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Abstract

When species are continuously distributed across environmental gradients, the relative strength
of selection and gene flow shape spatial patterns of genetic variation, potentially leading to
variable levels of differentiation across loci. Determining whether adaptive genetic variation
tends to be structured differently than neutral variation along environmental gradients is an open
and important question in evolutionary genetics. We performed exome-wide population genomic
analysis on deer mice sampled along an elevational gradient of nearly 4000 m of vertical relief.
Using a combination of selection scans, genotype-environment associations, and geographic
cline analyses, we found that a large proportion of the exome has experienced a history of
altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were
shifted significantly up- or down-slope of clines for loci that did not bear similar signatures of
selection. Many of these selection targets can be plausibly linked to known phenotypic
differences between highland and lowland deer mice, although the vast majority of these
candidates have not been reported in other studies of highland taxa. Together, these results
suggest new hypotheses about the genetic basis of physiological adaptation to high-altitude, and

the spatial distribution of adaptive genetic variation along environmental gradients.
Introduction

For species that are continuously distributed across environmental gradients, the spatial
scale of local adaptation is determined by the interplay between divergent selection and gene
flow (Slatkin 1987; Lenormand 2002; Polechova and Barton 2015; Riesch et al. 2018; Bachmann
et al. 2019). One way to gain insight into the spatial scale of local adaptation is through
geographic cline analyses of allele frequencies across an environmental transect (Nagylaki 1975;
Barton 1979; Barton 1983; Stankowski et al. 2016; Storfer et al. 2018; Bradburd and Ralph
2019). When applied at a genomic scale, geographic cline analyses can be used to generate
hypotheses about the environmental drivers of allele frequency variation and to identify
processes that shape the distribution of adaptive genetic variation among interconnected
populations (reviewed in Storfer et al. 2018). Locus-specific spatial patterns of genetic variation
are determined by the combined effects of selection, gene flow, recombination rate, and the
distribution of selection coefficients on nearby loci (Barton 1979; Barton 1983; Lenormand

2002; Polechova and Barton 2015; Bachmann et al. 2019). These processes can result in clines in
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the frequencies of alleles at selected loci that are offset from one another, and from those of
neutral loci, that reflect a combination of background population structure and selection at linked
sites (Lenormand 2002; Yeaman and Whitlock 2011). However, because patterns of allele
frequency variation are jointly determined by multiple demographic processes, by the spatial
scale of selective pressures, and by the intensity of selection on specific loci, this need not
always be the case. For example, in zones of ecological transition, demographic processes and
environmental selective pressures may align such that allele frequencies for both neutral and
adaptive loci have similar geographic patterns (Endler 1977; Moore 1977). Under these
scenarios, clines for adaptive and neutral loci may often be concordant. Given these expectations,
an open and important question in evolutionary genetics is whether adaptive genetic variation

tends to be structured differently than neutral variation along environmental gradients.

Elevational gradients are particularly well-suited to address this question. High-elevation
environments are characterized by extreme cold and low partial pressures of oxygen. Along
elevational gradients, these environmental selection pressures co-vary in intensity and can often
be combined with other co-varying stressors (e.g. aridity). As a result, highland animals have
evolved physiological modifications to cope with the environmental challenges of alpine
environments. Many of these adaptations influence multiple steps of the oxygen transport
cascade — the series of physiological processes that transport oxygen from the environment to
respiring cells — to ensure matching of Oz supply and demand (Figure 1; e.g. Storz ef al. 2010;
Storz and Scott 2019). In North America, deer mice (Peromyscus maniculatus) have an
elevational range of almost 4500 m and populations at different elevations experience a wide
range of variation in oxygen availability, temperature, precipitation, and snowpack. Deer mice
native to high elevations in the Rocky Mountains have evolved a suite of physiological changes
that contribute to adaptive enhancements of whole-animal aerobic performance in hypoxia
(Figure 1; Cheviron et al. 2012; Cheviron et al. 2013; Cheviron et al. 2014; Lui et al. 2015; Ivy
and Scott 2017; Lau et al. 2017; Dawson et al. 2018; Scott et al. 2015; Mahalingam et al. 2017;
Mahalingam et al. 2020; Nikel et al. 2017; Tate et al. 2017; Dawson et al. 2018; Ivy and Scott
2018; Storz et al. 2019), a trait that influences survival in this species (Hayes and O'Connor

1999; Wilde et al. 2019).

1 Z0Z @unp 20 Uo Jasn Aleiqi plelsuely - BUBUOI 1o AlsiaAlun AQ 6€1+829/1 91 qesW/A8qow/Sa0 "0 L/I0p/8|oile-a0uBApe/aquwl/woo dno olwapeoe//:sdiy Wol) papeojumo(



73

74
75
76
77
78
79
80

Step of OTC Previously-collected physiological data

~
A
~
"y

Breathing

hlargargtlﬁr ha'[uu

ar il @h-

c?' at asrable cgpar:ﬂ:, but
hilg

==
=]

hlanders and
lowlanders maintain
similar rates of ventilation
and tidal wolurme'.

Total ventilation
{ml g* min?)
o

Tidal volume (i g-')

[=]

Highland Lowland Highland Lowland Highland Lowland

Highland Lowland Highland Lowland
bin-0, a rilyand hghur

stroke 1..Iu:'nlun'la respec- I ' ' -

thoaty)'* Highland Lowland Highland Lowland

Highland Lowland

... A
Y

-
‘LPuImunarp O, Diffusion

Highland rrilu::e ad'lbave

greater pulmonary

exiraction associated with
reater alveolar surface
@nsity in the lungs.™.

A

-

\
"y

=
B 8 &

=
=
5]

density (um’)
=

Alveolar surface
Pulmonary O
extraction (%5)

g

L J
i ™
< Circulatory O, Delivery
In hypoxia, highland mice
sustain ﬂssu.lag{} delivery
via evolved incréases in
arterial O, saturation and

cardlac nutp
due to hi

™
vy

75

[=]

50

o
tn

25

Arterial O
saturation (%)
Cardiac cutput

(milg’ min')

r
N
AV

8
=
m

Tissue O, Diffusion 0.05

Highland mice have
evolved increased capil-
larity and redistribution of
mitéchondria closer to
capillaries that increase

0, diffusion capacity®,

oy
.t.

o oo o
ER=-
- M@
o
ha

density (um")
subsarcole mmal
mitochondria

Capillary surf

=3
2
e
=

B
. ) Highland Lowland

~
B ' '
|
4] - .

Highland Lowland Highland Lowland Highland Lowland

Relative abundance of

b

o
@

i Tissue O, Use

Highland mice have
greater mitochondrial
respiraticn in

muscle fibers (8.9. com-
plex | and 1l of the elec-
tron transgort chain) that
oo gl sapet
enha aeroblc capacl-
& ty in hypoxia®®,

=

i
[1=]
(=]

=

ra
=
3

Areal density of
oxidative fibers

Total mitechondrial
volume density (%)
=

o
=]
=

(nmal O, mg™ min")

