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The paper is concerned with classic kernel interpolation methods, in addition to approxi-
mation methods that are augmented by gradient measurements. To apply kernel interpola-
tion using radial basis functions (RBFs) in a stable way, we propose a type of quasi-optimal 
interpolation points, searching from a large set of candidate points, using a procedure simi-
lar to designing Fekete points or power function maximizing points that use pivot from 
a Cholesky decomposition. The proposed quasi-optimal points results in smaller condi-
tion number, and thus mitigates the instability of the interpolation procedure when the 
number of points becomes large. Applications to parametric uncertainty quantification are 
presented, and it is shown that the proposed interpolation method can outperform sparse 
grid methods in many interesting cases. We also demonstrate the new procedure can be 
applied to constructing gradient-enhanced Gaussian process emulators.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

The field of uncertainty quantification (UQ) has received intensive attention in recent years as theoreticians and practi-
tioners have tackled problems in the diverse areas of stochastic analysis, high-dimensional approximation, and Bayesian 
learning. A fundamental problem in UQ is the approximation of a multivariate function u(Z), where the parameter
Z = (Z (1), · · · , Z (d)) is a d-dimensional random vector. The function u might be a solution resulting from a stochastic PDE 
problem or derived quantities of interest (QoI) from such a system. The most popular approach is to expand the function 
u in a generalized polynomial chaos (gPC) basis [10,36] and approximate its coefficients with a Galerkin projection. In this 
case, a serious drawback is that existing deterministic solvers must be rewritten.

In recent years, more attention has been devoted to the construction of a surrogate of u based on data DN :=
{(z j, u(z j))}Nj=1. This in general refers to stochastic collocation methods, as the sample points {z j} are chosen from the 
parametric domain. The procedure is also known as non-intrusive response construction.. “Non-intrusive” effectively means 
that existing black-box tools can be used in their current form. Most existing work concerns the collocation based polyno-
mial approximations, this include the interpolation techniques based on sparse grid [9,21,23,35], the least-squares projection 
onto polynomial spaces [3,11,22,13], the compressive sampling method with !1 minimization [5,16,12,37]. Another approach 
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to construct the surrogate using DN is the so called Gaussian process (GP) regression [2,1,26,31]. The GP provides an ana-
lytically tractable Bayesian framework where prior information about the f can be encoded in the covariance function, and 
the uncertainty about the prediction is easily quantified given measurements. One drawback of GP is the number of sam-
ples required for an accurate surrogate increased exponentially as the number of input parameters grows. One method of 
mitigating this limitation is the incorporation of gradient information into the training of the surrogate [4,18,20,32]. By in-
corporating derivative values, the cost associated with training an accurate surrogate can be greatly reduced. Unfortunately, 
gradient-enhanced GP emulators raise more computational challenges compared to ordinary GP emulators [14]. Especially, 
the condition number of the gradient-enhanced GP emulator will increase much faster than the original GP emulator.

In this work, we approximate u(Z) using a kernel interpolation through a limited number of support points. Over the 
last four decades, kernel methods using radial basis functions (RBFs) have been successfully applied to scattered data inter-
polation/approximation in hight dimensions [7,34]. It is known that the kernel interpolation process is equivalent to finding 
the unbiased estimator for a Gaussian process with covariance from measurements [30,28]. The theoretical connections 
between kernel methods and Gaussian process regressions for the classical interpolations have recently been highlighted 
[6,30]. Similar to GP progression, the numerical performance of kernel interpolation is depended on the number of sample 
points N and the so-called shape parameter ε . If ε is too large, the interpolant or solution will usually be inaccurate. On the 
other hand, if ε is too small, the condition number of the resultant matrix system will become so bad that linear solvers 
may perform poorly. Searching for the best shape parameter is still an open problem. On the other hand, for some fixed ε , 
the problem of ill-conditioning can still arise either if the total number of points (commonly called centers) is too large or 
if some points are closely clustered. How to select the optimal centers in the kernel methods is still a challenging work. In 
this paper, we consider a more practical and solvable problem:

Given a large set of candidate points, how can we choose an “optimal” subset of samples for interpolative kernel approximation?

