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ABSTRACT

Robots’ spatial positioning is a useful communication modality
in social interactions. For example, in the context of group con-
versations, certain types of positioning signal membership to the
group interaction. How does robot embodiment influence these
perceptions? To investigate this question, we conducted an online
study in which participants observed renderings of several robots
in a social environment, and judged whether the robots were posi-
tioned to take part in a group conversation with other humans in
the scene. Our results suggest that robot embodiment can influence
perceptions of conversational group membership. An important
factor to consider in this regard is whether robot embodiment leads
to a discernible orientation for the agent.
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1 INTRODUCTION

Group interactions are an important area of investigation in Human-
Robot Interaction (HRI) [15]. One way of determining whether
robots are considered a social member of a particular group is their
spatial positioning. In the case of conversational groups, for exam-
ple, prior work in social psychology has shown that conversations
lead to structured spatial patterns of behavior which are sustained
during these interactions [8], e.g., face-to-face or circular spatial ar-
rangements. Various studies have shown that these spatial patterns
translate to the context of human-robot interactions [1, 7, 9, 24].
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Recently, data-driven methods to recognize typical spatial pat-
terns of behavior in human-robot conversations have been built
upon datasets of human interactions [6, 19]. Likewise, methods for
robots to conform to these conversational patterns have been pro-
posed in HRI by modeling human spatial behavior [12, 17, 25, 28].
However, it is unclear how robots’ embodiment may affect human
perceptions of spatial behavior during social group conversations.
In the context of proxemics [5], prior work in HRI suggests that fac-
tors such as a robot’s humanoid appearance [26] and robots’ gaze
(along with their likeability) can influence human-robot distancing
[14]. This makes us believe that embodiment can alter human per-
ception of robots’ spatial positioning in social contexts and, thus,
influence perceptions of conversational group membership in HRI.

We conducted an online study to investigate how robot em-
bodiment influences human perception of conversational group
membership. We considered various types of robots in our study,
from more anthropomorphic platforms like Pepper and Kuri to
less human-like robots like the Turtlebot 3 or Jackal (Fig. 1). As a
baseline, we compared perceptions of spatial positioning by robots
with spatial positioning by virtual humans. Our results suggest that
robot embodiment can influence human conception of personal
space and the likelihood that people will consider various agents
as part of conversational groups based on their spatial positioning.

2 RELATED WORK

Proxemics. Significant work has investigated how people socially
perceive and use the physical space around them. Hall built a gen-
eral framework for the primary spatial zones people find themselves
in based on their interactions [5]. This framework includes zones
of intimate space, personal space, social space, and public space. Re-
search suggests that the size of these zones can vary across cultural
contexts and based on human personal preferences [5, 18]. Further-
more, researchers have investigated how proxemic zones differ for
robots as opposed to other humans [13, 14]. Walters et. al made
adjustments to previously known proxemic distances based on fac-
tors such as robot appearance, preferences, interaction context, and
situation [26]. Overall, they found that people generally preferred
more humanoid appearance robots to keep a further distance away
than mechanoid robots. However, the height of the robots consid-
ered in their study did not impact these preferences. Worth noting,
users’ gender may influence perceptions of proxemics in HRI [20].

Conversational Formations. Face Formations (or F-formations)
are spatial patterns of human behavior that organically arise during
group conversations [8]. They are a consequence of people needing
to be close to each other to talk in conversation or engage in an
interaction that requires a common, focused point of attention.
Classic F-formations include face-to-face or shoulder-to-shoulder
spatial arrangements in smaller groups. Circular arrangements are
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Figure 1: Images a, b, ¢ and d show two real conversational groups from the Cocktail Party dataset and two fake groups,
respectively. Image a2 shows a top-down view of a1, b2 shows a top-down view of b1, and ¢ was generated from a’s data. The
middle area shows sections of b1 and b2 for all the agents considered in the study. The room is approx. 4.8 x 6.0 meters.

more typical for larger groups. Other factors like environmental
constraints may also alter how people congregate socially in groups
[2, 11, 21]. In our work, we leverage data of naturalistic human
conversational groups to render visual stimuli for our study.

Robot Embodiment. Robots are known to be perceived differ-
ently based upon their physical presence and appearance [3]. For
instance, Li et al. discovered that people were more comfortable
with being close to real-life robots as opposed to robots rendered in
virtual reality, and rated the appearance of real-life robots higher
[10]. Moreover, people tend to like robots that have humanoid ap-
pearances more than those with basic mechanical appearances,
both in static images and when robots performed simple dynamic
actions [27]. Our study expands prior work on robot embodiment
by investigating how it may affect human perception of robots’
positioning in relation to conversational groups.