' s T
Muscle fiber respiraticn

/ o

Figure 1. Deer mice native to high elevations in the Rocky Mountains have evolved a
suite of physiological changes that contribute to adaptive enhancements of whole-animal aerobic
performance in hypoxia. For each step of the oxygen transport cascade (OTC), physiological
differences between highland and lowland deer mice are summarized on the left and previously-
collected representative physiological data are on the right. References: 1) Tate et al. 2020; 2)
West et al. 2021; 3) Tate et al. 2017; 4) Ivy et al. 2020; 5) Scott et al. 2015; 6) Mahalingam et al.
2017.
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While the physiological mechanisms of high-elevation adaptation have been well-
characterized in deer mice, our understanding of the genetic basis of these adaptations is far from
complete (Storz et al. 2019; Storz 2021). Transcriptomic analyses have demonstrated that some
phenotypic adaptations are associated with differential regulation of core metabolic and cell
signaling pathways (Cheviron et al. 2012; Cheviron et al. 2014; Scott et al. 2015; Velotta et al.
2016; Velotta et al. 2020), but direct connections between genotypic and phenotypic variation
have been restricted to studies of a few candidate genes (e.g. Storz et al. 2009; Storz et al. 2010;
Natarajan et al. 2015; Schweizer et al. 2019; Song et al. 2021; Wearing et al. 2020 BioRxiv).
These studies have revealed sharp clines in allele frequency that are centered at relatively low
elevations in the transition between the Great Plains of the central United States and the Front
Range of the Rocky Mountains in Colorado (Storz et al. 2012; Schweizer et al. 2019). Two key
examples include Epas/ (endothelial PAS domain-containing protein 1), a gene involved in the
transcriptional response to hypoxia, and tandemly linked gene duplicates that encode the /-
subunits of adult hemoglobin (#-globin genes Hbb-T1 and Hbb-T2). Across the Rocky
Mountains, clines for both Epas/ and f-globin haplotypes are centered at ~1400 m above sea
level (a.s.l.) and span approximately 600 m of vertical relief (Storz et al. 2012; Schweizer et al.
2019). Clines for both of these putatively adaptive loci are also statistically indistinguishable
from those representing background population structure (Schweizer et al. 2019). Whether these

loci are representative of other putatively adaptive loci across the genome is not known.

Here, we examined elevational patterns of exome-wide variation to: 1) test whether genes
that are associated with known, putatively adaptive, phenotypic differences between highland
and lowland deer mice also bear signatures of positive selection in highland mice, and 2) identify
additional loci that may have contributed to high-altitude adaptation. We complemented this
analysis with a post-hoc survey of similar population genomic studies of high-elevation
adaptation in other endothermic species to determine whether targets of selection in deer mice
are common in other taxa. Finally, once these putatively selected loci were identified, we then
characterized geographic clines of allele frequency variation along an elevational gradient of
almost 4000 m of elevational relief. This analysis enabled us to examine the extent to which
patterns of clinal variation at putatively adaptive loci differ from observed patterns across the

remainder of the genome. Together, our results shed light on the spatial distribution of adaptive
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genetic variation across elevational gradients and suggest new hypotheses about the genetic basis

of physiological adaptation to hypoxia.
Results
Sequencing results

We sampled deer mice at low-elevation sites in the Great Plains, as well as along a
transect spanning ~4000 m of vertical relief in the southern Rocky Mountains in Colorado
(Figure 2; Table 1). In addition, we included samples from a low-elevation site in Merced, CA,
as a reference population for some of our selection tests (Table S1). We captured ~77.4 Mb of
sequence from each individual using a custom-designed capture array that targeted two sequence
classes from the deer mouse genome, including: 1) the nuclear exome, and 2) 5,000 randomly
selected non-genic segments of 500 bp each, to be used as a neutral control to model population

structure (see Materials and Methods).

After filtering, we proceeded with a set of 256 individuals genotyped at 5,546,642 high-
quality bi-allelic variants, with a mean depth of coverage of 22.24+7.90X (Figure S1) and mean
missing data of 9.07+12.11% (Table S1). We also generated a dataset for analyses within the
Rocky Mountain and Great Plains populations (Table 1) that consisted of 168 unrelated
individuals genotyped at 6,029,294 sites of which 267,264 were non-genic LD-pruned sites to be
used for analyses of population structure. Exploratory PCA plots did not show evidence of any

consistent effects of missing data (Figure S2; Figure S3).
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Figure 2. A) Sampling localities for deer mice along the transition between the Great Plains and
the Front Range of the Southern Rocky Mountains that spans ~4000 m of vertical relief. Dashed
box represents those populations grouped within the “Rocky Mountains” for analyses. B) Within
the Front Range of the Southern Rocky Mountains, we sampled four elevational transects: 1- The
Pikes Peak Transect: Pike Low, Pike Medium, Pike High (purples, circles); 2 — The Boreas Pass
Transect: Pike, Lost Park, Colorado Trail (reds, squares); 3 — The Mount Evans Transect: Mount
Evans, Summit Lake, Echo Lake, Chicago Creek, Spring Gulch (greens, triangles); 4: The Niwot
Peak Transect: Niwot Peak, Saint Vrain, Lefthand Canyon (blues, diamonds). Shape sizes in B
are proportional to numbers of individuals (see Table 1 for sample sizes). SV: Saint Vrain; BT:
Big Thompson; NP: Niwot Peak; LC: Lefthand Canyon; BP: Boreas Pike; LP: Lost Park; CT:

Colorado Trail.

Population genetic structure of Rocky Mountain and Great Plains mice

To determine how populations should be grouped for downstream analyses, we assessed
fine-scale patterns of population structure across the Great Plains-Rocky Mountains transition.
We used a statistical framework that tests for discrete patterns of population structure against a
backdrop of continuous geographic differentiation, implemented in the software conStruct
(Bradburd et al. 2018). Analyses using conStruct showed strong and consistent support for two

clusters — one comprised largely of Rocky Mountain populations (dashed box in Figure 2A: Pike
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Low, Pike Medium, Pike High, Boreas Pike, Lost Park, Colorado Trail, Mount Evans, Summit
Lake, Echo Lake, Chicago Creek, Spring Gulch, Niwot Peak, St. Vrain, Lefthand Canyon, Mesa,
Big Thompson, CO), the other centered on the Great Plains samples (Pawnee, CO; Bonny
Reservoir, CO; Ft. Larned, KS; Lincoln, NE) — with a clear pattern of isolation by distance
within each cluster (Figure S4; Figure S5). Given that the Rocky Mountain samples were well-
described by a single, spatial cluster, we treated populations from across the elevational sampling

(Figure 2B) as a single transect for downstream analyses.
Exome-wide signatures of selection in Mt. Evans mice

To identify genes under positive selection in high-elevation mice, we used the population
branch statistic (PBS; Yi et al. 2010) to measure the branch length of Mt. Evans relative to both
Lincoln — the lowest elevation site along our elevational transect — and Merced populations by
a transformation of pairwise Fst values (see Materials and Methods). Loci with elevated PBS
values are indictive of loci under selection in Mt. Evans. Overall, we observed relatively low
differentiation across most of the 105,571 overlapping 5 kb (Figure S6) windows, which is
consistent with previous analyses of broad-scale population structure (Storz and Kelly 2008;
Storz et al. 2012; Natarajan et al. 2015; Schweizer et al. 2019). Using data simulated under an
inferred demographic model (Schweizer et al. 2019), we determined the upper 0.1% of the
simulated distribution of PBS (PBS > 0.112) and used that as a threshold to identify candidate
windows. A total of 4,118 windows exceeded the top 0.1% of the simulated PBS distribution,

and these windows represented 1,993 unique genes (Figure 3A).
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Figure 3. Distribution of (A) PBS, (B) RDA, and (C) An scores for 105,571 5-kb windows (PBS,
Am) and 1,109,794 SNPs (RDA) across the exome. (A) For PBS, points above the red line
indicate windows with a PBS score above the 99.9'" percentile of the demographically-corrected
distribution. B) For RDA, points above and below the upper and lower red lines, respectively,

indicate SNPs with an RDA value that is + 3 standard deviations from the mean. (C) For Am,
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points below the red line indicate windows with a Aw in the 99.9' percentile for ME vs. LN, and

pink dots indicate windows that are outliers for ME relative to both LN and CA.

