
C. Liaw et al. (2020) “Dimension of the Exceptional Set in the Aronszajn–Donoghue Theorem for Finite Rank
Perturbations,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–11
doi:10.1093/imrn/rnaa281

Dimension of the Exceptional Set in the Aronszajn–Donoghue

Theorem for Finite Rank Perturbations

Constanze Liaw1,∗, Sergei Treil2 and Alexander Volberg3

1Department of Mathematical Sciences, University of Delaware, 311

Ewing Hall, Newark, DE 19716, USA and CASPER, Baylor University, One

Bear Place #97328, Waco, TX 76798, USA, 2Department of Mathematics,

Brown University 151 Thayer St./Box 1917, Providence, RI 02912, USA,

and 3Department of Mathematics, Michigan State University, East

Lansing, MI 48824, USA

∗Correspondence to be sent to: e-mail: liaw@udel.edu

The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of

a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures

of the original and perturbed operators are mutually singular. As simple direct sum

type examples show, this result does not hold for finite rank perturbations. However,

the set of exceptional perturbations is pretty small. Namely, for a family of rank d

perturbations A
α

:= A + BαB∗, B : Cd → H, with RanB being cyclic for A, parametrized

by d × d Hermitian matrices α, the singular parts of the spectral measures of A and A
α

are mutually singular for all α except for a small exceptional set E. It was shown earlier

by the 1st two authors, see [4], that E is a subset of measure zero of the space H(d) of

d × d Hermitian matrices. In this paper, we show that the set E has small Hausdorff

dimension, dim E ≤ dim H(d) − 1 = d2 − 1.

1 Introduction

Consider a family of finite rank (self-adjoint) perturbations of a self-adjoint operator A

(possibly unbounded),

A
α

:= A + BαB∗, (1.1)
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2 C. Liaw et al.

parametrized by self-adjoint operators (Hermitian matrices) α : C
d → C

d. Here we

assume that B : C
d → H is an injective operator. We do not need to assume that B

is bounded, it is sufficient to assume that the operator (I + |A|)−1/2B is bounded. In

this case, we are dealing with the so-called “form bounded” perturbations; the theory of

such perturbations is well developed and does not differ much from the case of bounded

perturbations (see e.g., [1]).

Isolating the interesting from the perturbation theory point of view case, we

always assume that RanB is cyclic for A. In the case of rank-one perturbations (d = 1),

the classical Aronszajn–Donoghue theorem states that the singular parts of the spectral

measures of A and A
α

are always mutually singular.

As simple direct sum examples show, this is not the case for d > 1. So, the

singular parts of the spectral measures of the original and perturbations and the

singular parts of the scalar spectral measures of A and A
α

are not always mutually

singular. However, it was proved in [4] that they are mutually singular for almost all

perturbations.

Moreover, it was proved in [4] that if α1 > 0 (i.e., positive definite) and α(t) =

α0 + tα1, then given a singular measure ν the spectral measures µt (equivalently their

singular parts µt
s) of the operators A

α(t) are mutually singular with ν for all t ∈ R except,

maybe, countably many.

This leads one to suspect that in fact one can say more about the exceptional set,

i.e., the set of all Hermitian d × d matrices α for which the singular parts of the scalar

spectral measures (by a scalar spectral measure, we always mean a scalar spectral

measure of maximal spectral type) of A and of A
α

are not mutually singular. It looks

like a reasonable conjecture that the exceptional set is not just a set of measure 0, but it

in fact has dimension strictly less than the full dimension d2 of the set H(d) of all d × d

Hermitian matrices. (It is not hard to see that the Hausdorff dimension of the set H(d)

of all d × d Hermitian matrices is exactly d2.)