3 METHOD

We investigated how people perceive several robots and their mem-
bership to group conversations based on their poses in a social
environment. To this end, we modeled in 3D the environment of
the Cocktail Party dataset [29], a popular dataset for conversational
group detection [16, 19, 23]. Then, we rendered 20 conversational
groups from the dataset in the environment using the Unity game
engine. This corresponded to 5 sets of 4 groups with 2, 3, 4, 5, and
6 people each. For the renderings, we varied the 3D model used to
represent one of the agents. This agent could be a female character,
amale character or 6 different types of robots (Fig. 1). Through these
variations we aimed to study the effect of different embodiments
on perceptions of spatial behavior and social interactions.

To gather human opinions in more diverse settings, we purpose-
fully generated additional renderings of “fake” groups from the
above data. For conversational groups with less than six members,
we replaced the pose of the chosen agent with the pose of another
agent in the dataset who was not part of the original group that
was rendered in the scene. For groups with six members, which
included all social interactants in the dataset, we rotated the orien-
tation of the chosen agent such that it was opposite to the center
of the group. This resulted in an atypical spatial pattern for social
conversations [8]. Figure 1 (right) shows two example fake groups
where the female character is oddly positioned in the scene.

Study Design and Hypotheses. We designed the study with a
20 X 8 x 2 mixed design, considering Groups (4 x 5 group sizes),
Agent (2 human agents and 6 robots), and rendering Type (real or
fake group) as independent variables. All the participants evaluated
all the groups, but only one agent and one type of rendering. We
hypothesized that:

H1. People would more easily identify the orientation of the agents
with a face (Female, Male, Pepper, Kuri, Fetch) than the orientation
of the other agents (Jackal, Turtlebot) in the renderings.

H2. Perceptions of the agents being part of a conversational group
would be higher with the real groups than with the fake groups.
This assumption follows from the design of our visual stimuli.

H3. As a corollary of H1, the agents with a face (Female, Male,
Pepper, Kuri, Fetch) would be more often identified as being part of
real groups based on their pose in the scene than the other agents
(Jackal, Turtlebot). Also, the latter agents would be more often
identified as being part of fake groups than the former agents.

H4. The robots with the widest bases (Pepper, Fetch and Jackal)
would be more often perceived as standing too close to virtual
humans to socially engage with them in comparison to the other
agents. This hypothesis is complementary to H3, as it focuses more
on proxemics [5] than group formations. The assumption was mo-
tivated by some of the robots considered in our study being wider
than the humans that originally generated the Cocktail Party data.

Procedure. As approved by our Institutional Review Board, we
ran our study as an online survey. The survey first gathered demo-
graphics data. Then, it showed renderings of the 20 (real or fake)
groups chosen for our study, with one of the 8 agents displayed in
them. For each group, the survey asked the participants to visually
identify the agent in the rendered scene. Next, it asked to rate a
number of statements about the pose of this agent relative to the
other humans. At the end of the survey, the participants provided
their opinion about how hard it was to complete the survey based
on the appearance of the specific agent that they experienced. The
participants were paid $2 USD for completing the survey.

Image Renderings. We leveraged tools from the Social Environ-
ment for Autonomous Navigation [22] to generate our renderings
in Unity. More specifically, we created two separate cameras in the



Unity scene to capture the Cocktail Party environment from over-
head and side angles, such that participants could easily perceive
the agents’ spatial positioning relative to one another. We then
used a ROS script to load the pose of the agents in the 20 groups,
pass these poses to Unity via ROS#, receive the rendered images
in return, and save them to disk for use in our survey. We utilized
the Microsoft Rocketbox avatar library to render the human agents
[4]. For the robots, we used 3D models from open-source Universal
Robot Description Files (URDFs).

Measures. We gathered three types of measures via the survey:

(1) For H1, we asked the participants to indicate for each rendered
group with a given agent X if “X is oriented towards other human(s)
in the scene.” They could choose among 3 answers: “Yes”, “No”, and
“I cannot tell the orientation of X from the scene views.” Also, we
asked the participants at the end of the survey to indicate if “the
survey was difficult to complete because of the appearance of X” using
a 7 point responding format. We gave participants the option to
further explain their answer to the latter question via a text box.

(2) For H2 and H3, we gathered participant opinions in regards
to whether they agreed with the following statements about the
given agent X: “X is too far from the human(s) in the scene to engage
naturally in a group conversation with them”; “X is in a location that
makes it look like (s)he is in a group conversation with everybody
else in the scene”; “X is positioned to socially engage with the hu-
man(s) in the scene”; and “X is orienting in an unusual way to be
having a conversation with everybody else in the scene.” Ratings were
obtained using a 7 point Likert responding format from “strongly
disagree” to “strongly agree” We combined these ratings into an
“In Group” measure based on the position and orientation of the
agents (Cronbach’s alpha was 0.87).

