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HYPERBOLICITY-PRESERVING AND WELL-BALANCED
STOCHASTIC GALERKIN METHOD FOR SHALLOW WATER
EQUATIONS*

DIHAN DAI', YEKATERINA EPSHTEYN f, AND AKIL NARAYANT#

Abstract. A stochastic Galerkin formulation for a stochastic system of balanced or conser-
vation laws may fail to preserve hyperbolicity of the original system. In this work, we develop
a hyperbolicity-preserving stochastic Galerkin formulation for the one-dimensional shallow water
equations by carefully selecting the polynomial chaos expansion of the nonlinear ¢2/h term in terms
of the polynomial chaos expansions of the conserved variables. In addition, in an arbitrary finite
stochastic dimension, we establish a sufficient condition to guarantee hyperbolicity of the stochastic
Galerkin system through a finite number of conditions at stochastic quadrature points. Further, we
develop a well-balanced central-upwind scheme for the stochastic shallow water model and derive the
associated hyperbolicty-preserving CFL-type condition. The performance of the developed method
is illustrated on a number of challenging numerical tests.
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1. Introduction. The classical one-dimensional deterministic Saint-Venant sys-
tem of shallow water equations is,

(W)t +(9)x = 0,

@+ (L4 212 = —gnp
t h 9 . x>

(1.1)

where h = h(z,t) is the water height, ¢ = ¢(z,t) is the water discharge, g is the
gravitational constant, and B = B(z) is the time-independent bottom topography.
This system was first derived in [9] and since then has been widely used in modeling
the flows whose horizontal scales are significantly larger than vertical scales, such as
water flows in rivers, lakes and coastal areas. However, the accuracy and prediction
capabilities of shallow water models depend strongly on the presence of various un-
certainties that naturally arise in measuring or empirically approximating, e.g., the
bottom topography data, or initial and boundary conditions. Hence, it is important
to consider a stochastic version of the shallow water equations (SWE). In this work
we focus on uncertainty that results in parameterized SWE, where parameters are
modeled as random variables. In particular, we study the polynomial chaos expan-
sion (PCE) strategy, which is very effective when quantities of interest vary smoothly
with respect to the parameters.

There are two widely used classes of methods for addressing uncertainty in (pa-
rameterized) partial differential equations using PCE. One class, of non-intrusive
type methods, computes stochastic quantities by generating an ensemble of solutions
of realizations, each of which may be treated as a deterministic problem. Statistical
information is obtained from this ensemble by post-processing the ensemble solutions.
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Examples of such methods include Monte-Carlo-type methods that use randomly se-
lected samples, and the stochastic collocation methods that use a priori pre-selected
samples (e.g., [42, 31, 29]). Since they rely on multiple queries of existing determin-
istic solvers, non-intrusive methods are easy to implement and highly parallelizable,
but can result in less accurate approximations than the intrusive type methods.

The other group of methods are intrusive methods. Such methods typically re-
quire a substantial rewrite of legacy code and solvers. In the context of PCE methods,
the prototypical intrusive strategy is the stochastic Galerkin (SG) approach, wherein
one replaces an underlying stochastic process with its truncated PCE [40, 43], and then
forms a system of differential equations via Galerkin projection in stochastic space.
As a consequence, one derives a new system of partial differential equations whose
unknowns are (time- and space-varying) coefficients of the PCE. Intrusive methods
are projection-based approximations, and thus their accuracy is near-optimal in an
L? sense for static problems. Discussion on the existing convergence theory for SG
methods can be found, for example in [2, 27]. SG methods have been successfully em-
ployed for modeling uncertainty in diffusion models [44, 12], kinetic equations [17, 37],
and conservation and balanced laws with symmetric Jacobian matrices [39].

For hyperbolic systems, such as the SWE, the associated SG system may not
be hyperbolic in general [11, 18]. Thus, the intrusive SG formulation can result in
a system of differential equations of a different class than the original deterministic
system. There are currently several efforts to resolve this issue for more general types
of equations and to preserve hyperbolicity of the SG system. For quasilinear hyper-
bolic systems, hyperbolicity can be ensured by multiplying the SG formulation of the
system by the left eigenvector matrix of its flux Jacobian matrix [41]. Unfortunately
this transformation results in a non-conservative form and numerical solvers designed
for conservative formulations cannot be applied directly. A recent operator-splitting
based approach has been developed for both the Euler equations [8] and the SWE [7],
where the original systems are split into hyperbolic subsystems whose SG formulations
remain hyperbolic. However, this may still lead to complex eigenvalues due to the
mismatch in hyperbolicity sets of the subsystems [36]. Another strategy to resolve the
hyperbolicity issue of SG formulation is to introduce an appropriate change of vari-
ables. For example, the SG system of balanced/conservation laws in terms of entropic
variables can be shown to be hyperbolic [35, 34]. In addition, an optimization-based
method, called the intrusive polynomial moment method (IPMM), was proposed to
calculate the PCE of entropic variables given the PCE of the conserved variables
[11, 35, 34]. However, the optimization problem in IPMM that must be solved for
each cell and at each time step can be computationally expensive. There are also
strategies that employ Roe variable formulations: In [33, 15, 14], the flux of the SG
system is constructed using Roe variables and the conservative form of the system is
preserved. It has been shown that both the SG formulations of the Euler equation [33]
and the SWE [15] in terms of Roe variables are hyperbolic when using a Wiener-Haar
expansion. The SG formulation of the isothermal Euler equations in terms of Roe
variables is hyperbolic for any basis function under a positive definiteness condition
[15]. However, it can still be expensive to implement the Roe formulation since the
PCE of Roe variables need to be calculated by solving both a nonlinear equation and
a linear equation.

The SG formulation of the SWE may not be hyperbolic due to the PCE of the
nonlinear, non-polynomial term ¢2?/h [11]. This issue can be partially resolved by
using the Roe variables and the Wiener-Haar expansion[15, 14]. In this work, we
develop hyperbolicity-preserving SG PCE formulation for the SWE by carefully se-

2

This manuscript is for review purposes only.



90

131
132
133

lecting the PCE of ¢2/h term using only the PCE of the conserved variables. Further,
we establish a connection between the hyperbolicity of the SG system and the original
system. Namely, we show that preserving positivity of the water height a finite num-
ber of stochastic quadrature points is sufficient to preserving hyperbolicity of the SG
formulation of the SWE. In addition, we will present the well-balanced discretization
for our SG formulation of SWE, which preserves positivity of the water height at
certain quadrature points in the stochastic domain. In this paper, we adopt the filter
from [36] to ensure the positivity-preserving property of the algorithm at stochastic
quadrature points, which is one ingredient for ensuring hyperbolicity. However, one
can go further in filtering. For example, recent work [26] utilizes a more sophisticated
Lasso-regression-based filter to reduce oscillations of the numerical solution at shocks
in the spatial domain.

