM degradation for the reduced solver
in previous work [13], but its stability is lacking [14]. Our reduced over-collocation methods
mitigate this stability defect by collocating at about twice as many locations as the dimension
of the reduced order space. Half of these collocation points are identified from manipulation
of a basis for this space, and data on these points interpolates the reduced solution. The
other half are chosen according to a computational analysis of the reduced order residuals
when these basis functions are identified during the o✏ine procedure. They are present to
ensure a good interpolation of the residual corresponding to an arbitrary parameter value
when the reduced order space is used to solve the pPDE. This ingredient alone is not enough
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to achieve online and o✏ine e�ciency as the e�cient calculation of the error estimators,
critical for the construction of the reduced solution space, still relies on direct application of
EIM.

This challenge with computing error estimators is addressed by the second ingredient of
the L1-ROC method, an e�cient alternative for guiding the strategic selection of parameter
values to build the reduced solution space. In particular, we utilize the recently introduced
empirical L1 approach [17] and extend it to time-dependent problems. Note that this ap-
proach does not employ a traditional rigorous error estimator, and instead uses an error
indicator.

Together, these two ingredients render the L1-ROC scheme online-e�cient (i.e. the online
cost is independent of the number of degrees of freedom of the high-fidelity truth approxi-
mation) and successfully circumvent the e�ciency degradation of a direct EIM approach for
nonlinear and nona�ne problems. Moreover, the L1-ROC method is highly e�cient during
the o✏ine stage, in that it requires minimal computation beyond the standard RBM cost of
acquiring solution snapshots used to construct the reduced order space. As a consequence,
the “break-even” number of simulations for the pPDE (minimum number of simulations
that make the o✏ine preparation stage worthwhile) is significantly smaller than traditional
RBM. We test the algorithms on the viscous Burgers’ equation [47] and various nonlinear
convection di↵usion reaction equations, including the Poisson-Boltzmann equation. For all
test problems, the L1-ROC is shown to have accuracy on par with the classical RBM while
possessing much better e�ciency due to complexity that is independent of the number of
expansion terms from an EIM decomposition. Our examples include results for the steady-
state and time-dependent cases of the di↵usion with cubic reaction and the viscous Burgers’
equation.

1.3 Other related techniques

Popular model reduction techniques for linear time-dependent problems include Proper Or-
thogonal Decomposition (POD) [33], system-theoretic approaches such as balanced trunca-
tion, moment matching or Hankel norm approximation [6]. RBM stands out, for parametric
problems in particular, with the availability of rigorous a posteriori error estimation, an
easy-to-implement greedy algorithm, and the fact that it computes a number of full order
solutions comparable to the theoretically smallest number for a fixed error level, the latter
of which is defined by the Kolmogorov n width of the solution manifold.

The additional challenges posed by nonlinear problems are that a high dimensional re-
construction of the reduced order solution is usually needed for each evaluation of the non-
linearity. Sampling-based approximation techniques were developed to remedy this problem,
including the Empirical Interpolation Method and its discrete variants [4, 25, 12, 42] and
Hyper-Reduction [45, 46, 10] which are known to be equivalent to DEIM under certain
conditions [21, 19]. Other approaches exist which include POD coupled with “the best inter-
polation points” approach [38, 23], Gappy-POD [20], Missing Point Estimation (MPE) [3]
or Gauss–Newton with approximated Tensors (GNAT) [9, 10]. Most of these methods work
by first identifying a subset of the important features of the nonlinear function, and then
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constructing an approximation of the full solution based solely on an evaluation of these few
components.

Our L1-ROC method can be viewed as adopting hyper reduction for reduced residual
minimization. That is, instead of enforcing that the full residual is small in either a weak
or strong formulation, one identifies a small set of locations and ensures that an accurate
evaluation of the residual on those locations is small. This is not the first time this type of
idea is explored. For example, [3, 2] uses a collocation of the original equations based on
missing point interpolation and is followed by a Galerkin projection. The authors in [45]
obtain the solution snapshots and collocation points through an adaptive algorithm in the
finite element framework. It was also applied to nonlinear dynamical systems with randomly
chosen collocation points [7]. However, the proposed L1-ROC di↵ers from these existing
works. The first distinctive feature is that the basis functions and collocation points are
determined hierarchically via a greedy algorithm operating on reduced residual minimiza-
tion problems that gradually increase in size. The existing approaches obtain basis functions
through POD-type techniques followed by computing collocation points all at once. The
second distinctive feature is that the only step during the o✏ine process that depends on the
full order model is when we calculate a new high fidelity basis. We also note that our online
solver can be considered as a Generalized EIM interpolation [36, 35] of the truth approx-
imation, with a set of carefully designed interpolating functionals. Just like EIM/GEIM,
Gappy-POD, and MPE, the proposed L1-ROC tends to minimize the Lebesgue constant
leading to its e↵ectiveness.

The paper is organized as follows. In Section 2, we introduce our L1-ROC method.
Numerical results for two test problems, in both steady-state and time-dependent modes,
are shown in Section 3 to demonstrate the accuracy and e�ciency of the scheme. Finally,
concluding remarks are drawn in Section 4.

2 The reduced over-collocation method

In this section, we introduce the L1-ROC method for both steady state and time dependent
problems. We first describe the problem we are solving. The framework of the online
algorithm is then presented in Section 2.1. Specification of part of the algorithm is postponed
until the introduction of the ROC o✏ine algorithm in Section 2.2 which repeatedly calls the
online solver to construct a surrogate solution space. The design of the main algorithm, the
ROC approach, is detailed in Section 2.2.2. To facilitate the reading of this and the following
sections, we list our notation in Table 1.