To this end, we borrow the notion of Fekete points in the polynomial interpolation community. The selection strategy we 
propose only involves linear algebra, and essentially amounts to Cholesky-type decompositions for the design matrix. More 
precisely, the strategy is data-independent, so it can proceed offline before data is collected. We showed that the selected 
quasi-optimal points results in a smaller condition number, and thus postpone dramatically the instability of the interpo-
lation procedure when the number of points goes to large. Comparisons with other sampling strategies are presented, and 
it is noticed that our method demonstrates much improved stability property. Applications to parametric uncertainty quan-
tification are also presented, and it is shown that the proposed kernel interpolation method over perform the sparse grid 
methods in many interesting cases.

The remained of this paper is organized as follows. Section 2 summaries the problem formulation, where we start 
with an abstract problem and provide detains on the kernel interpolation. Our approach for choosing the optimal sub-
set of samples is introduced in Section 3. Several numerical examples are considered in Section 4 to study the empirical 
performance of the new approach. The conclusions are drawn in the final section.

2. Problem setup and kernel interpolation

Here we consider a general setting for PDEs with random input parameters. Let Z = (Z (1), · · · , Z (d)) ∈ I Z ⊆ Rd, d ≥ 1 be 
a parameter domain representing the uncertain inputs of the system. Consider






ut(x, t, Z)= L(u), D × (0, T ]× I Z
B(u)= 0, ∂D × (0, T ]× I Z
u = u0 D × {t = 0}× I Z

(1)

where D ∈ Rl, l = 1, 2, 3, is the physical domain, and T > 0 is the terminal time. Here L is a differential operator and B a 
boundary operator that may involve differential operators with respect to the spacial variable x. In a probabilistic framework, 
Z is modeled as a random variable on a complete probability space ($, F , P) equipped with the probability distribution 
function F Z (z) = P (Z ≤ z), with z ∈ Rd . Note that Z reflects the complete parameterization of uncertain inputs and can 
include both physical parameters of the system and hyperparameters that characterize certain input processes.

Throughout the paper, we assume that conditioned on the ith independent sample of Z , denoted by zi , a numerical 
solution to this problem may be identified by a fixed deterministic solver, such as finite element solves, finite difference 
solvers, ect. Let % = {z1, · · · , zN } ⊂ I Z , N ≥ 1, be a set of sample points in I Z . For any fixed x ∈D and t > 0, we shall denote 
u j = u(x, t, z j) for simplicity. Hereafter we will suppress the notions of x and t whenever possible, with the understanding 
that our statements are made for all fixed x and t . Once the pairings (z j, u j), j = 1, · · · , N , are obtained, the objective is to 
construct a function uN (Z) such that uN (Z) ≈ u(Z) in a proper sense.

2.1. Kernel interpolation in parameter space

In the current work, we shall consider the classic kernel interpolations using RBF to construct uN based on unstructured 
meshes. The pairing information will be enforced exactly by requiring uN (z j) = u j for all j = 1, · · · , N . In the kernel inter-
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polation framework, we first pick a translation-invariant radial kernel K = &(ε‖ · − · ‖) :Rd × Rd → R. Here, & :R → R
known as the radial basis functions (RBF), ε is a shape parameter and ‖ · ‖ is, for example, Euclidean distance. Using the set 
% = {z j}Nj=1 ⊂ I Z , which is usually referred to as the trial centers in kernel interpolation, we can define a finite-dimensional 
trial space in the form of

U% = U%,K := span{&(ε‖ ·−z j‖)|z j ∈ %}. (2)

In applications, it is trivial that having a suitable trial space is essential for the performance of kernel methods. A good trial 
space should contain some good approximation to the solution. In the present work we shall confine ourselves to the case 
of positive definite kernels/RBFs. The important role of positive definiteness for kernel interpolation was pointed out in [19]
and, for example, guarantees existence and uniqueness of the approximation. Widely used positive definite kernels/RBFs are 
the Gaussians, with &(r) = exp(−r2), the inverse multiquadrics (IMQ) with &(r) = 1/

