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1. Introduction. The classical one-dimensional deterministic Saint-Venant sys-18

tem of shallow water equations is,19

(1.1)

(h)t + (q)x = 0,

(q)t +

(
q2

h
+

1

2
gh2

)
x

= −ghBx,
20

where h = h(x, t) is the water height, q = q(x, t) is the water discharge, g is the21

gravitational constant, and B = B(x) is the time-independent bottom topography.22

This system was first derived in [9] and since then has been widely used in modeling23

the flows whose horizontal scales are significantly larger than vertical scales, such as24

water flows in rivers, lakes and coastal areas. However, the accuracy and prediction25

capabilities of shallow water models depend strongly on the presence of various un-26

certainties that naturally arise in measuring or empirically approximating, e.g., the27

bottom topography data, or initial and boundary conditions. Hence, it is important28

to consider a stochastic version of the shallow water equations (SWE). In this work29

we focus on uncertainty that results in parameterized SWE, where parameters are30

modeled as random variables. In particular, we study the polynomial chaos expan-31

sion (PCE) strategy, which is very effective when quantities of interest vary smoothly32

with respect to the parameters.33

There are two widely used classes of methods for addressing uncertainty in (pa-34

rameterized) partial differential equations using PCE. One class, of non-intrusive35

type methods, computes stochastic quantities by generating an ensemble of solutions36

of realizations, each of which may be treated as a deterministic problem. Statistical37

information is obtained from this ensemble by post-processing the ensemble solutions.38

∗submitted to the editors December 24, 2020.
Funding: A. Narayan was partially supported by NSF DMS-1848508.
†Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (dai@math.utah.edu,

epshteyn@math.utah.edu).
‡Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 84112

(akil@sci.utah.edu).

1

This manuscript is for review purposes only.

mailto:dai@math.utah.edu
mailto:epshteyn@math.utah.edu
mailto:akil@sci.utah.edu


Examples of such methods include Monte-Carlo-type methods that use randomly se-39

lected samples, and the stochastic collocation methods that use a priori pre-selected40

samples (e.g., [42, 31, 29]). Since they rely on multiple queries of existing determin-41

istic solvers, non-intrusive methods are easy to implement and highly parallelizable,42

but can result in less accurate approximations than the intrusive type methods.43

The other group of methods are intrusive methods. Such methods typically re-44

quire a substantial rewrite of legacy code and solvers. In the context of PCE methods,45

the prototypical intrusive strategy is the stochastic Galerkin (SG) approach, wherein46

one replaces an underlying stochastic process with its truncated PCE [40, 43], and then47

forms a system of differential equations via Galerkin projection in stochastic space.48

As a consequence, one derives a new system of partial differential equations whose49

unknowns are (time- and space-varying) coefficients of the PCE. Intrusive methods50

are projection-based approximations, and thus their accuracy is near-optimal in an51

L2 sense for static problems. Discussion on the existing convergence theory for SG52

methods can be found, for example in [2, 27]. SG methods have been successfully em-53

ployed for modeling uncertainty in diffusion models [44, 12], kinetic equations [17, 37],54

and conservation and balanced laws with symmetric Jacobian matrices [39].55

For hyperbolic systems, such as the SWE, the associated SG system may not56

be hyperbolic in general [11, 18]. Thus, the intrusive SG formulation can result in57

a system of differential equations of a different class than the original deterministic58

system. There are currently several efforts to resolve this issue for more general types59

of equations and to preserve hyperbolicity of the SG system. For quasilinear hyper-60

bolic systems, hyperbolicity can be ensured by multiplying the SG formulation of the61

system by the left eigenvector matrix of its flux Jacobian matrix [41]. Unfortunately62

this transformation results in a non-conservative form and numerical solvers designed63

for conservative formulations cannot be applied directly. A recent operator-splitting64

based approach has been developed for both the Euler equations [8] and the SWE [7],65

where the original systems are split into hyperbolic subsystems whose SG formulations66

remain hyperbolic. However, this may still lead to complex eigenvalues due to the67

mismatch in hyperbolicity sets of the subsystems [36]. Another strategy to resolve the68

hyperbolicity issue of SG formulation is to introduce an appropriate change of vari-69

ables. For example, the SG system of balanced/conservation laws in terms of entropic70

variables can be shown to be hyperbolic [35, 34]. In addition, an optimization-based71

method, called the intrusive polynomial moment method (IPMM), was proposed to72

calculate the PCE of entropic variables given the PCE of the conserved variables73

[11, 35, 34]. However, the optimization problem in IPMM that must be solved for74

each cell and at each time step can be computationally expensive. There are also75

strategies that employ Roe variable formulations: In [33, 15, 14], the flux of the SG76

system is constructed using Roe variables and the conservative form of the system is77

preserved. It has been shown that both the SG formulations of the Euler equation [33]78

and the SWE [15] in terms of Roe variables are hyperbolic when using a Wiener-Haar79

expansion. The SG formulation of the isothermal Euler equations in terms of Roe80

variables is hyperbolic for any basis function under a positive definiteness condition81

[15]. However, it can still be expensive to implement the Roe formulation since the82

PCE of Roe variables need to be calculated by solving both a nonlinear equation and83

a linear equation.84

The SG formulation of the SWE may not be hyperbolic due to the PCE of the85

nonlinear, non-polynomial term q2/h [11]. This issue can be partially resolved by86

using the Roe variables and the Wiener-Haar expansion[15, 14]. In this work, we87

develop hyperbolicity-preserving SG PCE formulation for the SWE by carefully se-88
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lecting the PCE of q2/h term using only the PCE of the conserved variables. Further,89

we establish a connection between the hyperbolicity of the SG system and the original90

system. Namely, we show that preserving positivity of the water height a finite num-91

ber of stochastic quadrature points is sufficient to preserving hyperbolicity of the SG92

formulation of the SWE. In addition, we will present the well-balanced discretization93

for our SG formulation of SWE, which preserves positivity of the water height at94

certain quadrature points in the stochastic domain. In this paper, we adopt the filter95

from [36] to ensure the positivity-preserving property of the algorithm at stochastic96

quadrature points, which is one ingredient for ensuring hyperbolicity. However, one97

can go further in filtering. For example, recent work [26] utilizes a more sophisticated98

Lasso-regression-based filter to reduce oscillations of the numerical solution at shocks99

in the spatial domain.100

In this work, we consider central-upwind scheme as an example of the under-101

lying numerical scheme for the stochastic shallow water equations. However, the102

main ideas developed in this work are independent of the particular choice of the103

numerical solver for hyperbolic problems and can be employed with various choices104

of the numerical schemes for hyperbolic problems. The central Nessyahu-Tadmor105

schemes, their generalization into higher resolution central schemes and semi-discrete106

central-upwind schemes are a class of robust Godunov-type Riemann problem-free107

projection-evolution methods for hyperbolic systems. They were originally developed108

in [30, 25, 22]. The family of central-upwind schemes has been successfully applied109

to problems in science and engineering, and in particular, to deterministic SWE and110

related models. A second-order central-upwind scheme was first extended to SWE111

in [20]. However, the scheme did not simultaneously satisfy the positivity-preserving112

and well-balanced properties. It was improved in [23] where the developed method113

captures the “lake-at-rest” steady state and preserves positivity of the water height.114

We refer the interested reader to [24, 21, 5, 6, 28, 19] for examples of other closely re-115

lated works. The numerical scheme developed in this work is mainly based on further116

extension to stochastic SWE of the framework proposed in [22, 23].117

This paper is organized as follows. In section 2, we introduce the stochastic SWE118

and the SG discretization of the system using a particular choice of the PCE for q2/h.119

