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The classical Aronszajn—-Donoghue theorem states that for a rank-one perturbation of
a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures
of the original and perturbed operators are mutually singular. As simple direct sum
type examples show, this result does not hold for finite rank perturbations. However,
the set of exceptional perturbations is pretty small. Namely, for a family of rank d
perturbations 4, := A 4+ BaB*, B : C¢ — %, with RanB being cyclic for A, parametrized
by d x d Hermitian matrices «, the singular parts of the spectral measures of A and 4,
are mutually singular for all « except for a small exceptional set E. It was shown earlier
by the 1st two authors, see [4], that E is a subset of measure zero of the space H(d) of
d x d Hermitian matrices. In this paper, we show that the set E has small Hausdorff
dimension, dimE < dimH(d) — 1 = d? — 1.

1 Introduction

Consider a family of finite rank (self-adjoint) perturbations of a self-adjoint operator A

(possibly unbounded),
A, := A+ BaB*, (1.1)
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2 C. Liaw et al.

parametrized by self-adjoint operators (Hermitian matrices) @ : C¢ — C¢. Here we
assume that B : C¢ — H is an injective operator. We do not need to assume that B
is bounded, it is sufficient to assume that the operator (I + |[A|)~!/?B is bounded. In
this case, we are dealing with the so-called “form bounded” perturbations; the theory of
such perturbations is well developed and does not differ much from the case of bounded
perturbations (see e.g., [1]).

Isolating the interesting from the perturbation theory point of view case, we
always assume that RanB is cyclic for A. In the case of rank-one perturbations (d = 1),
the classical Aronszajn—-Donoghue theorem states that the singular parts of the spectral
measures of A and A, are always mutually singular.

As simple direct sum examples show, this is not the case for d > 1. So, the
singular parts of the spectral measures of the original and perturbations and the
singular parts of the scalar spectral measures of A and A, are not always mutually
singular. However, it was proved in [4] that they are mutually singular for almost all
perturbations.

Moreover, it was proved in [4] that if «; > 0 (i.e., positive definite) and «(t) =
oy + teq, then given a singular measure v the spectral measures u! (equivalently their
singular parts uf) of the operators A, are mutually singular with v for all ¢ € R except,
maybe, countably many.

This leads one to suspect that in fact one can say more about the exceptional set,
i.e., the set of all Hermitian d x d matrices o for which the singular parts of the scalar
spectral measures (by a scalar spectral measure, we always mean a scalar spectral
measure of maximal spectral type) of A and of A, are not mutually singular. It looks
like a reasonable conjecture that the exceptional set is not just a set of measure 0, but it
in fact has dimension strictly less than the full dimension d? of the set H(d) of all d x d
Hermitian matrices. (It is not hard to see that the Hausdorff dimension of the set H(d)
of all d x d Hermitian matrices is exactly d?.)

This turns out to be the case; the main result of this note is the following

theorem:

Theorem 1.1. Let operators A, be given by (1), and let RanB be cyclic for A. Given
a singular measure v the scalar spectral measures u* of the operators A, are mutually
singular with v for all @ € H(d) \ E, where the exceptional set E has Hausdorff dimension
at most dimH(d) — 1 = d? — 1.
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Aronszajn-Donoghue Theorem 3
2 An Application of the Marstrand-Mattila Theorem

The tool to show that the dimension of the exceptional set is at most dimH(d)—1 = d?—1
is already available. Namely, the following result was proved in [6, Lemma 6.4]. Below,
HS denotes the s-dimensional Hausdorff measure, and G(m,n) denotes the set of all

m-dimensional subspaces of R”.

Lemma 1. Let E be an 4’ measurable subset of R” with 0 < H5(E) < oco. Then
dim(EN(V+x)>s+m-—n
for almost all (x, V) € E x G(m, n).

In this lemma,H® measurable means Carathéodory measurable with respect to
the outer measure H5.

