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For an A, weight w the norm of the Hilbert Transform in
LP(w), 1 < p < oo is estimated by [w]3 , where [w]4, is the
A, characteristic of the weight w and s = max(1,1/(p — 1));
as simple examples with power weights show, these estimates
are sharp.

A natural question to ask, is whether it is possible to improve
the exponent s in the above estimate if one replaces the A,
characteristic by its “fattened” version, where the averages
are replaced by Poisson-like averages. For power weights (for
example with p = 2 and Poisson averages) one can see that
there is indeed an improvement in the exponent: but is it true
for general weights?

In this paper we show that the optimal exponent s remains
the same by constructing counterexamples for arbitrarily
“smooth” weights (in the sense that the doubling constant
is arbitrarily close to 2), so the “fattened” A, characteristic
is equivalent to the classical one, and such that ||T||zr(w) ~
fl?, .

We use the ideas from the unpublished manuscript by F.
Nazarov disproving Sarason’s conjecture. We start from sim-
ple classical counterexamples for dyadic models, and then by
using what we call “small step construction” we transform
them into examples with weights that are arbitrarily dyadi-
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cally smooth. F. Nazarov had used Bellman function method
to prove the existence of such examples, but our construction
gives a way to get such examples from the standard dyadic
ones. We then use a modification of “remodeling”, introduced
by J. Bourgain and developed by F. Nazarov, to get from
examples for dyadic models to examples for the Hilbert trans-
form.
As an added bonus, we present a proof that the LP analog of
Sarason’s conjecture is false for all p, 1 < p < oo.

© 2020 Elsevier Inc. All rights reserved.
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Notation

1g
dx
E|
(N

characteristic function of set F;

integration with respect to Lebesgue measure;

d-dimensional Lebesgue measure of a measurable set £ C R
average with respect to Lebesgue measure, (f) = ﬁ I f(@)da;

LP(w)  weighted Lebesgue space, ||f[[7s, = [ga [f(2)[Pw(z)d;

(f,9)
w([)

D(I)
ch(I)

ch®(I

linear duality, (f,g) = [ f(z)g(z)dx;
Lebesgue integral of a weight w over I, w(I) := [, w(z)dz = (w)|I];
Holder conjugate exponent to p, 1/p+1/p' = 1;
family of all dyadic intervals in R, or of all dyadic subintervals of [0, 1);
family of all dyadic subintervals of a dyadic interval I, including I itself;
family of all dyadic children of the dyadic interval I;

) family of all dyadic descendants of order k of the dyadic interval I, note that
ch(I) = ch*(I);

ch*(#) for a family .7 of dyadic intervals the collection ch*(.#) is defined as

ch* () == Uresr ch®(I), and ch(.¥) = ch!(.%);

I_, I, left, respectively right half of interval I;

hr

L*°-normalized Haar function for interval I, hy := 17, —1;_ (note the non-
standard normalization!);
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A; martingale difference operator, Ay f := Z (f)yp1p —(f)r;
I’ech(I)
arf difference of averages, arf = (f);, — (f); = (<f>1+ - <f>1_) /2= (fh1)p;
Notation z < y means < Cy with an absolute constant C' < oo, and z S, Y
means that C depends only on a,b,...; the notation x 2 y means y < z, and similarly
for @ Z4p,... y. We use x ~ y if both x < y and x 2 y hold, and x ~q4... y is defined
similarly.

1. Introduction

This paper deals with sharp weighted estimates for classical operators in harmonic
analysis. Our starting point is the famous Hunt—Muckenhoupt-Wheeden theorem [6],
which says that the so-called Muckenhoupt A, condition

p—1

1 1
sup | [ws | {5 [w@ o Vas)  <ifuls, <o @)
I
I I

(the supremum is taken over all intervals I C R) is necessary and sufficient for the
Hilbert transform H,

Hf(x):=p.v. / M(le,

r—y
R

to be a bounded operator on the weighted space L?(w) (1 < p < 00).

It is also well-known that condition (1.1) (with intervals replaced by cubes) is suffi-
cient for the boundedness on weighted spaces of all Calderén—Zygmund operators in any
number of dimensions, and it is also necessary for the boundedness on weighted spaces of
“large” Calderén—Zygmund operators, like the Riesz transforms (see for instance [14]).

Remark. Recall that by a weight people usually understand a locally integrable non-
negative function w, but to define A, characteristic [w]4, in (1.1) one needs to assume
that w is positive a.e.

However, if we interpret 1/0 as +o0o, then for a non-trivial weight w vanishing on a set
of positive measure we have [w]4, = 00, so the condition (1.1) fails for w. And it is easy
to see that if a weight w vanishes on a set of positive measure, the Hilbert transform is
not well defined on LP(w) (take a function f supported on the set where w vanishes), so
we can treat the Hilbert transform as unbounded in this case.

So, one can say that the Hunt—-Muckenhoupt—Wheeden theorem holds for arbitrary
non-negative weights, if everything is interpreted the right way. However, to avoid con-
fusing the reader with irrelevant technical details, we assume in this paper that a weight
is always locally integrable a.e. positive function.
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1.1. Sharp estimates

Qualitative results like the one mentioned above are usually easier to prove than
quantitative counterparts. In fact, it had been an open problem for some time to find a
sharp estimate of the norm of H (and other Calderén—Zygmund operators) over LP(w)
in terms of the powers of the A, characteristic [w]a, defined in (1.1) above. It was
proved by S. Petermichl in [12] that [[H] ;2. < [w]a,. She then proved the same
estimate for the Riesz Transform, and after some results by different authors gradually
expanding the class of operators for which such an estimate holds, the linear estimate
Tl 12 () St.a [w]a, was established by T. Hytonen [7] (where d is the dimension of the
underlying Euclidean space).

Using the method of Rubio De Francia extrapolation (see e.g. [3]), one then can show
that for p > 2 the estimate ||T'[|1r(w) S1,p,a [w]a, holds; by duality one finally gets the

estimate || T'||zr(w) ST,p,d [w]z/p(p_l) for 1 < p < 2. Thus for 1 < p < oo one can write
1Tl 7 (w) STopoa (W], (1.2)
where
s=max{1,1/(p—1))}. (1.3)

Note, that for the Hilbert transform the above estimate (1.2) is sharp. Namely, even
before the upper bound for the Hilbert transform was proved by S. Petermichl [12], it
had already been shown by S. Buckley [2] that given p € (1,00) one can find A, weights
w with arbitrarily large [w]a, for which |[H||1r(w) Zp [w]%, (with s given by (1.3)). It
is also not hard to show that the estimate (1.2) is sharp for the Riesz transforms.

1.2. Considering “larger” characteristics

A reasonable attempt to lower the optimal exponent s given by (1.3) might involve
considering “larger” variants of A, characteristics where weights are not averaged over
intervals (or cubes) as in (1.1), but rather integrated against kernels with slower decay.
Such characteristics arise in fact naturally in many problems not directly related to sharp
weighted estimates.

For instance, it was proved by the second author and A. Volberg in [15] for p = 2, and
by F. Nazarov and the second author in [11] for general p, that the following “fattened”
A, condition' Aft, [w]i?; < 00, where

! In fact, in both [15] and [11] the estimates with matrix-valued weights were considered, and the Hunt—
Muckenhoupt—Wheeden theorem for the matrix-valued weights was obtained. A matrix-valued analogue of
the condition [w]ff;: < oo was introduced there, and its necessity was proved. The necessity of the scalar
condition follows immediately from the matrix-result, although just following the proofs from [15], [11] and
not bothering with the non-commutativity of the matrix-valued case gives a very simple proof for the scalar
situation.
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p—1

[w]sz = sup /7<Im()\))p_lw(x)d$ /7(Im()\))p _1w(m)_1/(p_1)das , (1.4)
R

AeC [z = AP |z = AP’

is necessary for the boundedness of the Hilbert transform on the weighted space LP(w);
here, p’ denotes the Holder conjugate of p, 1/p+1/p’ = 1. Note that for p = 2, the inte-
grals in (1.2) are just Poisson extensions of the weights w and w=! (up to multiplicative
constants), so one can think of [w]ff{; as a “Poisson-like” A, condition for any 1 < p < oo.
Motivation for considering such “Poisson-like” A, conditions stems from the theory of
Toeplitz operators, see for example [5, s. 7.9].

It is easy to see that [w]a, $p [w]fjfz Since the A, condition is already sufficient for
the boundedness of H on LP(w), it follows that the A, condition and the “fattened” A,
condition A;at are equivalent. However, simple examples involving power weights show
that for every fixed p, the two characteristics themselves are not equivalent: for any fixed
1 < p < o0, one can find A, weights w with arbitrarily large quotient [w]sz /[w]a,.
Moreover, it was shown in [15] that for p = 2 the lower bound for the Hilbert Transform

1/2
IH L2y 2 ([w]5Y)

holds for all weights w.
So one could hope that a better estimate of the norm ||T||1r(,), and in particular
of the norm ||H|1r(y), in terms of the “fattened” A, characteristic [w}sz in (1.4) is

possible. One could even hope, for example, that the estimate |[H] 12, < ([w]ff{;)l/z

holds. The main result of this paper destroys all such hopes: we show that for the Hilbert

transform H there exist A, weights w with arbitrarily large A, characteristic [w]i‘i, such

that ||H||zrw) 2p ([w]fji) , where s is given by (1.3).

1.2.1. “Heat” A, characteristics

In many problems it is natural to consider other kernels besides “Poisson-like” ones.
For example, S. Petermichl and A. Volberg [13] considered a “heat” A, characteristic
(1 < p < o0) given by

p—1
ea 1 —lz—y|? 1 —z—y|? — —
[w]'ie2* .= S;ﬁ’d /tme 2=/t () da (R/ a7c =1ty () =1/ =D g
Y
te(0,00) R? d
(1.5)

It was shown in [13] that in sharp contrast to the “Poisson-like” case, the “heat” A,
characteristic in (1.5) is essentially the same as the usual Muckenhoupt A, characteristic
in (1.1), more precisely

[w]a, ~dp [w]f}lc:t (1<p<o0). (1.6)
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This fact for d = 2 was used [13] to establish sharp weighted estimates for the Ahlfors—
Beurling operator, which allowed the authors to deduce that weakly quasiregular maps
on the plane are quasiregular.

In view of (1.6) the problems considered in this paper are trivial for the “heat” A,
characteristic.

1.3. Weights and doubling constants
For a weight w on R we define its doubling constant D,, as
D,, :=supw(2I)/w(I),
I

where the supremum is taken over all intervals I in R. Here 27 is the interval with the
same center as I of length 2|I|, and slightly abusing the notation we write w(I) for
J; wdz.

It is easy to show that if the doubling constant of the weight w is bounded by 2 + §
for sufficiently small §, then we have uniformly over all A € C, the estimate

/ (Im(A))P~*

PR w(z)de <, |I>\|_1/w(x)dx, (1.7)

Ix

where I is the interval [Re(A) —Im(A), Re(A) +Im(\)]. We emphasize that the particular
function (Im A\)P~!/|z — A|P in the left-hand side of (1.7) is of no importance here; any
“reasonable” approximate identity on the real line can be used in its place.

Thus, if the doubling constants of the weights w and ¢ = w=/®~1 are bounded by
2 + ¢ for sufficiently small §, then the A, characteristics [w]4, and [w}ff{f} are equivalent

in the sense of two sided estimate.
1.4. Main results

The main result of this paper is the following theorem.

Theorem 1.1. Given p € (1,00), M > 2 and arbitrarily small 6 > 0, there exists an
Ap weight w on R with M < [w],, < C(p)M, such that the doubling constants of the

weights w and o = w=®P=Y are bounded by 2+ 6 and

[H| Lo w) = e(p)M®, s =max{1,1/p—1}.

By the above discussion about the equivalence of A, characteristics [w]4, and [w]ffz,

we can see that Theorem 1.1 implies the following corollary.
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Corollary 1.2. Givenp € (1,00), M > 2, there exists a weight w on R with M < [w]%j <
C(p)M, such that

| H| e w) > c(p)M?, s=max{1,1/(p—1)}.

1.4.1. Two weight estimates and Sarason’s conjecture

One of the main technical tools used in this paper is inspired by the unpublished
manuscript [9] by F. Nazarov, where he provided a counterexample to the so-called
Sarason’s conjecture. Let us briefly recall this conjecture.

It is natural to consider two-weight estimates for the Hilbert transform and other
Calder6n—Zygmund operators, i.e. to ask when they are bounded operators from LP(v)
to LP(w) for potentially different weights v, w. It is easy to show that the two weight A,

condition
p—1
1 1
sup 1] /’w(az)dw I.Tl/v(ﬂﬂ)l/(pl)dl" = [w, v PD], < oo, (1.8)
I
I I

is necessary for the Hilbert transform to be a bounded operator from LP(v) to L?(w)
(1 < p < 00). However, as simple examples show, this condition is not sufficient (for the
reader’s convenience we supply an example in Subsection 8.4 in the Appendix).

It had been shown long ago by the second author that the following “fattened” two
weight A, condition

p—1

o pameyt N (o N
p/imd ]!() dr| <o (19)

AeCs [z — AP [z = AP’

is also necessary for the Hilbert transform to act boundedly from LP(v) to LP(w). Note,
that unlike the one-weight case, the two-weight conditions (1.8) and (1.9) are not equiv-
alent; simple examples can be easily constructed.

The Poisson averages are less localized than the averages over intervals, so D. Sarason
hoped that for p = 2 the two weight Poisson Ay condition (1.9) would capture correctly
the “far” action of the Hilbert transform. In [5, s. 7.9] he conjectured that (for p = 2)
the Poisson Ay condition (1.9) is necessary and sufficient for the Hilbert transform to be
a bounded operator from L?(v) to L?(w).?