In section 3, we discuss the hyperbolicity of the SG system obtained in section 2 and120

present a sufficient condition to guarantee hyperbolicity of the SG SWE system. In121

section 4, we present a well-balanced central-upwind scheme for the SG SWE model122

and derive a hyperbolicty-preserving CFL-type condition. In section 5, we illustrate123

the robustness of the developed numerical scheme with several challenging tests.124

2. Modeling Stochastic Shallow Water Equations. This section sets up125

the stochastic SWE problem and introduces notation used in this article.126

2.1. Stochastic modeling of the SWE. We consider a complete probability127

space (Ω,F , P ), with event space Ω, σ-algebra F , and probability measure P . For128

ω ∈ Ω, a stochastic version of (1.1) is129

(2.1)

(h(x, t, ω))t + (q(x, t, ω))x = 0,

(q(x, t, ω))t +

(
q2(x, t, ω)

h(x, t, ω)
+

1

2
gh2(x, t, ω)

)
x

= −gh(x, t, ω)Bx(x, ω),
130

where uncertainty enters the equation through, e.g., a stochastic model of the initial131

conditions or of the bottom topography B. Here, we present a stochastic model of the132

bottom topography. However, all our results generalize to other models of uncertainty133
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(e.g., in the initial conditions). We model B as a finite-dimensional random field,134

B = B(x, ξ) = B0(x) +
d∑
k=1

Bk(x)ξk,135

136

where ξ = (ξ1, . . . , ξd) is a d-dimensional random variable. Such a model can result, for137

example, from truncation of an infinite-dimensional Karhunen-Loéve decomposition.138

Under this model, the stochastic SWE model (2.1) can be written as a function of ξ,139

(2.2)

(h(x, t, ξ))t + (q(x, t, ξ))x = 0,

(q(x, t, ξ))t +

(
q2(x, t, ξ)

h(x, t, ξ)
+

1

2
gh2(x, t, ξ)

)
x

= −gh(x, t, ξ)Bx(x, ξ),
140

which, for the purposes of this paper, forms the continuous model problem for which141

we seek to compute numerical solutions.142

2.2. Polynomial chaos expansions. We assume that the random variable ξ143

has a Lebesgue density ρ : Rd → R. Polynomial chaos expansions (PCE) seek to144

approximate dependence on ξ by a polynomial function of ξ. With ν = (ν1, . . . , νd) ∈145

N
d
0 a multi-index, then for ζ ∈ Rd we adopt the standard notation,146

ζν :=
d∏
j=1

ζ
νj
j , ζ0 = ζ(0,0,...,0) = 1.147

148

We let Λ ⊂ Nd0 denote any non-empty, size-K finite set of multi-indices. We will149

assume throughout that 0 = (0, 0, · · · , 0) ∈ Λ. Our PCE approximations will take150

place in a polynomial subspace defined by Λ:151

PΛ = span{ζν
∣∣ ν ∈ Λ}, dimPΛ = K := |Λ|.152153

We will also need “powers” of this set, defined by r-fold products of PΛ elements:154

P r
Λ := span


r∏

j=1

pj
∣∣ pj ∈ PΛ, j = 1, . . . , r

 , dimP r
Λ ≤

((
K
r

))
=

(
K + r − 1

r

)
,(2.3)155

156

where the dimension bound results from a combinatoric argument. Note that since157

0 ∈ Λ, then P rΛ ⊆ P sΛ for any r ≤ s. We will later exercise the notation above for r = 3.158

If ρ has finite polynomial moments of all orders, then there is an L2
ρ(R

d)-orthonormal159

basis {φk}∞k=1 of PΛ, i.e.,160

〈φk, φ`〉ρ :=

∫
R

φk(s)φ`(s)ρ(s)ds = δk`, φ1(ξ) ≡ 1,(2.4)161
162

for all k, ` ∈ {1, . . . ,K}, with the latter identification of φ1 being an assumption we163

make without loss since 0 ∈ Λ. If y(x, t, ·) ∈ L2
ρ(R), then under mild conditions on164

the probability measure ρ (see [13]) there exists a convergent expansion of y in these165

basis functions,166

y(x, t, ·)
L2
ρ

=
∞∑
k=1

ŷk(x, t)φk(·),167

168

where ŷk(x, t) are (stochastic) Fourier coefficients in the basis {φk}k∈N, and {φ`}`>K169

are any L2
ρ(R

d)-orthonormal basis for the orthogonal complement of PΛ in the space of170
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all d-variate polynomials. A K-term PΛ PCE approximation of the stochastic process171

y is then formed by truncating the summation above to terms in PΛ:172

(2.5) y(x, t, ξ) ≈
K∑
k=1

ŷk(x, t)φk(ξ) =: GΛ[y](x, t, ξ).173

Above, we have defined the linear projection operator GΛ : L2
ρ → PΛ.174

2.3. Operations on Truncated PCE Expansions. Polynomial statistics of175

PCE expansions can be computed from a straightforward manipulation of their coef-176

ficients. For example,177

(2.6) E[GΛ[y](x, t, ξ)] = ŷ1(x, t), Var[GΛ[y](x, t, ξ)] =
K∑
k=2

ŷ2
k(x, t),178

where E is the expectation operator, and Var is the variance. In contrast, computing179

PCE expansions of nonlinear expressions is more complicated. To calculate the PΛ-180

truncated PCE of the product of two stochastic processes y(x, t, ξ) and z(x, t, ξ), we181

introduce the notation182

GΛ[y, z] := GΛ [GΛ[y] GΛ[z]] =

K∑
m=1

 K∑
k,`=1

ŷkẑ`〈φkφ`, φm〉ρ

φm(ξ).(2.7)183

184

The approximation above defines the pseudo-spectral product, which is a widely used185

strategy for computing PCE expansion products (e.g. [10][15]). The pseudo-spectral186

product is an exact projection onto PΛ of the product of two PΛ projections. Such an187

operation can be cast in linear algebraic terms by considering vectors comprised of188

the PCE expansion coefficients. Given y ∈ PΛ, we will hereafter let ŷ ∈ RK denote its189

φk-expansion coefficients. We now introduce the linear operator P : RK → RK×K ,190

P(ŷ) :=

K∑
k=1

ŷkMk, Mk ∈ RK×K , (Mk)`m = 〈φk, φ`φm〉ρ,(2.8)191

192

where Mk is a symmetric matrix for each k. The following properties hold:193

P(ŷ) =
(
M1ŷ|M2ŷ| · · · |MK ŷ

)
, P(ŷ)ẑ = P(ẑ)ŷ, ĜΛ[y, z] = P(ŷ)ẑ,(2.9)194195

where the last property is due to (2.7), and allows us to conclude the following.196

Lemma 2.1. Let a(ξ), b(ξ), c(ξ) ∈ PΛ have φj-expansion coefficients â, b̂, ĉ ∈ RK ,197

respectively. Then 〈a, b c〉ρ = âTP(b̂)ĉ.198

Proof. Since a ∈ PΛ, then199

〈a, b c〉ρ = 〈b c, a〉ρ = 〈GΛ[b, c], a〉ρ = âT ĜΛ[b, c]
(2.9)
= âTP(b̂)ĉ.200

201

We will also need to compute PΛ truncations of ratios of processes (when for each202

(x, t) the denominator is a single-signed process with probability 1). We start by203

noting the following exact representation when y is a single-signed process:204

(2.10) GΛ

[
y
z

y

]
(x, t, ξ) = GΛ[z](x, t, ξ).205
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We then use this to motivate the assumption,206

GΛ

[
y,
z

y

]
= GΛ[z]

(2.9)⇐⇒ P(ŷ)