This turns out to be the case; the main result of this note is the following

theorem:

Theorem 1.1. Let operators A
α

be given by (1), and let RanB be cyclic for A. Given

a singular measure ν the scalar spectral measures µα of the operators A
α

are mutually

singular with ν for all α ∈ H(d)\E, where the exceptional set E has Hausdorff dimension

at most dim H(d) − 1 = d2 − 1.
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Aronszajn–Donoghue Theorem 3

2 An Application of the Marstrand–Mattila Theorem

The tool to show that the dimension of the exceptional set is at most dim H(d)−1 = d2−1

is already available. Namely, the following result was proved in [6, Lemma 6.4]. Below,

Hs denotes the s-dimensional Hausdorff measure, and G(m, n) denotes the set of all

m-dimensional subspaces of Rn.

Lemma 1. Let E be an Hs measurable subset of Rn with 0 < Hs(E) < ∞. Then

dim(E ∩ (V + x)) ≥ s + m − n

for almost all (x, V) ∈ E × G(m, n).

In this lemma,Hs measurable means Carathéodory measurable with respect to

the outer measure Hs.

This result was proved by Marstrand [5] for n = 2 and by Mattila [6] for general

n ∈ N.

A formal application of this result would immediately give us the desired

estimate on the dimension (see the reasoning at the end of this section). However, we

do not know anything about the exceptional set E (see the definition below in Section 3);

we do not know whether it is Hs measurable for s > d2 − 1. But what is more important,

we cannot say that Hs(E) < ∞ for s > d2 − 1.

However, as it was discussed in [6], if one assumes that E is an analytic (a.k.a. a

Suslin) set, one can reduce the assumption to Hs(E) > 0. The reason for this reduction is

that, by the theorem of Davies [3], given an analytic set E ⊂ R
n with Hs(E) > 0 one can

find a compact K ⊂ E with 0 < Hs(E) < ∞.

So, although it was not stated explicitly, the following statement was proved in

[6].

Lemma 2. Let E be an analytic (Suslin) subset of Rn such that Hs(E) > 0. Then

dim(E ∩ (V + x)) ≥ s + m − n

for almost all (x, V) ∈ E × G(m, n).

We will not be giving the definition of analytic (Suslin) sets; for our purposes, it

is sufficient to know that every Borel set in R
n is analytic, cf. [2, Section 6.6].
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4 C. Liaw et al.

We do not know if the exceptional set E is analytic. However, we will be able to

prove the following statement, which essentially is the main result of this paper.

Theorem 2.1. There exists a Borel set Ẽ ⊂ H(d) such that E ⊂ Ẽ and such that the

intersection of Ẽ with any line with the direction from the open cone of positive definite

Hermitian matrices is at most countable.

Proof. Proof of Theorem 1.1 using Theorem 2.1 For a moment let us assume that

dim Ẽ > dim H(d) − 1 = d2 − 1. Then Hs(Ẽ) > 0 for some s > d2 − 1. Applying Lemma

2 with n = dim H(d) = d2 and m = 1 we see that for almost all lines in H(d) of the

form α0 + tα, α0 ∈ Ẽ, α ∈ H(d), their intersection with the extended exceptional set

Ẽ should have positive Hausdorff dimension (at least s + 1 − d2 > 0). But as we just

discussed above, for all such lines L with the directions α in the open cone of positive

definite matrices α (i.e., for a set of non-zero measure), we have at most countable

intersection, so the dimension of the intersection is 0. This gives a contradiction, and

therefore dim Ẽ ≤ dim H(d) − 1 = d2 − 1. �

3 Preliminaries: Spectral Measures and the Exceptional Set

For the operator A with cyclic set, RanB define its matrix-valued spectral measure M

with values in H(d) as the unique measure satisfying

B∗(A − zI)−1B =

∫

R

(s − z)−1dM(s) =: CM(z);

the spectral measures M
α
, α ∈ H(d) are defined the same way with A replaced by A

α
.

It follows from the standard resolvent identities that the Cauchy transforms CM

and CM
α

are related by the following well known formula

CM
α

= CM(I + α (CM))−1 = (I + (CM)α)−1
CM. (3.1)

For a proof of these relations, see for example, [4, Lemma 3.1].