This conjecture was disproved by F. Nazarov in [9]. In this paper we extend Nazarov’s
result to all p € (1,00) (not just p = 2). While our proof relies heavily on the machinery

2 It is interesting that when D. Sarason was stating his conjecture he was not aware of the necessity of
the two weight Poisson Ay condition. The proof of necessity was presented to him by the second author,
and this is exactly the proof presented (with attribution) in [5, s. 7.9].

The problem in [5, s. 7.9] was stated a bit different, but it was equivalent to the two weight estimate
for the Hilbert transform. The proof of necessity was presented there only for p = 2, but the same proof
works for all p, 1 < p < co.
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developed in [9], we introduce some crucial new ideas, allowing us to treat the case of
p # 2. We should also mention that our counterexample is a “constructive” one; unlike
[9] we are not using the Bellman function method.

We prove the following theorem:

Theorem 1.3. Given p € (1,00), there exist weights w,v on R satisfying (1.9), such that
the Hilbert transform is not a bounded operator acting from L (v) to LP(w). In particular,
this means that there exists f € LP(v) such that || H f||pr () = 00.

In light of the discussion in Section 1.3 the above theorem follows from the correspond-
ing counterexample with “smooth” weights (i.e. weights with small doubling constants).
Namely, we prove the following theorem, which implies the above Theorem 1.3.

Theorem 1.4. Given p € (1,00) and arbitrarily small 6 > 0, there exist weights w,v on R
satisfying (1.8), such that the doubling constants of the weights w and o = v V=1 gre
bounded by 2+6 and the Hilbert transform is not a bounded operator acting from LP(v) to
LP(w). In particular, this means that there exists f € LP(v) such that ||H f|| 1) = oo.

1.4.2. A counterintuitive result

It is an easy exercise to construct a weight with a prescribed A, characteristic. More-
over, one can find a weight taking only 2 values. What is more interesting, and is not
completely clear, is that in fact one can find such a weight with doubling constant arbi-
trarily close to 2.

Proposition 1.5. Let p € (1,00). Then, given Q > 1 and arbitrarily small € > 0, there
exists a weight w on R taking only 2 walues, with Q@ < [w]a, < c(p)Q, such that the
doubling constants of the weights w and o = w=/®=1) are bounded by 2 + ¢.

1.5. Plan of the paper

Our general strategy is as follows. We start with simple examples that give the desired
lower bounds for dyadic (martingale) analogues of the Hilbert transform, in particular, for
the so-called Haar shifts. These examples are simple ones, obtained as easy modifications
of known examples; we call them the “large step” examples, to emphasize that we do
not have any non-trivial bounds on the doubling constants of the weights involved. This
is done in Section 3.

From these examples we construct in Section 4 the so-called “small step” examples,
where we preserve the desired lower bounds, but can make the so-called dyadic smooth-
ness constant (see the relevant definition in Subsection 2.3 below) of the weights as close
to 1 as we want. We present a general construction that allows us to do so. This step
is absent in [9], where the “small step” example is obtained implicitly via the Bellman
function method.
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The next step is to apply remodeling, introduced in [9], which serves two purposes.
First, it allows us to get from weights with dyadic smoothness constants arbitrarily
close to 1 to weights with doubling constants arbitrarily close to 2. And second (and
equally important) it allows us to get from the lower bounds for Haar shifts to the lower
bounds for the Hilbert transform, which we need. However, the original remodeling from
[9] does not handle the one-weight situation well, since typically it gives a two-weight
situation as its output. So to handle the one-weight situation we introduce the so-called
iterated remodeling, that allows us to prove Theorem 1.1 (and so Corollary 1.2). The
general method of iterated remodeling is presented in Section 5, while Subsection 7.1
contains the particular application for the Hilbert transform. Subsection 6.1 describes
analogous examples in the (easier) cases of Haar multipliers and the dyadic Hardy—
Littlewood maximal function. Moreover, Subsection 6.2 contains the counterintuitive
result of Proposition 1.5, deduced as a byproduct of our general constructions.

Through a standard direct sum of singularities type construction, the family of ex-
amples for the Hilbert transform yields in Subsection 7.2 a counterexample to the LP
version of the Sarason’s conjecture, (i.e. Theorem 1.4, and therefore Theorem 1.3), so we
are done in the two-weight case as well.

The main constructions of this paper exploit the usual structure of a filtered prob-
ability space on the unit interval [0,1), and the fundamental correspondences between
functions and martingales on the one hand, and martingales and random walks on graphs
on the other hand. We briefly recall the relevant definitions and results in Subsections
2.4, 2.5 and 2.6.

Finally, in the Appendix (Section 8) we collect a few results used throughout the
paper: probability theoretic results on random walks (Subsection 8.1), two remarks about
“stopping on the lower hyperbola” (Subsection 8.2) and “getting only a little above the
upper hyperbola” (Subsection 8.3), and we repeat the proofs of F. Nazarov’s lemmas
about Muckenhoupt characteristics and doubling constants from [9] (Subsection 8.5).

Acknowledgments. We are grateful to Alexander Barron for reading a draft of the
manuscript and for pointing out typos and other obscurities, and to the anonymous
referee for the valuable feedback.

2. Preliminaries
2.1. Symmetric “two weight” setup

In weighted estimates it is customary to rewrite a problem in a symmetric two-weight
setup. For example, in an one-weight situation involving a weight w (Theorem 1.1) let
us introduce an auxiliary weight ¢ := w=1/®=1) (the reader should have noticed that it
already appears in the statement of Theorem 1.1). If we denote f =0 1f,s0 f = fo,
then

1 ley = I flpwy  and  Tf =T(fo),



10 S. Kakaroumpas, S. Treil / Advances in Mathematics 376 (2021) 107450

for any linear operator 7. Thus any Welghted estimate of an operator T over LP(w)
is equivalent to the estimate of the operator f — T(fo) acting from LP(o) to LP(w);
note that if 7' is an integral operator, then in the operator f — T(fo) integration is
performed against the measure that defines the norm in the domain L?(o).

To prove Theorem 1.1 one needs to find a non-zero f € LP(w) such that ||H f||zr () >
c(p)|| fIl £ (w)- This is equivalent to finding a non-zero f € LP(o) (we omit the tilde over
f here) such that

IH(fo)llrw) = clp) M| fllLr ()3 (2.1)

here, recall, M < [w]a, < C(p)M, and o = w~ Y@= The weights w and ¢ should have
doubling constants as close to 2 as we want.

In a two-weight situation involving two weights w and v (Theorem 1.4) we denote
o = v~ /®=1 Ty prove Theorem 1.4 we construct for arbitrarily large R weights o and
w with doubling constants arbitrarily close to 2 such that

(w) (o)) < Clp)
(C(p) does not depend on R) and a non-zero f € LP(o) such that

IH (o)l ) = RIfllLr(o)- (2.2)
2.2. Dyadic intervals and martingale differences

For definiteness, by an interval we will always mean a half-open interval [a, b). For an
interval I we denote by I and I_ its right and left halves respectively. The symbol h;
denotes the L* normalized Haar function,

hr=1r —17_. (2.3)

We emphasize, that in this paper we always use the L> normalized Haar functions.

We say that two intervals I, J in R are adjacent if INJ = @, and they have a common
endpoint.

An interval I in R is called a dyadic interval if I = [k2™, (k+ 1)2™) for some n, k € Z.
We denote by D the family of all dyadic intervals in R. For a dyadic interval I we denote
by D(I) the collection of its dyadic subintervals (including I itself). When there is no
danger of confusion, we will denote D([0, 1)) by D, abusing the notation. For all I € D,
the number — log,(|I|) will be called generation of the interval I. Moreover, for all N € N
and for all I € D, we denote by ch™ (I) (simply ch(I) if N = 1) the family of all dyadic
subintervals of I of length 2=V|I|, and if G is a family of dyadic intervals, then we set
ch™(G) .= U reg ch™ (I). Moreover, if G is a family of pairwise disjoint dyadic intervals
then we denote
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Eglf]:=)_(f)iLr-
Ieg

For all f € LL (R) and for all I € D, we denote by A;f the martingale difference

loc

Arf= Z (Hpty = Htr= (el + (Nl = (1,

I'ech(I)

and by arf the difference of averages (or Haar coefficient)

(7, = )

arf =), == 5 = (fh)p

Notice that martingale differences and Haar coefficients are related by
Arf = (arf)hs.
2.3. Weights and doubling constants

Given weights w, o on R and p € (1,0), we define the joint dyadic Muckenhoupt A4,
characteristic of w, o by

[w.0]a, D = sup (w) (0)]
IeD
and the dyadic Muckenhoupt characteristic of w by [w]a, p := [w, w1/ (P=1)] 4,,p- Fol-

lowing [9, §1], we define the smoothness constant

S = sup max (
I (

where the supremum is taken over all intervals I in R, and the dyadic smoothness
constant

d
S,, = sup max (
IeD

It is easy to see that D,, < .S, + 1. Note also that 1 < SS) < Sy. Moreover, as in [9, §6],
we define the strong dyadic smoothness constant

(w)
(w) s

)

554 — sup
1,J

where the supremum is taken over all adjacent intervals I, J € D with |I| = |J|. Obviously
Ssd > 84 " Of course all these definitions can be given over [0,1), and we will use the
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same notation as above for Muckenhoupt characteristics and smoothness constants over
[0,1) (note that local integrability over [0,1) means here integrability over [0,1)).

It turns out that the strong dyadic smoothness constant can provide some control
over the smoothness constant, and the dyadic Muckenhoupt characteristic over the full
Muckenhoupt characteristic, provided the strong dyadic smoothness constant is suffi-
ciently close to 1.

Lemma 2.1. (F. Nazarov, [9, §6]) For all € > 0, there exists § = d(¢) > 0, such that for
all weights w on R with Si)d <1+ 6 there holds S, <1+¢€.

Lemma 2.2. (F. Nazarov, [9, §11]) For all p € (1,00), there exists 6 = d(p) > 0, such
that for all weights w,o on R with [w,c]a, p < 0o and S5t S5 < 14§ there holds
[w,0]a, < (5/4)[w,0]a, D

For reasons of completeness, we give the proofs of both these lemmas in Subsection
8.5 in the Appendix. In this paper, the phrase “smoothness of weights” will always refer
to the above smoothness constants.

So we see that in order to dominate Muckenhoupt characteristics and doubling con-
stants, it suffices to dominate strong dyadic smoothness constants and dyadic Mucken-
houpt characteristics. We will see in Section 5 that F. Nazarov’s method of remodeling
will allow us to dominate strong dyadic smoothness constants by dyadic smoothness
constants.

2.4. Dyadic filtration
Forn=20,1,2,... set
D, ={I€D(0,1)): |[I|=27""},

and let 7, be the o-algebra of subsets of [0, 1) generated by the family D,,, i.e. the small-
est o-algebra of subsets of [0, 1) containing D,,. Clearly F,, C F,4+1, foralln =0,1,2,...,
so the sequence F := (F,,)22, of o-algebras is a filtration on [0,1) (sometimes called the
dyadic filtration). Notice that the Borel og-algebra F of [0,1) is the smallest o-algebra
containing all F,,, or equivalently, the o-algebra generated by the family (J)2, D,,.

Taking for the probability measure P the Lebesgue measure on [0, 1), we can see that
([0,1), F,P,F) is a filtered probability space. Denote by E,, the conditional expectation
with respect to the o-algebra F,,, E,[f] = E(f|F.). The operator E,, admits a simple
formula

E.lfl= ) {Nlr

1D,

We will use the symbol E for the expectation operator, Ef :=Eof = <f>[0’1)1[0’1).
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Recall that a sequence (X,,)52, of integrable functions on a filtered probability space
is called a martingale if X, is F,-measurable and

]En[Xn+1] = Xn7

for all n = 0,1,2,.... In the sequel, all martingales on [0,1) will always be considered
with respect to the dyadic filtration (and called then just dyadic martingales).

Note that every dyadic interval can be given the structure of a filtered probability
space by simply translating and rescaling the unit interval.

2.5. Functions and martingales

A function f € L'([0,1); RY) naturally induces an R¥-valued martingale X =
(Xn)roLO:O on [Oa 1)’

Xn:Enf:Z<f>[]-I> 77,:0,1,2,....

1€D,

Note, that not all martingales are induced by a function, only the so-called uniformly
integrable ones. However, in this paper we will be considering only uniformly bounded
martingales, which are trivially uniformly integrable, and so are always induced by a
function.

If a martingale X is induced by a function f, then f can be easily restored from X,
namely X,, — f a.e. and in L'; for uniformly bounded martingales we have, in fact,
convergence in all LP) 1 < p < co.

It turns out that in many problems of harmonic analysis it is more convenient to work
not with a function, but with the induced martingale. In our context that means that we
keep track of averages of functions, instead of the functions themselves. In our examples,
we deal with functions w, o, f, g, and we are keeping track of the averages of functions
w,o,f =: fo,g =: gw (then f =f/c and g = g/w).

2.6. Martingales and random walks
Let X = (X,,)%, be an R"-valued martingale on [0,1). For I € D,, the function X,,
is constant on I; we denote by (X), its constant value there. Note that if the martingale

X is induced by a function, which we, slightly abusing the notation, also denote by X,
then (X), as defined above is indeed the average of the function X. It is easy to see that

(X); = =" yren. (2.4)

In the language of [4, Subsection 5.1] the above identity says that the family {(X)s};.p
has “martingale dynamics”.



14 S. Kakaroumpas, S. Treil / Advances in Mathematics 376 (2021) 107450

We also define the difference of averages (or Haar coefficient) a; X,

A[X = <X>[ — <X>[ =

+

Again, if; slightly abusing the notation, we denote by X the function inducing the uni-
formly bounded martingale X, then the two definitions of a; X are consistent.