We let D ⇢ Rp be the domain for a p-dimensional parameter µ, and ⌦ ⇢ Rd (for
d = 1, 2, or 3) be a bounded physical domain. Given µ 2 D, and a Hilbert space H, the
goal is to compute u(·;µ) = u(µ) 2 H satisfying

P(u(x;µ);µ)� f(x) = 0, x 2 ⌦, (1)
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or to compute time evolution of the transient problem

ut + P(u(x;µ);µ)� f(x) = 0, x 2 ⌦, (2)

with appropriate boundary (and initial) conditions. For example, for a stationary Laplace
problem, the space H is typically the Sobolev space H1(⌦). Here, P encodes a parametric
second order partial di↵erential operator that may include linear and nonlinear functions
of u(x;µ), ru(x;µ), and �u(x;µ). In the following, we will first focus on steady state
problems (1) and then extend the algorithm to time dependent case (2).

To describe our algorithms, we first discretize the equation (1) by a high-fidelity scheme
(termed “truth solver” in the RB literature). In this paper, we adopt finite di↵erence methods
(FDM) for that purpose. However, extension to other point-wise schemes such as spectral
collocation is obvious, and to finite element methods is possible. We let XN be a set of N
collocation points on ⌦ at which the equation is enforced on a discrete level. The discretized
equation then becomes to find uN (XN ;µ), a discretization of the solution u(µ) on the grid
XN , such that

PN (uN (XN ;µ);µ)� f(XN ) = 0, (3)

where PN (·) is the discretized operator resulting from e.g., replacement of continuous di↵er-
ential operators likeru(XN ;µ), and�u(XN ;µ) with numerical approximationsrhu(XN ;µ),
and �hu(XN ;µ). With a slight abuse of notation, we let N denote the number of the de-
grees of freedom in the solver, even though the N points in XN might include, e.g. points
on a Dirichlet boundary that are not free.

2.1 Online algorithm

The online component of the L1-ROC is essentially the same as the previously-introduced
reduced collocation method [13] with the critical di↵erence being that the number of collo-
cation points is larger than the number of reduced basis snapshots. This eponymous over-
collocation feature provides additional stabilization of the online solver as we will observe in
the numerical results.

To describe the online algorithm, given N selected parameters {µ1, . . . ,µN}, the corre-
sponding high fidelity truth approximations {un := uN (XN ;µn), 1  n  N}, and M (� N)
collocation points formed from a subset of XN ,

XM = {x1

⇤, . . . ,x
M
⇤ }, with xj

⇤ having index ij in XN , (4)

we are able to perform the online algorithm, which we describe next. Note that, when-
ever there is no confusion, we are adopting the same notation for a function and its dis-
crete representation in the form of a vector of its values at the grid points. These vectors
{un, 1  n  N} constitute the columns of a basis matrix Wn 2 RN⇥n for n 2 {1, . . . , N}.
Furthermore, we denote the corresponding reduced representation of the basis space on the
set XM , by a matrix of the following form,

Wn,M = [u1(X
M), . . . , un(X

M)] 2 RM⇥n, for n = 1, . . . , N.

= P⇤Wn,
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µ = (µ1, . . . , µp) Parameter in p-dimensional parameter domain D ✓ IRp

⌅train Parameter training set, a finite subset of D
u(µ) Function-valued solution of a parameterized PDE on ⌦ ⇢ Rd

P(u(µ);µ) A (nonlinear) PDE operator

K Number of finite di↵erence intervals per direction of the physical domain

N ⇡ Kd
Degrees of freedom (DoF) of a high-fidelity PDE discretization, the “truth” solver

XN
A size-N (full) collocation grid

uN
(µ) Finite-dimensional truth solution

N Number of reduced basis snapshots, N ⌧ N
µj

“Snapshot” parameter values, j = 1, . . . , N

bun(µ) Reduced basis solution in the n-dimensional RB space spanned by {uN
(µ1

), . . . , uN
(µn

)}
en(µ) Reduced basis solution error, equals uN

(µ)� bun(µ)

�N (µ) A residual-based error estimate (upper bound) for keN (µ)k or an error/importance indicator

XN�1
r = {x1

⇤⇤, . . . ,x
N�1
⇤⇤ } A size-(N � 1) reduced collocation grid, a subset of XN

determined based on residuals

XN
s = {x1

⇤, . . . ,x
N
⇤ } An additional size-N reduced collocation grid, a subset of XN

determined based on the solutions

XM
A reduced collocation grid of size M that is XN�1

r [XN
s

T Final time for the time-dependent problems

�t Time stepsize for the time dependent problems

Nt Total number of time levels, i.e. Nt =
T
�t

tj Time level j, j = 1, . . . ,Nt

✏tol Error estimate stopping tolerance in greedy sweep

O✏ine component The pre-computation phase, where the reduced solver is trained using a greedy selection of snapshots

from the solution space

Online component The process of solving the o✏ine-trained reduced problem, yielding the reduced order solution.

Table 1: Notation and terminology used throughout this article.
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where the operator P⇤ 2 RM⇥N is defined as,

P⇤ = [ei1 , · · · , eiM ]T ,

with ei 2 RN⇥1 the i th canonical unit vector, and ij is as defined in (4).
Reduced approximations of the solution for any given parameter µ are sought in the

form,
bun(µ) = Wncn(µ).

The condition for obtaining the coe�cients cn(µ) is (a reduced version of) equation (3)

PN (Wncn(µ);µ) ⇡ f(XN ). (5)

Realizing that this is an over-determined system as we have in principle n ⌧ N , the authors
of [13] proposed a Petrov Galerkin approach or collocation on n points which produces a
square system. The distinctive feature of what we propose in this paper for locating the
unknown coe�cients cn(µ) is to minimizing the residual of (5) on the set of nodes XM .
Namely, we seek cn(µ) by solving the following optimization problem:

cn(µ) = argmin
!2Rn

k P⇤
�
PN (Wn!;µ)� f(XN )

�
kRM . (6)

We note that this is a (potentially) nonlinear system of equations for cn, with rhbun(µ) and
�hbun(µ) computed on the full grid and then evaluated on the reduced grid XM according
to

rhbun(µ) = P⇤ [(rhu1) , . . . , (rhun)] cn(µ),

�hbun(µ) = P⇤ [(�hu1) , . . . , (�hun)] cn(µ).