(̂
z

y

)
= ẑ.(2.11)207

208

This expression motivates the following definition for a new operator G†Λ
[
z
y

]
:209

(2.12) G†Λ
[
z

y

]
(ξ) :=

K∑
k=1

ckφk(ξ),210

where ci is the ith element of
(̂
z
y

)
defined by (2.11), assuming P(ŷ) is invertible.211

2.4. Stochastic Galerkin Formulation for Shallow Water Equations. We212

start with (2.2) and perform a standard Galerkin procedure in stochastic (ξ) space213

using polynomials from PΛ. I.e., the first step is to replace h and q by the ansatz,214

h ' hΛ :=

K∑
k=1

ĥj(x, t)φj(ξ), q ' qΛ :=

K∑
k=1

q̂j(x, t)φj(ξ),(2.13)215

216

respectively, and B by GΛ[B]. Following this, we apply the projection operator GΛ to217

both sides of (2.2) and insist on equality. However, in addition we make the following218

crucial assumption about how we approximate the term q2/h,219

q2

h
=
q

h
q −→ GΛ

[
q2
Λ

hΛ

]
= GΛ

[
qΛ G†Λ

[
qΛ

hΛ

]]
220
221

Performing these steps on (2.2) results in the system,222

(2.14)
∂

∂t

(
ĥ
q̂

)
+

∂

∂x

(
q̂

1
2gP(ĥ)ĥ+ P(q̂)P−1(ĥ)q̂

)
=

(
0

−gP(ĥ)B̂x

)
,223

where ĥ and q̂ are each length-K vectors whose entries are the coefficients introduced224

in (2.13). With Û := (ĥ, q̂)T , and the flux and source terms225

F (Û) =

(
q̂

1
2gP(ĥ)ĥ+ P(q̂)P−1(ĥ)q̂

)
, S(Û , B̂) =

(
0

−gP(ĥ)B̂x

)
,(2.15)226

227

then the system (2.14) can be written in general conservation law form,228

(2.16) Ût + (F (Û))x = S(Û , B̂),229

with flux Jacobian230

(2.17) J(Û) :=
∂F

∂Û
=

(
O I

gP(ĥ)− P(q̂)P−1(ĥ)P(û) P(û) + P(q̂)P−1(ĥ)

)
,231

where we have introduced232

(2.18) û = P−1(ĥ)q̂,233

which can be viewed as the PCE coefficient vector of the velocity u := q
h . The234

computation that gives the expression (2.17) for the Jacobian uses the property (2.9).235

For more details, we refer interested readers to section 2.2 of [18].236

We emphasize that (h, q) are the (x, t, ξ)-dependent solutions to the original sto-237

chastic SWE equations (2.2), whereas (hΛ, qΛ) are the (x, t, ξ)-dependent solutions to238

our SGSWE equations (2.16). In general, these two solutions are distinct. We first239

articulate sufficient conditions under which (2.16) is a well-posed hyperbolic system.240
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3. Hyperbolicity of The SG System. In this section we show that the sys-241

tem (2.16) is hyperbolic under the condition that the matrix P(ĥ) is positive definite.242

When there is no uncertainty, this condition reduces to h > 0, which ensures hyper-243

bolicity for the deterministic shallow water equations (1.1).244

Theorem 3.1. If the matrix P(ĥ) is strictly positive definite, the SG formulation245

(2.16) is hyperbolic.246

Proof. We will show that the Jacobian ∂F
∂Û

is diagonalizable with real eigenvalues.247

Since P(ĥ) is positive definite, then define248

G :=

√
gP(ĥ), A := gG−1P(q̂)G−1, B := P(û),(3.1)249

250

where
√
M is the (unique) symmetric positive definite square root of a symmetric251

positive definite matrix M . Using these matrices, define252

P1 :=

(
I I

B +G B −G

)
, P−1

1 =

(
−1

2

)(
G−1B − I −G−1

−G−1B − I G−1

)
,253

254

where the formula for P−1
1 can be verified by direct computation. Then a calculation255

shows that256

P−1
1

∂F

∂Û
P1 = −1

2

(
−2G−B −A A−B

A−B 2G−B −A

)
,(3.2)257

258

which is symmetric. Thus ∂F
∂Û

is similar to a diagonalizable matrix with real eigenval-259

ues, and so is itself real diagonalizable.260

Remark 3.2. In the deterministic case, i.e, all the PCE coefficients are zero except261

possibly the very first coefficient and the matrix in (3.2) reduces to the eigenmatrix262

that symmetrizes the deterministic Jacobian matrix and a diagonal matrix.263

For the deterministic SWE (1.1), the velocity u is bounded between the smallest264

and the largest eigenvalues of the Jacobian of the deterministic SWE. For the SG265

formulation (2.14), we have an analogous relation.266

Proposition 3.3. The eigenvalues of the matrix P(û) are bounded between the267

smallest and the largest eigenvalues of the Jacobian matrix J(Û), i.e.,268

(3.3) λmax(J(Û)) ≥ λmax (P(û)) ≥ λmin (P(û)) ≥ λmin(J(Û)).269

Proof. By the proof of Theorem 3.1, the matrix J(Û) is similar to the sym-270

metric matrix D := P−1
1

∂F
∂Û
P1 defined in (3.2). For an arbitrary unit vector ŷ =271

(ŷ1, ŷ2, · · · , ŷK)
T ∈ RK , then ẑ := 1√

2
[ŷT , ŷT ]T ∈ R2K is also a unit vector. Then,272

(3.4) ẑTDẑ = ŷTP(û)ŷ.273

From the above relation, and using properties of the Rayleigh quotient for P(û),274

λmax(P(û)) ≥ ẑTDẑ ≥ λmin(P(û)),275

where equalities can be achieved by proper selections of ŷ. Using similar Rayleigh276

quotient properties for D and noting that ẑ ranges over a subset of R2K , then277

(3.5) λmax(D) ≥ λmax (P(û)) ≥ λmin (P(û)) ≥ λmin(D)278

The inequalities (3.3) follow since D is similar to J(Û).279
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In the deterministic SWE, positivity of the water height h ensures hyperbolicity280

of the PDE system. Theorem 3.1 shows that the stochastic variant of the positivity281

condition is that P(ĥ) is positive definite. Much of the rest of this paper is devoted282

to deriving numerical procedures to guarantee this condition.283

3.1. Positive definiteness of P(ĥ). In this subsection, we present a computa-284

tionally convenient sufficient condition that guarantees P(ĥ) > 0, and hence guaran-285

tees hyperbolicity.286

Theorem 3.4. Given Λ, let nodes ξm and weights τm satisfying {(ξm, τm)}Mm=1 ⊂287

R
d × (0,∞) represent any M -point positive quadrature rule that is exact on P 3

Λ, i.e.,288 ∫
Rd

p(ξ)ρ(ξ)dξ =
M∑
m=1

p(ξm)τm, p ∈ P 3
Λ.(3.6)289

290

If291

hΛ(x, t, ξm) > 0 ∀ m = 1, . . . ,M,(3.7)292293

then the SGSWE system (2.16) is hyperbolic.294

Proof. We will show that (3.7) implies P(ĥ) > 0, which in turn ensures hyperbol-295

icity from Theorem 3.1. Let ẑ = (ẑk)
K
k=1 be any nontrivial vector in RK , and define296

its associated PΛ polynomial z(ξ) :=
∑K
k=1 ẑjφk(ξ) 6= 0. Then z(ξ) cannot vanish at297

all quadrature points simultaneously since if it did we obtain the contradiction,298