The dyadic martingale X can be interpreted as a random walk on an image of a binary
tree; in what follows we will call this image the graph of X.

To describe this random walk, notice that the collection D of dyadic intervals carries
a natural structure of the full binary tree, with vertices being the dyadic intervals, and
the edges connecting an interval with its two children.

The collection D of dyadic intervals can be naturally interpreted as the standard
random walk on the full dyadic tree, where one moves from a vertex I to each of its
children with probability 1/2. Each point = € [0,1) represents a trajectory on the full
binary tree D, that at the time n it is at the unique I € D,, containing x.

The martingale X naturally induces a map from the dyadic tree D to RY, where the
vertex corresponding to I € D goes to the point (X); € RY, and the edges go to straight
line segments connecting the corresponding points; we will call this image the graph of
X. The random walk on the dyadic tree D is then mapped to the random walk on the
graph of X, that moves from a point (X); by the steps +a;X with equal probabilities
1/2.

In view of the martingale dynamics identity (2.4) above, (X); always occupies the
midpoint of the straight line segment connecting (X);_ and (X);, ; we will say in what
follows that this segment corresponds to the interval I € D.

The interpretation of dyadic martingales as random walks on images of a binary tree
gives helpful intuition into the constructions we are using. While it is not required for
the formal construction, we feel that it could help the reader to understand and visualize
what is going on.

In our examples, we deal with functions w,o, f, g, where w = o~ %/®=1) for some
1 < p < o0, and random walks correspond to the martingales induced by the functions
w,o,f := fo,g := gw. Our transforms will be applied to the functions w, o, f, g, to pro-
duce functions w, 5,?, g respectively. The random walk corresponding to the martingale
induced by the function (w,o) terminates with probability 1 on the hyperbola given
in the uv-plane by uv?P~! = 1, because woP~! = 1 a.e. on [0,1). Our transforms will
need to guarantee that the new weights w,o we get continue to satisfy this relation.
As we will see, on the level of weights our transforms will amount to composition with
measure-preserving transformations, and therefore such relations will be automatically
preserved. In addition, we will see that the relevant weighted norms || f|| @), 191, (@)
are not larger (up to constants depending only on p) than || f[|zr(s), ||g||Lp/(w) respec-

tively, where f = f/5 and § = g/w.
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u : averages of the weight w

v . averages of the weight 0 = w YD

cpp~1

(D),

p-1 _
uv? " = ¢, gM

Uu

Fig. 1. Random walk in the uv-plane corresponding to the pair of weights (w, o).

3. “Large step” examples

We construct in this section “large step” examples for the Haar multiplier, and for a
special type of Haar shift, defined in Subsection 3.2.
Let p € (1,00) and M > 2. Set B =1— 53— € (3,1). Set Iy = [0,1) and I, = [0, 5+ ),

» 3w
Jn = |35, 52=1), for all n = 1,2,.... Consider the functions w,o on [0, 1) given by
w:22nﬂ1ha JZZQ*HW(P*UL}M
n=1 n=1

Then, w,o are weights on [0,1) with ¢ = w™%®~1, Note that w([0,1)) ~ M and
o([0,1)) ~, 1. Notice that 277 < w(z) < 28278 and 27#/(P=Dgf/P—1) < 5(z) <
2P/®P=1 for all € (0,1). Then, direct computation shows that

1-p"

e

M<2# < (W), (0),P 7 <2°(1—p)"t <4Me,  Vn=0,1,2,....

It follows that M < [w]a, p < 4Me. Direct computation gives also az,w < 0 and
—ar,w~ (1—p3)"12"% foralln =0,1,2,....

Consider the uniformly integrable real-valued martingales X,Y induced by w, o re-
spectively. Note that by a very easy application of Jensen’s inequality as in [10, Lemma
4.1] we have X,,YP~1 > 1, for alln =0,1,2.... Also note that the graph of the martin-
gale Z = (X,Y) consists of the straight line segments connecting (Z); and (Z); , for
n=1,2,..., see Fig. 1 (the constant ¢, g in Fig. 1 satisfies 1 < ¢, 3 < 4e).

Notice moreover that S4 ~ (1 — B)~! ~ M, therefore we have no control over the
dyadic smoothness constant of w.
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We will now truncate the weights w,o. We have

o0 3 1 B
D ol = Tt 2 (1= )7 =2Me.
n=0

Therefore, there exists a positive integer N = N, greater than 1, such that

N
D 2nEl > M

n=0

The following lemma, whose proof is given in Subsection 8.2 of the appendix, implies
that there exist a1, az, by, b2 > 0 such that (a1+a2)/2 = (w)ry, |, (br+b2)/2=(0)1p

-1 -1
and a1b] " = agbh T =1

Lemma 3.1. Let x,y > 0 be arbitrary, such that xy?~' > 1. Then, there exist

a1,b1,a9,by > 0 with as < x < ay and by < y < by, such that alel = (Lngil =1 and
__ bi+bs
£,

— aitaz
x = M1z,

Without loss of generality, we may assume that a1 < as. Consider the bounded weights

N+1 N+1
w' = Z 2m81 ;. tarlyy,,tasliy . o = Z 2_"/3/(1’_1)1@ +01l5y o Fb2lry
n=1 n=1

on [0,1). Notice that ary ,w’" = (a1 —a2)/2 < 0. In what follows, we abuse the notation
denoting w’, o’ by w, o respectively.

3.1. Ezxample for the Haar multiplier

For any choice of signs € = (e1);¢p denote by T, the Haar multiplier on [0,1) corre-
sponding to ¢, i.e. T. acts on functions f € L?([0,1)) via

T.(f) =Y er(arf)hr.

1eD

Consider the function f on [0,1) given by

f= i(—l)”*lhn.
n=1

Direct computation gives that for all I € D, we have ajf # 0 if and only if I = I,, for

n+1
some n € N, in which case a;f = % Consider also the function g = —w on [0, 1).

Consider the functions f =f/0, g = g/w on (0,1). Then
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11 gy = w(0.1) ~ M. gl = wl(0,1)) ~ M

Moreover, we have

sup|< L(fo), gw)| = sup

e€e&

> erlIl(arf)(ar8)

1D

=D M- |arf] - |arw|

1eD

N

N
>3 Ll - Jarnf| - Jagw] ~ (1= 871> 2707 > (1 - )T M ~ M2,
n=0

n=0

where £ is the set of all choices of signs ¢ = (e7);ep. It follows that

wp | TelF)gu)l Az

pe - =M.
SeE Izl )~ MVPRITTP

3.2. Example for a special type of Haar shift
Let T be the Haar shift on [0, 1) acting on functions f € L?([0,1)) by

Tf=2> (arf)(hr, —hi_).
IeD
Then, we have

(Tf,9) =Y (a1 f)(ar,9 = 51_9),

1D

for all f,g € L*(]0,1)).
Consider the function f on [0,1) given by

f = th
n=1

Notice that |f| < 1. It is obvious that for all I € D, we have arf # 0 if and only if
I = J,, for some positive integer n, in which case a;f = 1 > 0. Consider also the function
g = —w on [0,1). Consider the functions f = f/o, g = g/w on [0,1). We have

1 p

1120y = = w((0,1) ~ M, gl = w((0.1) ~ M

TlLr (o)
Moreover, we have

N

(fo. T(gw)) = (£, T(2)) = Y [nl(a1,8) (1,1, ) ~ D (1= 5) 712070 = M2,

n=0
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It follows that

(fo.T(gu)) . M

2 - =M.
”f”Lp(cT)HgHLp'(w) P MY/ep/P

4. “Small step” constructions

We describe in this section different variants of “small step” constructions, that allow
us to get from the examples constructed above in Section 3 to examples with dyadic
smoothness constants arbitrarily close to 1.

We fix the following notation: for all intervals J, K in R, we denote by 1) k the unique
orientation-preserving affine transformation mapping J onto K.

4.1. A warmup: the “small step” construction for the Haar multiplier

Let p € (1,00) and M > 2. Recall that in Subsection 3.1 we constructed bounded
weights w, o on [0,1) with o = w=%®=1) such that

M <w([0,1))a([0,1))"7", [w]a,p < 4Me, w([0,1)) ~ M, o([0,1)) ~, 1,

and non-zero bounded functions f € L?(w), g € L (o) such that

sup [(Te(fo), gw)| = > | - [arf] - |arg| > O lze @) 19l e ) (4.1)
c€s IeD

where f := fo and g := gw. Recall that in this example we do not have any control over
the dyadic smoothness constants S¢ and S¢ of the weights w and o.

Based on this example we want to construct weights w,s with & = @~ /®=1 and
non-zero functions f € LP(@), § € L (&) such that (4.1) holds with f, §, @, & in place of
f, g, w, o (with another constant ¢(p)); and what is essential, that the dyadic smoothness
constants of the new weights are as close to 1 as we want.

As we will see, in our construction we will keep track of the averages and martingale
differences of the weight w, o and of the functions f and g, and their counterparts with
tildes.

4.1.1. A general “small step” construction

We begin by describing a “small step” construction that does not exploit any intrica-
cies of the particular “large step” example for Haar multipliers.

Let us first give an informal description. Let X be an R -valued martingale on [0, 1).
Consider the graph of the martingale X, see Subsection 2.6. Recall, that the segment
of the graph, corresponding to an interval J € D is a straight line segment, connecting
points (X);_ and (X);, ; note that (X); is the midpoint of this segment.
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Fig. 2. Dividing the segments of the graph of X. (For interpretation of the colors in the figure, the reader is
referred to the web version of this article.)

(X)),

(X),. (X),

(%), (X),

Fig. 3. Random walk on the new graph. (For interpretation of the colors in the figure, the reader is referred
to the web version of this article.)

Take a sufficiently large positive integer d. We divide each of the segments of the
graph of X in 2d parts, so that we get a new graph containing the vertices of the old
graph, along with several new vertices, 2 - (d—1) in number, on each segment, see Fig. 2,
where new points are marked in red.

Let us describe a new random walk on the new graph, which can be thought of as
a “small step” version of the random walk corresponding to the original martingale,
producing a new martingale X.

As in the original random walk, we start from the average (X)o 1), which, recall, is
the midpoint of the segment corresponding to [0,1). From each point (X); we perform
a “small step” random walk of order d along the segment corresponding to J, moving by
+a7X/d with probability 1/2. Thus, from each point of the new graph, we move with
equal probability 1/2 to one of the two immediately closest points (of the new graph)
on the corresponding segment (see Fig. 3). When we reach one of the two endpoints of
this segment, we get into a new segment, and we repeat this procedure along the new
segment.

Let us now make all this formal. In our case the martingale is always a uniformly
bounded one, induced by a function F' € L>°(]0,1); RY); usually in our situation N = 4
and F = (w, 0, f,g). The construction will be described in terms of the function F', so no
deep knowledge of probability is required, although the above probabilistic description
could help the reader to understand what is going on.

Given a dyadic subinterval I of [0, 1), we define the family . (I) of stopping intervals
for I as the family of all maximal dyadic subintervals J of I such that

=d, (4.2)
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and we also define the subset ., (I) as the family of all intervals J in .%/(I) for which
the sum in (4.2) is equal to d, and similarly we define .7_(I). Coupled with a translation
and rescaling invariance lemma, part (i) of the following lemma implies that the family
. (I) forms a partition (up to a Borel set of zero measure) of I, and part (ii) of it implies
that | 2+ (1),J 74 (I) have both measure equal to |I|/2.

Lemma 4.1. Consider the sequence ()22, of Rademacher functions on [0,1), i.e.

Ty = Z hr, n=12....

I1€D, 1

Set So =0 and S, = > _ 1, for alln =1,2,.... Let a,b > 0, not both of them equal

1

to 0. Consider the stopping times 7', 72,7 given by

ti=inf{n e N: S, = b}, 2 :=inf{neN: S, = —a}, 7= min(7!,7?).

(i) There holds 7' < 0o and 72 < ¢ a.e. on [0,1).
(ii) There holds P(r = 7') = 25 and P(1 = 7%) = 5.

The proof of the lemma is given in Subsection 8.1 of the Appendix.

The transformation we describe here acts on functions in L*°(I) as follows. Let G €
L>(I;RYN). Then, we define the function R;G := G o)1, where 17 : I — I is given by

, if x belongs to s Jes (1
Yr(x) = {w‘]’l (z), if @ belongs to some (D) , for almost every x € I. (4.3)

Y1, (x), if x belongs to some J € .7, (1)

It is clear that ¢y : I — I is a measure-preserving transformation.

The “small step” transform described here is obtained though iterating the above
transform in every stopping interval. Namely, we first apply the above construction on the
function F, along the interval [0,1). We thus obtain a function Rjo1)F € L>([0,1); RY).
Then, we apply the above transform on the function (Rjo 1)F)|; along the interval I,
producing new stopping intervals, for all I € .#([0,1)), and afterwards we repeat this
along every stopping interval that will have come up, etc. Therefore, after this process
has been completed we will have obtained a new function F € L>=([0,1); RN).

It is important to note that in fact this transform (called in what follows “small step”
transform of order d) amounts just to a composition of limiting functions with a certain
measure-preserving transformation (so in particular, it does not matter whether we apply
it to a martingale as a whole or to each of its coordinates separately). Indeed, it is clear
that F = F o ®, where ® : [0,1) — [0,1) is the measure-preserving transformation
given at almost every point of [0,1) as the composition of all the measure-preserving
transformations ¢ : I — I, where I runs over [0, 1) and all stopping intervals containing
that point (note that the order of composition respects inclusion of dyadic intervals).
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We now specialize to the case N = 4 and F = (w,0,f,g). We write then F =
(w,o,f,g), where tilde denotes just composition with the measure preserving transfor-
mation ®. In particular, W, are weights on [0,1) with we?~! =1 a.e. on [0,1).