In this work, we consider central-upwind scheme as an example of the under-
lying numerical scheme for the stochastic shallow water equations. However, the
main ideas developed in this work are independent of the particular choice of the
numerical solver for hyperbolic problems and can be employed with various choices
of the numerical schemes for hyperbolic problems. The central Nessyahu-Tadmor
schemes, their generalization into higher resolution central schemes and semi-discrete
central-upwind schemes are a class of robust Godunov-type Riemann problem-free
projection-evolution methods for hyperbolic systems. They were originally developed
in [30, 25, 22]. The family of central-upwind schemes has been successfully applied
to problems in science and engineering, and in particular, to deterministic SWE and
related models. A second-order central-upwind scheme was first extended to SWE
in [20]. However, the scheme did not simultaneously satisfy the positivity-preserving
and well-balanced properties. It was improved in [23] where the developed method
captures the “lake-at-rest” steady state and preserves positivity of the water height.
We refer the interested reader to [24, 21, 5, 6, 28, 19] for examples of other closely re-
lated works. The numerical scheme developed in this work is mainly based on further
extension to stochastic SWE of the framework proposed in [22, 23].

This paper is organized as follows. In section 2, we introduce the stochastic SWE
and the SG discretization of the system using a particular choice of the PCE for ¢2/h.
In section 3, we discuss the hyperbolicity of the SG system obtained in section 2 and
present a sufficient condition to guarantee hyperbolicity of the SG SWE system. In
section 4, we present a well-balanced central-upwind scheme for the SG SWE model
and derive a hyperbolicty-preserving CFL-type condition. In section 5, we illustrate
the robustness of the developed numerical scheme with several challenging tests.

2. Modeling Stochastic Shallow Water Equations. This section sets up
the stochastic SWE problem and introduces notation used in this article.

2.1. Stochastic modeling of the SWE. We consider a complete probability
space (2, F, P), with event space 2, o-algebra F, and probability measure P. For
w € Q, a stochastic version of (1.1) is

(h(x7t7w)>t + (q(x,t,w))g; =0,

2 T w
(Q(xat7w))t + (W

(2.1) + ;ghQ(x,t,w)) = —gh(z,t,w)By(z,w),

T

where uncertainty enters the equation through, e.g., a stochastic model of the initial
conditions or of the bottom topography B. Here, we present a stochastic model of the
bottom topography. However, all our results generalize to other models of uncertainty
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(e.g., in the initial conditions). We model B as a finite-dimensional random field,
d
B = B(z,§) = Bo(z) + Z Bie(2)&k
k=1
where £ = (&1, ...,&4) is a d-dimensional random variable. Such a model can result, for

example, from truncation of an infinite-dimensional Karhunen-Loéve decomposition.
Under this model, the stochastic SWE model (2.1) can be written as a function of &,

(h(xatvg))t + (q(l',t,g))g; =0,

(ot )+ (FEEEE 4 3@ )) = —ghlant O Bule,6),

which, for the purposes of this paper, forms the continuous model problem for which
we seek to compute numerical solutions.

(2.2)

2.2. Polynomial chaos expansions. We assume that the random variable &
has a Lebesgue density p : R — R. Polynomial chaos expansions (PCE) seek to
approximate dependence on £ by a polynomial function of £. With v = (v1,...,14) €
]Ng a multi-index, then for ¢ € R¢ we adopt the standard notation,

d
¢ =1I¢ (0 =000 =1,
j=1

We let A C N¢ denote any non-empty, size-K finite set of multi-indices. We will
assume throughout that 0 = (0,0,---,0) € A. Our PCE approximations will take
place in a polynomial subspace defined by A:

Py = span{¢” ’ v e}, dim Py = K = [A].

We will also need “powers” of this set, defined by r-fold products of Pj elements:

.
. . K K+r—1
ro._ ) ) _ r _
(2.3) PA.—span{”p] |p]€PA,]—1,...,T}, dlmPA<(( - ))—( , ),

j=1
where the dimension bound results from a combinatoric argument. Note that since
0 € A, then P{ C Py for any r < s. We will later exercise the notation above for r = 3.

If p has finite polynomial moments of all orders, then there is an Lf) (R%)-orthonormal
basis {¢r}72, of Py, i.e.,

(2.4) <mm»:4mwmm@@:m, b1(6) =1,

for all k,¢ € {1,..., K}, with the latter identification of ¢; being an assumption we
make without loss since 0 € A. If y(z,t,-) € L2(R), then under mild conditions on
the probability measure p (see [13]) there exists a convergent expansion of y in these
basis functions,

L

1NN

y(l‘,t, )

Z Qk(‘ra t)¢k()7
k=1

where i (x, t) are (stochastic) Fourier coefficients in the basis {¢x }ren, and {¢ds}es
are any Lg(le -orthonormal basis for the orthogonal complement of P, in the space of
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all d-variate polynomials. A K-term Py PCE approximation of the stochastic process
y is then formed by truncating the summation above to terms in Phy:

K
(2.5) y(@,t,8) =~ ) ez, t)or(§) =: Galy](z, 1, §).

k=1
Above, we have defined the linear projection operator Gy : Lg — Py.

2.3. Operations on Truncated PCE Expansions. Polynomial statistics of
PCE expansions can be computed from a straightforward manipulation of their coef-
ficients. For example,

(2.6) E[GAly)(x,t,&)] = §1(x,t), Var[Galy](x,t,&)] Z

k=2

where E is the expectation operator, and Var is the variance. In contrast, computing
PCE expansions of nonlinear expressions is more complicated. To calculate the Ph-
truncated PCE of the product of two stochastic processes y(z,t,£) and z(z,t,£), we
introduce the notation

K
(2.7) QA[ ] = G [gA Z Z Uk 2e ¢k¢éa ¢m> ¢m(§)

m=1 , =1

The approximation above defines the pseudo-spectral product, which is a widely used
strategy for computing PCE expansion products (e.g. [10][15]). The pseudo-spectral
product is an exact projection onto Py of the product of two Py projections. Such an
operation can be cast in linear algebraic terms by considering vectors comprised of
the PCE expansion coefficients. Given y € Py, we will hereafter let § € R denote its
¢r-expansion coefficients. We now introduce the linear operator P : R¥ — RE*K |

(2.8) P(9) : ZykMkn My € RFXE, (Mi)em = (dr, Gedm) o,

where My, is a symmetric matrix for each k. The following properties hold:

—

(2.9)  P(H) = (MigIMagl--- Mgg),  PHZ=PE)y,  Galy, 2] = PH)2
where the last property is due to (2.7), and allows us to conclude the following.
LEMMA 2.1. Let a(£),b(§), (f) € Py have ¢j-expansion coefficients a,b,é € RX
respectively. Then (a,bc), = = aTP(b)eé.
Proof. Since a € Py, then

(a,b¢), = (be,a), = (Galb,cl.a), = a"Galb, o] =) aTP(b)e. O

We will also need to compute Pj truncations of ratios of processes (when for each
(z,t) the denominator is a single-signed process with probability 1). We start by
noting the following exact representation when y is a single-signed process:

(2'10) ga |:y Z:| (Z‘, t f) =0a [Z](Z‘, t f)
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We then use this to motivate the assumption,

z 2.9 [z N
(2.11) QA l:y, y:| = gA[Z] g:; P(y) <y> = Z.
This expression motivates the following definition for a new operator gj\ [i] :

5 K
(2.12) gl [y} ()= crdn(6),
k=1

—

where ¢; is the ith element of (5) defined by (2.11), assuming P(g) is invertible.