Genotype-environment analysis narrows down top candidate genes

To complement the PBS analysis, we used redundancy analysis (RDA) to test for
genotypic associations with elevation in the full set of samples from our Great Plains-Rocky
Mountains transect. Our RDA analysis of the 1,109,794 sites (a subset with low missingness that
were pruned for linkage, see Materials and Methods) revealed two significant RDA axes related
to elevation (RDA1) and precipitation (RDA2) (Figure S7). We identified a total of 15,713
unique candidate SNPs that loaded +3 standard deviations from the mean on each axis (12,637
on RDAI, 2,230 on RDA2, and 846 on RDA1 and RDAZ2). Of the total RDA outliers, 89.4%
(14,055 SNPs representing 5,643 genes; Figure 3B) were more strongly correlated with
elevation than precipitation. As a result, we chose to focus on the elevation outliers in subsequent

analyses, but we acknowledge that there are potentially interesting links with precipitation.

A total of 992 unique genes overlapped between the SNP-based RDA elevation outliers
and the window-based PBS outliers (top 35 in Table 2; all 992 in Table S2). These genes
represent a set of loci (henceforth, ‘two-way’ candidate loci) that are associated with elevation
and exhibit evidence of selection in the Mt. Evans population. Among these genes, there was a
significant functional enrichment of eight Biological Process, four Cellular Component, and four
Molecular Function categories (Table S3). The most significantly enriched category was
“anatomical structure development” (GO:0048856; p-value: 6.42E-06). Other significant
categories of interest included “ion binding” (GO:0043167, p-value: 0.0109), “regulation of gene
expression” (GO: 0010468; p-value: 0.024), “muscle cell migration” (GO:0014812; p-value:
0.0293), and “G-protein coupled purinergic nucleotide receptor signaling pathway” (GO:
0035589; p-value: 0.0307; Table S3).

Evidence of recent selective sweeps

To identify loci that bear signatures of recent selective sweeps at high elevations, we also
identified windows with significantly reduced nucleotide diversity (Am) in Mt. Evans mice
relative to the two lowland populations (see Materials and Methods). We used these data for two

purposes. First, we tested whether the 992 two-way outliers exhibited significantly higher An

10
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values than a random sample of non-outlier loci, as would be expected if they had experienced a
recent selective sweep at high elevation. This analysis revealed that the mean An value for two-
way outliers was indeed higher than that of random loci (Welch two sample t-test; t =- 11.283, p
< 2.2 x 10%). Second, we performed a scan of Ax outliers to identify additional loci that may
have experienced a recent selective sweep at high elevation. As we did with PBS, we simulated
nucleotide diversity for 100,000 S5kb windows under our demographic model to generate a null
distribution of An values. Our scan identified 314 windows with a Ar value that was greater than
the top 0.1% of the demographically-corrected distribution for both highland/lowland
comparisons (Figure 3C). Of the 246 unique genes in these windows, 89 overlapped with the
992 two-way candidate loci (Table S4). Gene enrichment analyses of this reduced candidate set
(henceforth, ‘three-way’ candidate loci) showed an enrichment of GO categories such as
“negative regulation of catecholamine secretion” (GO:0033604) and “G-protein coupled
nucleotide receptor activity” (GO:0001608) (Table S5). There was also significant enrichment

within the reactome pathway “P2Y receptors.”
Clinal patterns of variation for candidate loci

Given that we observed high levels of gene flow and low levels of differentiation among
Rocky Mountain populations, we analyzed all populations, including those from the Great
Plains, as a single elevational transect to assess clinal patterns of variation. For each of the 992
two-way candidate loci, we used the software HZAR (Derryberry et al. 2013) to fit a sigmoidal
tanh cline model to the relationship between allele frequency and sampling elevation (see
Materials and Methods). We estimated the cline center (c) and width (w) for 992 SNPs within
our two-way candidate subset (Table S6). The variables ¢ and w characterize the geographic
location along the transect where the allele frequency turnover is greatest and the geographic
region corresponding to the inverse of the maximum cline slope, respectively. We compared
these best-fit clines to a cline generated using PC1 of our non-genic SNPs (Figure S8; see
Materials and Methods), and identified a subset of two-way candidate loci with cline centers (n =
297; 29.9%) and widths (n = 240; 24.2%) outside of the 95% confidence interval of the non-
genic PC1 cline (Figure 4). Genes with clines centers that were offset upslope (i.e., occurring at
higher elevation; n = 158 or 15.9%) of the non-genic PC1 cline showed an enrichment of
functions related to catecholamine secretion and multiple categories related to odor perception
(“sensory perception of smell,” “odorant binding”, and “olfactory receptor activity”; Table S7),

11
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while genes with cline centers that were offset downslope (n=297 or 29.9%) showed enrichment
of reactome pathways related to transport and cell junction organization (Table S7). There were
no significantly-enriched GO categories (Table S8) among the genes with cline widths that were
narrower than the non-genic PC1 cline, while genes with cline widths greater than the non-genic
PC1 cline only showed enrichment of broad categories such as “cell periphery” and “membrane
part” (Table S8). The majority of our two-way candidate loci, however, were characterized by
cline centers (n = 695 or 70.1%) or widths (n = 752 or 75.8%) that were indistinguishable from

the PC1 cline representing background population structure.
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Figure 4. Histograms of cline centers and cline widths for 992 SNPs from the two-way candidate
loci. Solid and dashed lines represent the mean and upper and lower 95% confidence intervals,

respectively, of the non-genic PC1 cline.

Post-hoc review of candidate genes in high-elevation vertebrates

To place the results of our selection scan into a broader context and to assess the degree
of overlap in the genomic targets of selection across other similar studies, we performed a post-
hoc review of 14 studies in nine different species of terrestrial vertebrates (Table S9). We
limited our survey to those that used population genomic datasets and allele-frequency based

tests of selection to allow for more direct comparison with our results. This survey identified a
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total of 3,983 unique genes that have been identified as selection candidates in other studies. Of
our 992 two-way outlier candidate genes, only 163 (16.4%) have been identified in other
selection scans of high-altitude populations. Of those 163 genes, 139 (85.3%) were only
identified in one other study, 22 were identified in two additional studies, and two were

identified in three or more studies (Epas! and Kcnmal).
Discussion

In this study, we took a population genomic approach to assess the concordance of spatial
patterns of genetic variation between adaptive and neutral loci. We combined selection scans
with genotype-environment associations and geographic cline analysis along an elevational
gradient of nearly 4000 m vertical relief to identify loci that bear the signature of natural
selection at high elevations, and then compared spatial patterns of allele frequency variation at
putatively adaptive loci to those at neutral loci. The combined results of these analyses reveal
three primary insights. First, multiple lines of evidence indicate that altitude-related selection has
shaped patterns of genetic variation across a large portion of the genome. As detailed below, we
identified hundreds of loci that bear signatures of selection in highland population samples, many
of which can be plausibly linked to known physiological differences between high- and low-
elevation deer mice. Second, the vast majority of the selection candidates we identified have not
been reported in similar studies of other highland taxa, suggesting potentially novel candidate
genes and physiological pathways for adaptation to high elevation. Finally, our geographic cline
analysis revealed that most loci under selection show clinal patterns of allele frequency variation
that are concordant with background population structure, as only a small subset of putatively
adaptive loci are characterized by cline centers shifted significantly up- or down-slope from the
genome-wide average. The general implications of these three main results suggest that altitude-
related selection may affect large proportions of the genome that exhibit patterns of spatial

structure that are not distinct from background population structure.
Genomic signatures of selection on genes that span multiple physiological systems

Recent studies have uncovered many of the physiological traits involved in high-
elevation adaptation in deer mice, in addition to some of their gene regulatory underpinnings
(reviewed in Storz et al. 2019; Storz & Cheviron 2021). This suite of physiological adaptations

spans multiple steps in the transport pathways for oxygen and metabolic substrates (Figure 1).
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Consistent with this pattern of multi-trait adaptation, we found hundreds of loci bearing
signatures of positive selection at high elevations, many of which are likely involved in functions
that relate to processes that influence oxygen homeostasis and aerobic metabolism (Figure 1).
For brevity, we highlight just a few of the most promising candidate genes that may relate to
known physiological differences between highland and lowland deer mice below. A list of the
top 35 two-way candidates is presented in Table 2, and the full list of selection candidates is

provided in the supplemental materials (Table S2, Table S4, Table S6).