√
1+ r2, and the family of compactly 

supported (CS) RBFs [33,34].
Now, let us consider kernel interpolation problems. Note that any trial function uN is a linear combination of the basis 

used in defining (2) and is in the form of

uN(Z)=
N∑

j=1

c j &(ε‖Z − z j‖), (3)

for some coefficients c = [c1, · · · , cN ]T ∈ RN . Using the interpolation conditions uN (zi) = ui, i = 1, · · · , N , we obtain the 
following linear system




&(ε‖z1 − z1‖) · · · &(ε‖z1 − zN‖)

...
. . .

...
&(ε‖zN − z1‖) · · · &(ε‖zN − zN‖)








c1
...
cN



=




u1
...

uN



 or Ac= u, (4)

where the matrix A = K (%, %) is symmetric with entries Ai j = &(ε‖zi − z j‖) for zi, z j ∈ %. The coefficients c are unique, if 
the interpolation matrix A is invertible.

Remark 1. It is known that the kernel interpolation process in trial space (2) is equivalent to finding the unbiased estimator 
for a Gaussian process with covariance K from realization u at %, see Appendix A.

Remark 2. If two trial centers zi, z j ∈ % are too closed to each other, identically shaped trial basis functions centered at 
these centers have nearly equal values at %. This leads to two columns of nearly identical values and the problem of 
ill-conditioning. Yet, we need to decide what the experimental configuration % is in order to effectively use the kernel 
interpolation.

2.2. Leave-One-Out Cross Validation (LOOCV)

Noted that the accuracy of the solution of Eq. (4) and the well-conditioning of the matrix A depends on the shape 
parameter ε . Much work addressese this issue, see, e.g. [7,8,25,29,38], and the references therein. It is out of our scope of 
this paper to thoroughly analyze choosing optimal shape parameters. In this work, we use the leave-one out cross validation 
(LOOCV) algorithm [8,25] to select the value of the shape parameter. In the RBF interpolation setting the LOOCV algorithm 
targets solution of the underlying linear system Ac= u, where the entries of the matrix A depend on the shape parameter 
ε which we seek to optimize. The cost function defined as the norm of the error vector e(ε) has entries [8,25],

ei(ε)=
ci

A−1
ii

,

where ci is the ith component of the vector c and A−1
ii :=

(
A−1)

ii is the ith diagonal element of the inverse of the coefficient 
matrix. Thus, the optimal value of the shape parameter is considered as the one which minimizes the cost function e(ε). 
We define the optimal shape parameter as the value ε∗ such that

‖e(ε∗)‖ =min
ε

‖e(ε)‖. (5)

2.3. A Gradient enhanced approach

We consider inclusion of gradient measurements in the kernel interpolation. Consider the availability of the following 
data: {zi, u(zi)}Ni=1 and {zi, u′

m(zi)}Ni=1 for all m = 1, 2, . . . , d). Here u′
m(z) = ∂ f (z)

∂z(m) stands for the partial derivative with 
respect to the m-th variable z(m) . We try to find an interpolant of the form

3
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uN(Z)=
N∑

j=1

c j&(ε‖Z − z j‖)−
d∑

m=1

N∑

j=1

βm, j&
′
m(ε‖Z − z j‖)

with appropriate radial basis functions & so that uN satisfies the generalized interpolation conditions

λiu = λiuN , i = 1, . . . ,N(d+ 1).

Here, λi could denote point evaluation at the point zi , or it could denote evaluation of some derivative at the point zi .
After enforcing the interpolation conditions the system matrix is given by

B=





A0,0 A0,1 · · · A0,d
A1,0 A1,1 · · · A1,d
...

...
. . .