4.1.2. Getting the damage
We first show that the “small step” transform preserves “damage” for Haar multipliers.

Lemma 4.2. Let the functions ﬂgf,é be as above. There holds

DML |art] - Jargl =D 1] - |ast] - |asgl.

1€D JeD

Proof. First of all, it is immediate by translation and rescaling invariance that

ST laxdl - faxel K= Y Jast] - Jasgl - 1.
J)

JeS (1p) KeD( JeD(1p)
J#I

where Iy = [0,1) and f= R;.f, & := Rj,g. Therefore, since the transform is given by
iteration of the same fundamental transform over [0, 1) and all stopping intervals, up to
translation and rescaling, it suffices only to verify that

> lact - ax@l - K] = |aref] - larogl - ol (44)

KeD(Io\(Ujer (1) D))
It is easy to verify that
~ 1
sxt = Zarf, VK € D(Io) \ U o). (4.5)
Je#(1o)

and similarly for g. It follows that

Z ‘AK?| - |axgl - K]
KED(IO)\(U,JEJV(IU) D(J))
1
-7 > K| Jarf] - largl.

KED(IO)\(U.IE-V(IO) D(J))

Therefore, it suffices to verify that

1
Z |K| = ﬁ|fo|a (4.6)

KeZ(Ip)
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where 7 (Iy) = D(lp) \ (UJey(Io) D(J)). Consider the limiting function S =
> ke (1,) M (the sum should be understood in both the a.e. on Iy and L?(Iy) senses).
By the definition (4.2) of the stopping intervals for Iy we obtain |S| = d a.e. on Iy. In
view of orthogonality of Haar functions, it follows that

Z K| = Z ||hK||2L2(10) = HSH%Z(IO) = d2|IO|,
KeT (Io) KeZ(Io)

concluding the proof. O

Remark 4.3. Consider the dyadic Hardy-Littlewood maximal functions Mf, MfF of £ ,f
respectively. We claim thzﬁc/Mf' > (Mf)o® a.e. on [0,1).

Indeed, note first that |f| = |f|o® = |fo®| = |f], so |f] is obtained from |f| through
the same “small step” transform as fis obtained through f. It suffices now to note that
for all I € D and for all G € L*°(I) we have

<R]G>J = <G>Ii7 vJ e yi(l)

4.1.8. Supressing dyadic smoothness constants
We next show that the “small step” construction as given above provides very tight
control over dyadic smoothness constants, provided d is large enough.

Lemma 4.4. Let the weights w,w be as above. Given € > 0, assume that d > (S% —1)/e.
Then, the dyadic smoothness constant Sg of the weight w is less than 1 + ¢.

Proof. First of all, it is immediate by rescaling and translation invariance that for all
I € D and for all weights p on I, the dyadic smoothness constant of the weight (R;p)| is
not larger than S’g, for all J € .#(I). Therefore, since the transform is given by iteration
of the same fundamental transform over [0, 1) and all stopping intervals, up to translation
and rescaling, it suffices only to verify that

max <<w>K_ ; <1€)>K+) <l+e, VK € D(Ip) \ U D) | (4.7)
<’w>K7 Jes (1o)

where Iy = [0,1) and @ := Rjg 1yw, provided that d > (S§ — 1) /e.
Let K € D(Ip)\ (UJey(Io) D(J)) be arbitrary. We have ag = (1/d)ar, w. Moreover,

K can be written as a union of stopping intervals (up to a set of zero measure), therefore
(W), = a{w) ). + (1 —a)(w) gy, , for some a € [0, 1]. It follows that

(@) =@ | 1 (W, — W |
d min((w>(10)+, <w>(10)7).
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Without loss of generality, we may assume that (w),)_ < (w)(z,), (the other case is
symmetric). Then, we have

(Wi, =W | _ 1 W, — Wy _

' min(<w>(10)+, <w>(10)_) d <w>(lo)—

1

IS

Similarly () k. /()x_ < 1+ ¢, concluding the proof. O

4.1.4. Respecting dyadic Muckenhoupt characteristics

We next show that the “small step” construction does not ruin dyadic Muckenhoupt
constants, up to constants depending only on p. Namely, we claim that [w,c]4, p <
2P[w, 0] 4, p. To see that, note first that it immediate from translation and rescaling
invariance that for all J € . (lo) we have [W|s,6]s]a, D) < [w,0]a, D(1,), Where
Iy == [0,1) and W := Rjgnw, & := Rp1y0. Therefore, since the transform is given
by iteration of the same fundamental transform over [0, 1) and all stopping intervals, up
to translation and rescaling, it suffices only to verify that

(W) (6)5 < 2w, 0la, pr),  VEE€DI)\ | |J D) |- (4.8)
Je.#(Ip)

Let K € D(Ip) \ (UJey(IO)D(J)) be arbitrary. Since K can be written as a union

of stopping intervals (up to a set of zero measure), we have (W)x = a{w),)_ + (1 —
a){w)(1y), and (6)x = a{o)r,)_ +(1—a){o) 1), , for some a € [0, 1]. Then, the following
lemma, whose proof is given in Subsection 8.3 in the Appendix, implies immediately the
required result.

Lemma 4.5. Let x1,y1,%2,y2 > 0 and A > 0, such that

p—1
a7 (ml ;@) (yl ;yz) , mayh < A

Then, there holds
(x1 + a(ze — 1)) (g1 +alys —y1))P ! < 2PA, Va € [0,1].
4.1.5. Respecting weighted norms

Finally, we show that weighted norms do not get larger. Consider the function g =
g/w. Obviously g = g o ®. It follows that

1517, g = | lat@ iz = [ o)l w@de = gl (49)

[0,1) [0,1)

Similarly || f15, ;) = £l where f =£/5.
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4.2. The “small step” construction for Haar shifts

In this section, we describe one variant of the “small step” construction of the previous
subsection which exploits the special structure of the martingales in the example of
Subsection 3.2

Let p € (1,00) and M > 2. Recall the Haar shift 7" on [0, 1) considered in Subsection
3.2:

Tf:=2 Z(Alf)(hl+ —hr_).

1€D

Then, we have

(T'f,9) = Z [ I[(arf)(ar.9 —a1_9), Vf,g9 € L2([O, 1)).

1D

Let us first recall the “large step” example of Subsection 3.2. Set Iy = [0,1) and
I, = [O, 2%), Jn = [2%, 2,%1), for all n = 1,2,.... Recall that in Subsection 3.2 we
showed that there exist bounded weights w, o on [0,1) with o = w=1/(P=1),

M < w([ov 1))0([()’ 1))13—17 [w]Ap,D < 4Me, w([07 1)) ~ M, O—([07 1)) ~p 1,

with the additional properties ajw = ajo =0, for all I € D\ {ly, I1,Is,...}, aw < 0,
for all [ = 0,1,2,..., and nonzero bounded functions f € L?(0), g € L? (w) with

<fU7T(gw)> ZP MHfHLp(O')”gHLP'(w)' (410)

We recall that g = —1jg,1), so g := gw = —w. Moreover, for the function f := fo on
[0,1) we have (f>[0’1) = 0, and for all I € D we have asf # 0 if and only if I = J, for
some positive integer n, in which case a;f > 0.

Based on this example we want to construct weights @,s with & = @w—/®=1 and
non-zero functions fe L?(w), g € ¥’ () such that (4.10) holds with f, g, w, o in place
of f, g, w, 0. Again, it will be essential that the dyadic smoothness constants of the
new weights are as close to 1 as we want. This new example will be used to obtain a
“small step” example for the Hilbert transform in Subsection 7.1. For reasons to become
apparent there, we will want the martingale differences of the function g := gw over
dyadic intervals of odd generation to vanish. Thus, we cannot just mimic naively the
“small step” construction of the previous subsection.

4.2.1. “Small step” random walk on a triangle

Consider the R*-valued martingale X induced by the function F' = (w, o, g, f). Then,
we have a; X = 0 for all I € D different from Iy, I, I5,... and Jy, Jo, J3,.... Notice
that the vectors ar, X, a(r,), X are either linearly independent (in fact orthogonal to
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(Jl+1)+

II+1 I,

1+1

(J1a1)-

Fig. 4. The triangle corresponding to interval I;.

each other), or one of them is equal to 0, for all n = 0,1,2,.... Therefore, the random
walk corresponding to the four-dimensional martingale X takes place on the “union” of
a family of isosceles triangles in R* (maybe degenerate) as in Fig. 4, corresponding to
the intervals Iy, I, Io, . .. respectively.

Starting with the interval Iy = [0, 1), we replace the constant function Xy = (X),
with the function X* = (X)), + (az, X)h1, + (a(15), X ) (1), - This function is constant
on (Ip)— = I; and the children (Ip)+— = (Jo)—, ({o)++ = (Jo)+ of (Lo)+ = Jo. In each
of the children of (Iy)4, we just stop, i.e. the function F' is constant there, while in the
interval (Iy)_ = I; we repeat this procedure, starting with the constant function X1|;,,
and using the martingale differences of X over I, (I7)4 this time, and then we repeat
the same pattern in the interval (I3)_ = I, etc. So the random walk corresponding to
X consists of rescaled and translated copies of the same pattern, independent from each
other. Our main object now is to replace the term (ar, X)hs, + (az,), X)h(,), by a
linear combination of Haar functions with “smaller” coefficients, reflecting a “small step”
random walk, for all n =10,1,2,....

Choose a sufficiently large positive integer d > 100. Condider the model triangle on
R? with vertices —ej, e; + ez and e; — ez, where e; = (1,0) and ey = (0,1). Given a
dyadic subinterval I of [0,1) of even generation, we can describe a random walk in I as
follows. Starting with the constant function taking value cjg,1) = 0 € R2, we replace it
with the function (1/d)hre; 4+ (1/2d)hy, e2. Notice that the latter function is constant on
grandchildren on I. We then repeat the same pattern in the grandchildren of I, and we
repeat again this pattern in the grandchildren of the latter intervals, etc. The pattern
continues until for some interval J which will have arisen as a grandchild during this
process, the current constant value cy on J is located on the boundary of the triangle.
We will say that such intervals J are preliminary stopping intervals. In particular, the
preliminary stopping intervals are of even generation. Denote the family of all preliminary
stopping intervals by ,57/(1 ).
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If J is a preliminary stopping interval such that the constant value c; on J is located on
a side of the model triangle other than its base (that is the vertical side of the triangle),
then we replace the constant function c¢; on J with the function ¢; + (1/d)hje; +
(1/2d)h jeq, where + = + respectively + = —, if ¢ is located on the upper, respectively
lower, side of the model triangle. Then we repeat this in the grandchildren of J, and
then we repeat the pattern in the grandchildren of the latter intervals, etc. The pattern
continues until for some interval K which will have arisen as a grandchild during this
process, the current constant value cx on K is located on one of the three vertices of the
triangle. We will say that such intervals K are stopping intervals. In particular, these
stopping intervals are of even generation.

If J is a preliminary stopping interval such that the constant value c¢; on J is located
on the base of the triangle, then we replace the constant function c¢; on J with the
function ¢y + (1/2d)hjea. Then we repeat this in the grandchildren of J, and then we
repeat the pattern in the grandchildren of the latter intervals, etc. The pattern continues
until for some interval K which will have arisen as a grandchild during this process, the
current constant value cx on K is located on one of the two vertices of the base. We
will also say that such intervals K are stopping intervals. In particular, these stopping
intervals are of even generation.

We will denote the family of all stopping intervals by 7 (I). We will also denote the
family of all stopping intervals J such that c; is located on the vertex (i.e. —ej) opposite
to the base of the model triangle, respectively on the upper vertex (i.e. e; + e3) of the
base, respectively on the lower vertex (i.e. e; —es) of the base, by .7_(I), respectively by
S+ (I), respectively by .7 _(I). We also set .Zy(I) = 4+ (I)|J L4 (I). We will call
the elements of .7_(I), respectively #; (I), left, respectively right, stopping intervals.

Given now a function G € L*°(I;R*), the variant of the “small step” transform we
are describing here maps it to the function R;G := G o ¢y, where (compare with (4.3))

() = {1/1‘]71_ (z), if x € J for some J € ._(I) Veel (4.11)
Y1, (x), if 2 € J for some J € ;4 (1)

The symmetries of the walk imply that ¢; : I — I is measure preserving.

The variant of the “small step” transform described here is obtained through iterating
the above fundamental transform as follows. We first apply the above construction on the
function F, along the interval [0,1). We thus obtain a function Ry 1y F € L>[0,1); R*).
In each interval in ., (I), we just stop (recall that the original function F' is constant on
the children on Iy), while we apply the above transform on the function (Rjg 1)F')|; along
the interval I, for all I € .¥_([0,1)), and then we stop on every right stopping interval
that will have come up, while we repeat the same transform along every left stopping
interval that will have come up, etc. Therefore, after this process has been completed we
will have obtained a new function F' € L>=([0,1); RY).

Recall that the original function F is constant on the children on (I,,)4, for all n =
0,1,2,.... Note also that I,,11 = (I,,)—, for all n = 0,1,2,.... It follows that F=Fod,
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where @ : [0,1) — [0,1) is the measure-preserving transformation given at almost every
point of [0,1) as the composition of all the measure-preserving transformations ¢y : I —
I, where I runs over [0, 1) and all left stopping intervals containing that point (note that
the order of composition respects inclusion of dyadic intervals). We write F= (w,o, g,?),
where tilde denotes just composition with the measure preserving transformation ®.
Notice that Iy is an interval of even generation, so its grandchildren are also of even
generation, etc. It is then clear that the functions w,o are in fact obtained from the
functions w, o respectively thought “small step” transform of order d as in the previous
section, but “skipping” intervals of odd generations (i.e. omitting the Haar functions
corresponding to them). This means that dyadic intervals I of odd generation “do not
split”, i.e. (w); = (w);_ = (w)r, , and similarly for 7. It is clear that this will be only a
minor modification of the construction described in Subsection 4.1. In particular, w, o
are weights on [0,1) with we?~! = 1 a.e. on [0,1), and for large enough d the weights
w, o will possess the required dyadic Muckenhoupt characteristic and dyadic smoothness

properties.