A key aspect of circulatory oxygen and metabolic fuel delivery is the regulation of blood
flow via dynamic modifications of local blood pressure. Several recent studies have documented
adaptive modifications of blood pressure regulation under hypoxia in highland deer mice. For
example, highland mice exhibit reduced pulmonary hypertension under hypoxia compared to
their lowland counterparts (Velotta et al. 2018); this lack of a global vasoconstrictive response
likely contributes to their ability to achieve higher pulmonary O extraction (Tate et al. 2017)
(Figure 1). Angiotensins, and their precursor angiotensinogen, are key regulators of blood
pressure and fluid homeostasis (Wu et al. 2011). One of our most compelling two-way outliers is
an angiotensin receptor (Agtrlb, angiotensin II receptor type 1) that mediates cardiovascular
effects of angiotensin, including vasoconstriction (Bonnardeaux et al. 1994). Similarly, several
other outliers are P2Y receptors — purinergic G protein-coupled receptors that also play a role in
vasodilation (Burnstock and Ralevic 2013; Sluyter 2015). It is conceivable that allelic variation
at these loci could contribute to the modifications of adaptive pulmonary function in highland

deer mice.

Highland deer mice also show a greater capacity for tissue oxygen extraction (Tate et al.
2020), in part because of evolved differences in skeletal muscle capillarity, fiber composition,
and mitochondrial density and distribution (Lui et al. 2015; Scott et al. 2015; Mahalingam et al.
2017). One potential candidate gene that could contribute to these differences in muscle
phenotype is /tga7 (integrin subunit alpha 7; two-way outlier), which may have a role in the
formation of muscle fibers (Mayer et al. 1997). Other candidate genes seem to be related to these
phenotypic differences as well. One example is Angpt! (angiopoietin; two-way outlier), which
plays an important role in vascular development and angiogenesis, as well as blood vessel
maturation. Due to their effects on relevant muscle phenotypes, variants at these loci may
contribute to known differences in tissue diffusion capacity between highlanders and lowlanders
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(Lui et al. 2015; Scott et al. 2015; Mahalingam et al. 2017; Nikel et al. 2017; Mahalingam et al.
2020).

Finally, highland deer mice exhibit greater whole-animal aerobic performance under
hypoxia that is associated with a number of measured phenotypes, including differential
regulation of core metabolic pathways that contribute to lipid and carbohydrate metabolism and
oxidative phosphorylation (Cheviron et al. 2012; Cheviron et al. 2013; Cheviron et al. 2014; Lau
et al. 2017). Several genes that participate in these processes also bear signatures of selection in
the highland population. One example is Ndufcl (NADH:Ubiquinone Oxidoreductase Subunit
C1), which encodes a subunit in the first enzyme complex of the electron transport chain in
mitochondria. Previous work on deer mice has demonstrated an increased mitochondrial
respiratory capacity in muscle, and other evolved changes in mitochondrial physiology of high-
altitude populations (Mahalingam et al. 2017; Figure 1); variation at Ndufc! and other genes in
related pathways may contribute to these differences in mitochondrial function (Table S2, Table

S4, Table S6).

Importantly, while we have highlighted a few key genes related to several steps of the
oxygen homeostasis and aerobic metabolism pathways, we have not demonstrated associations
between putatively adaptive phenotypes and allelic variation at these loci. Many of the other
candidate genes we have identified, but did not highlight, could also be involved in these
complex physiological processes (Table S2, Table S4, Table S6), although it is also possible
that our candidate gene lists contain false positives. Future work should aim to experimentally
document phenotypic effects of mutations in some of the most compelling candidates, and to test
for their effects on fitness (Barrett and Hoekstra 2011). Additionally, further efforts should focus
on formal tests of polygenic adaptation by determining specific alleles associated with
phenotypes of interest (e.g., through a genome-wide association study), and demonstrating that
those alleles have population frequency differences that consistently increase or decrease (Berg

and Coop 2014; Jeong et al. 2018).

Most genomic targets of selection are unique to deer mice

Recent surveys in humans and domesticated animals have documented overlap in the

genomic targets of selection among independent high-elevation populations, suggesting that
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adaptation to these environments may often involve repeated selection on a common set of genes
(Witt and Huerta-Sanchez 2019; Storz and Cheviron 2020). While a number of recent studies
have documented selection on obvious candidate genes, such as Epas|, in independent lineages
of wild vertebrates, these examples are often cherry-picked from a list of outliers specifically
because they have been highlighted in other studies which may therefore give a biased view of

the degree of convergence in selection targets at high elevation.

In our study, only two genes — Epas! and KCNMA (potassium calcium-activated
channel subfamily M alpha 1) — that were detected as outliers in highland deer mice have been
identified in more than one additional highland population of other species. Epas/ encodes the
oxygen sensitive subunit of hypoxia-inducible factor (HIF), a transcription factor that
coordinates the transcriptional response to hypoxia, and was an outlier in nine of the fourteen
studies representing seven different species (Simonson et al. 2010; Yi et al. 2010; Li et al. 2014;
Zhang et al. 2014; Song et al. 2016; Liu et al. 2019). KCNMA 1 encodes the alpha-pore of
calcium-sensitive potassium channels that influences vascular tone and blood flow by regulating
K+ efflux in vascular smooth muscle cells (Brayden and Nelson 1992; Knaus et al. 1995), and
was a target of selection in four different species in addition to deer mice (Jeong et al. 2018;
Zhang et al. 2014; Song et al. 2016; Qu 2015). These two examples aside, the general lack of
overlap suggests a diversity of different mechanisms underlying high-elevation adaptation.
However, we cannot rule out the possibility that the lack of overlap is, to some extent, due to the
presence of false positives in our or other studies. Nonetheless, the unique selection targets
identified here, may provide novel insight into physiological mechanisms to surmount the

challenges of high-elevation environments.

Spatial patterns in adaptive genetic variation are largely consistent with population structure

Across environmental gradients, the relative strength of selection and gene flow shape
spatial patterns of genetic variation (Slatkin 1987; Lenormand). When many loci are subject to
spatially varying selection, variation in local recombination rates may lead to variable levels of
gene flow across loci (Endler 1977). This process can result in allele frequency clines for
selected loci that are discordant with background population structure, though this need not

always be the case (Yeaman and Whitlock 2011; Lenormand 2002). Our analysis revealed that
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the majority of putatively selected loci had cline centers (70.1%) and cline widths (75.8%) that
fell within the 95% confidence interval of genome-wide estimates from non-genic regions. This
result suggests that, for the most part, loci that have experienced a history of altitude-related
selection do not exhibit patterns of spatial structure that are distinct from background population
structure. Not all cline shapes were concordant with population structure, however, suggesting
that locus-specific levels of gene flow may structure allelic variation at such loci differently than
background neutral genetic variation. This finding supports previous results from simulation
studies suggesting that spatially-varying selection can structure groups of locally adapted alleles
over large geographic distances, even among populations that are connected by high rates of

gene flow (Yeaman and Whitlock 2011).