We use iterative methods, such as Newton’s method, to solve for the coe�cients cn(µ) during
the online phase. The collocation nature of this scheme allows for solving this system with a
cost only dependent on M and n even when PN is nonlinear and nona�ne. In particular, it
is independent of the degrees of freedom N of the underlying truth solver. Indeed, the next
section describes the o✏ine procedure where the N selected parameters {µ1, . . . ,µN} are
identified sequentially through a greedy algorithm. Once these parmeters are selected, we
precompute as many quantities as possible so that a minimal update is performed at each
iteration of the iterative method. The online procedure of the nonlinear solve for obtaining
cn(µ) from equation (6) involves:

1) realizing/updating Wn,Mcn, rh(Wn,M)cn, and �h(Wn,M)cn at each iteration taking
O(Mn) operations;

2) calculating the forcing term f(XM) taking O(M) operations; and

3) solving the reduced linear systems at each iteration of the nonlinear solve taking O(n3)
operations.
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2.2 O✏ine algorithm

In this section, we describe the o✏ine procedure of the reduced over collocation framework
based on the L1-approach proposed in [17]. The remaining ingredients of the o✏ine procedure
are identical to a traditional RBM algorithm [44, 27, 43, 29].

2.2.1 A greedy algorithm based on an L1 importance indicator

We first briefly describe the procedure for selecting the representative parameters µ1, . . . ,µN

that identify the solution space WN . RBM utilizes a greedy scheme to iteratively construct
WN relying on e�ciently-computable error estimates that quantify the discrepancy between
the dimension-n RBM surrogate bun(µ) and the truth solution uN (µ). Denoting such an
estimate as �n(µ), it traditionally satisfies �n(µ) �

��bun(µ)� uN (µ)
��. Assuming existence

and feasible computability of this error estimate, the greedy procedure for constructing WN

then starts by selecting the first parameter µ1 randomly from ⌅train (a discretization of
the parameter domain D) and obtaining its corresponding high-fidelity truth approximation
uN (µ1) to form a (one-dimensional) RB space given by the range of W1 =

⇥
uN (µ1)

⇤
. Next,

we obtain an RB approximation bun(µ) for each parameter in ⌅train together with an error
bound �n(µ). The greedy choice for the (n + 1)th parameter (n = 1, · · · , N � 1) is made
and the RB space augmented by

µn+1 = argmax
µ2⌅train

�n(µ), Wn+1 =
⇥
Wn uN (µn+1)

⇤
(7)

The design and e�cient implementation of the error bound �n is usually accomplished
with a residual-based a posteriori error estimate from the truth discretization. Mathematical
rigor and computational e�ciency of this estimate are crucial for the accuracy of the reduced
basis solution and its e�ciency relative to the truth approximation. When P(u;µ) is a linear
operator, the Riesz representation theorem and a variational inequality imply that �n can
be taken as

�R
n (µ) =

kf � PN (bun;µ)k2p
�LB(µ)

,

where �LB(µ) is a lower bound for the smallest eigenvalue of PN (µ)TPN (µ) with PN (µ)
being the matrix corresponding to the discretized linear operator PN (·;µ). Thus, �R

n defined
above is a rigorous bound (with the R-superscript denoting it is based on the full residual).

Deriving a counterpart for this estimator for a general nonlinear equation is far from
trivial. Moreover, even for linear equations, the robust evaluation of the residual norm in
the numerator is delicate [11, 17]. One typically resorts to an o✏ine-online decomposition
to retain e�ciency which usually means application of EIM for nonlinear or nona�ne terms.
This complication degrades, sometimes significantly [5, 37], the online e�ciency due to the
large number of resulting EIM terms. What exacerbates the situation further is that the
(parameter-dependent) stability factor �LB(µ) must be calculated by a computationally
e�cient procedure such as the successive constraint method [31, 30]. For these reasons, we
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adopt the following empirical alternative, an importance indicator proposed in [17], in place
of �R

n :
�L

n(µ) = ||cn(µ)||1.

The L-superscript denotes that it is based on the L1-norm making our scheme L1-based. We
note that this is not an error estimator because �L

n does not decrease as we increase n since
�L

n(µ
i) = 1 for i 2 {1, . . . , n}. Nevertheless, we demonstrate that it is a reliable quantity to

monitor when deciding which representative parameters µ1, . . . ,µN will form the surrogate
space. We finish this subsection by pointing out that the calculation of �L

n is independent of
N while naive approaches to evaluate the traditional estimator �R

n for nonlinear problems
would depend on N . This di↵erence leads to the dramatic e�ciency gain of the L1-ROC, as
numerically confirmed in Section 3.

Algorithm 1 O✏ine: construction of WN and the collocation set X2N�1 = XN
s [XN�1

r .

1: Choose µ1 randomly from ⌅train, compute u1 := uN (XN ;µ1).
2: Compute x1

⇤ = argmaxx2XN |u1|, define ⇠1 = u1/u1(x1

⇤). Let i1 be the index of x1

⇤ and
P⇤ = [ei1 ]

T .
3: Initialize m = n = 1, Xm = Xn

s = [x1

⇤], W1 = {⇠1} ,W1,m = P⇤W1, and X0

r = ;.
4: For n = 2, . . . , N
5: Solve cn�1(µ) with Wn�1, P⇤ and calculate �n�1(µ) for all µ 2 ⌅train.
6: Find µn = argmaxµ2⌅train\{µi,i=1,··· ,n�1} �n�1(µ) and solve for ⇠n := uN (XN ;µn).