2.4. Stochastic Galerkin Formulation for Shallow Water Equations. We
start with (2.2) and perform a standard Galerkin procedure in stochastic (£) space
using polynomials from Py. IL.e., the first step is to replace h and g by the ansatz,

K K
(2.13) hohy =Y hi(z,t)¢;(8), g~ qn =Y d4;(x,1)6;(8),
k=1 k=1
respectively, and B by Ga[B]. Following this, we apply the projection operator Ga to
both sides of (2.2) and insist on equality. However, in addition we make the following
crucial assumption about how we approximate the term ¢2/h,
2

¢ _q @l i [aa
i QALLA}—QA[QAQA[}IA”

Performing these steps on (2.2) results in the system,

9 (h 0 q 0
2.14 — — Al N = P
(2.14) ot (d) + Ox (ég’P(h)h —+ P(d)P‘l(h)d> (—gP(h)BI) ’
where  and q are each length-K vectors whose entries are the coefficients introduced
in (2.13). With U = (h, )", and the flux and source terms

. q 7,B) = 0

then the system (2.14) can be written in general conservation law form,
with flux Jacobian

- OF
@17)  J(0) = s = <g7>(;1) _p

where we have introduced
(2.18) o =P L(h)g,

which can be viewed as the PCE coefficient vector of the velocity u :=
computation that gives the expression (2.17) for the Jacobian uses the proper
For more details, we refer interested readers to section 2.2 of [18].

We emphasize that (h,q) are the (x,t,&)-dependent solutions to the original sto-
chastic SWE equations (2.2), whereas (ha, qa) are the (z,t,&)-dependent solutions to
our SGSWE equations (2.16). In general, these two solutions are distinct. We first
articulate sufficient conditions under which (2.16) is a well-posed hyperbolic system.
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3. Hyperbolicity of The SG System. In this section we show that the sys-
tem (2.16) is hyperbolic under the condition that the matrix P(h) is positive definite.
When there is no uncertainty, this condition reduces to h > 0, which ensures hyper-
bolicity for the deterministic shallow water equations (1.1).

THEOREM 3.1. If the matrix ”P(ﬁ) is strictly positive definite, the SG formulation
(2.16) is hyperbolic.
oOF

Proof. We will show that the Jacobian 5 is diagonalizable with real eigenvalues.
Since P(h) is positive definite, then define

(31)  G=1\/gP(h), A= gG'P(§)G, B :=P(),

where v M is the (unique) symmetric positive definite square root of a symmetric
positive definite matrix M. Using these matrices, define

P 1 1 p-l_ 1 G'B-1 -G
' \B+G B-G)’ 1o\ 2)\-G'B-1T G )
where the formula for P, L can be verified by direct computation. Then a calculation
shows that

L, OF 1/ -2G-B-A A-B
1 —_
(8:2) Bt = 2( A-B 2G—B—A>’

which is symmetric. Thus 2% is similar to a diagonalizable matrix with real eigenval-
ues, and so is itself real diagonalizable. |

Remark 3.2. In the deterministic case, i.e, all the PCE coeflicients are zero except
possibly the very first coefficient and the matrix in (3.2) reduces to the eigenmatrix
that symmetrizes the deterministic Jacobian matrix and a diagonal matrix.

For the deterministic SWE (1.1), the velocity w is bounded between the smallest
and the largest eigenvalues of the Jacobian of the deterministic SWE. For the SG
formulation (2.14), we have an analogous relation.

PROPOSITION 3.3. The eigenvalues of the matriz P(i) are bounded between the
smallest and the largest eigenvalues of the Jacobian matriz J(U), i.e.,

(3'3) )‘maX(J(U)) = Amax (P('[‘)) > Amin (’P(ﬁ)) > )‘min(J([j))’

Proof. By the proof of Theorem 3.1, the matrix J (U) is similar to the sym-
metric matrix D = P| 12—5P1 defined in (3.2). For an arbitrary unit vector § =
(01,92, 9x)" € RE, then 2 = %[QT,yT]T € R?X is also a unit vector. Then,
(3.4) 2Dz = g P(a)y.

From the above relation, and using properties of the Rayleigh quotient for P (1),

Amax (P (@) > 2T D2 > Auin(P()),

where equalities can be achieved by proper selections of §. Using similar Rayleigh
quotient properties for D and noting that 2 ranges over a subset of IR?X, then

(35) )\maX(D) Z )\max (P(ﬁ)) Z >\min (P(ﬁ)> Z )\min(D)
The inequalities (3.3) follow since D is similar to J(U). d
7
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In the deterministic SWE, positivity of the water height i ensures hyperbolicity
of the PDE system. Theorem 3.1 shows that the stochastic variant of the positivity
condition is that P(E) is positive definite. Much of the rest of this paper is devoted
to deriving numerical procedures to guarantee this condition.

3.1. Positive definiteness of P(iL) In this subsection, we present a computa-

tionally convenient sufficient condition that guarantees P(h) > 0, and hence guaran-
tees hyperbolicity.

THEOREM 3.4. Given A, let nodes &, and weights T,,, satisfying {(&Em, mm) M, C
R? x (0,00) represent any M -point positive quadrature rule that is evact on P, e,

M
(3.6) / PEPE)dE = S p(En)Tms pe P,
R4 m=1
I
(3.7) ha(z,t,&m) >0 Vm=1,..., M,

then the SGSWE system (2.16) is hyperbolic.