Often, the loci with cline shapes that deviated from background population structure were
not enriched for specific functions, suggesting that this class of loci participate in a broad range
of biological functions. The one exception is for genes with clines that are centered upslope of
the non-genic PC1 cline. This list of genes showed an enrichment of functions related to
catecholamine secretion and odor perception. Catecholamine synthesis and secretion by the
adrenal gland is responsive to environmental hypoxia, and catecholamines can affect many
physiological processes that impinge on oxygen delivery and consumption, including heart rate
and vasoconstrictive responses (Brown et al. 2009). High- and low-elevation deer mice differ in
their catecholamine response to hypoxia (Scott et al. 2019), and it is possible that these loci may
contribute to this physiological difference. For example, previous work has shown that Epas/, a
two-way outlier, is a target of selection in deer mice and is associated with variation in heart rate
under hypoxia (Schweizer et al. 2019). Allelic variation in Epas/ causes a differential regulation
of the catecholamine biosynthesis pathway (Schweizer et al. 2019), and the specific mutation
under selection at high elevation disrupts interaction with a transcriptional coactivator, thus
providing a possible mechanistic explanation (Song et. al. 2021). We identified several
additional promising candidate genes, such as P2RY1, DRD2, and P2RY12, that are related to
catecholamine regulation under hypoxia (Figure 5). Studies of the phenotypic effects of allelic

variation at these loci would be a fruitful area for future work.
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Figure 5. Maximum-likelihood allele frequency clines for catecholamine genes located

upslope of the non-genic PC1 cline. For the non-genic cline, the y-axis shows the PC1 values,

while for the DRD2, P2RY 1, and P2RY 12 clines, the y-axis represents the frequency of the non-

reference allele. Shaded regions show the 95% confidence intervals.

No other grouping of loci with discordant clines exhibited clear gene ontology

enrichment. Loci with clines that were centered downslope, as well as those with widths that

were significantly narrower or greater than the PC1 cline, were not enriched for terms that were

obviously related to abiotic selective pressures along elevational gradients. We note that

functional enrichments such as those presented above are post-hoc tests that generate hypotheses

to be addressed in future work, rather than formal tests of previously specified hypotheses.
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Conclusions

Our results demonstrate that hundreds of genes have experienced a history of spatially
varying selection at high elevation in deer mice, and many of these loci participate in
physiological processes that underlie known phenotypic differences between highland and
lowland populations. The vast majority of selection targets we identified have not been reported
in similar studies of other highland terrestrial vertebrates. While convergence in phenotypic traits
is relatively common in high-altitude vertebrates (reviewed in Storz & Scott 2019), the general
lack of overlap among selection targets between deer mice and other highland species suggests
that the genetic underpinnings of this phenotypic convergence may be more idiosyncratic.
Finally, our results also show that, at least for deer mice along this elevational gradient, adaptive
and neutral genetic variation tend to be structured similarly across the landscape. If this is a
general outcome, it may have important implications not only for our understanding of the
process of local adaptation, but also for more directed applications in conservation genetics, such

as assisted migration and genetic rescue.
Materials and Methods
Sampling scheme

Tissue samples of deer mice were collected from a variety of sources. In the field, we
live-trapped deer mice using baited Sherman traps. We also used liver samples from euthanized
mice, and blood or tail clip samples from mice that were part of a mark-recapture study (e.g.,
Wilde et al. 2019), in which individuals were released after capture. To augment our sample
sizes for some sites, we used tissue samples from previously collected museum specimens that
are cataloged in the mammal collections of the Denver Museum of Nature and Science, the
University of Arizona Museum of Natural History Museum, the Museum of Vertebrate Zoology,

and the Museum of Southwestern Biology (see Natarajan et al. 2015).
Exome design, capture, and high-throughput sequencing

To identify all annotated exons, we downloaded the Peromyscus maniculatus bairdii
general feature file (GFF) v101 from NCBI

(ftp://ftp.ncbi.nih.gov/genomes/Peromyscus_maniculatus_bairdii/GFF/), and extracted all

features annotated as an exon. The final set of unique, non-pseudogenized exonic regions
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consisted of 218,065 exons in 25,246 genes. We designed 500 bp non-genic regions to be located
at least 10 kb from any annotated gene, outside repetitive DNA regions, containing GC content
within one standard deviation of the mean GC content, and located on contigs larger than 20 kb
(Wall et al. 2008; Schweizer et al. 2016). Five thousand autosomal regions were randomly
chosen that satisfied these criteria. In total, a custom Roche NimbleGen SeqCap EZ Library
captured 226,973 regions (77,559,614 bp).

We used 256 mouse specimens for the analysis of exomic variation, 100 of which were
used in a previous study (NCBI Short Read Archive PRINA528923) (Schweizer et al. 2019). We
extracted DNA from tissue samples of 156 deer mice (Table S1) using a Qiagen DNeasy kit and
sheared DNA to ~300 bp using a Covaris E220 Focused Ultrasonicator. Genomic libraries for
each individual were prepared using 200 ng of sheared DNA with a NEBNext Ultrall kit and
unique index following the manufacturer’s protocols (New England Biolabs). Batches of 24
indexed libraries were pooled, then target enriched and PCR amplified according to the
NimbleGen Seq Cap EZ protocol (Roche). Quality control for each capture pool included a
check of its size distribution on an Agilent TapeStation, as well as a check for enrichment of
targeted regions and lack of enrichment of non-targeted regions using custom primers and the
Luna qPCR master mix (NEB). Each capture pool of 24 individuals was sequenced with 100 bp
paired-end sequencing on an [llumina HiSeq 4000. All 256 individuals were processed

concurrently.

Data pre-processing and variant discovery on all samples followed the recommendations
of the Broad Institute GATK v3.7-0-gcfedb67 Best Practices pipeline

(https://software.broadinstitute.org/gatk/best-practices/workflow) and followed our previously

published methods (Schweizer et al. 2019). Briefly, we trimmed sequence reads of adapter
sequences and bases with quality below 20 using fastq illumina_filter 0.1
(http://cancan.cshl.edu/labmembers/gordon/fastq_illumina_filter/) and trim_galore 0.3.1

(http://www.bioinformatics.babraham.ac.uk/projects/trim _galore/). Forward and reverse reads

were aligned and mapped to the P. maniculatus baiardii genome using bwa mem (Li and Durbin
2010), then duplicates were removed using samtools rmdup (Li et al. 2009). After two rounds of
GATK Base Quality Score Recalibration, we genotyped each sample using GATK
HaplotypeCaller with the ‘--emitRefConfidence' flag, then called variants using GATK
GenotypeGVCFs. GVCFs were combined and filtered to remove SNPs with a quality of depth
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<2.0, a FS > 60, mapping quality < 40, mapping quality rank sum < -12.5, and read position rank
sum < -8.0. This process identified 106,883,914 variable sites in at least one of our 256
individuals. However, three sampled individuals were dropped from further analysis due to high
levels of missing data (>50% sites with missing genotype calls). After assessing the quality of
filtered reads using the vcfiools package (Danecek et al. 2011), we further filtered variants so that
a site was called in at least 75% of individuals, was bi-allelic, and had a minimum depth of 5 and

genotype quality of 20.
Population genetic structure of Rocky Mountain and Great Plains mice

To focus our efforts on the Rocky Mountains-Great Plains transect, we removed the
geographically-disparate Merced samples and used an LD-pruned set of non-genic SNPs (using
the ‘--indep-pairwise 50 5 0.5’ flag in PLINK; Purcell et al. 2007). These non-genic SNPs are
best suited for assessing neutral population processes. We also identified a subset of unrelated
individuals using PRIMUS (Staples et al. 2012) and a maximum identity-by-descent of 0.1875,

as recommended in Anderson et al. (2010).