7: Compute an interpolatory residual for ⇠n : find {↵j} and let ⇠n = ⇠n �
Pn�1

j=1
↵j⇠j

so that ⇠n(Xn�1

s ) = 0.
8: Find xn

⇤ = argmaxx2XN /Xm |⇠n(x)|, ⇠n = ⇠n/⇠n(xn
⇤ ), and let Xn

s = Xn�1

s [ {xn
⇤}, and

i1 be the index of xn
⇤ .

9: Form the full residual vector rn�1 = PN (bun�1(µn);µn) � f(XN ) and compute its
interpolatory residual: find {↵j} and let rn�1 = rn�1�

Pn�2

j=1
↵jrj so that rn�1(Xn�2

r ) =
0. Find xn�1

⇤⇤ = argmaxx2XN /{Xm,xn
⇤ } |rn�1(x)|. Let rn�1 = rn�1/rn�1(xn�1

⇤⇤ ), andXn�1

r =
Xn�2

r [ {xn�1

⇤⇤ } and i2 is the index of xn�1

⇤⇤ .
10: Update Wn = {Wn�1, ⇠n},m = 2n� 1, Xm = Xn

s [Xn�1

r , P⇤ = P⇤ [ [ei1 , ei2 ]
T .

11: End For

2.2.2 Construction of the reduced over-collocation set XM

Let us now describe how we determine the reduced collocation set XM to complete the
o✏ine algorithm. Toward that end, we first describe the construction of two sets. The
first one, denoted by XN

s , consists of the maximizers from the EIM procedure used on the
orthonormalized columns of WN , which are computed as pivots from an LU decomposition.
Realizing the importance of controlling the residuals when solving equations, we need to
represent the residuals well on the reduced grid. For that purpose, we introduce a second
set of points, and examine the residual of the RB solution at the chosen µn when only n� 1

10



basis elements are used,

rn�1 = PN (bun�1(µ
n);µn)� f(XN ), n 2 {2, . . . , N}. (8)

We next take these N � 1 residual vectors and perform an EIM procedure on them. The
N � 1 maximizers from this procedure form the second set which is denoted XN�1

r . The
reduced collocation approach in [13] is a specialization that takes M = N , XN�1

r = ;, and
XM = XN

s . The resulting M = N reduced scheme can be unstable particularly when high
accuracy (i.e. large N) of the reduced solution is desired. It can be resolved in special
cases by an analytical preconditioning approach [14]. The second obvious choice of XM is
to append XN�1

r with one more point such as the maximizer of the first basis. Numerical
tests (not reported in this paper) also reveal instability of this scheme.

The stabilization mechanism and name of the reduced over-collocation methods, outlined
in Algorithm 1, come from the fact that we combine these two choices by taking

XM = XN
s [XN�1

r ,

and solving a least squares problem on the reduced level by collocating on about twice as
many points as the number of basis in the RB space. Note that the first basis function
has no accompanying residual vector (8), so that from the second onward there are two
collocation points selected whenever a new parameter is identified by the greedy algorithm.
Here M  2N � 1 since, even though |XN

s | = N and |XN�1

r | = N � 1 are guaranteed by the
EIM procedures, we don’t necessarily have mutual exclusivity between XN

s and XN�1

r .

Remark 1. This framework allows for more points being added. For example, when we make
the greedy choice µn (the maximizer of the error estimator), we can record the parameter eµn

attaining the second largest error estimator and generate another set of residuals when only
n� 1 basis elements are used,

ern�1 = PN (bun�1(eµn); eµn)� f(XN ), n 2 {2, . . . , N}.

We thus have (up to) 3N�2 ROC points. Numerical results in Section 3 show no significant
improvement over 2N � 1 points for the scalar nonlinear equations of concern in this paper.
However, we expect that this strategy will be necessary for some systems of coupled nonlinear
equations, a topic of ongoing investigation.

2.3 Extension of L1-ROC for time dependent problems

For the time-dependent problem (2), the semi-discretized L1-ROC solver remains identical
to the steady-state case. That is, we seek the reduced approximation of the solution for any
given parameter µ in the form of

bun(µ, t) = Wncn(µ, t).

11



The unknown coe�cient vector cn(µ, t) 2 Rn⇥1 is obtained by solving the following opti-
mization problem:

cn(µ, t) = argmin
!2Rn

k P⇤
�
Wn!t + PN (Wn!;µ)� f(XN )

�
kRM . (9)

To discretize in time, our L1-ROC aligns with the parameter-time greedy framework
[25, 26], as opposed to POD [33, 38] or POD-greedy [24]. We discretize the time and denote
the (full) set of temporal nodes as Tf := {ti : i = 0, · · · ,Nt} with t0 being the initial time
and Nt = T/�t where �t is the temporal step-size. We extend the L1-based importance
indicator of [17] to the time-dependent case here. Toward that end, we define a reduced set
of temporal nodes Tr that starts from the empty set and is gradually enriched in the greedy
algorithm.

To initiate the reduced solver construction we start with a deterministically or randomly
chosen µ1 (similar to the steady-state case) and invoke the truth solver to obtain the snap-
shots {uN (ti, x;µ1)}Nt

i=0
. Tr is initiated by the time instant when the corresponding snapshot

has the largest variation. That is,

Tr = {t1µ1} where t1µ1 = argmax
t2Tf

✓
max
x2XN

uN (t, x;µ1)� min
x2XN

uN (t, x;µ1)

◆
.