This result was proved by Marstrand [5] for n = 2 and by Mattila [6] for general
n eN.

A formal application of this result would immediately give us the desired
estimate on the dimension (see the reasoning at the end of this section). However, we
do not know anything about the exceptional set E (see the definition below in Section 3);
we do not know whether it is 45 measurable for s > d% — 1. But what is more important,
we cannot say that H5(E) < oo for s > d? — 1.

However, as it was discussed in [6], if one assumes that E is an analytic (a.k.a. a
Suslin) set, one can reduce the assumption to H5(E) > 0. The reason for this reduction is
that, by the theorem of Davies [3], given an analytic set E C R™ with H*(E) > 0 one can
find a compact K C E with 0 < H5(E) < oo.

So, although it was not stated explicitly, the following statement was proved in
[6].

Lemma 2. Let E be an analytic (Suslin) subset of R"™ such that #5(E) > 0. Then
dim(EN(V+x)>s+m-—n
for almost all (x, V) € E x G(m, n).

We will not be giving the definition of analytic (Suslin) sets; for our purposes, it

is sufficient to know that every Borel set in R” is analytic, cf. [2, Section 6.6].
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4 C. Liaw et al.

We do not know if the exceptional set E is analytic. However, we will be able to

prove the following statement, which essentially is the main result of this paper.

Theorem 2.1. There exists a Borel set E C H(d) such that E C E and such that the
intersection of E with any line with the direction from the open cone of positive definite

Hermitian matrices is at most countable.

Proof. Proof of Theorem 1.1 using Theorem 2.1 For a moment let us assume that
dimE > dimH(d) — 1 = d? — 1. Then #(E) > 0 for some s > d? — 1. Applying Lemma
2 with n = dimH(d) = d? and m = 1 we see that for almost all lines in H(d) of the
form ag + ta, ay € E’, a € H(d), their intersection with the extended exceptional set
E should have positive Hausdorff dimension (at least s + 1 — d? > 0). But as we just
discussed above, for all such lines L with the directions & in the open cone of positive
definite matrices « (i.e., for a set of non-zero measure), we have at most countable
intersection, so the dimension of the intersection is 0. This gives a contradiction, and
therefore dimE < dimH(d) — 1 = d? — 1. [ ]

3 Preliminaries: Spectral Measures and the Exceptional Set

For the operator A with cyclic set, RanB define its matrix-valued spectral measure M

with values in H(d) as the unique measure satisfying

B*(A —zI) !B = / (s — z)~tdM(s) =: CM(2);
R

the spectral measures M, « € H(d) are defined the same way with A replaced by 4,,.
It follows from the standard resolvent identities that the Cauchy transforms CM

and CM,, are related by the following well known formula

CM, = CM(I+ a (CM))"! = @+ (CM)a)"'CM. (3.1)

For a proof of these relations, see for example, [4, Lemma 3.1].
Define the scalar measure u* := trM,,. Clearly M,, is absolutely continuous with

respect to u%,
dM, = w,du*, W) <1 p*-a.e.

It is not hard to see that u” is a scalar spectral measure of the operator A, (recall that by

a scalar spectral measure we always mean a scalar spectral measure of maximal type).
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Aronszajn—-Donoghue Theorem 5

Recall that a scalar spectral measure is not unique, it is defined up to a multiplication
by a non-vanishing weight. So the spectral type [1*] of 1%, that is the equivalence class
of all mutually absolutely continuous with ©* measures, gives us all possible scalar
spectral measures of A,. For our purposes, it does not matter which representative we
choose, and u“ is a convenient choice.

For a fixed finite singular measure v on R, define the exceptional set E = E(v)
to be the set of all « € H(d) for which the measures u* and v are not mutually singular.
Note that in the definition of E we can replace u* by its singular part, and the resulting
set will be exactly the same.

If v is the singular part of the spectral measure u*°, then the exceptional set
E is exactly the set of all « € H(d) such that the singular parts of ©%° and u* are not
mutually singular for some «.