(3) For H4, we asked the participants to indicate their agreement
with “X is uncomfortably too close to a human to socially engage with
him/her in the scene” using a 7 point Likert responding format.

Participants. We recruited 480 participants via Prolific, with 240
female participants, 238 male participants, and two participants
who indicated "Other" gender. We excluded the last two participants
from our analyses (Sec. 4) because their gender did not fit the two
prescreening categories of male/female. We randomly assigned
males, and then females, to each combination of Agent and Type
such that there was roughly the same amount of participants per
condition. Overall, each Agent/Type combination had about 30
participants split roughly evenly between males and females.

4 RESULTS

We conducted analyses on our measures considering Agent (8 lev-
els), Type (2 levels), and participant Gender (2 levels) as main effects.
For image ratings, we also considered Groups (20 levels) as main
effect, and Participant ID as random effect. We used Student’s t-tests
or Tukey HSD tests for post-hoc comparisons when appropriate.

Agent’s Orientation. The ratings for “the survey was difficult to
complete because of the (agent’s) appearance” were heavily skewed
towards low ratings, so we analyzed them using non-parametric
Kruskal-Wallis tests. The tests indicated that only Agent had a signif-
icant effect on the ratings, X2(7) = 47.81, p< 0.0001. A Tukey HSD

post-hoc test indicated that the ratings for the Turtlebot (M= 3.13,
SE= 0.267) were significantly higher than for all other agents except
for the Jackal (M= 2.66, SE = 0.244). Also, Jackal had significantly
higher ratings than the Female agent (M= 1.70, SE= 0.163), Kuri
(M= 1.67, SE= 0.146), the Tall Fetch (M= 1.63, SE= 0.118), and the
Male agent (M= 1.5, SE= 0.138). These significant differences were
further confirmed with a non-parametric Steel-Dwass test. These
results provide partial support for H1.

Among those who found the survey difficult, the responses fell
into two broad categories: some of the agents had orientations that
were difficult to discern based on their appearance, and participants
had concerns about the agents’ appearance and capabilities to be
socially engaged with humans. The former category was more
apparent for Turtlebot and Jackal, which respectively had 16 and
9 responses out of 34 commentaries (Short Fetch had 5, Kuri had
2, Pepper had 1, and Female had 1). For example, a participant
said about Jackal that “It was difficult to see where the front and
the back is” and another said about Turtlebot that “It was hard
to tell where it was turned to.” In regard to concerns about social
engagement, Jackal garnered most of the responses in this category
with 8 out of 23 comments (Short Fetch had 5, Tall Fetch had 4, Kuri
had 3, and Turtlebot had 2, and Pepper had 1). People said things
about Jackal such as “When picturing a bunch of humans engaged in
social interaction, throwing in a shin-height robot with no humanlike
characteristics made it hard to imagine the scenarios,” “It looks like a
roomba-type thing so its not very believable that it can even socially
interact with people in any capacity,” and “It’s boxlike appearance and
lack of anthropomorphic features made it hard to imagine conversing
with” Taken together, these results align with H1, as Jackal and
Turtlebot were the least human-like agents and seemed to cause the
most confusion. However, we acknowledge that they might have
been influenced by our specific choice of visual stimuli. Images are
static and may not fully convey how the agents could take part in
social conversations.

Answers to whether the agent of interest was oriented towards
the other humans in each scene provided further support for H1.
Because these ratings were a repeated measure, we analyzed them
using a Binomial Generalized Mixed Linear Model with a logit link
function. To this end, we computed whether the given agent was
orienting towards the other humans in the scene using the agents’
poses: this was assumed to be true when the agent was oriented
within +60° towards the average position of the other humans.
Then, we counted Yes/No answers that matched our definition as
correct, and labelled both incompatible and unsure responses as
incorrect. Interestingly, Agent had significant effects on identifying
the orientation correctly, F[7,482.5] = 10.71 (p< 0.0001). As shown
in Fig. 2 (left), Jackal and Turtlebot led to significantly fewer correct
answers than all other agents according to a Tukey HSD post-hoc
test. Also, Groups (F[19, 9057] = 45.30, p< 0.0001), the interaction
between Gender and Type (F[1,432.8] = 5.35, p= 0.02), and the
interaction of Agent and Type (F[7,433.3] = 6.27, p< 0.0001) were
significant. The post-hoc tests showed pairwise differences across
groups, which we attribute to our specific choice for the study. In
addition, there were significant differences in the responses by Type
for male participants and for the Turtlebot. We omit further details
due to limited space.
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Figure 2: The proportion of images in which the participants identified correctly whether the agents oriented toward the other
humans in the rendering (left), participants’ combined ratings for the agent being in a group with the humans (middle), and
participant ratings for agents being “uncomfortably too close to a human to socially engage with him/her in the scene” (right).