4.2.2. Getting the damage
We show that the “small step” transform we just described preserves damage for the
Haar shift 7', i.e. that (f,7(g)) = (£,T(g)).

Lemma 4.6. Let the functions f,g,?,g be as above. There holds

D (018 (ar f =2 DI 2D (ss8)(as, £ — s f)]J].

1€D JeD

Proof. First of all, it is immediate by translation and rescaling invariance that

Yo Y rB)ex f-ax DIKI= D (as8)(asf—as )],
JeF(Ip) KeED(J) JeD (o)
J#Io,(Io)+

where Iy = [0,1) and f := Rjo.»f, & := Rjo,1)g- Note also that a(s,), g = 0. Therefore,
as in Lemma 4.2, it suffices only to prove the following analog of (4.4):

> () ar £ —ar DI 2 (a1,8) (a(10), F = 210)_ D ol, (4.12)
Ie 7 (1p)

where 7 (Iy) := D) \ (UJey(IO)D(J)). Notice that there is an implied absolute
constant in the inequality in (4.12), unlike (4.4), where there was just equality. This
is no problem (for instance, there will not be accumulation of this constant), since the
transform is given by iteration of the same fundamental transform over [0,1) and all left
stopping intervals, up to translation and rescaling (essentially, the iterative nature of the
transform and translation and rescaling invariance imply that one needs only to verify
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the damage inside each triangle separately, and these verifications are independent from
each other).

First of all, notice that only intervals in f?v(lo) :=D(Ip) \ (UJE'?(IO) D(J)) that are
of even generation may contribute to the sum in (4.12), and for each such interval I
we have arg = (1/d)ar, g, A1+f' = (1/2d)a(s,),. f and arf=0= a(1,)_f. Therefore, it
suffices to check that

ooz, (4.13)

IeZe(Io)

where :7;([0) is the family of all intervals in T (Ip) that are of even generation. Orthog-
onality of Haar functions yields

Z 1] ~ Z "h161+;hl+32

1€ e(Io) I1€e(Io)

2

_ 2
L2(10R?) 512 a0 my:
05

where we are considering the limiting function S := Zle%(lo) (h161 + %hbr 62) (the sum
should be understood in both the pointwise a.e. on Iy and L?(Iy; R?) senses). Rescaling
the canonical triangle by d we see that this limiting function is taking values on the
boundary of the triangle in R? with vertices (—d,0), (0,d), (0,—d). Since the distance
of the origin from the boundary of this triangle is d//5, we obtain |S| > d/+/5, therefore
||S||2LZ(IO;R2) > d?, concluding the proof. O
4.2.3. Respecting weighted norms

Identically to (4.9) we have ||§||1;p,(~) = ||g||1;p/

G:=g/wand f:=f/5.

80 1710y = 1 whese

5. Iterated remodeling

In this section we describe the method of iterated remodeling, which is a variant of
the powerful method of remodeling, introduced by F. Nazarov in [9].

Throughout this section, for all intervals I, J we denote by 91, ; the unique orientation-
preserving affine transformation mapping I onto J.

5.1. Periodisations

Let f € L*°([0,1); R™). For a given interval I and for a given positive integer N, we
define the periodisation II¥ f of f of frequency N over I as the unique periodic function
over I of period IN consisting of 2V repeated copies of the function f, i.e. 1Y f = foy¥,
where N (z) = by () for all z € J, for all J € ch™ (), see Fig. 5 (here we abuse the
terminology regarding the use of the term “frequency”).
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Fig. 5. Periodization H%f of function f.

i f

Note that 9N : I — I is measure preserving. We define the family &y (1) of exceptional
stopping intervals for I of order N as the family of all intervals in ch® (I) that touch
the boundary of I (so &x(I) has exactly two elements), and the family 2y (1) of regular
stopping intervals for I of order N as the family of all intervals in ch™ (I) that do not
touch the boundary of I.

5.2. From Bourgain’s localizing trick to Nazarov remodeling and iterated remodeling

F. Nazarov’s method of remodeling [9] had been inspired by a new technique for
localizing the action of operators introduced by J. Bourgain in [1]. There, Bourgain
showed that UMD property for a Banach space X follows from the boundedness of the
Hilbert transform over LP(T;X) for all 1 < p < oo, where T denotes the unit circle.
Bourgain related estimates for the LP norm of the Hilbert transform, a non-localized
operator, to estimates for the LP norm of the square function, a well-localized operator,
through the trick of iteratively replacing portions of functions with their periodisations.

Bourgain’s [1] basic idea was the following. Given a function f € L?(T), one can
consider its Fourier series

fFor+ > fm)m (5.1)

meZ\{0}

One way to make the action of a bounded in L?(T) operator on f localized is to create
very “large gaps” in expansion (5.1), by considering the function f with Fourier series

F=Fo+ > flm)zNm,

meZ\{0}

where the N,,,’s are large enough positive integers chosen through an inductive procedure.
Here one exploits the fact that 2V converges weakly in (say) L?(T) to 0 as N — oo.
Note that the “transformed” Fourier series is still a Fourier series.

Given now an X-valued function f (say bounded) on [0, 1)) (we freely identify T with
[0,1)), one can consider its martingale difference decomposition in L2([0,1); X):

f= <f>[0,1) + Z Arf. (5.2)

1eD
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In general, when the Hilbert transform acts on f its action will not be localized, i.e.
there will be interactions between martingale differences over different intervals. One
could then think of attempting to somehow introduce very large “gaps” in (5.2), inspired
from the respective situation in Fourier series. This is not directly possible, and instead
one has to notice that the idea in the setting of Fourier series was to replace each 2™ with
(2Nm)™ which is a just a periodisation of z™. Then one notices that the periodisations of
a given martingale difference converge weakly to 0 in (say) L? as the frequency increases
(see Lemma 7.2). Therefore, one can attempt to replace each martingale difference in
(5.2) with a periodisation of it. The frequencies would be chosen large enough through an
inductive procedure. Note that the “transformed” martingale difference decomposition
should be still a martingale difference decomposition, thus the periodised martingale
differences should still somehow respect the hierarchy of dyadic intervals.

Bourgain [1] not only came up with the above intuition, but also found a sleek way
to make it precise. Namely, given an X-valued function f (say bounded) on the unit
interval Io := [0,1), one begins by choosing a frequency N (/o) and replacing f with its
periodisation f! := HN(IO f. Consider the collection .7 := ch™¥ ) (). Note that

Ean(orn)[F1] = ()1, = T} (AL ). (5.3)

Then, for all I € ch(?!), one can replace the function f|; with a periodisation
HJIV(I) (f1|;) of it over I, for some choice of frequency N(I). After this has been com-
pleted for every interval in ch(.#!), one will have obtained a new function ]72 and a new
collection of intervals .72 := Ureen(s) chV@D(I). Then, one can repeat this process in

each of the intervals in ch(.#?) for the function 12, ete

One finally obtains a new function f Note that this function is given as the com-
position of f with a certain measure-preserving transformation (depending only on
the choices of the frequencies), basically because each step in the iterative procedure
amounted to composing with a measure-preserving transformation. Notice also that the
choices of frequencies of each step of periodisation are separated from each other, so one
has really complete freedom in performing them.

It is important to note that the function f can be obtained as the limit (m any reason-
able sense) of a sequence of averaged periodisations E,( s )[f 1 Egh(s2) [/2),E ch(.#* )[f 1,

., enabling us to keep track of the averages of the new function. It is also essential to
note that since the iterative scheme consists in an iteration of the same fundamental
construction (that of replacing by a periodisation), up to translating and rescaling, one
deduces that an appropriately rescaled and translated version of (5.3) will hold for each
iteration over every interval in ch(.#!), ch(.#?), ch(?),..., namely

E gy [P = () = YD (AL FY), VI € eh(#%), VE=1,2,...,

so each difference E j, g r+1) [FA+] —Eg ol f*] can be written as a sum of periodisations

of the martingale differences of f over the intervals in ch®([0,1)). Thus f satisfies the
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original intuition. It is also worth noting that for the purpose of just obtaining estimates
it is not necessary to go all the way down to f, one can stop only after a finite number
of steps.

J. Bourgain’s technique in [1] works really well in the unweighted setting of Banach
space valued estimates, but in situations of weighted estimates, such as the setup of
Sarason’s conjecture, it has the drawback that in general it gives no control over strong
dyadic smoothness of weights, even if the original weights are dyadically smooth, basically
because it gives no control over averages taken over consecutive dyadic intervals, so it is
not well-suited for problems involving fattened A, characteristics. In order to overcome
this difficulty, F. Nazarov [9] came up with the idea of “keeping endpoints”, as a means
of controlling intervals touching each other.

Namely, one replaces f with the function fl which is equal to HZ(IO) f on each interval
in chN(IO)(IO) not touching the boundary of Iy, but equal to just the average <f>10 =
<H§:(Ig)f>J over each interval J € ch™¥ ) (Iy) that touches the boundary of I. Moreover,
one considers the collection . of intervals in ch™ (o) (Ip) that do not touch the boundary
of Iy, and simply forgets the ones that touch it.

Then, one follows the same iterative scheme as above, always putting averages over
intervals touching the boundary, and then forgetting those intervals. One has again
complete freedom in choosing the frequencies, and this allowed F. Nazarov to re-
duce the estimate of the norm of the Hilbert transform over a weighted L? space to
estimating the norm of the square function over the same weighted L? space. Just
as before, f can be realized as the limit of the sequence of averaged counterparts
Ech(yl)[fl], ]Ech(yz)[fZ], Ech(ys)[fﬂ, .... The latter sequence allowed F. Nazarov to
deduce that this process, termed by F. Nazarov remodeling, produces (as will be ex-
plained below in 6.1.2) strongly dyadically smooth weights, provided that the original
weights are dyadically smooth, precisely because original averages are put in intervals
that touch the boundary. Of course, one can again stop only after a finite number of
steps.

Although F. Nazarov’s remodeling from [9] behaves really well with respect to smooth-
ness, it has the drawback that the new functions are not given just as composition of the
original functions with a certain measure-preserving transformation (as was the case in
Bourgain’s technique [1]) due to putting averages over intervals touching the boundary
and then forgetting these intervals. As a consequence, one-weight situations of weights
w, o satisfying woP~1 = 1 a.e. on [0, 1), as the ones that we are primarily interested in
here, will in general be transformed to two-weight situations of weights w, o not satisfying
any such relation. To overcome this difficulty and at the same time preserve smoothness,
one has essentially to not just forget the intervals that touch the boundary, but rather
apply again remodeling in them, and do the same for all intervals touching the boundary
that will ever come up. Thus, one can say that one has to apply iterated remodeling.

We also note that if one is interested in estimates for the norm of the Hilbert transform
over weighted L? spaces for any 1 < p < oo (not just p = 2), then one cannot just reduce
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the estimate of this norm to the estimate of the norm of the square function or the Haar
multiplier over the same weighted space, but rather one has to use some other slightly
more complicated Haar shift, like the one introduced in Subsection 3.2:

Tf=2> (arf)(hr, —hi_).

1D

This will force us to move one generation deeper during remodeling, that is to consider
grandchildren rather than just children of intervals in .#!,.#2, ..., essentially because
this Haar shift involves interaction of intervals with their children. We emphasize (and
it will become clear in Subsection 6.1) that for the purpose of obtaining examples just
for dyadic operators (e.g. Haar multipliers, dyadic maximal function) one can use just
children of intervals. The reduction of the estimate for the Hilbert transform to that for
the special Haar shift of Subsection 3.2 is done in Subsection 7.1.

5.8. The iterative construction

We now describe in detail iterated remodeling.

Let X be a uniformly bounded R™-valued martingale on [0, 1), induced by a function
F € L*>([0,1); R™) (one should again think here of the special case of weighted estimates,
where n = 4 and X is induced by the bounded function F' = (w, o, f,g), where f := fo

and g := gw).
Set Iy :=[0,1) and F° := F. Pick a frequencly N(Iy) and replace F with the function
Flo .= HN(IO)F We can consider a family %y 1,)(lo) of regular stopping intervals

(intervals not touching the boundary) and a family &y (z,)(lo) of exceptional stopping
intervals (intervals touching the boundary).

Then, for all J € &y (zy)(Lo), We do the same thing in J for the function (F70)|; =
Foty,1,, with respect to some new choice of frequency N(.J), obtaining a family Zy.7)(J)
of regular stopping intervals and a family &) (J) of exceptional stopping intervals. We
afterwards repeat this in each new exceptional stopping interval that will have come
up, etc. We continue this until the entire Iy has been covered, up to a Borel set of
zero measure, by regular stopping intervals. We note that this will happen because the
sum of the measures of the exceptional stopping intervals decays at each step at least
geometrically with ratio 1/2.