The RB space W1 is initiated with uN (t1µ1 , x;µ1). The (first) collocation point is set to be

the EIM point of this first basis, i.e. the spatial maximizer of |uN (t1µ1 , x;µ1)|,

x1

⇤ = argmax
x2XN

|uN (t1µ1 , x;µ1)|.

Once these ingredients are in place after the first pair (µ1, t1µ1) is determined, we can
solve (a temporally discretized version of) the reduced problem (9) for every µ 2 ⌅train.
Similar to the traditional greedy algorithm, the next step is to determine the subsequent
(µ, t) pairs. Our greedy algorithm manifests itself in the following three aspects:

• Greedy in µ: We define the following importance indicator for each µ after its
corresponding (reduced) solver of (9) is performed,

�Lt
n (µ) := max

t2Tr
{kcn(µ, t)k1}. (10)

We note that: 1) the maximization is done only on the reduced temporal grid Tr which
is much smaller than the full temporal grid Tf ; 2) the signature feature of the L1-based
approach carries over to the time-dependent case in that the indicator requires nothing
more than the reduced solution coe�cients. Our greedy choice for the µ-component
of the (µ, t) pair is through maximizing �Lt

n (µ) over the training set ⌅train:

µn+1 = argmax
µ2⌅train

�Lt
n (µ).
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• Greedy in t: Next, the t-component of the (µ, t) pair is determined and the set Tr

enriched with a new temporal node through a greedy choice as well. Given the greedy
choice µn+1 and the reduced solution bun(µn+1, t) = Wncn(µn+1, t) for all time levels
t 2 Tf , we compute the full residual vectors rn 2 RN⇥1 for this µn+1. The greedy
t-choice is given by

t
kµn+1

µn+1 := argmax
t2Tf

�
"(t;µ) := krn(t;µn+1)k1

 
, and Tr = Tr

[
{tkµn+1

µn+1 }. (11)

Here, kµn+1 � 1 is introduced to account for the possibility that multiple temporal
nodes might be selected for the same µ, at di↵erent rounds of the greedy algorithm.
We note in particular that, consistent with typical greedy scheme, we choose one
maximizer (as opposed to multiple maximizers) in (11). However, as we proceed with
building up the reduced solution space, the same µ (and a di↵erent temporal node)
may be chosen by the greedy algorithm at a later step due to the lack of resolution of
its corresponding temporal history.

• XM
expansion: Once a new greedy pair (µn+1, t

kµn+1

µn+1 ) is fixed, we solve for the truth

approximations u(t,XN ;µn+1) for t  t
kµn+1

µn+1 . The expansion of XM by two more

collocation points, with one from the EIM procedure of the solution u(t
kµn+1

µn+1 , XN ;µn+1)

and the other from that of the residual rn(t
kµn+1

µn+1 ;µn+1), is identical to the steady state
case.

The full o✏ine algorithm is seen in Algorithm.2.

3 Numerical results

In this section, we present the numerical results of the L1-ROC method applied to the
nonlinear steady-state and time-dependent problems, in Sections 3.1 and 3.2 respectively.
The equations we test in each subsection include the classical viscous Burgers’ equation and
nonlinear convection di↵usion reaction equations. We test three methods: 1) the traditional
RBM with the residual-based error estimator �R

n and Petrov-Galerkin projection as the
reduced solver (i.e. (6) without P⇤); 2) the semi-traditional RBM with the residual-based
error estimator �R

n and the ROC solver (6); and finally 3) the proposed L1-ROC method
with the L1-based error indicator �L

n and the ROC solver (6).

3.1 L1-ROC for steady-state nonlinear problems

3.1.1 Viscous Burgers’ equation

First, we show the results of our algorithm applied to the one-dimensional (viscous) Burgers’
equation,

uux = µuxx,

u(x = �1) = 1, u(x = 1) = �1.
(12)
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Algorithm 2 L1-ROC algorithm for time dependent problems

1: Choose µ1, and set kµ1 = 1 the first temporal node to be t
kµ1

µ1 =

argmaxt2Tf
�
maxx uN (t, x;µ1)�minx uN (t, x;µ1)

�
. Define ⇠1 := uN (t

kµ1

µ1 , XN ;µ1).

2: Find x1

⇤ = argmaxx2XN |⇠1|, and let P⇤ = [ei1 ]
T , where i1 is the index of x1

⇤.
3: Initialize m = n = 1, Xm = Xn

s = {x1

⇤}, W1 = {⇠1} ,W1,m = P⇤W1, and X0

r = ;.
4: For n = 2, . . . , N
5: Solve the reduced problem for cn�1(µ, tk).

6: Find µn = argmaxµ2⌅train
�Lt

n�1
(µ), and a new temporal node t

kµn

µn =
argmaxt2Tf "(t;µ

n).

7: Solve ⇠n = uN (t
kµn

µn , XN ;µn).

8: Compute an interpolatory residual for ⇠n : find {↵j} and let ⇠n = ⇠n �
Pn�1

j=1
↵j⇠j

so that ⇠n(Xn�1

s ) = 0. Find xn
⇤ = argmaxx2XN /Xm |⇠n|, ⇠n = ⇠n/⇠n(xn

⇤ ). Let Xn
s =

Xn�1

s [ {xn
⇤}, and i1 be the index of xn

⇤ .

9: Form the full residual vector rn�1 = (bun�1)t (t
kµn

µn ;µn)+PN (XN , bun�1(t
kµn

µn ;µn);µn)�
f(XN , t

kµn

µn ). Compute an interpolatory residual rn�1 : find {↵j} and let rn�1 = rn�1 �Pn�2

j=1
↵jrj so that rn�1(Xn�2

r ) = 0. Find xn
⇤⇤ = argmaxx2XN /{Xm,xn

⇤ } |rn�1|.Let rn�1 =
rn�1/rn�1(xn

⇤⇤), and Xn�1

r = Xn�2

r [ {xn
⇤⇤}. i2 is the index of xn

⇤⇤.
10: Update Wn = {Wn�1, ⇠n},m = 2n� 1, Xm = Xn

s [Xn�1

r , P⇤ = [P⇤; (ei1)
T ; (ei2)

T ].
11: End For

Here the viscosity parameter µ varies on the interval D = [0.05, 1]. The computational
domain [�1, 1] is divided uniformly into N + 1 intervals with grid points denoted by

{x0, x1, . . . , xN+1}.