0 6= ‖ẑ‖2 = 〈z, z〉ρ
(3.6)
=

M∑
j=1

z2(ξj)τj = 0,299

where we have used the fact that P 2
Λ ⊆ P 3

Λ to utilize (3.6). Then since the quadrature300

rule is positive and (3.7) holds, we have301

0 <

M∑
j=1

hΛ(x, t, ξj)z
2(ξj)τj

(3.6)
=
〈
hΛ(x, t, ξ), z2(ξ)

〉 Lemma (2.1)
= ẑTP(ĥ)ẑ,302

303

establishing that P(ĥ) is positive definite.304

Thus, by guaranteeing positivity of hΛ at a finite number of points, we can ensure305

hyperbolicity of the SGSWE system. For arbitrary stochastic dimension d and poly-306

nomial space PΛ, there is a worst-case upper bound on the size of this finite set.307

Corollary 3.5. There is some M ≤ dimP 3
Λ ≤

K(K+1)(K+2)
6 such that the dis-308

crete pointwise positivity condition (3.7) guarantees hyperbolicity of (2.16).309

We give the proof in Lemma B.2 in the Appendix. One might consider the somewhat310

simpler condition of restricting ĥ1 > 0 for hyperbolicity since ĥ1 is the expected value311

of hΛ. This condition is actually implied by the condition in Theorem 3.4.312

Corollary 3.6. If the conditions of Theorem 3.4 are satisfied, then ĥ1 > 0.313

Proof. Since τj > 0 and hΛ > 0 at the quadrature points, then314

ĥ1 =

∫
Rd

hΛ(x, t, ζ)ρ(ζ)dζ =
M∑
j=1

hΛ(x, t, ξj)τj > 0,315

316
8

This manuscript is for review purposes only.



A computable condition ensuring hyperbolicity therefore requires a positive quad-317

rature rule that is exact on P 3
Λ. For general densities ρ over Rd, computing such a318

quadrature rule is a very difficult task. But this is possible in specialized cases.319

For example, if d = 1 and Λ = {0, 1, . . . ,K − 1}, then an optimal choice of320

positive quadrature is the ρ-Gaussian quadrature. Since P 3
Λ = span{1, ζ, . . . , ζ3K−3},321

then choosing the positive M -point Gaussian quadrature,322

{ξm}Mm=1 = φ−1
M+1(0), τm =

1∑M
j=1 φ

2
j (ξm)

,323

324

with M ≥
⌈

3K
2

⌉
−1 satisfies the conditions of Theorem 3.4 (and does so with substan-325

tially fewer points than the ∼ K3/6 worst-case bound from Corollary 3.5). Gaussian326

quadrature rules have real-valued nodes and positive weights [38].327

In spaces with d > 1, if ρ is tensorial, then tensorizing Gauss quadrature rules328

achieves similar results. I.e., assume329

ρ(ξ) =
d∏

J=1

ρJ(ξJ), ξ ∈ Rd,330

331

We can always enclose PΛ within a tensor-product polynomial space:332

P 3
Λ ⊆ P3k,∞ :=

{
λ ∈ Nd0

∣∣ λJ ≤ 3κJ for J = 1, . . . , d
}
, κJ := max

ν∈Λ
νJ .333

334

For a fixed J ∈ {1, . . . , d}, let {(ξ(J)
m,MJ

, τ
(J)
m,MJ

)}MJ
m=1 denote the MJ := (

⌈
3κJ

2

⌉
− 1)-335

point ρJ -Gaussian quadrature rule on R. Then the tensorization of these d univariate336

quadrature rules results in an M :=
(∏d

J=1MJ

)
-point positive quadrature rule that337

is exact on P3k,∞, hence on P 3
Λ, and thus satisfies the conditions of Theorem 3.4.338

4. Numerical Scheme for Stochastic Shallow Water Equations. In this339

section, we derive a well-balanced central-upwind scheme that preserves the hyper-340

bolicity of the SG formulation (2.16) at every time step.341

4.1. Central-Upwind Scheme for the SG System. We first introduce the
central-upwind scheme for the SG system (2.16). Appendix A provides a brief sum-
mary of the second-order central-upwind schemes for balance laws. With {Ci}Ni=1 a
partition of a bounded closed interval, let xi± 1

2
denote the partition boundaries, and

define the cell average of the vector Û over the ith cell Ci =:
[
xi− 1

2
, xi+ 1

2

]
as,

Ui(t) :=

(
hi(t)
qi(t)

)
:=

1

∆x

∫
Ci

(
ĥ(x, t)
q̂(x, t)

)
dx ∈ R2K .

We have introduced notation for common quantities in finite volume-type schemes.342

While Ûk is the kth component of the vector Û , the bold letter U with subscripts and343

superscripts is used here to introduce the cell averages and pointwise reconstructions,344

respectively, of the vector Û(x, t). I.e., U−
i+ 1

2

is the approximated value of Û at the left-345

hand side of spatial location x = xi+ 1
2
, which is reconstructed from the cell averages346

Ui. A similar reasoning applies to (h, ĥ, ĥk) and (q, q̂, q̂k). To minimize clutter, we will347

notationally suppress t dependence from here onward. The possible discontinuities of348
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the system (2.16) at the cell interface x = xi+ 1
2
, where Ci =

[
xi− 1

2
, xi+ 1

2

]
, propagates349

with left- and right-sided local speeds that can be estimated by,350

(4.1)
a−
i+ 1

2

= min
{
λ1

(
J(U−

i+ 1
2

)
)
, λ1

(
J(U+

i+ 1
2

)
)
, 0
}
,

a+
i+ 1

2

= max
{
λ2K

(
J(U−

i+ 1
2

)
)
, λ2K

(
J(U+

i+ 1
2

)
)
, 0
}
,

351

where λ1 ≤ λ2 ≤ · · · ≤ λ2K are the eigenvalues of the J(·) in (2.17), and U−
i+ 1

2

352

and U+
i+ 1

2

are the left- and right-sided pointwise reconstructions in the ith cell. The353

semi-discrete form of the central-upwind scheme for the SG system (2.16) reads as,354

d

dt
Ui = −

Fi+ 1
2
−Fi− 1

2

∆x
+ Si, Si ≈

1

∆x

∫
Ci
S(U,B)dx(4.2)355

356

with Si a well-balanced discretization of the source term, which we discuss below.357

With F the flux term in (2.15), the numerical flux F is given by358

(4.3) Fi+ 1
2

:=
a+
i+ 1

2

F (U−
i+ 1

2

)− a−
i+ 1

2

F (U+
i+ 1

2

)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

[
U+
i+ 1

2

−U−
i+ 1

2

]
.359

4.2. Well-Balanced Property. In applications of the deterministic SWE, sim-360

ulations should accurately capture the so-called “lake-at-rest” steady state solution,361

or small perturbations of the lake-at-rest steady state. A well-balanced numerical362

scheme for the SWE captures the lake-at-rest solution exactly at discrete level. An363

analogous lake-at-rest state for the stochastic shallow water equations (2.14) is364

(4.4) qΛ(x, t, ξ) ≡ 0, hΛ + GΛ[B](x, t, ξ) ≡ C(ξ),365

where C(ξ) depends only on ξ. This solution corresponds to still water with a flat366

stochastic water surface. Equation (4.4) can be rewritten in the vector form,367

(4.5) q̂ ≡ 0, ĥ+ B̂ ≡ Ĉ.368

In order to derive a well-balanced central upwind scheme for the SGSWE, we first369

replace the original bottom function B̂ by its continuous linear interpolant. At every370

time step, we compute the PCE vector for the cell averages of the water surface by371

wi := hi + Bi and the pointwise reconstructions of the water surface by w±
i+ 1

2

using372

a generalized minmod limiter (see Appendix A). The pointwise reconstructions of the373

water height are then computed by374

h±
i+ 1

2

:= w±
i+ 1

2

−Bi+ 1
2
,(4.6)375

376

where Bi+ 1
2

is the PCE vector for GΛ

[
B(xi+ 1

2
, t, ξ)