After this process has been completed, we will have obtained a new function F'. We
denote by .#! the family of all regular stopping intervals that will have been collected
during this procedure. We also denote by .#! the family of all exceptional stopping
intervals that will have been collected during this procedure, together with I. We define
the starting intervals of order 1 as all elements of the family #!. Note that the elements
of ! are pairwise disjoint and |J.* = Iy up to a Borel set of zero measure. Note also
that ﬁ1|[ =For,, forall [ € 71,

For the next step, we repeat the same procedure in the interval I and for the function
Flp, for all T € ch?(.!) (and not just ch(.#1)). Here we note that F!|; = F oy ;
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for some grandchild J of Iy, for all I € ch®(.#!). After this has been completed for all
intervals in ch?(#1), we will have obtained a new function F? € L>([0,1);R™). We
denote by .72 the family of all regular stopping intervals that will have been collected
during this step. Moreover, we denote by 2 the family of all new exceptional stop-
ping intervals that will have been collected during this step, together with all intervals
in ch?(1). We define the starting intervals of order 2 as all elements of the family
7

Afterwards, we repeat the same procedure along the interval I and for the function
F?|;, for all I € ch?(.#?), etc.

After this process has been completed, we will have obtained a sequence of functions
ﬁl,ﬁ2,ﬁ3, ... and a new function F € L>(]0,1); R™).

5.3.1. Measure-preserving transformation

It is important to note that this process of iterated remodeling amounts just to com-
position of limiting functions with a certain measure-preserving transformation that
depends only on the choice of frequencies. Indeed, is clear that for all [ = 0,1,2,.. ., there
exists a measure-preserving transformation ¥; : [0,1) — [0,1) such that Fl=Fl-1, vy,
for all [ = 1,2,.... Then, we have F = F o ¥, where U : [0,1) — [0,1) is the measure-
preserving transformation given at almost every point of [0,1) as the composition of
these measure-preserving transformations Wy o W5 o W3 o.... Note that ¥ depends only
on the choices of frequecies N(I), I € . := |32, S*.

So in particular, it does not matter whether we apply iterated remodeling with respect
to a given choice of frequencies to a martingale as a whole or to each of its coordinates
separately with respect to the same choice of frequencies.

5.8.2. Averaged counterparts

Note that the inductive procedure will have also produced the families .1, .2, .73, ...
of all regular stopping intervals that will have been collected during the first, second,
third etc respectively step, and the families S .2 P8 of all starting intervals of
order 1,2,3,... respectively. Then, one can realize F as the limit, say, pointwise a.e.
on [0,1) and in L2(]0,1); R™), of the sequence of averaged counterparts X%, X1, X2, ..
where X0 := X, = (F);, and X* := ]Echz(yk)[ﬁk], forall k =1,2,....

Remark 5.1. It is clear that for all £ = 1,2 we have Echk(yl)[ﬁ] =E k() [F1] = X000,
where recall that X = ]Echk( Io) [F]. Since the iterative scheme consists in an iteration of
the same fundamental construction, up to translating and rescaling, we deduce that

Ege o [Fl = Xorep o, Vh=12 = V=12,

where Xoi = E 2457, [F]. In particular, the family of all averages of F over dyadic
intervals coincides with the family of all averages of F' over dyadic intervals. This had
been noted in [9, §10].
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5.8.8. Martingale difference decomposition

We now provide a description for the martingale difference decomposition of the
function F. Note here that the iterative scheme involved considering grandchildren of
S, .2, ..., rather than just children. This means that the martingale difference de-
composition of F will involve periodisations of second order martingale differences of
F, and not just of martingale differences of F' (unlike Bourgain’s [1] construction and
Nazarov’s [9] constructions). At the same time, the fact that we do distinguish between
intervals that touch the boundary and intervals that do not mean that these periodis-
ations will extend only over intervals that do not touch the boundary, so there will be
quasi-periodisations rather than just periodisations (like Nazarov’s [9] construction, but
unlike Bourgain’s [1] construction).

Namely, define the second order martingale difference A%f of a function f €
L*°(I;R™) over an interval I by

ATf =By f — (Hilr = Arf + Z Ajf. (5.4)

Jech(I)

Moreover, given a frequency N, define the averaged quasi-periodisation @?’ f of fof
frequency N over I as the function QII, f := E\ (nuen? @y 117 £, Le.

(Ecnz(py[f] 0 %u,1)(@), if  belongs to some J € Zn (1)

——N

QI f(z) = . (5.5)
(f);, if « belongs to some J € &y (1)

Note that
~—N ~—N
QI f — (f)/1r = QI (ALS). (5.6)
(notice that A2 f is constant on the grandchildren of I). It is clear that
Fia) =11 (Foysp)(x), Vel JZvwn(]), VJeS

Therefore, we deduce

= = ———N(J
X'-X°= (@M,

Jes1

(Fowyr) = (F)ily), (5.7)

which implies

= Y am V@A (Fovs)) = Y Qo (AL P oy, (5.8)

Jes1 Jes1
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For all J € .1, we call the function D;F := Q_Hy('])

starting interval J to the martingale difference decomposition of F'.

(A%(Fo1y1,)) contribution of the

We emphasize again that the iterative scheme consists in an iteration of the same
fundamental construction, up to translating and rescaling. Therefore, an appropriately
rescaled and translated copy of (5.8) will hold for each iteration over every interval in
the collections ch?(.#1), ch?(.#?),.... Therefore, one can write

Xt _XF= 3" DyF,
JeFh+1

where for all J € .#**! we have D;F = @y(J)(A%(F 0 1y1)) for some I € ch®*(Iy),

for all k = 1,2,.... The reason for the “2k” is again that at the (k4 1)-th step we repeat
the same fundamental process inside each grandchild of each regular stopping interval
of the k-th step. In particular

F=(F)py+ Z D;F (5.9)
Jes

in £2(]0,1); R™), where .¥ := Ui, F is the family of all starting intervals.

Remark 5.2. Note that (Q_H]IV )0 = (f),, for all dyadic subintervals J of I that touch its

boundary. In particular (@?(A% f)ys =0, for all dyadic subintervals J of I that touch
its boundary.

This observation, coupled with (5.8) and a simple inductive argument yields that for
allk =0,1,2..., the average of X* over every dyadic interval that touches the boundary
of [0,1) is equal to (F)[o,1). It follows that the average of F over every dyadic interval
that touches the boundary of [0, 1) is equal to (F){o,1)-

6. The case of dyadic models

In this section we apply iterated remodeling to obtain examples for dyadic models
with weights possessing the required smoothness.

6.1. Estimate for Haar multipliers

Let p € (1,00). Let M > 2. Let 6 > 0 be arbitrarily small. Recall the Haar multiplier
T. corresponding to any choice of signs € = (e1)rep:

T.f = ZgI(AIf)h,.

1D

Recall that in Subsection 4.1 we constructed bounded weights wo on [0,1) with o =
w~ =1 and
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M < [wla, p, (W1’ " < 2P4eM

and S4, S9 <1+ 6, and non-zero bounded functions f € L”(0), g € L” (w), such that
for the functions f = fo, g = gw there holds

sup, |(Te(fo), gw)| _ 2sep 1] - |arf] - |arg|

HfHLp(O')”gHLp’(w) HfHLP(G)”gHLp/(w)

> M. (6.1)

We apply the iterated remodeling transform on the martingale induced by the function
(w,o,f,g), for an arbitrary choice of frequencies. As it had been observed in 5.3.1,
this is the same as applying the iterated remodeling transform separately to each of
the functions w,o,f,g, for the same choice of frequencies. Then, the new martingale
is induced by the function (@,5,?, g), where tilde denotes just composition with the
measure preserving-transformation ¥ : [0,1) — [0,1) of 5.3.1. Then &, w are weights on
[0,1) with & = @~ Y@= a.e. on [0,1).

6.1.1. Respecting dyadic Muckenhoupt constants

Remark 5.1 shows that for all I € D there exists J € D (depending only on the
choices of frequencies) such that (w); = (w); and (6); = (o). It follows immediately
that [w]a, p = [w]a, D

6.1.2. Dominating strong dyadic smoothness via dyadic one

Let € > 0. Assume that ¢ is small enough, so that (1 + )% < 1 + . We claim that
S;}jd < 1+e¢. Indeed, let X be the martingale induced by the function w. Recall from 5.3.2
that w is realized as the limit of the sequence of averaged counterparts X 0 X L X 2.
Recall the expression (5.7):

Xt-x0= %" @Y (wo ) — (wo ) s1y).
Jes1

Note that the function X© is constant, so S%?O = 1, and also that S < 1+ 6 by
construction. Then, the following lemma, proved by F. Nazarov in [9, §10], shows that
S’;L(‘,il < 1+ ¢. Induction then gives Si%ik <1l+4e¢, forall k =0,1,2,.... It follows that
S%d < 1+¢, independently of the choices of frequencies. The lemma shows that replacing
a portion of a strongly dyadically smooth weight with an averaged quasi-periodisation of
another dyadically smooth weight preserves the strong dyadic smoothness of the original
weight.

Lemma 6.1. Let w be a weight on an interval I € D, and assume that S3¢ < 1+ ¢ for
some e > 0. Let J be a dyadic subinterval of I, such that w is constant on J. Let v be a
weight on J such that (v); = (w); and S¢ < 143, where § > 0 satisfies (1+6)% < 1+e.
Consider the weight W := w + (ﬁ]}]’l})lj —()s1;5 on I, i.e.
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w(zx), ifc ¢ J
w(z) = , Vo e I
(QI) v)(x), ifz e

Then, there holds S%d <l+e.

Proof. Let K,L € D(I) be adjacent with |K| = |L|. If either both K and L are not
contained in J or both K and L touch the boundary of J, we have

(@ _ ) gy,

(wyr  (w)r

=

If one of K, L is contained in J and does not touch the boundary of J, then it is clear
that (W) = (v) g and (W) = (v)p for some K', L' € Ui:o ch®(.J), therefore

(w) K
(W),

<(S)P < (140 <1+e,
concluding the proof. O

6.1.3. Extending the weights to the entire real line
Consider now the weights w’,o’ on R given by

() = 13(3:—/4:), Vo € (k,k+1), if k is even , ke z,
wk+1—2x), Ve e (k,k+1), if kis odd

and similarly for &’. Obviously & = (@')~'/(=1. Translation and reflection invariance

shows immediately that [w']a, p = [W]a, D(j0,1))- Moreover, translation and reflection
invariance yields that Sfﬁ over [k, k+1) is equal to S%d, for all k£ € Z. Noticing now that
for all adjacent I, J € D with |I| = |J| whose common endpoint is an integer there holds

(') = (') 7, we deduce S53 = §5d. Similarly S5¢ = S5
For any € > 0, one can then achieve Sz, S5 < 1+ ¢ and [w']a, S, [W]a,p =
[w] 4,,D(j0,1)) by taking 6 > 0 sufficiently small, per Lemmas 2.1 and 2.2 respectively.

Remark 6.2. We notice that the above estimates yield that the Muckenhoupt character-
istic [w'] 4, is comparable to M but in an exponential way with respect to p. In fact, we
get M < [w']4, < 2P5eM. If one cares only about dyadic Muckenhoupt characteristics
and ignores the “small step” requirement, then as we saw in Section 3 it is possible to give
an example with dyadic Muckenhoupt characteristic comparable to M within absolute

constants.
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6.1.4. Respecting weighted norms
Consider the functions f' = (f/5)1j9,1), § = (g/w)1[,1) on the real line. Identically
to the case of the “small-step” transform, see (4.9), we have || || rz) = [|f|zr(s) and

||§/||Lp'(@/) = Hg”Lp(w)'

6.1.5. Getting the damage
It remains now to verify that we get the desired damage.

Lemma 6.3. Let f, g,?,g be as above. There holds

SO arf] - |argl =D || - |asf] - |ssgl-

1€D JeD

Proof. First of all, since ) ;. o1 [I| = |lo|, where Iy := [0,1), (5.8) coupled with a
translation and rescaling argument yields

Z 1 - |arf] - |ar8] = |To| - |arf] - |argl + Z || - |asf] - |assgls
IeS1Uch(S1) Jech(lp)

independently of the choices of frequencies. Since the iterative scheme consists in iteration

of the same fundamental construction, up to translating and rescaling, over every interval
in ch?(.71), ch?(?),..., we deduce

> 1] - Jarf] - a8l = > |- |asf] - |asgl

IeS*+1Uch(Fk+1) Jech?k (1)

+ Y L asf] - asgl,
Jech(ch?*(1y))

for all k =1,2,.... This yields immediately the desired result. O

Remark 6.4. Consider the dyadic Hardy-Littlewood maximal functions Mf, Mf of f ,?
respectively. Then, similarly to Remark 4.3 we have that the function m is obtained
from the function |f| through the same iterated remodeling transform as the function f
is obtained from the function f. Remark 5.1 yields then Mf = (Mf) o ¥ a.e. on [0,1).

This observation, coupled with Remark 4.3, shows that any “large step” family of
examples establishing sharpness of weighted estimates for the dyadic Hardy-Littlewood
maximal function over [0, 1) (see [2]) yields a family of examples (on the entire real line)
with weights of arbitrary smoothness achieving that, in exactly the same way that this
was done for the Haar multipliers above.

Remark 6.5. We see that in this simple case of dyadic models, the choices of frequencies
were irrelevant. It is also clear that one could have considered just children of intervals
instead of grandchildren. We will however see that in the more subtle case of the Hilbert
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transform, frequencies will have to be chosen appropriately in order to achieve localiza-
tion of the action of the operator, and considering grandchildren instead of just children
will be essential, given the nature of the special Haar shift.

6.2. Muckenhoupt weights taking only two values with prescribed smoothness

We now show how the discussion in Subsection 6.1 implies the result of Proposition 1.5.