With h = 2

N+1
, the following finite di↵erence discretization based on the conservative form

of equation (12),
⇣

u2

2

⌘

x
� µuxx = 0, is then used

u2

i+1
� u2

i�1

4h
� µ

ui�1 � 2ui + ui+1

h2
= 0, i 2 {1, . . . ,N}. (13)

This leads to a nonlinear truth solver of size N to resolve (12). The parameter domain D is
sampled 50 times logarithmically spaced to form the training set for the O✏ine procedure.

We test our method on a subset of ⌅test of D that has empty intersection with the training
set ⌅train. We compute the relative errors E(n) over all µ in ⌅test of the reduced basis solution
using n basis functions, bun(µ), in comparison to the high fidelity truth approximation. That
is,

E(n) = max
µ2⌅test

⇢
ku(µ)� bun(µ)k1
kukL1(⌅test,L1(⌦))

�
(14)

where
||u||L1(⌅test,L1(⌦)) = max

µ2⌅test

ku(µ)k1.
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Figure 1: Steady viscous Burgers’ result. (Left) Histories of convergence for the error and
error estimator for the traditional residual-based RBM and proposed L1-ROC. Here, ER

and EL refer to the E(n) in (14) with the reduced solution bun constructed by following
the residual-based error estimator �R and L1-based importance indicator �L, respectively.
(Middle) Distribution of selected parameters µn, using estimator �R and �L, as a function
of n. (Right) Sample RB solutions at three parameter values themselves. Note that �L does
not decay to zero for large n, but such decay is not expected or needed for this function.

Error curves and the distribution of the first N = 10 selected parameters with N = 100
are showed in Figure 1. It shows a clear exponential convergence as n increases and a
concentration of the selected µ values toward the lower end of the parameter domain. The
error convergence of the L1-ROC (EL) matches that of the more expensive semi-traditional
RB (ER and �R) which is comparable to the most expensive traditional RB (ER

full
and �R

full
).

We also test the e↵ect of including more ROC points (EL
3N�2

) which shows no noticeable
improvement over the 2N � 1 scheme. We note that the distributions of chosen parameters
between the traditional residual-based scheme and the nascent L1-based scheme are very
much similar which underscores the reliability of the new L1-ROC approach.

3.1.2 Nonlinear reaction di↵usion equations

Here we consider the following cubic reaction di↵usion,

�µ2�u+ u(u� µ1)
2 = f(x) in ⌦ := [�1, 1]⇥ [�1, 1],

u = 0 on @⌦.
(15)

We take f(x) = 100 sin(2⇡x1) cos(2⇡x2), and the parameter domain D is set to be [0.2, 5]⇥
[0.2, 2]. D is discretized by a 128 ⇥ 64 uniform tensorial grid. Denoting the step size along
the µ1 direction by h1, and the other by h2, we specify the training set and test set as follows,

⌅train = (0.2 : 4h1 : 5)⇥ (0.2 : 4h2 : 2),

⌅test = ((0.2 + 2h1) : 4h1 : (5� 2h1))⇥ ((0.2 + 2h2) : 4h2 : (2� 2h2)),

where (a : h : b) denotes an equidistant mesh over [a, b] with stepsize h. Note in particular
that the two sets defined above are disjoint. The nonlinear solver, based on the 5-point stencil
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with
p
N interior points at each direction of ⌦, for the high fidelity truth approximation

linearizes, at the (`+ 1)th iteration, the equation according to

�µ2�u(`+1) + g0(u(`))u(`+1) = g0(u(`))u(`) � g(u(`), µ1) + f(x) (16)

where g(u;µ1) = u(u� µ1)
2.
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Figure 2: Cubic reaction di↵usion result. Top row:(Left) comparison of the histories of
convergence with

p
N = 400 for the errors and the error estimator for the ROC method.

Here, ER and EL refer to the E(n) in (14) with the reduced solution bun constructed by
following the residual-based error estimator �R and L1-based importance indicator �L,
respectively. (Middle) Selected N(= 40) parameters of the ROC method for residual-based
and L1-based approaches. (Right) cumulative runtime of the FDM, the residual-based, and
L1-based RBM. Bottom row: selected 40 collocation points XM

s from solutions (Left) and
39 collocation points XM

r from residual vector (Right).

Relative errors of the RB solution E(n) with K =
p
N = 400 are displayed in Figure

2 top left. Steady exponential convergence is again observed for the L1-ROC method. It
matches those of the more expensive semi-traditional (ER and �R) and traditional RB (ER

full

and �R
full

) methods. Again, raising the number of ROC points has no noticeable impact
as the L1-ROC already matches the traditional RBM. The set of selected parameters are
shown in Figure 2 top middle, while the collocation points are shown on the bottom row.
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We note again that the distributions of chosen parameters between the traditional residual-
based scheme and the more nascent L1-based scheme are quite similar for this example
underscoring the reliability of the L1-ROC approach.