]
. The numerical fluxes {Fi+ 1

2
}Ni=1377

are subsequently computed using the reconstructed PCE of the water height defined378

in (4.6). After that, the well-balanced property of the scheme is ensured by a special379

choice of the source term Si.380

Lemma 4.1. With Bi± 1
2

the PCE vectors for GΛ

[
B(xi± 1

2
, t, ξ)

]
,381

if we choose382

(4.7) Si :=

(
0

− 1
∆xgP(hi)

(
Bi+ 1

2
−Bi− 1

2

))
,383

then the central-upwind scheme (4.2) satisfies the well-balanced property.384
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Proof. We have Bi = (Bi+ 1
2

+ Bi− 1
2
)/2, and the cell average PCE vector of the385

water surface wi := hi + Bi. Let the pointwise reconstructions for water surface be386

w±
i+ 1

2

. Assume that at time t, the stochastic water surface is flat and the water is387

still, i.e., wi ≡ w∗ is a constant vector for all i, and qi ≡ 0. Then a second-order388

piecewise linear reconstruction procedure produces w±
i+ 1

2

≡ w∗ and q±
i+ 1

2

≡ 0. Hence,389

the numerical flux defined in (4.3) becomes,390

(4.8) Fi+ 1
2

=

(
0

g
2P(w∗ −Bi+ 1

2
)(w∗ −Bi+ 1

2
)

)
=:

(
F ĥ
i+ 1

2

F q̂
i+ 1

2

)
.391

Then with Si =
(
S
T

i,1,S
T

i,2

)T
, the corresponding semidiscrete form is392

(4.9)

d

dt
hi = Si,1

d

dt
qi = − 1

∆x

g

2

[
P(w∗ −Bi+ 1

2
)(w∗ −Bi+ 1

2
)− P(w∗ −Bi− 1

2
)(w∗ −Bi− 1

2
)
]

+ Si,2

.393

To balance these equations, we choose Si,1 and Si,2 so that the right-hand side394

vanishes. Clearly we need Si,1 ≡ 0. To simplify the computation for Si,2, let ∆Bi =395

Bi+ 1
2
−Bi− 1

2
, then Bi = Bi+ 1

2
− 1

2∆Bi = Bi− 1
2

+ 1
2∆Bi. By linearity of the operator396

P and the property (2.9),397

(4.10)

Si,2 =
1

∆x

g

2

[
P(w∗ −Bi+ 1

2
)(w∗ −Bi+ 1

2
)− P(w∗ −Bi− 1

2
)(w∗ −Bi− 1

2
)
]

=
1

∆x

g

2

[
P
(

w∗ −Bi −
1

2
∆Bi

)(
w∗ −Bi −

1

2
∆Bi

)
−P

(
w∗ −Bi +

1

2
∆Bi

)(
w∗ −Bi +

1

2
∆Bi

)]
=

1

∆x

g

2

[
P(w∗ −Bi) (−∆Bi)− P

(
∆Bi

2

)(
2w∗ − 2Bi

)]
= −gP(w∗ −Bi)

(
Bi+ 1

2
−Bi− 1

2

∆x

)
= −gP(hi)

(
Bi+ 1

2
−Bi− 1

2

∆x

)
.

398

In the meantime, (4.7) reduces to the deterministic well-balanced quadrature ap-399

proximation when there is no uncertainty. The deterministic formula is obtained by400

applying the midpoint quadrature rule to the cell averages (4.2) with the derivative401

term Bx(xi) approximated by the finite difference
(
Bi+ 1

2
−Bi− 1

2

)
/∆x [23].402

4.3. Hyperbolicity-Preserving CFL-type conditions. To determine403

hyperbolicity-preserving CFL-type conditions, we focus on the first K equations in404

(4.2) which prescribe evolution of hi,405

(4.11)
d

dt
hi = − 1

∆x

[
F ĥi+ 1

2
(t)−F ĥi− 1

2
(t)
]
,406

where407

(4.12) F ĥi+ 1
2

=
a+
i+ 1

2

q−
i+ 1

2

− a−
i+ 1

2

q+
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

[
h+
i+ 1

2

− h−
i+ 1

2

]
.408
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A fully discrete version of (4.11) computes the unknowns at fixed values of time, tn,409

n ∈ N0, with tn < tn+1. For example, with h
n

i the numerical approximation to hi(t
n),410

and ∆tn := tn+1 − tn, the Forward Euler discretization of (4.11) reads,411

h
n+1

i = h
n

i − λni
[
F ĥi+ 1

2
(tn)−F ĥi− 1

2
(tn)

]
, λni :=

∆tn

∆xi
.(4.13)412

413

The following CFL condition guarantees hyperbolicity of the system (4.13) at t = tn+1414

for all cell averages, by enforcing the positivity condition prescribed in Theorem 3.4.415

Lemma 4.2. Let {ξj}Mj=1 be the nodes of a quadrature rule satisfying the condi-416

tions of Theorem 3.4. Assume that h
n

i (ξj) > 0 for 1 ≤ j ≤M . If ∆tn satisfies417

∆tn < ∆tnh := min
1≤j≤M

i

∆xi

∣∣∣∣∣∣∣
(h
n

i )TΦ(ξj)[
F ĥ
i+ 1

2

(tn)−F ĥ
i− 1

2

(tn)
]T

Φ(ξj)

∣∣∣∣∣∣∣
 ,(4.14)418

419

then the flux Jacobian (2.17), J
(
U
n+1

i

)
is diagonalizable with real eigenvalues.420

Proof. Theorem 3.4 guarantees the conclusion if h
n+1

i (ξj) > 0, for 1 ≤ j ≤M , so421

we proceed to show this latter property. For each j, the inequality422

0 < (h
n+1

i )TΦ(ξj) = (h
n

i )TΦ(ξj)− λni
[
F ĥi+ 1

2
(tn)−F ĥi− 1

2
(tn)

]T
Φ(ξj)(4.15)423

424

holds if we choose425

∆tn

∆xi
= λni < min

1≤j≤M


∣∣∣∣∣∣∣

(h
n

i )TΦ(ξj)[
F ĥ
i+ 1

2

(tn)−F ĥ
i− 1

2

(tn)
]T

Φ(ξj)

∣∣∣∣∣∣∣
 .426

427

Multiplying both sides by ∆xi and minimizing over i yields the conclusion.428

The condition (4.14) ensures positivity of the water height, but we also need to429

adhere to standard wavespeed-based CFL stability conditions. Thus, we will choose430

(4.16) ∆tn = 0.9 min

{
∆tnh,min

i

∆xi

max{a+
i+ 1

2

,−a−
i+ 1

2

}

}
.431

To extend these conditions to hold higher-order schemes, we use strong stability-432

preserving Runge-Kutta schemes [16] to solve the semidiscrete system (4.2). The433

analysis above for the condition (4.14) still holds for this solver since the ODE solver434

can be written as a convex combination of several forward Euler steps. However, an435

adaptive time-step control needs to be adopted to determine the time step [6, 19].436

The analysis above can also be naturally extended to any other finite volume solvers.437