Let p € (1,00). Let @ > 1. Let € > 0 be arbitrarily small. Choose Ag, By > 0 with
AoBg_1 = @. By the results in the appendix we have that there exist a1,b1,a2,by > 0,
such that alb’f_l = agbg_l =1 and Ay = (a1 + a2)/2, By = (b1 + b2)/2. Consider the
weights w, o on [0,1) given by

w:=aily +asly, o:=bily + b1y,

where I; = [0, %) and J; = [%, 1). Then w, o are bounded, o = w1/~ and [w]a, p =
w([0,1))o([0,1))P~1 = ABE™! = Q. Tt is also obvious that S4,59 < co. Choose a
sufficiently large positive integer d > 100. Apply “small step” transform to the weights
w, o of order d, in order to obtain new weights w, o respectively on [0,1), and then the
iterated remodeling transform on the functions w, o, for an arbitrary choice of frequencies
(the same for both functions), in order to obtain new weights w’, &’ respectively on [0, 1).
Extend the latter weights to weights @w", " respectively on R as in 6.1.3. Then, combining
the results of Subsections 4.1 and 6.1 we have ¢’ = @” ~V/®=1 @ < [0"]4, < 2P(5/4)Q
and Sy, Sz < 1+ ¢, for small enough . Moreover, we have w” € {a1,a2} a.e. on R,
since w’ is obtained from w via composition with measure-preserving transformations.

7. The case of the Hilbert transform

In this section we apply iterated remodeling transform on the martingales in the “small
step” example of Subsection 4.2, in order to obtain a “small step” example for the Hilbert
transform, proving Theorem 1.1. We then show how this leads to a counterexample to
the LP version of Sarason’s conjecture.

7.1. Estimate for the Hilbert transform

We first recall what we achieved in Subsection 4.2. Recall the special Haar shift T'
from Subsection 4.2:

Tf=2> (arf)(hs, —hi_).

1€D

Let p € (1,00) and M > 2. Let § > 0 be arbitrarily small. We constructed bounded
weights w, o on [0,1), such that o = w= /(=1
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M < w([0,1))0([0,1))P7", [w]a, p < 2P4Me

and w([0,1)) ~ M, ([0,1)) ~, 1, and also S3,5¢ < 1+ §, and non-zero bounded
functions f € LP(0), g € Lp/(w , such that

(fo, T(gw)) = D (as(gw))(au, (fo) = as_ (fo))II] = CoM | fl| oo Il o - (7-1)

JeD

Moreover, by construction for the functions f := fo, g =: gw there holds a;g = 0, for all
dyadic intervals I of odd generation, and (arg)(ar_f) = 0 < (arg)(ar, f), for all dyadic
intervals I of even generation. Note that then

(£, T(&)) = (£.T(g)) = D (ss8) (s, E)IJ],

J

where the summation runs over all J € D that are of even generation.

7.1.1. Setting up iterated remodeling

We apply the iterated remodeling transform on the functions w,o,f,g, for some
choices of frequencies to be determined later (the same for all functions), obtaining
functions @, 5, f, g respectively. We extend w, o to weights on the whole real line having
the desired smoothness and Muckenhoupt characteristic properties, as in 6.1.3. Let us
abuse the notation and denote these extensions by the same letter.

Remark 7.1. From Remark 5.2 we deduce that (w); = w([0,1)) = w([0, 1)), for all dyadic
subintervals I of [0,1) that touch its boundary, and similarly for &. This observation will
be crucial later in Subsection 7.2.

We denote by H the Hilbert transform on the real line. We consider the oper-
ator H(-&), acting from LP(5) into LP(@). Consider the functions f = (?/5)1[0,1),
g = (g/w)1jg,1) on the real line. Our goal is to show that if the frequencies are chosen
appropriately through an inductive procedure, then one can achieve

(£, H(g)) = [(fo, H(gw))| Zp M| FllLr@) 191 o' (- (7.2)
Assuming that this has been achieved, we will have (since the Hilbert transform is
antisymmetric)
5 [(H(f5),g)] |(f5, H(gw))
| Hl ey =I1H(-0) 7)1 (@) = = Zp M

||f||Lp(5)|‘§‘|Lp/(@) Hf”Lp(U)”gHLp,(w)

and hence the desired “small step” example for the Hilbert transform.
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7.1.2. Decomposing the bilinear form
We begin by writing the functions f, g as the unconditional sums of their martingale
differences in L?([0,1)) (up to a constant) as in (5.9), i.e

Doy + > Dt &=(8)on+ ) Dre. (7.3)

Ied Ies

and similarly for g, where S = Urey k is the family of all starting intervals and
D;f, D;g are the contributions of the starting interval I to the martingale differences
decomposition of ?, g respectively. Since the Hilbert transform is bounded in L?(R) and
antisymmetric, we have

(H(&1p01)).f1po,1)) = > (H(D;g), Dif) + cross terms, (7.4)
Ie?

where the cross terms consist of pairings involving either the average of f or g over
[0,1) and the contribution of some starting interval, or contributions of different starting
intervals.

Our object is to show that the main term in the right-hand side of (7.4) produces the
desired damage, while the sum of the cross terms can be forced to be arbitrarily close to
0, through an appropriate choice of frequencies (thus essentially achieving localization
of the action of the operator).

7.1.8. Forcing the sum of the cross terms to be arbitrarily small

We need the following lemma, whose statement is mentioned in [9, §12], showing
essentially that the functions D;f, D;g oscillate arbitrarily fast for large enough fre-
quency N(I). Recall from (5.8) that for all I € ., there exist mean zero functions

o1, ¥r € L*=(I) such that D;f = QHI ¢I and Dyg = QHI (1)1/)I~

Lemma 7.2. Let I € D. Let ¢ € L>(I) with (¢); = 0. Then, there holds WJIV(;& -0
weakly in LY(I) as N — oo, for all ¢ € (1,00) and WJIV(;S — 0 weakly* in L>(I) as
N — oo.

Proof. It is clear from definition (5.5) of averaged quasi-periodisations that for all N =
3,4, ..., there holds (h,Qiﬂévgf)) = 0, for all functions h on I that are constant on all
intervals in ch? (I). Note that @ﬁvcﬁ, N = 3,4,... are uniformly bounded (say by
¢l o= (ry) in L*°(I). Then, an “5 argument” yields the desired result. O

Now, for all I € D := D([0,1)), set k(1) := —log,(¢(])). Recall that D = (J,-, Dx,
where Dy, := {I € D: rk(I) = k} is finite, for all £ =0,1,2,.... It follows immediately
that one can enumerate the elements of the subset . of D as Io, I, I, I5, . .., where
Iy := [0,1), such that for all 0 <1 < k there holds rk(f;) < rk(I)). Note then that in
particular, for all 0 <[ < k we have either I, N I; = @ or I}, C I;.
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Note also that for all I € .#, the functions o1, ¥y € L>®(I) depend only on f, g
and the choices of frequencies for starting intervals strictly containing I. Therefore, if
for some k = 1,2,3,... we have already picked N(I;), for all I = 0,...,k — 1, then by
Lemma 7.2 we can choose the frequency N (1), in a way depending only on the previous
choices and the functions f, g, such that

Ty = H(<f> 110)7D1kg> + <H(D1kf)> <g>10110)>

< (Dy, f ,ZD1L> <H<§Dllf>,leg>

is as small in absolute value as we want (since the Hilbert transform is bounded in
L?(R)). In particular, we can achieve |T}| < Q,f%, where &’ := %M”fHLp(U)HgHLPr(w),
provided the choice of N(I}) is allowed to depend also on M, p and the functions w, o.
Here, ¢ > 0 is an absolute constant to be determined in Lemma 7.3.

Clearly the sum of cross terms is equal to 21?;1 T}, thus one can force this sum to be
less that &’ in absolute value, by choosing the frequencies to be large enough, in a way
depending only on M, p and the functions w, o, f, g.

This way of forcing the sum of the cross terms to be arbitrarily close to 0 in absolute
value is essentially the same as in [9, §11]. The choice of €’ is also the same as in [9, §11],

up to the constant c.

7.1.4. Getting the damage from the main term

We will now show that the main term in the right-hand side of (7.4) produces the
desired damage, independently of the above choice of frequencies. More precisely, we will
show that

> (H(Dig),Dif) < —c(ar,8) (s, )l (7.5)
IeS1
independently of the choice of frequencies for intervals in S, where I = [0,1). Keeping

in mind that iterated remodeling as described here moves two generations deep at each
step, we deduce through a translation and rescaling argument that

> (H(Dig), Dif) < —c > (2s8) (a7, D) J] = —c(£, T(g)),

2 JeD
Ies J is of even generation

— > (H(Dsg), Dif) > c(f, T(g)) = c/(f, T(g))|.
Ies

The last equation, coupled with (7.4), (7.1) and the choice of €', implies (7.2) (with
constant %), yielding the desired result.
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We now establish (7.5). Recall that the regular stopping intervals in .#' cover
Iy up to a set of zero measure, so it suffices to show that (H(D;g),D;f) <
—c(ar,8)(a(10), )IUZN 1y (I)], for all T € 52 Recall from (5.8) that for all I € .#1,

Dyg is just a rescaled and translated copy of QH Io (A%O ) over I, and similarly for f.
Therefore, it suffices only to prove that

(H(QT,, (A% g)), QI (A3 £)) < —c(sr,8)(s10), ) | Zn (Do)l YN =3,4,....

Let us fix a positive integer N > 3. Recall that from the definition (5.4) of the second
order martingale differences we have

A% g = (a1,8)hiy + (2(10)-8)(re)- + (8(10), &) (1),

and similarly for f. It follows from definition (5.5) of averaged quasi-periodisations, and
the facts that A%O g has mean zero and that it is constant on the grandchildren of Iy,
that

N
QI (A% g) = Z[(A.rog)hJ + (a(1y)_8)ha, + (a1). 8],
Jeg

and similarly for f, where G := %Zx (Io). Recall that a(7,), & =a(1,)_8 = (21,8)(a(1,)_f) =
0 and that the Hilbert transform is antisymmetric. It follows that

(H(QII} (A3 8)), QI (A3 ) = (s108) (ar), D(H (Y ). Y b ).

Jeg Jeg

Coupled with the fact that (a7,g)(a(r,).f) > 0, the following lemma yields then the
desired result.

Lemma 7.3. (a) For all intervals I,J in R with |I| =|J| and INJ =0, there holds
<H(h[),hJ+> + <H(hJ),h1+> < 0.

(b) There holds (H(Y_ ;eg hs), > jeq hy,,)<—c|UG|, where c = —(H (hjo 1)), h L, 1))
€ (0,00).

Proof. (a) First of all, direct computation gives

™ (22 —1)2

1 4 -1 1
H(h[o’l))(x)_—ln( ol ))> for almost every:cER\{O,i,l},

so H(hjp,1)) can be identified as a smooth function on R\ {0, 1,
shows then that H(hp 1)) is strictly increasing and strictly concave in (1, 00), and strictly

1}. Direct computation

decreasing in (% , 1) .
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Fig. 6. Tllustration of (H(h,),hr, ) = —(H(h1),hy_).

Let now I, J be intervals in R with |I| = |J] and INJ = 0. Without loss of generality,
we may assume that inf J > sup I. Note that H(hj,1))(1 —2x) = H(hjo,1))(x), for all x €
R\ {0, %,1}. It follows that for almost every = € R, if we denote by s(z) the symmetric
point to x with respect to the center of I, then we have H(hy)(s(z)) = H(hs)(z). Then,
a simple symmetry and translation argument, illustrated in Fig. 6, shows that

(H(hy),hi,) = —(H(hr),hy_).

Therefore, rescaling and translating we obtain

(H(hr),hy )+ (H(hy), hi ) = (H(hr), by, —hy_) = [T[(H (b)), hi, — hi ),

for some interval K in R with |K| = 1 and inf K > 1. Therefore, it suffices to prove
that the continuous function (H (h,1)), Plaatrd)) @ € [1,00) is strictly decreasing. This
follows immediately from the fact that the function H (hj 1)) is strictly concave in (1, 00).

(b) Since H (hjo,1)) is strictly decreasing in (3, 1), we have ¢ := —(H (hjo,1)), hiia)) €
(0, 00). Moreover, rescaling and translating we obtain (H (hr), hr, )=[I|(H (hjo,1)), b1 1)),
for all intervals I in R. Since the intervals in G are pairwise disjoint and have the same
length, we deduce from (a)

H(ZhJ),ZhJQ:— > (H(hy) hic,) + (H(hi), b)) + > (H (), hyy)

Jeg Jeg JKeg Jeg
J#£K

—cZ|J|=—c

Jeg

IN

concluding the proof. O

Remark 7.4. The constructions show that for every fixed M, and p, one can give ex-
amples for the Hilbert transform and Haar multipliers differing only in the function f
(and in particular one can take g = —1pg 1) in both cases).
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Remark 7.5. If we were interested just in two-weight estimates, then F. Nazarov’s re-
modeling from [9] would suffice, i.e. one could completely ignore exceptional stopping
intervals (except for [0,1) of course), and in fact one could even stop after only a finite
number of steps, without losing damage or smoothness of weights. Iteration here only
guarantees that the transforms are measure-preserving, so that one-weight situations
remain such after applying them.

7.2. Counterezample to LP version of Sarason’s conjecture

Here we describe how the family of examples of Subsection 7.1 will provide through a
direct sum of singularities type construction a counterexample to the analog of Sarason’s
conjecture for every fixed p. Roughly speaking, by direct sum construction one should
understand that the unit interval is partitioned into subintervals Ji, Ja, . . ., and then each
Ji is equipped with an (appropriately shifted and rescaled) example from the previous
section, in such a way that estimates of the norm of the operator blow up as k — co.

Fix p € (1,00). Let § > 0 be sufficiently small. For all K =1,2,..., by Subsection 7.1
we have that there exist bounded weights wy, o on [0,1) with

[wkuo-k:]Ap,D ~p ka wk([07 1)) ~ k7 Uk([07 1)) ~p 1u

and 654

Wi ?