Proof. We will show that (3.7) implies P(h) > 0, which in turn ensures hyperbol-
icity from Theorem 3.1. Let 2 = (ék)le be any nontrivial vector in R¥, and define

its associated Py polynomial z(&) = Zszl 2i¢k(€) # 0. Then z(¢) cannot vanish at
all quadrature points simultaneously since if it did we obtain the contradiction,

M
5 (3.6)
0# 217 = (2.2), = D> _2*(&)m =0,
j=1

where we have used the fact that Py C P3 to utilize (3.6). Then since the quadrature
rule is positive and (3.7) holds, we have

Lemma

M G 3 -
0< 3 hale,t,6)22(6)7 "2 (ha(e,t,€),22(6)) GV Tz,

j=1
establishing that P(h) is positive definite. d

Thus, by guaranteeing positivity of hy at a finite number of points, we can ensure
hyperbolicity of the SGSWE system. For arbitrary stochastic dimension d and poly-
nomial space Py, there is a worst-case upper bound on the size of this finite set.

COROLLARY 3.5. There is some M < dim Pg < W such that the dis-
crete pointwise positivity condition (3.7) guarantees hyperbolicity of (2.16).

We give the proof in Lemma B.2 in the Appendix. One might consider the somewhat
simpler condition of restricting hy > 0 for hyperbolicity since h; is the expected value
of hp. This condition is actually implied by the condition in Theorem 3.4.

COROLLARY 3.6. If the conditions of Theorem 3.4 are satisfied, then hy > 0.
Proof. Since 7; > 0 and ha > 0 at the quadrature points, then

M
ill = \/]Rd hA(.T,t, C)p(C)dC = Zh[\(x’t’gj)’rj > 0’ D

j=1
8
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A computable condition ensuring hyperbolicity therefore requires a positive quad-
rature rule that is exact on P3§. For general densities p over R?, computing such a
quadrature rule is a very difficult task. But this is possible in specialized cases.

For example, if d = 1 and A = {0,1,..., K — 1}, then an optimal choice of
positive quadrature is the p-Gaussian quadrature. Since Py = span{1,¢,...,¢3% =3},
then choosing the positive M-point Gaussian quadrature,

1
S 2 Em)

with M > (%W —1 satisfies the conditions of Theorem 3.4 (and does so with substan-
tially fewer points than the ~ K?/6 worst-case bound from Corollary 3.5). Gaussian
quadrature rules have real-valued nodes and positive weights [38].

In spaces with d > 1, if p is tensorial, then tensorizing Gauss quadrature rules
achieves similar results. I.e., assume

{&n M) = 63111(0), T =

d
p(&) =[] ps(&), {eRY,
J=1
We can always enclose Py within a tensor-product polynomial space:
PE C P3poo = {)\ € lNg | Ay <3ky for J = 1,...,d}, Ky = maxvy.
ve

For a fixed J € {1,...,d}, let {(57(,’;]’)]\4'],7'7(:’3\4‘])}%;1 denote the M; = ([252] — 1)-
point ps-Gaussian quadrature rule on IR. Then the tensorization of these d univariate
quadrature rules results in an M = (Hfi,:l M J)—point positive quadrature rule that

is exact on Psp, o, hence on Pﬁ, and thus satisfies the conditions of Theorem 3.4.

4. Numerical Scheme for Stochastic Shallow Water Equations. In this
section, we derive a well-balanced central-upwind scheme that preserves the hyper-
bolicity of the SG formulation (2.16) at every time step.

4.1. Central-Upwind Scheme for the SG System. We first introduce the
central-upwind scheme for the SG system (2.16). Appendix A provides a brief sum-
mary of the second-order central-upwind schemes for balance laws. With {C;}Y, a
partition of a bounded closed interval, let Tyl denote the partition boundaries, and

define the cell average of the vector U over the ith cell C; = [xi_%,xi+%] as,

T h'(ﬂ) 1 / <’5($ t)) 2k
U;(t)=(_" = — N dr € R“*.
®) (qi(t) Ax C 4(z,t)
We have introduced notation for common quantities in finite volume-type schemes.
While Uy, is the kth component of the vector U, the bold letter U with subscripts and

superscripts is used here to introduce the cell averages and pointwise reconstructions,
respectively, of the vector U (x, t). Le., U, , is the approximated value of U at the left-
2

hand side of spatial location z = z,, 1 which is reconstructed from the cell averages

U;. A similar reasoning applies to (h, h, izk) and (q, g, §x). To minimize clutter, we will
notationally suppress ¢ dependence from here onward. The possible discontinuities of

9
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the system (2.16) at the cell interface x = Tig1s where C; = {xi_%,xi+%}, propagates
with left- and right-sided local speeds that can be estimated by,

ar,, =min{\ (J(U7 ) x (7(UF)) 0},

af,, =max{dax (J(UZ)) e (J(UF,)) 0},

where A\; < Ay < -+ < Ak are the eigenvalues of the J(-) in (2.17), and U ,
2

and U;:_ , are the left- and right-sided pointwise reconstructions in the ith cell. The
2

(4.1)

semi-discrete form of the central-upwind scheme for the SG system (2.16) reads as,

TR s A St S S~ [ SU B
: dt ' Ax v " Az e, ’

with S; a well-balanced discretization of the source term, which we discuss below.
With F the flux term in (2.15), the numerical flux F is given by

GLAF(U;;) —a;rlF(U;;l) az‘++la;+l

. 2 2 2 2 2 2 + -

(4.3)  Fiypy= at  —a- + at  —a [Ui+% B Ui+%:| )
i+3 i+3 i+3 i+3

4.2. Well-Balanced Property. In applications of the deterministic SWE, sim-
ulations should accurately capture the so-called “lake-at-rest” steady state solution,
or small perturbations of the lake-at-rest steady state. A well-balanced numerical
scheme for the SWE captures the lake-at-rest solution exactly at discrete level. An
analogous lake-at-rest state for the stochastic shallow water equations (2.14) is
(4.4) qa(z,t,8) =0,  ha+ GalB|(z,t,§) = C(S),
where C(€) depends only on . This solution corresponds to still water with a flat
stochastic water surface. Equation (4.4) can be rewritten in the vector form,

(4.5) G§=0, h+B=C.

In order to derive a well-balanced central upwind scheme for the SGSWE, we first
replace the original bottom function B by its continuous linear interpolant. At every
time step, we compute the PCE vector for the cell averages of the water surface by
Ww; = h; + B, and the pointwise reconstructions of the water surface by Wi_ 1 using

a generalized minmod limiter (see Appendix A). The pointwise reconstructions of the
water height are then computed by

(4.6) h;i% = w;i% ~-Bi, 1,

where B, 1 is the PCE vector for G [B(xH_% . f)] . The numerical fluxes {7 1 W

are subsequently computed using the reconstructed PCE of the water height defined
n (4.6). After that, the well-balanced property of the scheme is ensured by a special
choice of the source term S;.