The method implemented in the software conStruct is well-suited to our sampling design
and the geographic distribution of deer mice, where there is a high likelihood of isolation-by-
distance and the sampling is discontinuous (Bradburd et al. 2018).We ran conStruct on two
datasets: all unrelated samples (N=168), and just those east of the Rocky Mountains (i.e.
excluding Bonny Reservoir, Ft. Larned, and Lincoln; N=117). We evaluated both the spatial and
nonspatial models with the number of discrete populations (K) varying between 1 — 5. For each
model, we ran two replicate analyses, each for 5000 iterations. The performance of the MCMC
was assessed by comparison between replicate runs and visual inspection of marginal parameter
estimate trace plots. We compared models using the “layer comparisons” approach outlined in

Bradburd et al. (2018).
Exome scan for selection

To calculate PBS, for each population pair we used vcftools to calculate pairwise Fst in
5-kb windows with a step size of 2.5 kb (following Jones et al. 2018) and specified vcftools to
only use sequenced sites for those calculations. We then transformed Fst and calculated PBS for
each window following Yi et al. (2010). We calculated PBS for 105,571 overlapping 5 kb

windows from the exomes of 48 Mt. Evans, 37 Lincoln, and 15 Merced mice, then, as a
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demographic control, simulated the distribution of Fst under our previously characterized
demographic history of these same populations (Schweizer et al. 2019).. Using point estimates
from our previously characterized demographic history of the Mt. Evans, Lincoln, and Merced
mice (Schweizer et al. 2019), we used msms (Ewing and Hermisson 2010) to simulate the
distributions of Fsr for 17,000 5-kb windows. We calculated PBS values for all simulated
windows, then used the 99.9% quantile of the simulated distribution to set the significance
threshold for the empirical data using the ecdf() function in R. For each 5kb window, we
identified which genes overlapped that window using the bedtools intersect function and a bed

file of targeted exonic regions.
Multivariate genotype-environment associations

RDA characterizes a response matrix (here, genotypes) in relation to an explanatory
matrix (here, environmental data) using multivariate linear regressions, followed by a PCA to
produce canonical axes (Van Den Wollenberg 1977; Legendre et al. 2010). We implemented
RDA in our set of mice sampled across the entire transect (N=165 unrelated individuals)
following the recommendations of (Forester et al. 2018). Three of the 168 individuals were not
included in RDA because high missingness might bias the genotype imputation done for that
analysis. RDA shows low false positive and high true positive rates under a variety of selection
and demographic scenarios (Forester et al. 2018). Briefly, we obtained population-level
environmental data for precipitation and temperature from BIOCLIM (Hijmans et al. 2005) using
the getData function within the ‘raster’ package (https://rspatial.org/raster/). We also obtained
estimates of snowpack (measured as daily mean snow water equivalent from 1915 to 2011) from
Livneh data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA at their web site

at https://psl.noaa.gov/ (Livneh et al. 2013). We initially chose 11 environmental variables

summarizing precipitation, temperature, and snowpack, then removed those variables with a
Pearson correlation greater than |0.70|, as recommended by (Dormann et al. 2012), while
prioritizing the retention of elevation as a variable. Given that many environmental variables are
highly correlated with elevation (Figure S9), we subsequently chose a subset of two variables
(elevation and annual precipitation) for further analysis. With this approach we aimed to identify
the variable (or correlated variables) that caused the observed spatial patterning of allele
frequencies. Due to computational limitations within RDA, we subsampled our genotype data by
further pruning for linkage (r> < 0.75) and missingness (< 1%) in PLINK, resulting in a set of
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1,109,794 sites. Given that RDA requires no missing data and removing sites with any missing
data would have resulted in the loss of 483261 (43.5%) sites, we imputed missing genotypes for
our data set (n = 483,261 or 0.26% of all data) using the most common genotype across all
individuals (Forester et al. 2018). After running RDA, we identified significant constrained axes
with a p-value of <0.05 after 999 permutations of the genotypic data. We identified candidate
SNPs as those with a loading greater than 3 standard deviations of the mean and characterized

each candidate SNP by the environmental variable with which it had the highest correlation.
Detection of selective sweeps

To identify loci that bear signatures of selective sweeps in the Mt. Evans population, we
identified 5 kb windows with a reduced nucleotide diversity (m) both in Mt. Evans relative to
Lincoln (by calculating delta pi (Am), Or 7mt. Evans - TiLincoln), and in Mt. Evans relative to Merced
(by calculating Am as 7M. Evans - TMerced). With this approach we attempted to mirror the polarized
calculations of the PBS. As with PBS, we simulated nucleotide diversity for 100,000 5kb
windows under our demographic model. Then, we used a custom Python script to calculate
empirical nucleotide diversity in overlapping 5 kb windows and a demographically-controlled

threshold for significance of 99.9% (see Supplemental Materials).
Gene ontology enrichment

We performed functional enrichment analysis to test for significantly enriched gene sets
and functional categories of genes within our two-way and three-way outlier sets that may reflect
a history of altitude-related selection. For each P. maniculatus gene, we identified the
orthologous Mus musculus gene, then used gProfiler (Reimand et al. 2007; Reimand et al. 2011;
Reimand et al. 2016) to analyze enrichment for gene ontology (GO), biological pathways such as
Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa and Goto 2000), and Reactome
(Jassal et al. 2019), regulatory motifs in DNA, protein databases, and human phenotype ontology
(Reimand et al. 2016). We used strong hierarchical filtering (returning only the most general
term per parent term) to identify enriched gene functional categories below a false discovery rate

corrected significance of p< 0.05.

Clinal patterns of variation for candidate genes
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HZAR fits genetic data to equilibrium cline models using an MCMC algorithm and
estimates parameters such as the cline center (¢) and width (w); ¢ and w characterize the
geographic location along the transect where the allele frequency turnover is greatest and the
geographic region corresponding to the inverse of the maximum cline slope, respectively. The
values of these parameters can be estimated within HZAR by 15 models that vary in the number
of estimated parameters (e.g. exponential decay on either side of the cline center, minimum
and/or maximum allele frequencies). For each of our two-way candidate loci, we identified the
highest ranked SNP (first by occurrence in an outlier PBS window and then ranked by maximum
RDA correlation) with a >75% call rate amongst our 165 unrelated individuals from the Rocky
Mountain and Great Plains populations, then calculated that SNP’s allele sample frequency for
each population sampled across our elevational transect For each of those SNPs, we modeled the
cline shape parameters using HZAR and determined the cline center and cline width. We used
sampling elevation in meters as a proxy for geographic distance and used a burn-in of 10000

iterations.

To set a neutral background expectation for clinal patterns of allele frequency variation,
we performed a PCA on the set of 282,617 LD-pruned non-genic SNPs within PLINK. There is a
clear pattern of geographic structure on both the first (PC1; east/west) and second principal
component axes (PC2; north/south). Therefore, we used PC1 values for each individual to fit
clines in HZAR, as has recently been done elsewhere (Hague et al. 2020). We used similar
parameters as when generating the allele frequency clines, with appropriate modifications for
trait data (e.g. avoiding models that set scaling to a fixed minimum and maximum of 0 and 1,
respectively). Because principal components, especially those generated on geographically
structured data, can be shaped by mathematical artifacts that can make interpretation unintuitive
(Novembre and Stephens 2008), we visually confirmed that the cline fit to PC1 is representative
of the clines fit to 20 SNPs with the highest loadings on PC1 (Figure S10). We identified
statistically discordant clines as those SNPs whose cline center or cline width confidence

intervals (CI) do not overlap with the CIs of the neutral PC1 cline.