Remark 4.3. The CFL condition (4.14) can be relaxed if the signs of the fluxes438

are taken into account in the inequality (4.15). In implementation, this can be used439

to reduce the simulation time.440

It is important to note that, the CFL-type condition provided above is limited441

to the cell averages. For the second-order (or higher-order) central-upwind scheme,442

additional correction is required for the pointwise reconstructions U±
i+ 1

2

to ensure443

hyperbolicity of (4.13). Similarly, special correction is needed for the near-dry states,444

where the matrices P(h±
i+ 1

2

) are close to singular, to ensure hyperbolicity.445
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4.3.1. Hyperbolicity-Preserving Correction to the Reconstruction. As-446

suming (h
n

i )TΦ(ξj) > 0, we are able to enforce (h
n+1

i )TΦ(ξj) > 0 for j = 1, · · · ,M447

under the CFL-type condition (4.16), see Lemma 4.2. However, the one-sided propa-448

gation speeds (4.1) in the central-upwind scheme (4.13) are estimated by the eigenval-449

ues of the Jacobian ∂F
∂Û

using the pointwise values at the cell interfaces. Thus, compu-450

tation of these wave speeds requires positivity of the pointwise reconstruction at quad-451

rature points, i.e., (h±
i+ 1

2

)TΦ(ξj) > 0, which is not guaranteed by (h
n

i )TΦ(ξj) > 0.452

To resolve this problem, we use the filtering strategy proposed in [36] to filter h±
i+ 1

2

.453

Given a polynomial pŷ(ξ) =
∑K
k=1 ŷkφk(ξ) with positive moment ŷ1, we find the454

smallest possible weight µ′ such that the weighted averages of the polynomial pŷ(ξ)455

and the moment ŷ1 are nonnegative at given quadrature points {ξj}Mj=1, i.e.,456

(4.17) µ′ŷ1 + (1− µ′)pŷ(ξ) ≥ 0⇔ ŷ1 +
K∑
k=2

(1− µ′)ŷkφk(ξj) ≥ 0, j = 1, · · · ,M,457

and the coefficients of the polynomial are filtered by458

ŷ1 = ŷ1, ŷk = (1− µ)ŷk, k = 2, · · · ,K,(4.18)459460

where µ = min{µ′ + δ, 1}, and we select δ = 10−10 in our scheme. Hence, the filtered461

polynomial pŷ(ξ) =
∑K
k=1 ŷkφ(ξ) is positive at given quadrature points {ξj}Mj=1. We462

filter pŷ(ξ) =
∑K
k=1 ŷkφk(ξ) and pẑ(ξ) =

∑K
k=1 ẑkφk(ξ) simultaneously by calculating463

the individual filtering parameters µ′ŷ and µ′ẑ for pŷ(ξ) and pẑ(ξ), respectively, through464

(4.17). Then the simultaneous filtering parameter is set to µ = min{µ′ŷ + δ, µ′ẑ + δ, 1}.465

We will exercise the filtering strategy (4.17)-(4.18) for pointwise reconstructions.466

We compute the filtering parameter µni at time t = tn for the ith cell for (h±
i∓ 1

2

)TΦ(ξ)467

according to (4.17). The pointwise reconstructions h±
i∓ 1

2

are then filtered by468

(4.19)
(
h±
i∓ 1

2

)
1

=
(
h±
i∓ 1

2

)
1
,
(
h±
i∓ 1

2

)
k

= (1− µni )
(
h±
i∓ 1

2

)
k
, k = 2, · · · ,K.469

The corresponding cell average is adjusted accordingly in order to remain consistent,470

(4.20) h
n

i =
1

2

(
h+
i− 1

2

+ h−
i+ 1

2

)
.471

472

Remark 4.4. To reduce oscillations in qΛ(x, t, ξ), we can also filter the discharge473

reconstructions q±
i− 1

2

. The corresponding cell average needs to be adjusted similarly474

to (4.20). In subsection 5.3 when (α, β) = (1, 3), we adopt this filtering approach to475

reduce oscillations in the discharge.476

As an alternative to the filtering above, one can use a convex-optimization based477

method [4] to enforce the positivity of (h±
i∓ 1

2

)TΦ(ξ) at quadrature points {ξj}Mj=1.478

4.3.2. Near-Dry State Correction. When the polynomial (h
n

i )TΦ(ξ) ∼ 0,479

two issues related to the dry state may occur. One is that the first moments of the480

polynomials (h±
i∓ 1

2

)TΦ(ξ) may become nonpositive. This can happen even when the481

system is deterministic [23]. Nonpositive first moments may lead to the failure of the482
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filtering correction (4.17)-(4.18). In our scheme, we adopt the following correction for483

nonpositive first moments. Denote the first moments of h±
i∓ 1

2

by
(
h±
i∓ 1

2

)
1
, then484

if
(
h±
i∓ 1

2

)
1
≤ 0 then take h±

i∓ 1
2

= 0, h∓
i± 1

2

= 2h
n

i .(4.21)485
486

Note that, this strategy reduces to a similar correction in the central-upwind scheme487

for the deterministic shallow water equations [23].488

Another issue may happen when the matrix P(h+
i+ 1

2

) or P(h−
i+ 1

2

) is ill-conditioned,

which may lead to problems with round-off errors when solving the corresponding
linear system (2.18). To resolve this issue, we extend to the stochastic model the
desingularization process for the deterministic problem [23, 19]. We demonstrate our
correction using the matrix P(h−

i+ 1
2

) as an example. Let

P(h−
i+ 1

2

) = QTΠQ,

be the eigenvalue decomposition for P(h−
i+ 1

2

), where Π = diag(λ1, · · · , λK). For489

k = 1, . . . ,K and a given ε > 0, define490

Πcor = diag(λcor
1 , · · · , λcor

K ), λcor
k =

√
2λk√

λ4
k + max{λ4

k, ε
4}
.(4.22)491

492

In our scheme we choose ε = ∆x. Then, the corrected PCE coefficient vector for the493

velocity u−
i+ 1

2

is given by494

(4.23) u−
i+ 1

2

= QTΠcorQq−
i+ 1

2

.495

For well-conditioned P(h−
i+ 1

2

), the correction (4.23) reduces to the system (2.18), but496

when P(h−
i+ 1

2

) is near singular, the discharge needs to be recomputed,497

(4.24) q−
i+ 1

2

= P(h−
i+ 1

2

)u−
i+ 1

2

,498

in order to keep the scheme consistent.499

Remark 4.5. If there is no uncertainty, the correction (4.22)-(4.23) reduces to the500

deterministic velocity desingularization in [23, 19].501

5. Numerical Results. In this section, we summarize numerical tests to illus-502

trate robustness of the proposed schemes for the SGSWE system (2.16) with different503

uncertainty models and parametric distributions. For simplicity we consider only504

one-dimensional stochastic spaces (d = 1) associated to a Beta density over [−1, 1],505

ρ(ξ) := ρ(α,β)(ξ) = C(α, β)(1− ξ)α(1 + ξ)β , C(α, β)−1 = 2α+β+1B(β + 1, α+ 1)506507

where B(·, ·) is the Beta function, and the parameters α, β > −1 can be chosen freely508

and control how mass concentrates at ξ = 1 and ξ = −1, respectively. In particular509

α = β = 0 corresponds to the uniform distribution on [−1, 1]. The numerical examples510

in the coming sections consist of the following numerical experiments:511

• subsection 5.1: Stochastic bottom topography model, comparing the SGSWE so-512

lution (2.16) with K = 9 and K = 17 with the uniform density, α = β = 0. The513

results are compared against a K = 9 stochastic collocation solution computed with514
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S = 100 stochastic points. The stochastic collocation solution for, e.g., the water515

height h, is computed via quadrature,516

hSC(x, t, ξ) :=
K∑
j=1

ĥSC,j(x, t)φk(ξ), ĥSC,j(x, t) :=
S∑
s=1

h(x, t, ζs)φj(ζs)zs517

518

where {ζs, zs}Ss=1 is the S-point ρ-Gaussian quadrature rule, and h(x, t, ζs) is a519

numerical solution to a deterministic specialization of the SWE (2.2) obtained by520

setting ξ = ζs and numerically solved using a deterministic central-upwind scheme.521