LEMMA 4.1. With Bii% the PCE vectors for Gu {B(mii%,t,f)} ,
if we choose

_ 0
(@.7) Si = (—Almgp(hi) (Biry - Bié)) ’

then the central-upwind scheme (4.2) satisfies the well-balanced property.
10
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Proof. We have B; = (Biy1 +B;_1)/2, and the cell average PCE vector of the

water surface w; == Ei + Ei. Let the pointwise reconstructions for water surface be
wji 1 Assume that at time ¢, the stochastic water surface is flat and the water is
still, i.e., W; = w* is a constant vector for all ¢, and q; = 0. Then a second-order
piecewise linear reconstruction procedure produces wi% =w" and qir% = 0. Hence,

the numerical flux defined in (4.3) becomes,

(48) F, _( X >_' o
) 2 \GPWT =By )(wr—=Bi1)) Fia)

_ 7 —7\T
Then with S; = (SiTJ, S:2) , the corresponding semidiscrete form is

iHi:§z,1
(4.9) ‘g . .
— __7g *_ *_ _ *_ *_ 7_
2 =22 [Pw =B )(w ~B) - P(w' —B,_)(w ~B,_))| +8.

To balance these equations, we choose §i71 and §i72 so that the right-hand side
vanishes. Clearly we need S; ; = 0. To simplify the computation for S; 5, let AB; =
B 1 —B;_1, then B, = B 11— 1AB; = B 1+ 1AB;. By linearity of the operator
P and the property (2.9),

_ ]_g'

2= 375 [PV = Biy)(w —Biy) ~P(w' ~B,_y)(w' ~B,_,)|
1g]J — 1 - 1
=2 * _ B, — ~AB; * _ B, — —AB;
535 [P (v =B 5am) (v B 3am)
“_B,+aB,) (w' —B, + 1aAB
(4.10) —P|\w =B+ SAB; | [w" —B; + SAB; O
N AB; -
B B,.-B, . . B,.1 B, .
=—gP(w" - Bj) (m) = —gP( z>< AL )

In the meantime, (4.7) reduces to the deterministic well-balanced quadrature ap-
proximation when there is no uncertainty. The deterministic formula is obtained by
applying the midpoint quadrature rule to the cell averages (4.2) with the derivative

term B, (x;) approximated by the finite difference (Bi+% - Bi_%> /Ax [23].
4.3. Hyperbolicity-Preserving CFL-type conditions. To determine

hyperbolicity-preserving CFL-type conditions, we focus on the first K equations in
(4.2) which prescribe evolution of h;,

d— 1 i i
(4.11) o= [P0 - FlL o),
where
+ q— -t + -

. a’ 9., 1 —a. 1q a’ ,a. .

7 ity Yty i+s tits its its + W
(4.12) -7'—”% - 2a+ - —a — at 2_ aj [hi+§ hz+%

ity i+3 it3 it+3

11
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A fully discrete version of (4.11) computes the unknowns at fixed values of time, ¢,
o -

n € Ny, with ¢* < ¢t"T1. For example, with h; the numerical approximation to h;(t"),

and At" = t"T! — ¢ the Forward Euler discretization of (4.11) reads,

—n—+1 T—n n h n h n n Ar*
(4.13) h, =h;, — ] |:.7'—Zh+%(t )*]‘—i}i%(t ) A= Ar,

The following CFL condition guarantees hyperbolicity of the system (4.13) at t = ¢"+!
for all cell averages, by enforcing the positivity condition prescribed in Theorem 3.4.

LEMMA 4.2. Let {fj}jM:l be the nodes of a quadrature rule satisfying the condi-
tions of Theorem 3.4. Assume that H?(fj) > 0 for1 <j <M. If At" satisfies

h)Td(¢:
(4.14) A" < At} = 1éni<nM Ax; . (h;) : (&) .
(7 ) = Py (1) ()

then the flux Jacobian (2.17), J (ﬁ?“) 15 diagonalizable with real eigenvalues.
Proof. Theorem 3.4 guarantees the conclusion if H?H(fj) >0,for1<j<M,so

we proceed to show this latter property. For each j, the inequality

(115)  0< (W)TB(E) = (W) R(E) X [Fh (1)~ 7 (1] ()

K2

holds if we choose

(h;)T®(¢;)
Fh () = Fy (1)] @(6))

At" .
= min

=\'<
Ax; YoM {

Multiplying both sides by Az; and minimizing over ¢ yields the conclusion.

The condition (4.14) ensures positivity of the water height, but we also need to
adhere to standard wavespeed-based CFL stability conditions. Thus, we will choose

Ax;
(4.16) Atno.gmin{mz,mm el }
i max{a ,,—a. .}
i+3 i+3

To extend these conditions to hold higher-order schemes, we use strong stability-
preserving Runge-Kutta schemes [16] to solve the semidiscrete system (4.2). The
analysis above for the condition (4.14) still holds for this solver since the ODE solver
can be written as a convex combination of several forward Euler steps. However, an
adaptive time-step control needs to be adopted to determine the time step [6, 19].
The analysis above can also be naturally extended to any other finite volume solvers.

Remark 4.3. The CFL condition (4.14) can be relaxed if the signs of the fluxes
are taken into account in the inequality (4.15). In implementation, this can be used
to reduce the simulation time.

It is important to note that, the CFL-type condition provided above is limited
to the cell averages. For the second-order (or higher-order) central-upwind scheme,
additional correction is required for the pointwise reconstructions Ui , to ensure

2

hyperbolicity of (4.13). Similarly, special correction is needed for the near-dry states,
where the matrices P(hi;) are close to singular, to ensure hyperbolicity.
2

12
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4.3.1. Hyperbolicity-Preserving Correction to the Reconstruction. As-
suming (E?)TQ(@) > 0, we are able to enforce (E?H)T@(fj) >0forj=1,---,M
under the CFL-type condition (4.16), see Lemma 4.2. However, the one-sided propa-
gation speeds (4.1) in the central-upwind scheme (4.13) are estimated by the eigenval-
ues of the Jacobian g—g using the pointwise values at the cell interfaces. Thus, compu-
tation of these wave speeds requires positivity of the pointwise reconstruction at quad-

rature points, i.e., (hil)T'iI’(fj) > 0, which is not guaranteed by (h;)T®(¢;) > 0.
2
To resolve this problem, we use the filtering strategy proposed in [36] to filter hii+l'
2

Given a polynomial py(§) = Zszl Jror(§) with positive moment ¢, we find the
smallest possible weight 1/ such that the weighted averages of the polynomial py(§)

and the moment §; are nonnegative at given quadrature points {¢; }jj\il, ie.,
K

417) g+ (1= ipg(©) =0 e gu+ > (11— p)gror(&) > 0,5 =1,---, M,
k=2

and the coefficients of the polynomial are filtered by
(418) y1 =11, yk:(l_ﬂ)gkak:Z'”’Kv

where 1 = min{y’ + 6,1}, and we select § = 107! in our scheme. Hence, the filtered
polynomial py(&) = Zle yr(§) is positive at given quadrature points {¢; }]Ail We
filter py(§) = Zszl ok (&) and pz(€) = Zszl 20 (€) simultaneously by calculating
the individual filtering parameters ,u; and p, for py(€) and pz (), respectively, through
(4.17). Then the simultaneous filtering parameter is set to u = min{uy +6, u% + 9, 1}.