Define the scalar measure µα := trM
α
. Clearly M

α
is absolutely continuous with

respect to µα,

dM
α

= W
α
dµα, ‖W(s)‖ ≤ 1 µα-a.e.

It is not hard to see that µα is a scalar spectral measure of the operator A
α

(recall that by

a scalar spectral measure we always mean a scalar spectral measure of maximal type).
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Aronszajn–Donoghue Theorem 5

Recall that a scalar spectral measure is not unique, it is defined up to a multiplication

by a non-vanishing weight. So the spectral type [µα] of µα, that is the equivalence class

of all mutually absolutely continuous with µα measures, gives us all possible scalar

spectral measures of A
α
. For our purposes, it does not matter which representative we

choose, and µα is a convenient choice.

For a fixed finite singular measure ν on R, define the exceptional set E = E(ν)

to be the set of all α ∈ H(d) for which the measures µα and ν are not mutually singular.

Note that in the definition of E we can replace µα by its singular part, and the resulting

set will be exactly the same.

If ν is the singular part of the spectral measure µα0 , then the exceptional set

E is exactly the set of all α ∈ H(d) such that the singular parts of µα0 and µα are not

mutually singular for some α.

Note that the set E is explicitly defined, not just up to a set of measure zero. In

other words, for each α ∈ H(d) one can always say if α ∈ E or not.

However, we do not know whether the set E is Borel, or even a Suslin (analytic)

set. In particular, we cannot directly approach the set E using measure theoretic tools.

We bypass this problem by constructing a bigger set Ẽ, which is Borel, see the above

Theorem 2.1.

Recall that for a (say finite) Borel measure µ on R, its Poisson extension to the

upper half-plane C+ (which we slightly abusing notation, denote as µ(z)) is given as

µ(z) = π−1ImCµ(z), z ∈ C+,

where Cµ is the Cauchy transform of the measure µ,

Cµ(z) =

∫

R

(s − z)−1dµ(s), z ∈ C+.

Similarly, for a (say again finite) matrix measure M, its Poisson extension M(z) to the

point z ∈ C+ is given by

M(z) = π−1ImCM(z), ImCM(z) = (2i)−1(CM(z) − CM(z)∗).

This formula, together with (1), implies that the functions (α, z) 7→ M
α
(z) and

(α, z) 7→ µα(z) = trM
α
(z) are continuous functions of the arguments α ∈ H(d) and z ∈ C+.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa281/5999063 by Brow

n U
niversity user on 07 June 2021
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4 Some Measure Theory

It is well known (see e.g., [4, Part (ii) of Theorem 3.4]) that for a finite non-negative

measure µ on R its singular part µs is carried by the set Sµ of all x ∈ R for which

lim
z→x∢

µ(z) = +∞;

here by limit we understand the non-tangential limit, and µ(z) is the Poisson extension

of the measure µ at the point z ∈ C+. The term carried here means that µs(R \ Sµ) = 0.

Note that if we pick a reasonable sequence yn ↓ 0, for example, yn = 2−n (or

yn = 1/n), then it follows easily from Harnack’s inequality that for any aperture of the

approach region

lim
z→x∢

µ(z) = +∞ if and only if lim
n→∞

µ(x + iyn) = +∞;

this equivalence holds for all x ∈ R. In particular, this means that the set Sµ is always a

Borel set.

Let us fix such a “reasonable” sequence yn. Define the set F1 ⊂ H(d) × R,

consisting of all pairs (α, x) such that

lim
n→∞

µα(x + iyn) = +∞.

As we discussed at the end of Section 3, (α, z) 7→ µα(z) is a continuous (and so

Borel measurable) function of the variables α ∈ H(d), z ∈ C+. Therefore, the functions

(α, x) 7→ µα(x + iyn) are Borel measurable functions of the variables (α, x) ∈ H(d)×R, so

the set F1 is a Borel subset of H(d) × R.

It is well known that if dν = wdµ, then

lim
z→x∢

ν(z)/µ(z) = w(x) µ-a.e.