• subsection 5.2: Stochastic water surface model, testing the well-balanced property522

of the scheme with α = β = 0523

• subsection 5.3: Stochastic discontinuous bottom topography model, investigating524

the effects of different values of M used to enforce P(ĥ) > 0. This example also525

investigates different distributions, with (α, β) = (3, 1) and (α, β) = (1, 3).526

The parameter θ in the generalized minmod limiter is set to θ = 1.3 for the first527

two examples, and θ = 1 for the third example. The gravitational constant g is set528

to g = 1 for the first two examples, and g = 2 for the last example. We filter only529

the water heights hΛ except in the very last numerical test. In the third numerical530

example, when (α, β) = (1, 3), we filter both the water heights and the discharges531

of the water. In all examples, the CFL condition we use in our simulation is (4.16).532

However, we observe that in practice, a relaxed time step c∆tn(c > 1) will not result533

in loss of hyperbolicity and the plots are similar visually to the results obtained from534

the condition (4.16). We believe this is because condition (3.7) is only a sufficient but535

not a necessary condition to the hyperbolicity of SGSWE.536

Our numerical results will report quantile regions indicating the range of behavior537

for solutions. These quantile regions are computed empirically by computing the538

corresponding PCEs on 105 randomly sampled points from the density ρ on [−1, 1].539

For a fixed spatial grid, the computational cost depends on the dimension K of the540

chosen polynomial subspace PΛ. In order to compute the propagation speeds (4.1),541

the eigenvalues of the 2K × 2K Jacobian J(U) matrix must be computed, making542

this cost increase as K increases. In addition, to preserve hyperbolicity, we need to543

ensure the positivity of the water height at all the quadrature points for every spatial-544

temporal point (Theorem 3.1). Therefore, the cost for preserving the hyperbolicity545

is at most of order O(K3) per cell per time step (Corollary 3.5). These relations are546

formally independent of the dimension d of the stochastic space, but in practice K547

can grow considerably as d is increased. For example, one may choose PΛ to be the548

space of the polynomials with degree up to L. In this case, K =
(
L+d
d

)
. When L ≥ d,549

as d increases, K increases and also therefore does the computational cost. In this550

paper, we only consider numerically the case d = 1. We plan to investigate higher551

dimensional stochastic space in a future work. However, note that the developed552

theory in section 2 and section 3 extends to d > 1.553

5.1. Stochastic Bottom Topography. We consider the shallow water system554

with deterministic initial conditions555

(5.1) w(x, 0) =

{
1 x < 0

0.5 x > 0
, q(x, 0) = 0,556

and with a stochastic bottom topography557

(5.2) B(x, ξ) =

{
0.125(cos(5πx) + 2) + 0.125ξ, |x| < 0.2

0.125 + 0.125ξ, otherwise
.558
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In this example, we model ξ as a uniform random variable (α = β = 0). The cor-559

responding orthonormal basis functions φj are the orthonormal Legendre polynomials560

on [−1, 1] with density ρ(ξ) = 1
2 . Initially, the highest possible bottom barely touches561

the initial water surface at x = 0.5. In Figure 1 and Figure 2, we use a uniform562

grid size ∆x over the physical domain x ∈ [−1, 1], and compute up to terminal time563

t = 0.8. We present the numerical solutions for K = 9 and K = 17 using M = 17564

and M = 33-point Gaussian quadrature nodes, respectively, to enforce the positivity565

condition (3.7).
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Fig. 1. Results for subsection 5.1, water surfaces. Top left: stochastic Galerkin, K = 9,∆x =
1/800. Top right: stochastic Galerkin, K = 17,∆x = 1/800. Bottom: stochastic collocation,
K = 9,∆x = 1/800.

566
The 99% confidence region of the water surface stays above the 99% confidence567

region of the bottom function in the first three (top left, top right, bottom left)568

subfigures in Figure 1.569

For reference and comparison, a solution obtained by the stochastic collocation570

method (100 quadrature points, K = 9-term PCE as explained in section 5) is com-571

puted. Results for water surface and discharge are shown in the right subfigures of572

Figure 1 and Figure 2, respectively. We note that the stochastic collocation solution is573

a different PDE model, so we do not necessarily expect the numerical results from the574

SG and SC solvers to be identical for a fixed, finite K. In particular, we do not expect575

“convergence” of one model to the other as, say S ↑ ∞ and/or ∆x ↓ 0. However,576

the results in the figures do show substantial similarity between these solutions. The577

numerical solution obtained from the collocation method is less oscillatory near sharp578

gradients of water surface and discharges.579

We observe small oscillations near sharp gradients of the water surface and dis-580
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Fig. 2. Results for subsection 5.1, discharges. Top left: stochastic Galerkin, K = 9,∆x =
1/800. Top right: stochastic Galerkin, K = 17,∆x = 1/800. Bottom: stochastic collocation,
K = 9,∆x = 1/800.

charge in all of the figures. We investigate the oscillations for the discharge more581

carefully in Figure 3. We observe that both higher resolution and larger K can re-582

duce the magnitude of the oscillations that appear in quantiles.583

5.2. Stochastic Water Surface. Consider a stochastic shallow water system584

with a deterministic bottom function585

(5.3) B(x, ξ) =


10(x− 0.3), 0.3 ≤ x ≤ 0.4,

1− 0.0025 sin2(25(π(x− 0.4))), 0.4 ≤ x ≤ 0.6,

− 10(x− 0.7), 0.6 ≤ x ≤ 0.7,

0 otherwise,

586

and a stochastic water surface,587

(5.4) w(x, 0, ξ) =

{
1.001 + 0.001ξ 0.1 < x < 0.2,

1 otherwise,
q(x, 0, ξ) ≡ 0.588

We again model ξ as a uniform random variable (α = β = 0) with K = 9. A small589

uncertain region was originally at 0.1 ≤ x ≤ 0.2, where the water surface is slightly590

perturbed. The 17-point ρ-Gaussian quadrature rule is used to enforce the condition591

(3.7) to guarantee hyperbolicity. We compute the cell averages of the vector of PCE592

coefficients for water surface and discharges at terminal time t = 1.0 on the physical593

domain [−1, 1] with uniform grid size ∆x = 1/400. We observe from the mid figure of594
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Fig. 3. Results for subsection 5.1, discharges on [0, 0.3] for different values of K and ∆x, zoom
view. Top: K = 9; bottom: K = 13. Left: ∆x = 1/200; middle: ∆x = 1/400; right ∆x = 1/800.