We will exercise the filtering strategy (4.17)-(4.18) for pointwise reconstructions.
We compute the filtering parameter p}* at time ¢ = ¢" for the ith cell for (hj;%)T'I'(g )

according to (4.17). The pointwise reconstructions h; , are then filtered by
2

+ — (p* + =(1— ™) (hE =9 ...
(4.19) (hiﬂF%)l N <hi¢%)1’ (hi%)k = (=) (hi%)k k=2 K
The corresponding cell average is adjusted accordingly in order to remain consistent,

1
_ + -
(4.20) i =3 (hi_% + hi+%) .

Remark 4.4. To reduce oscillations in ga(x,t, ), we can also filter the discharge

reconstructions qii 1. The corresponding cell average needs to be adjusted similarly

( 2
to (4.20). In subsection 5.3 when («, ) = (1, 3), we adopt this filtering approach to
reduce oscillations in the discharge.

As an alternative to the filtering above, one can use a convex-optimization based
method [4] to enforce the positivity of (hii¥ 1) T®(€) at quadrature points {£;}12,.
2

4.3.2. Near-Dry State Correction. When the polynomial (h;)T®(¢) ~ 0,
two issues related to the dry state may occur. One is that the first moments of the

polynomials (h;.';l)T@(f) may become nonpositive. This can happen even when the
2
system is deterministic [23]. Nonpositive first moments may lead to the failure of the

13
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filtering correction (4.17)-(4.18). In our scheme, we adopt the following correction for

nonpositive first moments. Denote the first moments of h; 1 by (h?; 1 ) , then
2 2/1

: + + F _ o
(4.21) if (hi%)1 <0 then take %, =0, hY,, = 2h;.
Note that, this strategy reduces to a similar correction in the central-upwind scheme
for the deterministic shallow water equations [23].
Another issue may happen when the matrix P(h;_ 1) or P(h, 4 ) isill-conditioned,
2 2
which may lead to problems with round-off errors when solving the corresponding
linear system (2.18). To resolve this issue, we extend to the stochastic model the
desingularization process for the deterministic problem [23, 19]. We demonstrate our

correction using the matrix ’P(h;_l) as an example. Let
2

P(h;,,)=Q'TIQ,

be the eigenvalue decomposition for P(h; 41
2
k=1,...,K and a given € > 0, define

), where II = diag(Ay, -+, k). For

2A
(422) " = diag()‘iora T ’/\;?r>’ /\2Olr = \[ r .
VAL + max{\}, €t}

In our scheme we choose ¢ = Azx. Then, the corrected PCE coefficient vector for the
velocity u; is given by
2

— o T yrcor —
(4.23) L =Q1II qu%'

For well-conditioned P(h;, ), the correction (4.23) reduces to the system (2.18), but
2

when 77(h;r 1) is near singular, the discharge needs to be recomputed,
2

(4.24) a ., =P, u;,,

in order to keep the scheme consistent.

Remark 4.5. If there is no uncertainty, the correction (4.22)-(4.23) reduces to the
deterministic velocity desingularization in [23, 19].

5. Numerical Results. In this section, we summarize numerical tests to illus-
trate robustness of the proposed schemes for the SGSWE system (2.16) with different
uncertainty models and parametric distributions. For simplicity we consider only
one-dimensional stochastic spaces (d = 1) associated to a Beta density over [—1, 1],

p(&) = pl@P (&) = Cle, B)(1 = ©)*(1+&)°, Cla, )t =22 B(B+1,a+1)

where B(-,-) is the Beta function, and the parameters «, 5 > —1 can be chosen freely

and control how mass concentrates at £ = 1 and & = —1, respectively. In particular

a = 3 = 0 corresponds to the uniform distribution on [—1, 1]. The numerical examples

in the coming sections consist of the following numerical experiments:

e subsection 5.1: Stochastic bottom topography model, comparing the SGSWE so-
lution (2.16) with K =9 and K = 17 with the uniform density, « = 8 = 0. The
results are compared against a K = 9 stochastic collocation solution computed with

14
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S = 100 stochastic points. The stochastic collocation solution for, e.g., the water
height h, is computed via quadrature,

S

K
hSC(m7ta£) = Z }ALSC,j(xvt)Qi)k(g)a iLSC,j(xvt) = Zh(xata CS)¢j(Cs)Zs
j=1

s=1

where {(, 2,}2_; is the S-point p-Gaussian quadrature rule, and h(z,t,(,) is a
numerical solution to a deterministic specialization of the SWE (2.2) obtained by
setting £ = (s and numerically solved using a deterministic central-upwind scheme.

e subsection 5.2: Stochastic water surface model, testing the well-balanced property
of the scheme with « = 8 =10

e subsection 5.3: Stochastic discontinuous bottom topography model, investigating
the effects of different values of M used to enforce P(h) > 0. This example also
investigates different distributions, with (¢, 8) = (3,1) and («, 8) = (1, 3).

The parameter 6 in the generalized minmod limiter is set to § = 1.3 for the first
two examples, and # = 1 for the third example. The gravitational constant ¢ is set
to g = 1 for the first two examples, and g = 2 for the last example. We filter only
the water heights hj except in the very last numerical test. In the third numerical
example, when (a, 8) = (1,3), we filter both the water heights and the discharges
of the water. In all examples, the CFL condition we use in our simulation is (4.16).
However, we observe that in practice, a relaxed time step cAt"™(c > 1) will not result
in loss of hyperbolicity and the plots are similar visually to the results obtained from
the condition (4.16). We believe this is because condition (3.7) is only a sufficient but
not a necessary condition to the hyperbolicity of SGSWE.

Our numerical results will report quantile regions indicating the range of behavior
for solutions. These quantile regions are computed empirically by computing the
corresponding PCEs on 10° randomly sampled points from the density p on [—1,1].

For a fixed spatial grid, the computational cost depends on the dimension K of the
chosen polynomial subspace Py. In order to compute the propagation speeds (4.1),
the eigenvalues of the 2K x 2K Jacobian J(U) matrix must be computed, making
this cost increase as K increases. In addition, to preserve hyperbolicity, we need to
ensure the positivity of the water height at all the quadrature points for every spatial-
temporal point (Theorem 3.1). Therefore, the cost for preserving the hyperbolicity
is at most of order O(K?) per cell per time step (Corollary 3.5). These relations are
formally independent of the dimension d of the stochastic space, but in practice K
can grow considerably as d is increased. For example, one may choose Py to be the
space of the polynomials with degree up to L. In this case, K = (L;i"d). When L > d,
as d increases, K increases and also therefore does the computational cost. In this
paper, we only consider numerically the case d = 1. We plan to investigate higher
dimensional stochastic space in a future work. However, note that the developed
theory in section 2 and section 3 extends to d > 1.