Degree of candidate gene overlap with other high-elevation studies
To determine the degree of overlap in the genomic targets of selection across other
similar studies, we performed a post-hoc review of 14 studies in nine different species of
terrestrial vertebrates (Supplemental Table 9). Prior to spring 2020 (our last search date), there
24

1 Z0Z @unp 20 Uo Jasn Aleiqi plelsuely - BUBUOI 1o AlsiaAlun AQ 6€1+829/1 91 qesW/A8qow/Sa0 "0 L/I0p/8|oile-a0uBApe/aquwl/woo dno olwapeoe//:sdiy Wol) papeojumo(



597
598
599
600

601

602
603
604
605

606

607
608
609
610
611
612
613
614
615
616
617
618
619

620
621

622
623

624

625

were to our knowledge 56 studies of high-altitude adaptation; we subsequently eliminated studies
that were not population genomic comparisons, did not publish a complete list of outlier genes,
did not use a comparable allele-frequency based test of selection, did not sample a highland

population at a high enough elevation to be comparable, and/or focused on an ectotherm.
Data Accessibility

Raw sequence reads in de-multiplexed fastq format for 156 deer mice are available on
NCBI SRA (PRINA719846), with data from 100 deer mice already available on NCBI SRA
(PRINAS528923). Additional meta data and scripts are provided within the supplemental

materials.
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Captions

Table 1. Locations and sampling efforts for 256 deer mouse samples.

Table 2. Top 35 candidate genes that are outliers for both PBS and RDA (two-way

candidates).

Figure 1. Deer mice native to high elevations in the Rocky Mountains have evolved a suite of
physiological changes that contribute to adaptive enhancements of whole-animal aerobic
performance in hypoxia. For each step of the oxygen transport cascade (OTC), physiological
differences between highland and lowland deer mice are summarized on the left and previously-
collected representative physiological data are on the right. References: 1) Tate et al. 2020; 2)
West et al. 2021; 3) Tate et al. 2017; 4) Ivy et al. 2020; 5) Scott et al. 2015; 6) Mahalingam et al.
2017.
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Figure 2. A) Sampling localities for deer mice along the transition between the Great Plains and
the Front Range of the Southern Rocky Mountains that spans ~4000 m of vertical relief. Dashed
box represents those populations grouped within the “Rocky Mountains” for analyses. B) Within
the Front Range of the Southern Rocky Mountains, we sampled four elevational transects: 1- The
Pikes Peak Transect: Pike Low, Pike Medium, Pike High (purples, circles); 2 — The Boreas Pass
Transect: Pike, Lost Park, Colorado Trail (reds, squares); 3 — The Mount Evans Transect: Mount
Evans, Summit Lake, Echo Lake, Chicago Creek, Spring Gulch (greens, triangles); 4: The Niwot
Peak Transect: Niwot Peak, Saint Vrain, Lefthand Canyon (blues, diamonds). Shape sizes in B
are proportional to number of individuals (see Table 1 for sample sizes). SV: Saint Vrain; BT:
Big Thompson; NP: Niwot Peak; LC: Lefthand Canyon; BP: Boreas Pike; LP: Lost Park; CT:
Colorado Trail.

Figure 3. Distribution of (A) PBS, (B) RDA, and (C) An scores for 105,571 5-kb windows (PBS,
Am) and 1,109,794 SNPs (RDA) across the exome. (A) For PBS, points above the red line
indicate windows with a PBS score above the 99.9'" percentile of the demographically-corrected
distribution. B) For RDA, points above and below the upper and lower red lines, respectively,
indicate SNPs with an RDA value that is + 3 standard deviations of the mean. (C) For delta pi,
points below the red line indicate windows with a Aw in the 99.9 percentile for ME vs. LN, and
pink dots indicate windows that are outliers for ME relative to both LN and CA. See text for

details.

Figure 4. Histograms of cline centers and cline widths for 992 SNPs from the two-way candidate
loci. Solid and dashed lines represent the mean and upper and lower 95% confidence intervals,

respectively, of the non-genic PC1 cline.

Figure 5. Maximum-likelihood allele frequency clines for catecholamine genes located upslope
of the non-genic PC1 cline. For the non-genic cline, the y-axis shows the PC1 values, while for
the DRD2, P2RY1, and P2RY 12 clines, the y-axis represents the frequency of the non-reference

allele. Shaded regions show the 95% confidence intervals.
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Table 1. Locations and sampling efforts for 256 deer mouse samples. |

Locality Total num. of indiv.
Rocky Moutains
Big Thompson 11
Boreas Pike Mational Forest 10
Chicago Creek 5
Colorado Trail ]
Echo Lake 9
Lefthand Canyon 10
Lost Park 10
Mesa Reservoir 10
Mount Evans 48
Miwot Peak 8
Pike High 5
Pike Low 9
Pike Middle 4
Saint Vrain 3]
Spring Gulch 10
Summit Lake 10
Great Plains
Bonny Reservoir 10
Fort Larned 10
Linceln a7
Pawnee 9
Merced 15
Total 256

Mum. of unrel. indiv.

Table 2. Top 35 candidate genes that are outliers for both PBS and RDA (two-way candidates).

Mean elevation (m) :Lﬂ'liiuda () Longitude ()

Gene Symbol

{P. manicwlatus) Gene Name (P. maniculatus)

Sheld syntaxin 16

Afi2 AFA/FMR2 family membear 2

Hps3 HPFS3 biogenesis of hysosomal organelles complex 2 subunit 1
Gabrg gamma-aminobutyric acid type A receptor theta subunit
Cpa3 carboxypeptidase A3

Cwiig CWF19-lika 2 oall cycle control (8. pombs)
Usp28+ ubiguitin specific peptidass 28

LOC102906935  interstitial collagenase A-like

Enfxl zinc finger protein OZF

Dync2h1 dynein cytoplasmic 2 heavy chain 1

ExocEb exocyst complex component 6B

Griad glutamate ionotropic receptor AMPA type subunit 4
Kmi2a lysine methyltransferase 24

Ptprz1 protein tyrosine phosphatase type IVA member 1
Rims2 regulating synaptic membrane exocytosis 2

Cpsfé cleavage and polyadenylation specific factor &
LOC102906541 pyrethroid hydrolase Ces2e-like

Ctsz cathepsin Z

Hspadl heat shock protein family A (Hsp70) member 4 like
Edn3 endothelin 3

Bud13 BUD13 homolog

Moami+ neural cell adhesion malecule 1

Cpb1 carboxypeptidase B1

Cadm?1 cell adhesion moleculs 1

Mnat neuronatin

Supt20h SPT20 homolog ‘SAGA complex component

Med 12k medistor complex subunit 12 ke
LOC102923525 probable G-protein coupled receptor 83

Pich1+ phospholipase C eta 1

Farl FMR1 autosomal homaolog 1

Angpti angiopoietin 1

Mme+ membrane metallo-endopeptidase

Feg3 patemally expressed 3

LOC102914701  anylacetamide deacetylaze-like 2

Migni neurcligin 1

+ Gene iz also a significant three-way outlier (ses Supplemeantal Table 54).