This implies that for the “reasonable” sequence of yn we picked above, we have

lim
n→∞

ν(x + iyn)/µ(x + iyn) = w(x) forµ-a.e.x ∈ R.

As we discussed above, dM
α

= W
α
dµα, µα-a.e., so for any fixed α ∈ H(d)

lim
n→∞

M
α
(x + iyn)/µα(x + iyn) = W

α
(x) µα-a.e. (4.1)

Define the set F2 ⊂ H(d) × R to be the set of all pairs (α, x) such that the limit

limn→∞ M
α
(x + iyn)/µα(x + iyn) exists and is non-zero. Again, this set is clearly Borel.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa281/5999063 by Brow

n U
niversity user on 07 June 2021



Aronszajn–Donoghue Theorem 7

Moreover, if for a set F ⊂ H(d) × R, we denote by F
α

its section,

F
α

:= {x ∈ R : (α, x) ∈ F},

then for any α ∈ H(d) we have

dM
α

= 1F2
α

W
α
dµα (4.2)

(i.e., defining the density W
α
, we can ignore the set where the limit (1) does not exists or

equals 0).

Noticing that for any Borel E ⊂ R the measure µα(E) > 0 if and only if M
α
(E) 6= 0,

we get the following statement.

Let F = F1 ∩ F2, so according to our notation F
α

= F1
α

∩ F2
α
.

Lemma 3. For any α ∈ H(d), the singular part of µα is carried by F
α
, meaning that

µα

s (R \ F
α
) = 0. This implies, in particular, that given a singular measure ν the measures

ν and µα (equivalently ν and the singular part of µα) are not mutually singular only if

ν(F
α
) > 0.

Proof. As we discussed above, the singular part of µα is supported on the set F1
α
.

Formula (2) implies that M
α
(F1

α
\F2

α
) = 0. Since µα = trM

α
, we conclude that µα(F1

α
\F2

α
) =

0. So the singular part of µα is indeed supported on F
α
.

The 2nd statement follows trivially. �

Lemma 4. Let Ẽ = Ẽ(ν) be the set of all α ∈ H(d) such that ν(F
α
) > 0. Then Ẽ contains

the exceptional set E and Ẽ is Borel.

Proof. The containment E ⊂ Ẽ follows from Lemma 3. The Borel measurability of Ẽ is

an immediate corollary of the Tonelli theorem. �

5 Directional Support of the Singular Part

Lemma 5. Suppose that for α ∈ H(d) and for x ∈ R

lim
n→∞

µ(x + iyn) = +∞, lim
n→∞

µα(x + iyn) = +∞, (5.1)

and that the limits

lim
n→∞

M(x + iyn)/µ(x + iyn) =: W(x), (5.2)

lim
n→∞

M
α
(x + iyn)/µα(x + iyn) =: W

α
(x)
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8 C. Liaw et al.

exist and are non-zero.

Then

RanW(x) ⊥ αRanW
α
(x) or, equivalently, αRanW(x) ⊥ RanW

α
(x).

Remark. We do not need to assume that the limits are non-zero: if one of the limits is

zero, the statement is trivial.

Remark 1. The above Lemma 5 looks very much like [4, Theorem 6.2], and the proof

below is essentially the proof from [4]. But the important difference is that in [4] the

orthogonality condition was satisfied µs + µα

s a.e., but in Lemma 5 we need it to hold

for all x satisfying (1) and (2). Since the devil is often in details, we present a complete

proof below.

Proof of Lemma 5 By [4, Theorem 6.7], the matrix measures M and M̃
α

:= αM
α
α satisfy

the joint two weight matrix A2 condition, that is,

∥∥∥M(z)1/2M̃
α
(z)1/2

∥∥∥ ≤ C < ∞ ∀z ∈ C+.