...
Ad,0 Ad,1 · · · Ad,d





where Am,n is the N × N matrix with the (i, j)th element

(
Am,n

)
i, j =






&(ε‖zi − z j‖), m= n= 0,
−&′

n(ε‖zi − z j‖), m= 0,n .= 0,
&′

m(ε‖zi − z j‖), m .= 0,n= 0,
−&′′

m,n(ε‖zi − z j‖), m .= 0,n .= 0,

(6)

and B is a symmetric (d + 1)N × (d + 1)N matrix.
Note that the matrix B coincides with the joint covariance matrix of the gradient-enhanced GP emulator using the 

covariance kernel K , see Appendix B. Similar to the gradient-enhanced GP emulator, the condition numbers of the matrix 
B are much larger than those of the ordinary Lagrange interpolation matrix A [14]. Figs. 1 and 2 present the condition 
numbers of the system matrix for the design matrixes A and B. Clearly, the design matrix becomes more singular as the 
shape parameters are closer to zero or the total number of points becomes large.

3. Methodology

It is obvious that design of the collocation points plays a important role in kernel interpolation. However, selecting 
optimal locations for trial centers in % is highly non-trivial. These are the motivation of the development of adaptive solvers 
[15,17,27]. Nevertheless, it is also believed that uniformly distributed interpolation points can lead to better approximation 
results [29]. Popular choices of such points include the Sobol’ points, the low discrepancy points or even the random 
distributed points. However, it is observed that all these choices have the instability issue when the number of collocation 
points becomes large, say N ∼O(102), see Fig. 2.

In this work, we shall propose a type of quasi-optimal collocation set for kernel interpolations, by searching from a large 
set of candidate points. The idea is inspired by the computation of “Fekete points” in polynomial approximation.

3.1. Fekete-type interpolation points

We recall the kernel interpolation (3)

uN(Z)=
N∑

j=1

c j &(ε‖Z − z j‖)=
N∑

j=1

d j ! j (Z),

where the latter equality writes the solution in terms of cardinal Lagrange interpolants, given by

! j (Z)=
detA(z1, ..., z j−1, Z , z j+1, ..., zN)

detA(z1, ..., z j−1, z j, z j+1, ..., zN))
, j = 1, ...,N. (7)

The Lebesgue constant, corresponding to the operator norm of interpolation, is defined as

)N :=max
Z∈I Z

N∑

j=1

∣∣! j(Z)
∣∣ .

Small values of )N indicate that interpolation is a stable operation. The so called Fekete points are a configuration of 
(z1, . . . , zN ) that maximizes the Vandermonde-like matrix determinant, namely,

%∗ = max
%={z1,...,zN }⊂I Z

{
|detA(z1, ..., zN)|

}
(8)

4
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Fig. 1. Curves of the condition numbers for the Lagrange interpolation (solid curves) and the Hermite interpolation (dashed curves) w.r.t. the shape param-
eter using Gaussian, IMQ and CS, respectively. Left: N = 50; middle: N = 100; right: N = 300; d = 2. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

With the relation (7), one observes that the configuration %∗ ensures that |! j(Z)| ≤ 1 for all Z ∈ I Z , and thus ensures 
)N ≤ N . In practice, the behavior of Lebesgue constant for Fekete points is frequently sublinear. Thus, Fekete points provide 
a strategy for stable interpolation. Unfortunately, there is no known way to explicitly characterize or compute these points 
outside of special polynomial approximation cases. In addition, computationally solving the optimization problem (8) is a 
daunting task. A typical approach is to relax the optimization problem by seeking a greedy (iterative) solution, i.e.,

zN+1 = argmax
z∈I Z

|detA(z1, . . . , zN)| .

In the polynomial approximation literature such an appropriate is titled the “approximate Fekete point” approach, and for 
kernel interpolation it is a power function maximization approach. We will utilize this procedure in our gradient-enhanced 
setting to choose centers for approximation.

3.2. Generating quasi-optimal points via greedy selection

In this section, we present a data-independent algorithm to select optimal distribution of centers. The data-independent 
feature is useful for practical problems, as it allows one to determine, prior to conducting expensive simulations or experi-
mentations, where to collect data samples.