Figure 4 that the perturbed water surface with uncertainties propagate along different595

directions. The right-moving wave interacts with the nonflat bottom and get partially596

reflected. The magnitude of the uncertainties doesn’t seem to exceed the magnitude597

of the initial uncertainties, which illustrate the well-balanced property of our scheme.598

5.3. Stochastic Discontinuous Bottom. For our last example, consider the599

shallow water system with deterministic initial conditions,600

(5.5) w(x, 0, ξ) =

{
5.0 x ≤ 0.5,

1.6 x > 0.5,
u(x, 0, ξ) =

{
1.0 x ≤ 0.5,

− 2.0 x > 0.5,
601

and a stochastic discontinuous bottom602

(5.6) B(x, ξ) =

{
1.5 + 0.1ξ x ≤ 0.5,

1.1 + 0.1ξ x > 0.5,
603

where initially we model ξ as a random variable with Beta density defined by (α, β) =604

(3, 1), which is more concentrated toward ξ = −1, and hence the bottom topography605

has higher probability of having smaller values. At time t = 0, the highest possible606

bottom barely touches the initial water height at x = 0.5. We compute the numerical607

solutions of K = 9-term PCE with an M = 17-point ρ-Gaussian quadrature to enforce608

the condition (3.7). We compute on a physical domain x ∈ [0, 1] with uniform cell609

size ∆x = 1/400 up to terminal time t = 0.15.610

In this example we observe over- and undershoots in the neighborhood of the611

bottom discontinuity for both the water surface w and the discharge q (see Figure 5).612

This phenomenon also occurs in deterministic version of (5.5)-(5.6) when numerical613

solutions are computed using the schemes from [1, 32]. In addition we observe in this614

example a numerical artifact resulting from our enforcement of positivity of the water615

height (3.7) at only a finite number of points: although the 99% quantile region of616

water heights lies above 0, the ξ-global minimum of the water height in some cells617

can still be negative. Since P(ĥ) > 0 only requires positivity of hΛ at a finite number618

of points, there are (low-probability) regions of the domain where the height can be619
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Fig. 4. Results for subsection 5.2: water surface (left), zoomed water surface (mid), and
discharge (right) at t = 1 for (5.3)-(5.4), K = 9.
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Fig. 5. subsection 5.3 results: K = 9, t = 0.15, (α, β) = (3, 1). Left figure: water surface and
bottom. Right figure: discharge.

negative. Note, however, that the SGSWE system is still hyperbolic and simulation620

can continue, despite low probability of negative water height.621

Nevertheless, the existence of negative water heights impose doubts on the ap-622

plicability of the SGSWE model. Fortunately, this situation can be mitigated by623

increasing the number of points M where positivity of hΛ is enforced. We observe624

that if the positivity of the water height is enforced at more points, the stochastic625

region of negative height shrinks. We demonstrate this with results in Table 1. In626

particular we observe that (a) the negative region occurs on a subinterval containing627
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M maxm ξm Negative Region NM Pr[ξ ∈ NM ]

15 0.934077 [0.934079, 1] 5.75× 10−6

17 0.946839 [0.946899, 1] 2.43× 10−6

19 0.956205 [0.956320, 1] 1.12× 10−6

21 0.963310 [0.963980, 1] 5.18× 10−7

Table 1
Numerical study of ξ-region and associated probabilities where the water height is negative.

ξ values greater than the maximum quadrature point, and (b) the probability of ξ628

lying in this region is quite small.629

In a separate experiment, we also compute the numerical results when ξ is modeled630

as random according to a (α, β) = (1, 3) distribution, which is more concentrated631

toward ξ = 1. Figure 6 shows that at the terminal time the “pressure” from stochastic632

bottom that skews positively causes more oscillations on the water surface and the633

discharge compared to Figure 5. In this experiment, we filter both the water heights634

and the discharges.
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Fig. 6. Numerical results with (α, β) = (1, 3), K = 9, t = 0.15. Left figure: water surface and
bottom. Right figure: discharge.

635

Appendix A. The Semi-Discrete Second-Order Central-Upwind636

Scheme. We briefly describe the central-upwind schemes for 1-D balance laws. For637

a complete description and derivation, we refer to [22]. Consider the balance law,638

(A.1) Ut + (F (U))x = S(U)639

For a uniform mesh with cells Ci :=
[
xi−1/2, xi+1/2

]
of size |Ci| ≡ ∆x, centered at640

xi = (xi−1/2 + xi+1/2)/2, and assume that at certain a time level, the cell averages641

(A.2) U
n

i ≈
1

∆x

∫
Ui(t

n)dx :=
1

∆x

∫
Ci

U(x, tn)dx642

are available. The cell averages are then used to construct a non-oscillatory second-643

order linear piecewise reconstructions,644

(A.3) Ũn
i (x) = Un

i + (Ux)i(x− xi), x ∈ Ci,645

whose slopes (Ux)i are obtained by generalized minmod limiter,646

(A.4) (Ux)i = minmod

(
θ
Un
i+1 −Un

i

∆x
,
Un
i+1 −Un

i−1

2∆x
, θ

Un
i −Un

i−1

∆x

)
,647
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where the minmod function is defined to be648

minmod(z1, z2, · · · ) :=


min{z1, z2, · · · } if zi > 0, ∀i,
max{z1, z2, · · · } if zi < 0, ∀i,
0 otherwise,

649

and the parameter θ ∈ [1, 2] controls the amount of numerical dissipation. The left-650

and right-sided reconstructions at the endpoints of Ci are,651

(A.5) U+
i− 1

2

= U
n

i −
∆x

2
(Ux)i, U−

i+ 1
2

= U
n

i +
∆x

2
(Ux)i.652

The semidiscrete form of the central-upwind scheme is then given by,653

(A.6)
d

dt
Ui(t) = −

Fi+ 1
2
−Fi− 1

2

∆x
+ Si,654

where the numerical flux F and the source term Si are given in (4.3) and (4.2),655

respectively.656

Appendix B. Proof of Corollary 3.5. The Corollary is immediate from the657

following Lemma:658

Lemma B.1. For some M ≤ dimP 3
Λ, there is an M -point positive quadrature rule659

that is exact on P 3
Λ.660

The veracity of this lemma immediately yields M ≤ dimP 3
Λ in Corollary 3.5. The661

second bound in that corollary results from chaining this with the dimension bound662

in (2.3). Thus, we need only prove the above Lemma, which in turn is a simple663

consequence of Tchakaloff’s theorem:664

Lemma B.2 (Tchakaloff’s Theorem, [3]). Let PT,` denote the space of polynomi-665

als of degree up to ` on Rd:666

PT,` := span

{
ζν
∣∣ d∑
J=1

νJ ≤ `

}
.667

668

Then for some M ≤ dimPT,`, there exists a set of quadrature nodes {ζm}Mm=1 and669

positive weights {τm}Mm=1 such that670 ∫
Rd

p(ζ)ρ(ζ)dζ =
M∑
m=1

p(ζm)τm, p ∈ PT,`.671

672

Now given P 3
Λ, let `∗ denote the maximum polynomial degree of any element in P 3

Λ:673

`∗ := sup
p∈P 3

Λ

deg p = max
k=1,...,K

deg φk,674

675

which is finite. Then clearly we have P 3
Λ ⊆ PT,`∗ . By Lemma B.2, there is some676

M∗ ≤ dimPT,`∗ such that {ζ∗m}M
∗

m=1 and {τ∗m}M
∗

m=1 are nodes and (positive) weights,677

respectively, corresponding to a quadrature rule that is exact on PΛ (since it’s exact on678

the larger set PT,`∗). Note that if M∗ ≤ dimP 3
Λ =: Q, then the result of Lemma B.1 is679

immediate, so we assume otherwise. Let {ψk}Qk=1 denote any basis for P 3
Λ, and define680

Ψ(ζ) := [ψ1(ζ), ψ2(ζ), . . . ψQ(ζ)]
T ∈ RQ.681682
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Then exactness of the quadrature rule on P 3
Λ implies the vector-valued equality,683

M∗∑
m=1

τ∗mΨ(ζ∗m) = e, (e)k :=

∫
Rd

ψk(ζ)ρ(ζ)dζ.684

685

I.e., e ∈ RQ lies in the convex hull of {Ψ(ζ∗m)}M
∗

m=1. By Carathéodory’s Theorem,686

there must be a size-Q subset of nodes {ζm}Qm=1 ⊂ {ζ∗m}
M∗

m=1, with positive weights687

{τm}Qm=1, such that
∑Q
m=1 τmΨ(ζm) = e, which proves Lemma B.1.688
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[10] B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P.715
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