Note that the set E is explicitly defined, not just up to a set of measure zero. In
other words, for each « € H(d) one can always say if « € E or not.

However, we do not know whether the set E is Borel, or even a Suslin (analytic)
set. In particular, we cannot directly approach the set E using measure theoretic tools.
We bypass this problem by constructing a bigger set E, which is Borel, see the above
Theorem 2.1.

Recall that for a (say finite) Borel measure u on R, its Poisson extension to the

upper half-plane C, (which we slightly abusing notation, denote as w(z)) is given as
w(z) =7 ' mCu(z), zeC,,
where Cu is the Cauchy transform of the measure pu,
Cu(z) = /R(s —2)7tdu(s), zeC,.

Similarly, for a (say again finite) matrix measure M, its Poisson extension M(z) to the

point z € C, is given by
M(z) = 7~ 'ImCM(z), ImCM(z) = (2i)"1(CM(z) — CM(2)").

This formula, together with (1), implies that the functions («,z) — M,y(z) and

(e, 2) = u®(z) = trM, (2) are continuous functions of the arguments « € H(d) and z € C_.
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6 C. Liaw et al.
4 Some Measure Theory

It is well known (see e.g., [4, Part (ii) of Theorem 3.4]) that for a finite non-negative

measure x on R its singular part ug is carried by the set S, of all x € R for which
lim w(z) = +oo;
Z—>X<]

here by limit we understand the non-tangential limit, and () is the Poisson extension

of the measure . at the point z € C, . The term carried here means that u(R\S,) = 0.
Note that if we pick a reasonable sequence y,, | 0, for example, y,, = 27" (or

¥, = 1/n), then it follows easily from Harnack's inequality that for any aperture of the

approach region

lim u(z) =400 ifandonlyif lim pu(x+iy,) =+oo;
Z—>X<] n—oo

this equivalence holds for all x € R. In particular, this means that the set S, is always a
Borel set.
Let us fix such a “reasonable” sequence y,. Define the set F! C H(d) x R,

consisting of all pairs (&, x) such that
nILI& uw®(x +iy,,) = +oo.

As we discussed at the end of Section 3, («,z) — u*(z) is a continuous (and so
Borel measurable) function of the variables « € H(d), z € C,. Therefore, the functions
(e, x) = pu*(x +1y,) are Borel measurable functions of the variables (¢, x) € H(d) xR, so
the set F! is a Borel subset of H(d) x R.

It is well known that if dv = wdu, then

Am v@)/u@ =wx) - p-ae.

This implies that for the “reasonable” sequence of y,, we picked above, we have

nlim V(X +1y,)/ nx +iy,) = w(x) foru-a.e.x € R.
— 00

As we discussed above, dM,, = W,du®, u*-a.e., so for any fixed a € H(d)

o

nll)r{.lo M, (x + iy,)/u*(x + iy,) = W, (x) u*-a.e. (4.1)

Define the set F2 C H(d) x R to be the set of all pairs (a,x) such that the limit

lim, , M, (x+iy,)/un*(x +iy,) exists and is non-zero. Again, this set is clearly Borel.
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Aronszajn-Donoghue Theorem 7

Moreover, if for a set F C H(d) x R, we denote by F, its section,

F,={xeR:(a,x) € F},

then for any & € H(d) we have
dM, = 1p2 w,du® (4.2)

(i.e., defining the density W,, we can ignore the set where the limit (1) does not exists or
equals 0).

Noticing that for any Borel E C R the measure u*(E) > 0if and only if M, (E) # 0,
we get the following statement.

Let F = F! N F?, so according to our notation F,, = F} N F2.

Lemma 3. For any ¢ € H(d), the singular part of u* is carried by F,, meaning that
u¥(R\ F,) = 0. This implies, in particular, that given a singular measure v the measures
v and u* (equivalently v and the singular part of u*) are not mutually singular only if
v(F,) > 0.