5.1. Stochastic Bottom Topography. We consider the shallow water system
with deterministic initial conditions

1 <0
5.1 0) = 0)=0
CRY w(z,0) {0_5 T, d@o=o,

and with a stochastic bottom topography
{0.125(cos(57m:) +2) 4+ 0.125¢, |z| < 0.2

5.2 B(x,§) = '
(5.2) (z,€) 0.125 + 0.125¢,  otherwise
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In this example, we model £ as a uniform random variable (o« = 8 = 0). The cor-
responding orthonormal basis functions ¢; are the orthonormal Legendre polynomials
on [—1, 1] with density p(§) = % Initially, the highest possible bottom barely touches
the initial water surface at x = 0.5. In Figure 1 and Figure 2, we use a uniform
grid size Ax over the physical domain z € [—1, 1], and compute up to terminal time
t = 0.8. We present the numerical solutions for K = 9 and K = 17 using M = 17
and M = 33-point Gaussian quadrature nodes, respectively, to enforce the positivity
condition (3.7).

Water surface (T = 0.8) Water surface (T = 0.8)
1 10.018 1 10.016
‘ 70.016 10.014
0.8+ 1
e 0014 o012
» 0.2-0.8 quantile . H0.012 » 0.2-0.8 quantile ’ i
o 0.6 0.005-0.995 quantile K} 06 0.005-0.995 quantile i | 10.01
Cha surface mean loo1 8 Cha surface mean | 3
s --=-== surface variance S s --=-=- surface variance i 0.008 &
; - - - *bottom mean 10.008 § ; ] §
©04r 5 ! 1 0.006
@ 10.006 @ H
i
i 10.004
0.2 g 0.004 :
.
------------- . 0.002 ----|0.002
0 = R 0 o

-1 -0.5 0 0.5 1

10.015

» 0.2-0.8 quantile 10.01
K 06 0.005-0.995 quantile
e surface mean 3
o - urface variance 7%
> - bottom mean 5
L >
T 04
@ O 0.005
g 1
i
i
02 ¢
i

Fic. 1. Results for subsection 5.1, water surfaces. Top left: stochastic Galerkin, K =9, Ax =
1/800. Top right: stochastic Galerkin, K = 17,Axz = 1/800. Bottom: stochastic collocation,
K =9,Az =1/800.

The 99% confidence region of the water surface stays above the 99% confidence
region of the bottom function in the first three (top left, top right, bottom left)
subfigures in Figure 1.

For reference and comparison, a solution obtained by the stochastic collocation
method (100 quadrature points, K = 9-term PCE as explained in section 5) is com-
puted. Results for water surface and discharge are shown in the right subfigures of
Figure 1 and Figure 2, respectively. We note that the stochastic collocation solution is
a different PDE model, so we do not necessarily expect the numerical results from the
SG and SC solvers to be identical for a fixed, finite K. In particular, we do not expect
“convergence” of one model to the other as, say S 1 oo and/or Az | 0. However,
the results in the figures do show substantial similarity between these solutions. The
numerical solution obtained from the collocation method is less oscillatory near sharp
gradients of water surface and discharges.

We observe small oscillations near sharp gradients of the water surface and dis-
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F1a. 2. Results for subsection 5.1, discharges. Top left: stochastic Galerkin, K = 9,Ax =
1/800. Top right: stochastic Galerkin, K = 17,Ax = 1/800. Bottom: stochastic collocation,
K =9,Az =1/800.

charge in all of the figures. We investigate the oscillations for the discharge more
carefully in Figure 3. We observe that both higher resolution and larger K can re-
duce the magnitude of the oscillations that appear in quantiles.

5.2. Stochastic Water Surface. Consider a stochastic shallow water system
with a deterministic bottom function

10(z — 0.3), 0.3<z<04,

1 —0.0025sin?(25(7(z — 0.4))), 0.4 <z < 0.6,
63 Blo)- 2otz =00

—10(z — 0.7), 0.6 <z<0.7,

0 otherwise,

and a stochastic water surface,

1.001 4+ 0.001¢ 0.1 <z < 0.2,

,0,6) =0.
1 otherwise, a(w,0,¢)

(5-4) w(z,0,§) =

We again model ¢ as a uniform random variable (o« = § = 0) with K = 9. A small
uncertain region was originally at 0.1 < z < 0.2, where the water surface is slightly
perturbed. The 17-point p-Gaussian quadrature rule is used to enforce the condition
(3.7) to guarantee hyperbolicity. We compute the cell averages of the vector of PCE
coefficients for water surface and discharges at terminal time ¢ = 1.0 on the physical
domain [—1, 1] with uniform grid size Az = 1/400. We observe from the mid figure of
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Fic. 3. Results for subsection 5.1, discharges on [0,0.3] for different values of K and Ax, zoom
view. Top: K =9; bottom: K = 13. Left: Ax = 1/200; middle: Az = 1/400; right Az = 1/800.

Figure 4 that the perturbed water surface with uncertainties propagate along different
directions. The right-moving wave interacts with the nonflat bottom and get partially
reflected. The magnitude of the uncertainties doesn’t seem to exceed the magnitude
of the initial uncertainties, which illustrate the well-balanced property of our scheme.

5.3. Stochastic Discontinuous Bottom. For our last example, consider the
shallow water system with deterministic initial conditions,

10 2<05
ww0.9=9 50 2505

50 z<0.5,

5.5
(5:5) 1.6 2> 0.5,

w(,0,8) = {

and a stochastic discontinuous bottom

B {1.5+0.1§ z<0.5,

(5.6) B(z,§)

114016 x> 0.5,

where initially we model ¢ as a random variable with Beta density defined by («, 8) =
(3,1), which is more concentrated toward £ = —1, and hence the bottom topography
has higher probability of having smaller values. At time ¢ = 0, the highest possible
bottom barely touches the initial water height at x = 0.5. We compute the numerical
solutions of K = 9-term PCE with an M = 17-point p-Gaussian quadrature to enforce
the condition (3.7). We compute on a physical domain = € [0, 1] with uniform cell
size Az = 1/400 up to terminal time ¢ = 0.15.