Perceptions of Group Membership. We conducted a Restricted
Maximum Likelihood (REML) analysis on the In Group measure to
evaluate H2 and H3. We found that Type (F[1, 453]=824.97, p<0.0001)
and Groups (F[19, 9063]=222.65, p<0.0001) had significant effects
on the results. A t-test on Type supported H2: the real groups led
to significantly higher In Group perceptions (M=5.10, SE=0.022)
than the fake groups (M=3.39, SE=0.024). The post-hoc test on
Groups also revealed significant differences, which we attribute to
our specific choice of conversational groups as before.

We also found that the interaction between Agent and Type led
to significant differences for the In Group results, F[7, 453] = 4.06
(p<0.0002). A Tukey HSD test indicated that the ratings for all
the agents in the real groups were significantly higher than for
them in the fake groups. For the fake groups, the ratings for the
Turtlebot (M= 3.70, SE= 0.073) and Jackal (M= 3.66, SE= 0.070)
were significantly higher than for the Male agent (M= 3.06, SE=
0.062), as shown in Fig. 2 (middle). The results partially support H3
for the fake groups, but provide no evidence for the real groups.

Social Distancing. A REML analysis on perceptions of the agents
being “uncomfortably too close to a human to socially engage” pro-
vided partial support for H4. Agent (F[7, 453]=3.93, p=0.0004), Type
(F[1, 453]=85.05, p<0.0001), Group (F[1, 453]=85.05, p<0.0001), and
Gender (F[1. 453]=7.51, p<0.0064) all had significant effects on these
perceptions. A Tukey HSD test on Agent showed that the ratings
were significantly higher for Jackal (M= 2.89, SE= 0.053) than the
Tall Fetch (M= 2.40, SE= 0.054), Kuri (M= 2.30, SE= 0.050), the
Male agent (M= 2.23, SE= 0.051), and the Female agent (M= 2.18,
SE= 0.048). These results are shown in Fig. 2 (right). We were sur-
prised by the small Turtlebot having ratings comparable to Pepper.
Perhaps this could be explained by the fact that some people had a
hard time imagining interacting with the Turtlebot. For example,
one participant indicated that “The size of it [Turtlebot] would be an
issue. Having to look towards the ground would be problematic.”

In regard to Type, ratings for the Real groups (M=2.81, SE=0.022)
were significantly higher than for Fake groups (M=2.07, SE=0.028).
This difference can be explained by the Fake groups often having
agents away from a group. Lastly, in terms of participant Gender,
the post-hoc test suggested that females (M=2.34, SE=0.026) gave
significantly lower ratings than males (M=2.55, SE=0.026).

5 LIMITATIONS & FUTURE WORK

Our work focused on evaluating the perception of specific agents in
group formations originally established by humans. Expanding the
set of agents and using human-robot interaction groups instead are
interesting directions for future work. Also, the visual stimuli that
we used for our study was static. The images of social environments
omitted details about the motion of the agents. In the future, we
would like to extend this type of evaluations to interactive HRI
simulations, like [22], in which participants can observe the motion
of the robots as well. We would also like to expand our collected
data to broader categories of gender, as we had to omit the two non-
binary responses we received from our analysis due to the extremely
small sample size. Importantly, further experiments are needed to
validate our results in in-person human-robot interactions.

6 CONCLUSION

We explored the intersection between spatial positioning and em-
bodiment in perceptions of human-robot conversational groups
with two or more interactants. Our findings provide concrete evi-
dence that robot embodiment can influence perceptions of spatial
positioning in these groups. Further, our findings suggest that an
important factor to consider in this regard is whether robot embodi-
ment leads to a discernible orientation for the agent. Taken together,
this means that it is important to consider robot embodiment when
investigating spatial patterns of behavior in HRI. Also, researchers
should carefully consider the assumption that human interaction
data is a valid source of examples for creating perception models
to reason about human-robot spatial behavior, as well as for imple-
menting decision-making algorithms for robots to adapt to spatial
formations. While people might reason about the spatial behavior
of robots in a similar way to how they reason about the behavior of
humans in many cases [7, 9], robot embodiment might alter these
perceptions in some cases, resulting in different expectations.
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