Sgi <1+ 4, and non-zero functions fi € LP (o), gk € i (wy), such that

[(H (frorio.1)), gxwilioan)] Zp Bl fxlle o llgrll o oy, - (7.6)

Set Iy :=[0,1) and

1 1 1
Ik:|:072_k)’ Jk:|:2—k72k—l>’ k:172,

For all £k = 1,2,..., consider the weights wg, 0 on Ji that are obtained as rescaled
and shifted copies of the weights wk([lo ) Wk Uk([% )7k respectively on the interval Jy =

(2, =), Le.

1

mwk@kx —-1), op(z)= L

() = REA(D)

o (28z — 1), Vo € Ji,

and consider also similarly rescaled and shifted copies fk,ﬁk of the functions fx, gi re-
spectively on the interval Jy. For all £ = 1,2,..., we extend the functions fk,gk on
the whole real line by letting them vanish outside of Ji. Consider the weights w,o on
[0,1) given by w(z) = wi(x), for all z € J, for all k = 1,2,..., and similarly for &.
We extend the weights w, o to weights on the whole real line, as in 6.1.3, and abusing
the notation we denote the extended weights by the same letter. Then, translation and
rescaling invariance shows that
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(H(feo1p0,1)), Ge®)| Zp k"7 10l e @) NGkl Lo - (7.7)

It follows that ||H (-0 10,1))llz7)—LP (@) = o0. An easy application of the closed graph
theorem implies then that there exists f € LP(c) with H(foly 1)) ¢ LP(w). For instance,
one can use the facts that

[folpnllLr) < ([0, WY fllLe@), VF € LP(5),

and that the linear operator H : L'(R) — L*°(R) is bounded.
It remains now to prove that the joint “fattened” A, characteristic of the weights
w, o, that is the quantity

p—1
Im(X\))P~t _ Tm(\))P' ~1 _
sup /%w@dm /%U@)dw 7
AeC |l — AP [z — AP
R
is finite. As in Subsection 6.1, it suffices to prove that
[W,5]a, D(j0,1)) ~p 1 (7.8)
and
Sed s <144 (7.9)

Note that translation and rescaling invariance yields immediately that condition (7.8) is
fulfilled over Jy, for all K = 1,2,.... To check it over intervals that are not contained in
any J, it suffices to note that (w);, =1, for all k = 1,2, ..., and similarly for o.
Moreover, translation and rescaling invariance yields immediately that condition (7.9)
is fulfilled over Ji, for all £k = 1,2,.... Thus, it suffices to check that it still holds for
adjacent dyadic intervals of equal length whose common endpoint is also an endpoint of
some J. To that end, notice that for all kK = 1,2,..., by Remark 7.1 we have (wg)0,a) =
(Wi)[a,1) = wi([0,1)), for all a € (0,1), and similarly for oy. It follows that (w) ; = 1, for
all J € D(J) sharing an endpoint with Ji, and similarly for &, concluding the proof.

Remark 7.6. It is clear that the proof remains valid if we have (7.7) with k raised to
any (fixed) positive exponent. Thus, the proof remains valid if we have (7.6) with k
raised to any (fixed) exponent greater than 1/p. Therefore, as long as the Muckenhoupt
characteristic estimate in the “large step” examples features an exponent greater than
1/p, the LP version of Sarason’s conjecture cannot be true.
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8. Appendix
8.1. Facts about simply symmetric random walks
We give here the proof of Lemma 4.1. It can be found in any probability theory

textbook (see e.g. [8]). We do not follow the notation from Section 2.
Let (Q,F,P,F = (F,,)22,) be a filtered probability space. Let (wy,)52; be a sequence

of random variables on €2, such that for all n = 1,2,... the random variable w, is
Fp-measurable with P(w, = 1) = P(w, = —1) = 1, and such that the o-algebras

0(Wn,wWnt1,...) and F,_; are independent. Set Sy = 0 and S, = > ;_; wy, for all
n=1,2,.... Then, S = (5,)52, is a martingale on Q. In the statement and the proof of
the following lemma, we denote z A y := min(z,y).

Lemma 8.1. Let a,b € (0,00). Consider the stopping times 7', 72,7 on Q given by

rti=inf{n € N: S, = b}, 2 :=inf{neN: S, = —a}, =71 AT

(a) There holds 7,72 < o0 a.e. on Q.
(b) There holds P(1 = 7') = ;% and P(T = 7%) = QLH).
Proof. Let 6 € (0,00) be arbitrary. Consider the martingale M given by

69571

M, = <" -0,1,2,...
(cosh O)" n=0

né
(note that 0 < My, < 5w

have that the stopped process M= (Mpaqr1)52, is also a martingale. We notice that

for all n =0,1,2,...). By optional sampling theorem, we

6S 1
e’PnnaT 0b

0< Myps1 = ———— <
< st (cosh @)nATt — ‘

. ¥Yn=0,1,2,...,

thus M™ is uniformly bounded. Therefore, by basic convergence facts for martingales
it follows that M7 is uniformly integrable, therefore there exists X € L'(Q) such that

1 1 957_1(,5)(-’”)
. o . . T . ,
M? — X a.e. pointwise on  as n — oo. It is clear that lim,, ., M) (z) = (com o) T
05 ()
e

for all x € Q with 71(z) < oo, and that M;l(x) = {comngy foralln =0,1,2,..., for all
x € Q with 71(z) = oo. Then, for all x € Q with 7!(z) = co, we have

0Sn () o0

MT = < == 1 2 e
n (@) (cosh @)™ — (cosh )"’ =012,

therefore since cosh@ > 1 we obtain X (z) = 0. It follows that

69S71

W1{71<00} = E[X] = E[M] =1,
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therefore since S;1 = b on {7} < oo} we obtain
E[(cosh ) "1 {r1c00y] = e %,

Since cosh § > 1, for all § > 0, taking the limit as § — 0" and applying the Dominated
Convergence Theorem we obtain P (7! < 00) = 1. Similarly 72 < oo a.e. on .

(b) Set P(r = 7!) = p; and P(7 = 72) = py. Then, since 7', 7% < oo a.e. on Q we
obtain 7! # 72 a.e. on (, therefore p; + pa = 1. We also have p; = P(S, = b) and
p2 = P(S; = —a). An application of the optional sampling theorem yields E[S;] = 0,
i.e. bpy — apy = 0. Therefore p; = 243 and p1 = aL_H). O

8.2. Stopping on the lower hyperbola

We give here the proof of Lemma 3.1.
Let p € (1,00). Let 2,y > 0 be arbitrary, such that 2y?~! > 1. We claim that there

exist ay, by, az, by > 0 with as < x < a; and b; < y < by, such that alb’f_l = agbg_l =1
aitas __ bi+bo
2 2

and x =

Indeed, consider the function f : (0,2y) — (0,00) given by f(b) = it + W,
for all b € (0,2y). We have lim,_,g+ f(b) = oo and f(y) =
application of the Intermediate Value Theorem yields that there exists by € (0,y] with
f(b1) = 2x. Then, we take by = 2y — by and a1 = b}_p, as = bé_p.

yp—%l < 2zx. Therefore, an
8.3. Getting a little above the upper hyperbola

We give here the proof of Lemma 4.5.
Let p € (1,00). Let 21, y1, 22,92 > 0 and A > 0, such that

-1
_ X1 + X9 1+ Y2 P _
z1y} 1,< 5 ><y2y) , woyh L <A

We will show that
(aze + (1 —a)zy)(ays + (1 — a)y )P~ < 2PA, Va € [0,1].

If 1 < z9 and y; < yo, or T1 > 22 and y; > Y2, then we have nothing to show. Assume
now that either xo > z1 and y; < yo, or ©1 > x2 and y» > y;. Replacing if necessary
A by A”Ll7 p by p/, and x; by y; for i = 1,2, we can without loss of generality assume
that there holds x7 > x5 and ys > y1. Set

T1 — X2 _Y2—hn B A

T+ @’ Y2+’ (zipm2) (ylgyz)P—l'

Then, we have z,y € (0,1), B> 1and (1+z)(1 —y)P~ !, (1 —2)(1+y)P~! < B, and
we want to show that
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sup (1 —sx)(1+sy)P~t < 2PB.
s€[—1,1]
This is clear, because B > 1 and (1 —sz)(1+sy)P~t <2 . 2,71 =27 for all s € [-1,1],
concluding the proof.

Remark 8.2. Although the above estimate is crude, it can be seen that in general one
cannot obtain an estimate better that 2 /p as p — oc.

8.4. A counterexample

We show here that finiteness of joint Muckenhoupt A, characteristic does not guaran-
tee two-weight estimates for the Hilbert transform H. We will use a modified version of
F. Nazarov’s example in [9, p. 1]. Let p € (1, 00). Consider the weights w,o on R given
by

t]7P/ =) if ¢ > 1

, Vvt € R.
1, if [t <1

w(t) == [t~ o(t) = {

We show first that [w,0]a, < oc. It is clear that (w),.p) (J}’[’afbl) Sp 1, forall a,b € R
with —2 < a < b < 2. For all a € (1,00), we have

< or—1,

14+1— g Ve-D\P!
)

(o @i~ 0™
Then, for all a,b € [0,00) with 0 < a < %, we have b —a > %, therefore

()10, (0)Fr ) Sp (Wio0) (0 ) Sp 1

Moreover, for all a,b € [0,00) with 0 < 1 < g < a < b, we have w(t) ~, a?~!, for all
t € [a,b) and o(t) ~, a"P/P~V for all ¢ € [a,b), therefore

(w)(a,p) <0>fa_,1) ~p aP NP/ PP — 7 ]

Thus (w)/a,p) (a)fa_’bl) Spl, forall a,b€0, 00) with a < b. This implies (w)[_p,—q) (0>f:b177a)
<p 1, forall a,b € [0, 00) with a < b. Moreover, for all a,b € (0, ), setting ¢ = max(a, )

and noticing that b+ a > ¢ we obtain

()1 —a,0) () 0y Sp (W) (0N oy = (W0, () o) Sp L

)

yielding the desired result.
Consider now the function f := 1jg ). We have | f||zr(s) = 1, just as in [9, p. 1].

Direct computation shows then that H(fo)(t) = H(1j91))(t) = 1n (%) for almost
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every ¢t € (1,00), so since hmtﬁootln( ) = 1 we deduce H(fo)(t) ~ 1 for almost
every t € (2,00), thus [H(fo)(t)[Pw(t) ~, 1 for almost every t € (2,00), just as in [9,
1], thus H(fo) ¢ LP(w).

8.5. Proofs of F. Nazarov’s lemmas

We give here the proofs of F. Nazarov’s lemmas from [9].

Proof of Lemma 2.1. We follow the proof in [9, §6]. Let ¢ > 0 be arbitrary. We have
limg_ o+ (1 + 5)1/‘/3 = lims_,o+ (1 + 9) = 1, therefore there exists § € (0, i) such that

(1=2V0)(1+8)" V0 > (14e)"Y2, (1+2V8)(1+0)2F2/V0 < (14¢)V/2

Let now w be a weight on R with S5 <1 +4.

Claim. For all intervals I in R, for all J € D with |.J| < V/d|I| < 2|.J| and containing
one of the endpoints of I, there holds (w) ,/(w);, (w),;/{w), < (1 +¢)1/2

Assume the claim for the moment. Let I be an arbitrary interval in R. There exists
J € D, such that 2|.J| < V/§|I| < 4]J| and J contains the center of I. Then, by the claim,
applied for I_,J and I, J, we have

Py (P, §(1+5)1/2, <<pl (p)1_ < (14_5)1/27

therefore (p)r, /(p)1_, (p)1_/{p)1. <1+ ¢, yielding the desired result.

We now prove the claim. Let I be an interval in R, and let J € D with |.J| < V/4|I] <
2|J|, containing one of the endpoints of I.

Set J, ={K € D: |K|=1J|, K C I} and I, = |JJ,.. Clearly J. # 0, since
|J| < $|I|. It is clear that

1l _ 2
#J. < = < —.
I~ V6
For all K € J,, there exist [ € {1,...,#J.} and Ji,..., Ji4+1 € D of length equal to |J|,
such that J; = K, Jiy1 = J and J;, J; 11 are adjacent or coincide, for all ¢+ = 1,...,1[,
therefore
{w) :H {w) >(1+06)7 > (1467,
w =1 ’LU Jit1
thus

<#J>< §)"2V0 = (148)2Ve.
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Note also that |I.| > |[I| — 2|.J] > (1 — 2v/3)|1], therefore

(w)1
(w)s

2

||II*|| <<1;’U>>I; > (1-2V8)(1+68)2/V0 > (14¢)7 Y2

Set also J* ={K € D: |K|=|J|, KNI # 0} and I* =JJ*. It is clear that

I 2
#J*§%+2§%+2.

Then, similarly to previously we have

(w) = < (1+6)2+2/\/3-
(w)yy —

Note also that |I.| < |[I| 4 2|J] < (1 4+ 2v/3)|1], therefore

o LSO 1y 2vB) (14 8212 < (1402,
(wyy = | (w)s

concluding the proof. 0O

Proof of Lemma 2.2. We follow the proof in [9, §11]. Set ¢ = (25/16)'/? — 1. Choose
§ € (0,1) as in the proof of Lemma 2.1 for this e. Let p be a weight on R with [p]a, p < o0
and Szd, S5d < 14§, where 7 = p~ /(=1 Let I be an arbitrary interval in R. By the
proof of Lemma 2.1 we have that there exists J € D such that

() < (@+e)p) e () < (L +e) (),

therefore

()i < (4200 )5 < ol o

It follows that [p]a, p < [p]a, < (5/4)[p]a,,p, concluding the proof. O
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