The general goal is to achieve a set of determinant-maximizing (i.e., Fekete) points associated to the gradient-enhanced 
design matrix B . However, direct optimization is likely to be computationally challenging since the optimization problem 
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Fig. 2. Curves of the condition numbers for the Lagrange interpolation (solid curves) and the Hermite interpolation (dashed curves) w.r.t. the number of 
sampling points N using Gaussian, IMQ and CS, respectively. Left: ε = 0.1; middle: ε = 1; right: ε = 3; d = 2.

is non-convex, and the dimension of the optimization variables can be very large when a large interpolation grid is used. 
Therefore, we opt for a greedy strategy, performing the sequential optimization,

zN+1 := argmax
z∈I Z

det B(z1, . . . , zN , z),

where (z1, . . . , zN ) ⊂Rd is a given set of N centers. The procedure above defines an iterative scheme. Although in principle 
computing this determinant requires construction of the matrix B(z1, . . . , zN , z), such an expensive construction can be 
avoided by exercising low-rank updates of LU factorizations. First we note that given z1, . . . , zN , we have

B(z1, . . . , zN , z) :=





A0,0 A0,1 · · · A0,d

A1,0 A1,1 · · · A1,d

...
...

. . .
...

Ad,0 Ad,1 · · · Ad,d




,

where above Am,n = Am,n(z1, . . . , zN , z). Then if P N+1 ∈ R(N+1)(d+1)×(N+1)(d+1) is a permutation matrix that maps element 
(N + 1)i to element N(d + 1) + i for i = 1, . . . , d + 1 (and retains the order for the remaining N(d + 1) elements in the first 
N(d + 1) entries), then

B(z1, . . . , zN , z)= P N+1BP−T
N+1 =

(
BN W (z)

W T (z) B(z)

)

6
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Then the determinant can be written in terms of the Schur complement of this latter expression,

det B(z1, . . . , zN , z)= det
(
P BP T

)
= det

(
BN W
W T B(z)

)

= det BN det
(
B(z)− W T B−1

N W
)
,

where we have introduced the notation BN := B(z1, . . . , zN ). Thus,

argmax
z∈I Z

det B(z1, . . . , zN , z)= argmax
z∈I Z

F (z),

F (z) := det
(
B(z)− W T B−1

N W
)
.

For a fixed z, the major cost of evaluating F involves computing the solution X ∈ RN(d+1)×(d+1) to the linear system 
BN X = W . There is a secondary, comparatively negligible, cost of computing the determinant of a (d + 1) × (d + 1) matrix. 
For the linear system, we can write the solution in terms of the Cholesky factor of the permuted version of BN ,

P N BN P T
N = LN LT

N

so that, if L−1
N is available and stored, then evaluation of F requires application of L−1

N , with a O(d3N2) cost, and we can 
rewrite the optimization as,

zN+1 = argmax
z∈I Z

F (z)= argmax
z∈I Z

det
(
B(z)− V T V

)
, V := L−1

N W (z). (9)

To aid in continuing the iteration, an efficient update that transforms L−1
N into L−1

N+1 (the Cholesky factor for the pivoted 
BN+1) is helpful. Again exercising Schur complements, we find that

P N+1BN+1P T
N+1 = LN+1LT

N+1 =⇒ LN+1 =
(

LN 0N(d+1)×(d+1)

V T L̃

)

,

where L̃ = L̃(z) is the Cholesky factor of the Schur complement of the block B(zN+1) of the matrix BN+1,

L̃ L̃T = B(zN+1)− V T V . (10)

Then a computation shows that

L−1
N+1 =

(
L−1
N 0N(d+1)×(d+1)

−L̃−1V T L−1
N L̃−1

)

. (11)

In summary, given L−1
N that identifies zN+1 from the optimization (9), then we compute LN+1 by (i) computing V (zN+1)

from (9), (ii) computing the inverse of the (d + 1) × (d + 1) Cholesky factor L̃(zN+1) of the Schur complement from (10), 
(iii) assembling the matrix in (11), which requires an additional application of L−1

N .
Finally, we emphasize again that in practice we do not compute the solution to (9), but rather we solve the easier 

optimization problem that replaces the continuum I Z by a discrete candidate set.