In this example we observe over- and undershoots in the neighborhood of the
bottom discontinuity for both the water surface w and the discharge g (see Figure 5).
This phenomenon also occurs in deterministic version of (5.5)-(5.6) when numerical
solutions are computed using the schemes from [1, 32]. In addition we observe in this
example a numerical artifact resulting from our enforcement of positivity of the water
height (3.7) at only a finite number of points: although the 99% quantile region of
water heights lies above 0, the £-global minimum of the water height in some cells
can still be negative. Since P(h) > 0 only requires positivity of hy at a finite number
of points, there are (low-probability) regions of the domain where the height can be
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Fic. 4. Results for subsection 5.2: water surface (left), zoomed water surface (mid), and
discharge (right) at t =1 for (5.3)-(5.4), K = 9.

Discharge (T = 0.15)

Water surface (T = 0.15)
5 10.7 6 45
0.6 51 ¢
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Fic. 5. subsection 5.3 results: K =9, t = 0.15, (o, 8) = (3,1). Left figure: water surface and
bottom. Right figure: discharge.

negative. Note, however, that the SGSWE system is still hyperbolic and simulation
can continue, despite low probability of negative water height.

Nevertheless, the existence of negative water heights impose doubts on the ap-
plicability of the SGSWE model. Fortunately, this situation can be mitigated by
increasing the number of points M where positivity of hy is enforced. We observe
that if the positivity of the water height is enforced at more points, the stochastic
region of negative height shrinks. We demonstrate this with results in Table 1. In
particular we observe that (a) the negative region occurs on a subinterval containing
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630
631
632
633
634

635
636
637

638

639

640

641

642

643

644

645

646

647

M max,, &m Negative Region Njs Pr[¢ € N

15 0.934077 [0.934079, 1] 5.75 x 1076

17 0.946839 [0.946899, 1] 2.43 x 10~

19 0.956205 [0.956320, 1] 1.12 x 1076

21 0.963310 [0.963980, 1] 5.18 x 107
TABLE 1

Numerical study of &-region and associated probabilities where the water height is negative.

¢ values greater than the maximum quadrature point, and (b) the probability of &
lying in this region is quite small.

In a separate experiment, we also compute the numerical results when £ is modeled
as random according to a («a, ) = (1,3) distribution, which is more concentrated
toward £ = 1. Figure 6 shows that at the terminal time the “pressure” from stochastic
bottom that skews positively causes more oscillations on the water surface and the
discharge compared to Figure 5. In this experiment, we filter both the water heights
and the discharges.

Water surface (T = 0.15) Discharge (T = 0.15)
5 10.7 51 15
los 4 J‘__——W
14
10.5 3r
123 [%]
% 3 0.2-0.8 quantile ® % 5 3 o
s 0.005-0.995 quantile 104 ¢ s 27 8
[ surface mean o < 45 /-—/\’v~ c
o | |7 surface variance 103 S o 1t <
}EZ’ = = = ‘bottom mean i S 12
» 1z} 4
---------------- ] ol 0208 - 0.4 0.5 0.6
.2-0.8 quantile
1t 0.005-0.995 quantile 11
R discharge mean
------- discharge variance
0 -2 0
0 0.2 0 0.2 0.4 0.6 0.8 1

Fi1G. 6. Numerical results with (o, 8) = (1,3), K =9, t = 0.15. Left figure: water surface and
bottom. Right figure: discharge.

Appendix A. The Semi-Discrete Second-Order Central-Upwind
Scheme. We briefly describe the central-upwind schemes for 1-D balance laws. For
a complete description and derivation, we refer to [22]. Consider the balance law,

(A1) U, + (F(U)), = S(U)

For a uniform mesh with cells C; := [xi_l/Q,mi_;'_l/Q] of size |C;| = Az, centered at

= (Ti_1/2 + mi+1/2)/2, and assume that at certain a time level, the cell averages
—n 1 1

(A.2) U~ /Uz(t o = /c Ule, ")dz

are available. The cell averages are then used to construct a non-oscillatory second-
order linear piecewise reconstructions,

(A.3) U (z) = U + (Uy)i(z — 2), z€C,
whose slopes (U,); are obtained by generalized minmod limiter,
U, - Ur U, - UL, UT UL,
Az ’ 2Az ’ Az

)

(A.4) (U,.); = minmod (9
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665

666
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669
670

where the minmod function is defined to be

min{zy, 2o, -} if z; > 0, Vi,
minmod(z1, 22, -+ ) == ¢ max{z1,22, -} if z; <0, Vi1,
0 otherwise,

and the parameter 6 € [1,2] controls the amount of numerical dissipation. The left-
and right-sided reconstructions at the endpoints of C; are,

Ax Az

+ U= , - U+ = ,
(A.5) Ui_% =U, 5 (Ui, Ui—s-% U, + 2 (Uy)i-
The semidiscrete form of the central-upwind scheme is then given by,
d— ./T"i_;’_l - ./—"i_l —
A6 —U;t) =——" " +8,,
(A.6) dt ®) Ax +

where the numerical flux F and the source term S; are given in (4.3) and (4.2),
respectively.

Appendix B. Proof of Corollary 3.5. The Corollary is immediate from the
following Lemma:

LEMMA B.1. For some M < dim P}, there is an M -point positive quadrature rule
that is exact on Pj.

The veracity of this lemma immediately yields M < dim P} in Corollary 3.5. The
second bound in that corollary results from chaining this with the dimension bound
in (2.3). Thus, we need only prove the above Lemma, which in turn is a simple
consequence of Tchakaloff’s theorem:

LEMMA B.2 (Tchakaloff’s Theorem, [3]). Let Pry denote the space of polynomi-
als of degree up to £ on R®:

d
Pry = span{C” ‘ ZVJ < K}.
J=1

Then for some M < dim Pr, there exists a set of quadrature nodes {(m}M_, and
positive weights {1, }_, such that

M

[ 000 = Y ol pe Py

m=1
Now given P3, let £* denote the maximum polynomial degree of any element in Py:

" = sup degp = max de ,
pel% gp = max degoy

which is finite. Then clearly we have P§ C Pry. By Lemma B.2, there is some
M* < dim Pr - such that {¢,}M_, and {7 }M_, are nodes and (positive) weights,
respectively, corresponding to a quadrature rule that is exact on P (since it’s exact on
the larger set Pr-). Note that if M* < dim P§ =: Q, then the result of Lemma B.1 is

immediate, so we assume otherwise. Let {wk}gzl denote any basis for P3, and define

() = [¥1(0), ¥2(Q), ... o))" € R
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Then exactness of the quadrature rule on Py implies the vector-valued equality,

Le.,
there must be a size-@Q subset of nodes {Cm}zzl c {¢}

-
> (G =e, @ = [ u(Qp(©)dc.

e € R lies in the convex hull of {\P(C;‘n)}nj\le By Carathéodory’s Theorem,
M

1, With positive weights

{Tm}gzl, such that 23:1 Tm ¥ (¢m) = e, which proves Lemma B.1.
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