Proof. As we discussed above, the singular part of u® is supported on the set Fy.
Formula (2) implies that M, (F. \ F2) = 0. Since u% = trM,,, we conclude that u*(F. \ F2) =
0. So the singular part of u® is indeed supported on F,,.

The 2nd statement follows trivially. |

Lemma 4. LetE = E(v) be the set of all & € H(d) such that v(F,) > 0. Then E contains

the exceptional set E and E is Borel.

Proof. The containment E C E follows from Lemma 3. The Borel measurability of E is

an immediate corollary of the Tonelli theorem. |

5 Directional Support of the Singular Part

Lemma 5. Suppose that for « € H(d) and for x ¢ R
. o . o o
nll)nolo w(x + iy,,) = +oo, nll)ngou (x +1y,,) = +o0o, (5.1)
and that the limits
lim M(x + iy,)/u(x +1iy,) =: W(x), (5.2)
n—oo

Tim My (x + i) /1 (% + i) =3 We ()
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8 C. Liaw et al.

exist and are non-zero.
Then

RanW(x) L aRanW, (x) or, equivalently, aRanW(x) L RanW, (x).

Remark. We do not need to assume that the limits are non-zero: if one of the limits is

zero, the statement is trivial.

Remark 1. The above Lemma 5 looks very much like [4, Theorem 6.2], and the proof
below is essentially the proof from [4]. But the important difference is that in [4] the
orthogonality condition was satisfied ug + g a.e., but in Lemma 5 we need it to hold
for all x satisfying (1) and (2). Since the devil is often in details, we present a complete

proof below.

Proof of Lemma5 By [4, Theorem 6.7], the matrix measures M and M, := «M, & satisfy

the joint two weight matrix A, condition, that is,
HM(z)1/21\7[‘,((z)1/2 H <C<oco VzeC,.
We can rewrite this inequality as
(w@u* @) |(M@/1@) " M@/ @) | sc<00 VzeC, (63

Let us substitute z = z,, = x +iy,, from the statement of the lemma into (3) and take the

limit as n — oo. Taking (1) into account, we can conclude from (3) that

. 1/2 / _ 1/2
lim H (M(2)/1z)) " (Wi z) /1% 2,) H o0, (5.4)
It follows from the identities (2) that
lim M(z,)/u(z,) = W),  lm M,(2,)/1"(2,) = aW, (e,
so the limit in (4) is exactly

1/2

H (W) (@W, (x)a) H —o.

But the last identity could happen only if the ranges of (self-adjoint) matrices W(x) and

aW, (x)a are orthogonal. |
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Aronszajn—-Donoghue Theorem 9
6 Countable Intersections with Extended Exceptional Set

In the theorem below, F, is defined as in Section 4.

Theorem 6.1. Let o,y € H(d) with « > 0, and let a(t) = a + ta. Then, given a finite

singular Borel measure v on R, for all ¢ except maybe countably many
V(Fy) = 0.
We need the following lemma, the trivial proof of which we chose to omit.

Lemma 6. Let A be a positive definite matrix. There exists a constant ¢ = c(4)

depending on A such that the condition (Ax,y) = 0 implies
Ix —yII* = c(A)Ix]? + Y1)

Proof. Proof of Theorem 6.1 using Lemma 6 Pick t,¢' € R such that v(F,,) # 0 and
V(Fy ) # 0. Recall that for all (¢, x) € F (where F is as defined in Section 4), the limit

Tim My (x + i) /1 (% + i) =3 W (X)

exists and is non-zero.

We had shown in Section 4 that the set F is Borel measurable and that the
function («,x) — W, (x) is a measurable function on F (as a limit of a sequence of
continuous functions). Extending it by 0 outside of F, we will get a measurable function
defined on the whole H(d).