4. Numerical tests

In this section we use several numerical tests to demonstrate the benefit of the quasi-optimal interpolation points. In 
order to implement our proposed method, we first pick M random centers on I Z as a candidate set, then we select N
optimal points from Section 3.2 as RBF centers. In the following examples, we choose M = 104.

For comparisons against other methods, we employ the following sampling methods.

• Random sampling: N samples are taken randomly in I Z ;
• Sobol sampling: choose N values of the Sobol sequence;
• Halton sampling: choose N values of the Halton sequence.

To measure the performance of an approximation, we will use the l2 error (RMSE). Specifically given a set of Q = 1000
random samples %test = {zi}Qi=1 ∈ I Z and samples of the true function u(zi) and the kernel approximation s(zi) we compute

El2 =
( 1
Q

Q∑

i=1

|s(zi)− u(zi)|2
)1/2

. (12)

7
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Fig. 3. Condition numbers with respect to shape parameters using Gaussian, IMQ and CS. Left: N = 100; right: N = 300; d= 2.

In what follows we will use the term “Cholesky” for our proposed algorithm, “random” to denote random sampling 
points, “sobol” to denote Sobol points, and “halton” to denote Halton points. Furthermore, in all examples that follow we 
perform 50 trials of each procedure and report the mean results along with 20% and 80% quantiles. For CS RBFs, we use the 
following Wendlands compactly supported function &d(r), which has the form

&d(r)= (1− r)l+3
+

(
(l3 + 9l2 + 23l+ 15)r3 + (6l2 + 36l+ 45)r2 + (15l+ 45)r + 15

)
/15

with l =
⌊

d
2

⌋
+ 4.

4.1. Kernel interpolation for UQ

In this section, some numerical examples are shown to demonstrate the stability and convergent behaviors of our pro-
posed algorithms for UQ.

8
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Fig. 4. Condition numbers with respect to shape parameters with respect to the number of sample points N using Gaussian, IMQ and CS. Left: ε = 3; right: 
ε = 5; d = 2.

4.1.1. Matrix stability
We first investigate the condition number Cond(A) = σmax(A)

σmin(A)
of the design matrix A. In Fig. 3, we show the condition 

number with respect to the different shape parameters. In Fig. 4, we show the condition number with respect to the 
number of the selected RBF centers N . For both Gaussian and IMQ, our algorithm is much more stable compared to the 
other sampling methods. In fact, the other choice of the candidates points do not dramatically affect the performance of the 
proposed method. Fig. 5 show the corresponding results. In the figure, “uniform” utilizes the evenly spaced points in I Z .

4.1.2. Numerical accuracy
In this section, we will compare Cholesky, random, Sobol and Halton in terms of their ability to approximate test func-

tion.
We first consider the benchmark Franke’s function u(z), z = (z1, z2) ∈ [0, 1]2, given by

u(z)= 3
4
e−((9z(1)−2)2+(9z(2)−2)2)/4 + 3

4
e−(9z(1)+1)2/49−(9z(2)+1)2)/10

+ 1
2
e−((9z(1)−7)2+(9z(2)−3)2)/4 − 1

5
e−(9z(1)−4)2−(9z(2)−7)2 .

(13)

9
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Fig. 5. Condition number with respect to the number of sample points N for different choice of the candidates. Left: ε = 3; right: ε = 5.

The corresponding numerical errors for the test function in (13) are shown in Fig. 6. We observe that our proposed 
algorithm produces superior results than the other sampling methods. Moreover, the new algorithm shows clear convergence 
patterns as N increases. This is considered to be an improvement over the other sampling methods: it is clear in the error 
profile of the other sampling methods that providing more sampling points does not always result in better accuracy. Again, 
the choice of the candidates points do not dramatically affect the performance of the proposed method. Fig. 7 show the 
corresponding results.