Lastly, we showcase the vast saving of the o✏ine time for the L1-ROC approaches. Toward
that end, the comparison in cumulative computation time for the residual-based, L1-ROC,
and the high fidelity truth approximations is shown in Figure 2 top right. The initial nonzero
start of the L1-ROC corresponds to the o✏ine time. We observe that, when nrun > 172, L1-
ROC starts to save time in comparison to repeated runs of the truth solver. In that regard,
the residual-based ROC is e↵ective when nrun > 276 with

p
N = 200. The di↵erence in this

“break-even” point is because the overhead cost, devoted to calculating �L
n (for L1-ROC), is

significantly less than that for �R
n . The latter involves (an o✏ine-online decomposition of)

the calculation of the full residual norm while the former only requires, in the L1-ROC case,
obtaining an N ⇥ 1 vector and evaluating its L1-norm. It is worth noting that the “break-
even” number of runs is insensitive to

p
N . Though L1-ROC has a much more e�cient

o✏ine procedure than the residual-based ROC, their online time for any new parameter is
comparable, see Table 2. We observe that the L1-ROC method accelerates the iterative
truth solver by 2000 ⇠ 50000 times. The results also confirm that time consumption of
the online ROC methods is independent of K =

p
N . In order to demonstrate the time

savings more intuitively, we present the online calculation time for the di↵erent algorithms
in two di↵erent parameter regimes. The first regime is when µ1 is large and µ2 small, in
particular we choose µ1 = 4.55, µ2 = 0.42. The second regime has the relative sizes reversed.
The reduced solver requires 27 iterations for the nonlinear system in the first regime, while
only requiring 8 iterations in the second regime. Therefore, the full-order time consumption
seems very di↵erent. However, Table 2 does indicate a speedup range of 3000 ⇠ 17000 whenp
N = 400, 800.

(µ1, µ2) K Residual-based ROC L1-ROC Direct FDM

(4.55, 0.42)
200 0.003150 0.003159 2.310034
400 0.003067 0.003136 11.779558
800 0.003258 0.003162 53.727031

(1, 1.82)
200 0.001125 0.001060 0.662095
400 0.001141 0.001205 3.338956
800 0.001207 0.001261 15.173460

Table 2: Online computational times (seconds) with di↵erent grid sizes K, when N = 40.

Remark 2. The L1-ROC works well for other nonlinear convection di↵usion reaction equa-
tions. For example, we tested the dimensionless nonlinear nona�ne Poisson-Boltzmann
equation

Dr2u = sinh u+ g(x), with g(x) = exp[�50((x1 � 0.2)2 + (x2 + 0.1)2)] (17)

modeling a source distribution centered at (0.2,�0.1). The parameters are di↵usion coe�-
cient D and the voltage di↵erential V at the boundary. The authors have previously designed
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a RBM for this equation [32]. However, due to the desire to avoid applying EIM directly,
we observed limited speedup (less than one order of magnitude). With L1-ROC, we achieved
a speedup factor of up to four orders of magnitude, see Table 3. This significant progress
underscores the power of the L1-ROC approach. In addition, we tested an equation with
nonlinear convection term

�µ2�u+ u (kruk+ µ1)
1.5 = f(x). (18)

The L1-ROC works equally well on this example, see Table 4.

K Residual-based ROC L1-ROC Direct FDM
200 0.000678 0.000688 1.439812
400 0.000770 0.000646 6.492029
800 0.000728 0.000625 33.722112

Table 3: Online computational times (in seconds) for the Poisson-Boltzmann equation (17)
at di↵erent grid sizes K, when V = 3.85, D = 0.152, N = 30.

K Residual-based ROC L1-ROC Direct FDM
200 0.000422 0.000428 0.569732
400 0.000397 0.000410 2.838783
800 0.000424 0.000425 12.582593

Table 4: Online computational times (seconds) for the nonlinear convection di↵usion equa-
tion (18) at di↵erent grid sizes K, when N = 20, µ1 = 32, µ2 = 3.

3.1.3 Numerical comparison with POD and random generation

To further establish numerically the reliability of the L1-ROC algorithm, we compare it with
two alternative methods of building the reduced basis space. On one end, the proper orthog-
onal decomposition (POD) [22, 33, 48, 34] based on an exhaustive selection of snapshots (i.e.
we include all solutions uN (µ) for µ 2 ⌅train) produces the best reduced solution space and
thus the most accurate, albeit costly, surrogate solution. We note that this version of POD
only serves as reference and is in general not feasible as the full solution ensemble must be
generated. On the other end, a random selection of N parameters as our RB snapshots is a
fast but crude method. Comparison results of three steady-state test problems are shown in
Figure 3 with FDM points per dimension

p
N set to be 400 for first two cases (results with

di↵erent
p
N are similar) and

p
N = 100 for the third case. Not surprisingly, the exhaustive

POD is the most accurate. Our L1-ROC is one order of magnitude worse than POD, but in
fact slightly better or comparable to the the best possible random generation. It is roughly
one order of magnitude better than the median performance of random generations. The
cost comparison between L1-ROC and the POD approach is given in Figure 2 top right which
shows that the POD o✏ine cost is more than 5 times more costly than that of L1-ROC for
the cubic reaction di↵usion problem.
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Figure 3: Convergence comparison for the L1-ROC, exhaustive POD and (best, median, and
worst cases of) random generation approaches. (a) Poisson-Boltzmann equation (17) withp
N = 400, (b) cubic reaction di↵usion (15) with

p
N = 400, (c) steady viscous Burgers’

equation (12) with
p
N = 100.

3.2 Time dependent nonlinear problems

In this section, we test the time-dependent equations corresponding to stationary problems
in the last section, namely viscous Burgers’ and cubic reaction di↵usion equations.

3.2.1 Viscous Burgers’ equation

We test the viscous Burgers’ equation adopting settings similar to [41, 39]

ut + uux = µuxx + f(x), (x, t, µ) 2 (0, 1)⇥ (0, 1]⇥D,

u(x, t = 0;µ) = 0,

u(0, t;µ) = ↵, u(1, t;µ) = �.