It is then an easy exercise to show that we can find a vector-valued Borel
measurable function («, x) — ®(a,x) € RanW, (x) C C4 such that ®(«, x) # 0 if and only
if (&, x) € F. Multiplying this function by an appropriate measurable function depending

on « only we can assume that without loss of generality
(e, )| dv(x) =1
/R 1 (et )1 ; dv ()

whenever v(F,) # 0; if v(F,) = 0 the integral is trivially 0.
Define f(x) := ®(a(t), %), g(x) := ®(a(t'), x). Note that

1.

I£1 =gl

L (v) L2(v) -
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10 C. Liaw et al.

Since a(t') = «(t) + (f' — t)a, Lemma 5 (applied to W, instead of W and W,
instead of W,) implies that aRanW,, L RanW, ), so

(@f(0,9x) , =0 Vxek

if both points («(t),x) and («(t'),x) are in F, this follows from Lemma 5; if not, this is
trivial because one of the vectors f(x), g(x) is zero.

Applying Lemma 6, we get that for all x e R

If G0 —glZ, = ¢ (Ilf(x)lléd + ||g(x>||fcd) :

Integrating this inequality, we see that

LZ(v) — LZ(v) LZ(v)

If — gll* >c-(||f<x)||2 + g1 )=c

So, for all ¢t € R such that v(Fy) # 0, we constructed unit vectors f; =
®(a(t), -) € L2(v) = L2(v; C%) such that the distance between any two such vectors is
at least some fixed ¢ > 0. Since the space L%(v; C%) is separable, there can be at most

countably many such t € R. |

Funding

This work was supported by the National Science Foundation [DMS-1802682 to C.L., DMS-1856719
to S.T., DMS-1900286 to A.V.].

Acknowledgments

Since August 2020, C. Liaw has been serving as a program director in the Division of Mathematical
Sciences at the National Science Foundation (NSF), USA, and as a component of this position,
she received support from NSF for research, which included work on this paper. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

References

[1] Albeverio, S. and P. Kurasov.. Singular Perturbations of Differential Operators. London Math.
Soc. Lecture Note Series 271. Cambridge, UK: Cambridge University Press, 2000.

[2] Bogachev, V. I. Measure Theory, vol. 2. Berlin: Springer, 2007.

[3] Davies, R. O. “ Subsets of finite measure in analytic sets.” Nederl. Akad. Wetensch. Proc. Ser.
A. 55, Indagationes Math. 14 (1952): 488-9.

1202 8unp /0 uo Jasn AjsisAlun umolg AQq €90666S/ 1 8ZB.UI/UIWI/SE0 L 0 | /I0p/3|o1e-00uBAPE/UIWI/WOo9 dno olwapede//:sdiy Wol) papeojumod



(4]

(5]

(6]

Aronszajn-Donoghue Theorem 11

Liaw, C. and S. Treil.. “ Matrix measures and finite rank perturbations of self-adjoint
operators.” J. Spectr. Theory (forthcoming). arXiv:1806.08856 [math.SP].

Marstrand, J. M. “ Some fundamental geometrical properties of plane sets of fractional
dimensions.” Proc. Lond. Math. Soc. (3) 4 (1954): 257-302.

Mattila, P. “ Hausdorff dimension, orthogonal projections and intersections with planes.”
Ann. Acad. Sci. Fenn. Math. 1, no. 2 (1975): 227-44.

1202 8unp /0 uo Jasn AjsisAlun umolg AQq €90666S/ 1 8ZB.UI/UIWI/SE0 L 0 | /I0p/3|o1e-00uBAPE/UIWI/WOo9 dno olwapede//:sdiy Wol) papeojumod



	Dimension of the Exceptional Set in the Aronszajn--Donoghue Theorem for Finite Rank Perturbations
	1 Introduction
	2 An Application of the Marstrand--Mattila Theorem
	3 Preliminaries: Spectral Measures and the Exceptional Set
	4 Some Measure Theory
	5 Directional Support of the Singular Part
	6 Countable Intersections with Extended Exceptional Set