In Fig. 8 we show the numerical results as a function of the sample points, N , obtained using the Cholesky algorithm 
with various values of the shape parameter ε . The left plot shows the condition number while the right plot shows the 
corresponding errors. It can be seen from this figure that as ε gets smaller, the resulting matrix becomes ill-conditioned. 
The numerical results when the LOOCV algorithm is used are also presented in Fig. 8. From these figures, we observe that 
the Cholesky algorithm using LOOCV to choose the good value of shape parameter can provide a very good numerical 
results.

We now consider the stochastic elliptic equation, one of the most used benchmark problems in UQ, in one spatial 
dimension,

10
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Fig. 6. Approximation error with respect to the number of sample points N using Gaussian, IMQ and CS. Left: ε = 3; right: ε = 5.

− d
dx

[κ(x, z)du
dx

(x, z)] = f , (x, z) ∈ (0,1)×Rd, (14)

with boundary conditions

u(0, z)= 0, u(1, z)= 0,

and f = 2. The random diffusivity takes the following form

κ(x, z)= 1+ σ
d∑

k=1

1
k2π2 cos(2πkx)z(k), (15)

where z= (z(1), . . . , z(d)) is a random vector with independent and identically distributed components.
Here we approximate the solution u(z) = u(0.5, z), while the uncertain inputs z(i) ∼ U [−1, 1], k = 1, · · · , d. For fur-

ther comparison, we also employ the sparse grids stochastic collocation method using Legendre polynomial of total order 
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Fig. 7. Numerical results with respect to the number of sample points N for different choice of the candidates: Left: ε = 3; right: ε = 5.

k = 8(d = 3) and k = 4(d = 6) to solve the problem. The numerical results are presented in Figs. 9 and 10. The RBFs approx-
imation methods, are notably superior to the sparse grids method.

4.2. Gradient-enhanced approach for UQ

We now illustrate the symmetric approach to Hermite interpolation with a set of numerical experiments.

Example 1. We use the corner peak

u(z)= (1+
d∑

i=1

ωi z
(i))−(d+1), z ∈ $ = [0,1]d

to generate the data. In this example, we use d = 2, ωi = 1
i2
.
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Fig. 8. Numerical results with respect to the number of sample points N for different shape parameters. Left: condition number; right: errors.

Fig. 9. Approximation error against the number of sample points N (d=3). Left: Gaussian; Middle: IMQ; right: CS.
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Fig. 10. Approximation error against the number of sample points N (d=6). Left: Gaussian; middle: IMQ; right: CS.

Fig. 11. 2-dimensional Rastrigin function.

Example 2. We consider the following 2-dimensional Rastrigin function:

u(z)= 20+
2∑

i=1

(
(z(i))2 − 10cos(2π z(i))

)
, z(i) ∈ [−4,4].

The 2-D Rastrigin function is plotted in Fig. 11.

Example 3. Consider the following 5-dimensional Friedman function

u(z)= 10 sin(π z(1)z(2))+ 20(z(3) − 0.5)2 + 10z(4) + 5z(5).

The corresponding numerical results are shown in Figs. 12–14. We can conclude that the design matrix B can be well 
conditioned under the proposed algorithm. Again, our proposed algorithm produces superior results than the other sampling 
methods.

5. Summary

In this work, we presented a strategy for selecting a quasi-optimal sample points for kernel interpolation. We first 
demonstrate that the traditional sampling methods suffer from the numerical instability in the sense that the condition 
number will increase fast as the total number of points becomes large. To improve this, we propose to use the efficient 
Cholesky decomposition with pivoting for the Vandermonde-like interpolation matrix to choose the sample points. Then the 
quasi-optimal sample points are used to control the condition number of the design matrices. It is demonstrated that with 
the new approach the stability can be much improved. On the other hand, for problems inclusion of gradient measurements 
in the kernel interpolation are also considered. Applications to parametric UQ problems are illustrated.
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Fig. 12. Numerical results with respect to the number of sample points N for 2-dimensional corner peak.
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Fig. 13. Numerical results with respect to the number of sample points N for 2-dimensional Rastrigin function.
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Appendix A. Gaussian process and kernel interpolation

In order to help readers get deeper insights into the connections between kernel methods and Gaussian process regres-
sions, we give a simple example in this section. More detains can be found in [30].