8 1832 404300  -105.3149
[ 3632) 39.4071  -105.8577
4 2926, 39.7053  -105.6062
& 2311) 39.3480  -105.3558
8 3264 396611  -1055779
[ 2306! 400757  -105.4120
8 20071 393856 -1057370
5 1633 400739  -105.2659
32 4302 39.5872  -105.6444
5 3498, 400948 -105.5571
3 4034 38.8493  -105.0589
[ 2089 38.8789  -104.9417
4 3206)  38.8872  -105.0694
5 2618] 401754  -105.5259
5 24111 307381  -1055304
5 3912/  39.5986  -105.6406
i
9 1158, 396173 -102.2507
620,  38.1831 -99.2181
27 358)  40.8106 -96.6803
9 15841 407580  -104.0309
na 239  37.5086  -120.3415
168 :
Gena Symbol
(M. musculus) Window Location PBS SNP Location
Sbald MW _006501107.1:962501-967500 1.881 NW_006501107.1:967816
AFf2 MW _006501704.1:907501-912500 1.788 NW_006501704.1:910760
Hps3 MW _006501722.1:610001-615000 1.573 NW_006501722.1:590083
Gabrg MW _006501587.1:1287501-1302500 1.530 NW_006501587.1:1300279
Cpa3 MW _006501722.1:272501-277500 1.281 NW_006501722.1:283951
Cwi1a2 MW _006501598.1:270001-275000 1.224 NW_006501598.1:334183
Usp28 MW _006501163.1:165001-170000 1.220 NW_006501163.1:208277
Mmpia MW _006501245.1:2847501-2852500 1.299 NW_006501245.1:2841407
Fnfxl MW _006501708.1:275001-280000 1.275 MW _D0DG501708.1:284143
Dync2h1 MW _006501245.1:2427501-2432500 1.268 MW _006501245.1:2399127
ExocSb MW _006501567.1:1457501-1462500 1.251 MW _006501567.1:1061086
Griad MW _006501245.1:37501-42500 1.219 MW _D0D6501245.1:40269
Kmt2a MW _006501694.1:475001-480000 1.186 MW _DDG501694.1:481688
Ptpez1 MWW _006501405.1:145001-150000 1.169 NW_006501405.1:188227
Rims2 MWW _006501417.1:1140001-1145000 1.152 NW_006501417.1:1177680
Cpsff MWW _006501066.1:10150001-10155000  1.136 NW_006501066.1:10172904
Ceslh MWW _006501344.1:235001-240000 1.102 NW_006501344.1:244202
Ctsz MW _006501107.1:1315001-1320000 1.085 NW_006501107.1:1306134
Hspad| MWW _006501366.1:1650001-1655000 1.081 NW_006501366.1: 1682358
Edn3 MW _006501107.1:1652501-1657500 1.071 NW_006501107.1:1660223
Bud13 MW _006501163.1:3185001-3180000 1.058 NW_006501163.1:3186863
Mcam1 MW _006501057.1:4725001-4730000 1.058 NW_006501057.1:4733662
Cpb1 MW _006501722.1:225001-230000 1.052 MW _006501722.1:221406
Cadm1 MW _006501163.1:1602501-1607500 1.041 NW_006501163.1:1552848
Mnat MW _006501257.1:617501-622500 1.037 MW _006501257.1:620180
Supt20 MW _006501125.1:3700001-3705000 1.035 MW _006501125.1:3670022
Med121 MW _006501814.1:835001-840000 1.032 MW _D06501814.1:872041
Gpri65s MW _006501190.1:5030001-5035000 1.012 MW _006501190.1:5031532
Pich1 MW _006501060.1:2525001-2530000 1.007 MW _006501060.1:2440272
Fxrl MW _006501046.1:2650001-2655000 0.994 MW _0D06501046.1:2633664
Angptl MWW _006501143.1:3235001-3240000 0.981 NW_006501143.1:3032740
Mmea MWW _006501060.1:2105001-2110000 0.972 NW_006501060.1:2148009
Feg3 MWW _006501712.1:880001-835000 0.967 NW_006501712.1:889216
GmE298 MWW _006501814.1:1227501-1232500 0.961 NW_006501814.1:1255421
Migni MWW _006501046.1:11272501-11277500 0.960 NW_006501046.1:11281042

RDA

0.795
0.790
0.737
0.657
0.488
0.777
0.823
0.596
0.625
0.808
0.687
0.837
0.832
0.646
0.456
0.852
0.686
0.417
0.738
0.656
0.803
0.7e1
0.736
0.8231
0.343
0.530
0.661
0.498
0.704
0.512
0.735
0.693
0.781
0.468
0.700
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865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

Figure S1. Histogram of mean depth of coverage for 256 exome sequences. Data are the mean
calculated from ~5.5 million variable sites with a minimum depth of coverage of 5 and a

minimum genotype quality of 20.

Figure S2. PCA plots for 241 individuals (dataset excluding Merced individuals) genotyped at
282,617 variable sites. Each panel shows (clockwise, starting in upper left) individuals colored
by longitude, latitude, amount of missing data, and elevation. There is no consistent pattern of

missing data.

Figure S3. PCA plot based on data from 165 unrelated individuals genotyped at 282,617

variable sites.

Figure S4. Maps of admixture proportions estimated for all samples (upper), and just the Rocky
Mountains (lower), from the spatial conStruct model. Bar plots show the admixture proportions
of individuals at K=2 (left) and K=3 (right), and pies show the mean admixture results across

individuals within geographic regions demarcated by the dashed line.

Figure S5. Layer contributions for spatial conStruct models run with all samples (left panel) and

only western Rocky Mountain samples (right).

Figure S6. Density distribution of population branch statistic (PBS) scores calculated for Mt.
Evans population in comparison to Lincoln and California. The green dashed vertical line
indicates the value of the mean PBS (0.0152), while the red dashed vertical line indicates the
value of the 99.9'" percentile of the simulated PBS distribution (0.112).

Figure S7. A) Triplots of deer mouse data for RDA axes 1 and 2. Colored points represent each
deer mouse sample colored by population (see key), and the dark gray cluster of points
represents the SNPs. Blue vectors represent elevation (Elev) and annual precipitation (AP)
environmental predictors. B) SNPs from RDA analysis, with significant SNPs for annual

precipitation (AP) or elevation (Elev).
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Figure S8. Clinal analysis of neutral loci along a 4000 m elevational transect. Individual crosses
(+) represent mean PC1 values for each of 20 populations, while the black line shows the ML
cline estimated from those values, with 95% intervals shown in gray. Values for cline center and

cline width are shown.

Figure S9. Summary of correlation amongst 12 environmental variables: elevation (Elev),
annual mean temperature (AnnMeanT), diurnal temperature range (DiurnalRangeT), temperature
seasonality (TSeasonality), maximum temperature of the warmest quarter (MaxTWarmest),
minimum temperature of the coldest quarter (MinTColdest), annual temperature range
(AnnualRangeT), annual precipitation (AnnualPrec), precipitation seasonality (PrecSeasonality),
monthly mean snow water equivalent (SWE_MonthlyMean), daily mean SWE
(SWE_DailyMean), and number of days with non-zero SWE (SWE_NonZeroDays). Plots along
the diagonal are histograms of values, with the pairwise Pearson correlation above the diagonal.

Below the diagonal are bivariate scatter plots with correlation ellipses.

Figure S10. Clinal analysis for 10 of the most positive (A-J) and 10 of the most negative (K-T)
loading SNPs on PC1. All of these SNPs are located in the non-genic regions captured on the
array. Individual points represent mean allele frequencies for each of 20 populations, while the
black line shows the ML cline estimated from those values, with 95% intervals shown in gray.
The orange line represents the cline of PC1 (see Figure S8).

Table S1. Sample IDs, locations, and sequencing results for 256 deer mouse samples.

Table S2. Candidate genes that are outliers for both PBS and RDA (two-way candidates).

Table S3. Significant results (after FDR correction) from gProfiler for gene ontology enrichment

of two-way candidate genes for PBS and RDA.

Table S4. Candidate genes that are outliers for PBS, RDA, and delta pi (three-way candidates).
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Table S5. Significant results (after FDR correction) from gProfiler for gene ontology enrichment

of three-way candidate genes for PBS, RDA, and delta pi.

Table S6. Two-way candidate gene SNP locations and cline parameters estimated from HZAR

analysis.

Table S7. SNPs with cline centers that are offset (upslope or downslope) from the PC1 cline,

plus gprofiler results for gene ontology enrichment of upslope or downslope genes.

Table S8. SNPs with cline widths that are offset (wider or narrower) from the PC1 cline, plus

gprofiler results for gene ontology enrichment of wider or narrower genes.

Table S9. Results of post-hoc analyses of overlap of deer mouse two-way candidate genes with

similar studies in high-elevation terrestrial vertebrates.
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