We can rewrite this inequality as

(µ(z)µα(z))1/2
∥∥∥
(
M(z)/µ(z)

)1/2 (
M̃

α
(z)/µα(z)

)1/2
∥∥∥ ≤ C < ∞ ∀z ∈ C+. (5.3)

Let us substitute z = zn = x + iyn from the statement of the lemma into (3) and take the

limit as n → ∞. Taking (1) into account, we can conclude from (3) that

lim
n→∞

∥∥∥∥
(
M(zn)/µ(zn)

)1/2(
M̃

α
(zn)/µα(zn)

)1/2
∥∥∥∥ = 0. (5.4)

It follows from the identities (2) that

lim
n→∞

M(zn)/µ(zn) = W(x), lim
n→∞

M̃
α
(zn)/µα(zn) = αW

α
(x)α,

so the limit in (4) is exactly

∥∥∥
(
W(x)

)1/2(
αW

α
(x)α

)1/2
∥∥∥ = 0.

But the last identity could happen only if the ranges of (self-adjoint) matrices W(x) and

αW
α
(x)α are orthogonal. �
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6 Countable Intersections with Extended Exceptional Set

In the theorem below, F
α

is defined as in Section 4.

Theorem 6.1. Let α, α0 ∈ H(d) with α > 0, and let α(t) = α0 + tα. Then, given a finite

singular Borel measure ν on R, for all t except maybe countably many

ν(F
α(t)) = 0.

We need the following lemma, the trivial proof of which we chose to omit.

Lemma 6. Let A be a positive definite matrix. There exists a constant c = c(A)

depending on A such that the condition (Ax, y) = 0 implies

‖x − y‖2 ≥ c(A)(‖x‖2 + ‖y‖2).

Proof. Proof of Theorem 6.1 using Lemma 6 Pick t, t′ ∈ R such that ν(F
α(t)) 6= 0 and

ν(F
α(t′)) 6= 0. Recall that for all (α, x) ∈ F (where F is as defined in Section 4), the limit

lim
n→∞

M
α
(x + iyn)/µα(x + iyn) =: W

α
(x)

exists and is non-zero.

We had shown in Section 4 that the set F is Borel measurable and that the

function (α, x) 7→ W
α
(x) is a measurable function on F (as a limit of a sequence of

continuous functions). Extending it by 0 outside of F, we will get a measurable function

defined on the whole H(d).

It is then an easy exercise to show that we can find a vector-valued Borel

measurable function (α, x) 7→ 8(α, x) ∈ RanW
α
(x) ⊂ C

d such that 8(α, x) 6= 0 if and only

if (α, x) ∈ F. Multiplying this function by an appropriate measurable function depending

on α only we can assume that without loss of generality

∫

R

‖8(α, x)‖2

C
d
dν(x) = 1

whenever ν(F
α
) 6= 0; if ν(F

α
) = 0 the integral is trivially 0.

Define f (x) := 8(α(t), x), g(x) := 8(α(t′), x). Note that

‖f ‖
L2(ν)

= ‖g‖
L2(ν)

= 1.
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10 C. Liaw et al.

Since α(t′) = α(t) + (t′ − t)α, Lemma 5 (applied to W
α(t) instead of W and W

α(t′)

instead of W
α
) implies that αRanW

α(t) ⊥ RanW
α(t′), so

(αf (x), g(x))
C

d
= 0 ∀x ∈ R;

if both points (α(t), x) and (α(t′), x) are in F, this follows from Lemma 5; if not, this is

trivial because one of the vectors f (x), g(x) is zero.

Applying Lemma 6, we get that for all x ∈ R

‖f (x) − g(x)‖2

C
d

≥ c ·
(
‖f (x)‖2

C
d

+ ‖g(x)‖2

C
d

)
.

Integrating this inequality, we see that

‖f − g‖2

L2(ν)
≥ c ·

(
‖f (x)‖2

L2(ν)
+ ‖g(x)‖2

L2(ν)

)
= c.

So, for all t ∈ R such that ν(F
α(t)) 6= 0, we constructed unit vectors ft =

8(α(t), · ) ∈ L2(ν) = L2(ν;Cd) such that the distance between any two such vectors is

at least some fixed c > 0. Since the space L2(ν;Cd) is separable, there can be at most

countably many such t ∈ R. �
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