(19)

The authors of [41] takes D = [0.1, 1], f = 0, T = 1,�t = 10�4, (↵, �) = (�1, 1) and monitor
the average error in a Frobenius norm-based metric,

Error =
1

mtest

mtestX

i=1

||u(·, ·;µ)� bu(·, ·;µ)||F
||u(·, ·;µ)||F

, kv(·, ·)k2F :=
X

x2XN ,ti2Tf

v(x, ti)
2

while the authors in [39] set D = [0.005, 1], f = 1, T = 2,�t = 2 · 10�6, (↵, �) = (0, 0) and
observe the error in L2. We investigate L1-ROC results from both of these setups. The
results are showed in Figure 4. These results are similar to those of [41, 39]. However, we
note that they come at a much smaller computational expense.

19



0 5 10 15

 n

10
-3

10
-2

10
-1

10
0

 E
r
r
o
r

Test Error

Train Error

0 5 10 15

  n

10
-2

10
-1

10
0

10
1

  
E

r
r
o

r

Test Error

Train Error

0 0.5 1 1.5 2

  t
k

10
-6

10
-4

10
-2

10
0

  
E

r
r
o

r

0.005

0.01

0.1

1

0 0.5 1 1.5 2

  t
k

10
-6

10
-4

10
-2

10
0

  
E

r
r
o

r

0.005

0.01

0.1

1

0 0.5 1 1.5 2

  t
k

10
-6

10
-4

10
-2

10
0

  
E

r
r
o

r

0.005

0.01

0.1

1

Figure 4: Transient viscous Burgers’ result. On the top row are the error curves of L1-ROC
with N = 15 basis elements for the setup in [41] (left) and [39] (right). Plotted at the
bottom are the actual L2 error, ||uN (:, tk;µ)� uN(:, tk;µ)|| as a function of discrete time tk.
The left, center and right plots show N = 5, 10, 15, respectively, each for parameter values
µ = 0.005, 0.01, 0.1, 1 with the setup as in [39].

3.2.2 Nonlinear reaction di↵usion problems

Next, we consider accordingly the following time dependent nonlinear reaction di↵usion
equation,

ut � µ2�u+ u(u� µ1)
2 = f(x), in ⌦ = [�1, 1]⇥ [�1, 1],

u = 0 on @⌦,

u(x, t = 0) = u0(x).

(20)

Here f(x) = 100 sin(2⇡x1) cos(2⇡x2), and [µ1, µ2] 2 D := [1, 5] ⇥ [0.2, 1]. The parameter
space D is discretized by a 128⇥ 32 uniform tensorial grid. Denoting the step size along the
µ1 direction by h1, and the other by h2, we specify the training and test sets as follows,

⌅train = (1 : 8h1 : 5)⇥ (0.2 : 2h2 : 1),

⌅test = ((1 + 2h1) : 4h1 : (5� 2h1))⇥ ((0.2 + h2) : 4h2 : (1� h2)),

For the truth approximation, we use backward Euler for time marching and the same non-
linear spatial solver as the steady-state case (16).
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We report the µ-component of the parameter values selected by L1-ROC in Figure 5
(top). Note that the RB space is built from the snapshots

n
u(t1µn , ·;µn), . . . , u(t

kµn

µn , ·;µn)
oN

n=1

.

That is, for each distinct parameter value µn chosen by L1-ROC, there are kµn � 1 time

level snapshots {t1µn , . . . , t
kµn

µn } ⇢ {t0, t1, . . . , tNt}. The red number label plotted next to
each µn value in the left pane denotes the corresponding value of kµn . It is interesting to
note that, consistent with the tendency of RBM selecting parameter values on the boundary
of the domain, our L1-ROC tends to select multiple snapshots along time for the selected
parameters along the boundary of the parameter domain. The right pane is the corresponding
3D-image of the left. The bottom row of Figure 5 shows the L1-ROC error curve, which
shows clear exponential convergence, and collocation points in the physical domain.
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Figure 5: Transient cubic reaction di↵usion result. Top Left: Selected parameters when
Nmax = 100. The number means corresponding parameter is selected at many di↵erent time
nodes. Top Right: a three-dimensional view of the selected parameters. Error curves of
L1-ROC algorithm, and collocation points from solutions and residuals are shown at the
bottom row from left fo right respectively.
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4 Conclusion

This paper proposes a novel reduced over-collocation method, dubbed L1-ROC, for e�-
ciently solving parameterized, nonlinear, nona�ne, and stationary or transient PDEs. By
integrating EIM technique on the solution snapshots and well-chosen residuals, the colloca-
tion philosophy, and the simplicity of the L1-based importance indicator that is extended
to time-dependent problems, L1-ROC has online computational complexity independent of
the degrees of freedom of the underlying FDM, and is furthermore immune from e�ciency
degradation due to a large number of EIM expansion terms. This expansion typically signif-
icantly degrades the e�ciency of a traditional RBM algorithm when applied to the nona�ne
and nonlinear terms in the equation. The lack of such precomputations of nonlinear and
nona�ne terms makes the method dramatically faster o✏ine and online, and significantly
simpler to implement than any existing RBM method. For future directions, we plan to
apply L1-ROC to systems of equations resulting from CFD systems with more complicated
nonlinear and nona�ne terms. A deeper understanding of the theory of this L1-ROC al-
gorithm, through exploring its connection with GEIM, is also under consideration. The
di�culties are two-fold. First, the much more challenging one, is to show the L1 indicator
leads to subspaces with distance converging similarly to that of the Kolmogorov N-width of
the solution manifold. The second, more amenable via the GEIM connection, is the stability
and error analysis of the ROC solver. Another interesting direction to explore is adaptivity
of the ROC points as time varies for the transient case, resulting in the ability to choose
di↵erent points for regimes with di↵erent solution behavior.
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