Suppose that we have a set of observed data values {(z j , u j)
N
j=1|z j ∈ %}. We aim to estimate the unknown value at some 

other locations Z based on the observed data at %. In the Gaussian process regression [24,30], a.k.a. the simple kriging 
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Fig. 14. Numerical results with respect to the number of sample points N for 5-dimensional Friedman function.

method, u is assumed as a realization of a random field Y, which is a collection {Y(Z) : Z ∈ I Z } of random variables over 
the probability space ($, F , P). The observations {u(z j)} are then realizations of the random variables Y(z j). To predict Y
at some location Z ∈ I Z , one considers all linear predictors of the form

Y(Z)=
N∑

i=1

ωi(Z)Y(zi)

which are themselves random variables.
To determine optimal weights ω(Z) := (ω1(Z), · · · , ωN (Z))T , additional structural assumptions on Y are needed. In this 

work, we only discuss the simple kriging, due to their close connection to kernel interpolation. Suppose Y is a Gaussian 
process with a mean 0 and symmetric covariance kernel K , i.e. E(Y(Z)) = 0, Cov(Y(zi), Y(z j)) = K (zi, z j) := φ(zi − z j). 
We usually assume that such covariance kernel K is positive definite. The simple kriging method provides the best linear 
unbiased estimator f̂ of Y in the form of
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f̂ :=ω1(Z)u1 + · · · +ωN(Z)uN

where the weighting ω(Z) is uniquely determined by the linear system ([30])



K (z1, z1) · · · K (z1, zN)

...
. . .

...
K (zN , z1) · · · K (zN , zN)








ω1(Z)

...
ωN(Z)



 =




K (Z , z1)

...
K (Z , zN)





or in matrix form K (%, %)ω(Z)= K (Z , %)T . Thus, the estimator f̂ (Z) can be written as

f̂ (Z) :=ω(Z)u (A.1)

Note that if the RBF kernel and the covariance kernel coincide, then (3) and (A.1) suggest that uN(Z) =
K (Z , %)T K (%, %)−1u = (K (%, %)−1K (Z , %))Tu = f̂ (Z). It means that the RBF estimator and the unbiased estimator are 
indeed identical.

Appendix B. Gradient-enhanced Gaussian process

If the gradient information {zi, u′
m(zi)}Ni=1 (m = 1, 2, . . . , d) is included in the ordinary GP model, the covariance matrix 

becomes a block matrix that includes the covariance between derivative observations in addition to the covariance between 
function observations. The block matrix can be represented as [18]:

K=
[

Cov(Y,Y) Cov(Y,∇Y)
Cov(∇Y,Y) Cov(∇Y,∇Y)

]
,

where Cov(Y, Y) represents an N×N covariance matrix of the function values at the sample points, Cov(Y, ∇Y) is an Nd ×N
cross covariance matrix between gradient components and the function values at the sample points, and Cov(∇Y, ∇Y) is an 
Nd × Nd covariance matrix of the gradients. If Y is a Gaussian process with a mean 0 and symmetric covariance kernel K
(or φ), then the joint covariance matrix of the outputs is given by

K=





P0,0 P0,1 · · · P0,d
P1,0 P1,1 · · · P1,d
...

...
. . .

...
Pd,0 Pd,1 · · · Pd,d





where Pk,l is the N × N matrix with the (i, j)th element





φ(zi − z j), k= l= 0,
−φ′

l (zi − z j), k= 0, l .= 0,
φ′
k(zi − z j), k .= 0, l= 0,

−φ′′
k,l(zi − z j), k .= 0, l .= 0,

(B.1)

and K is a symmetric (d + 1)N × (d + 1)N matrix.
Note that if the RBF kernel & and the covariance kernel φ coincide, then the joint covariance matrix K and the design 

matrix B are indeed identical.
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