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For an Ap weight w the norm of the Hilbert Transform in 
Lp(w), 1 < p < ∞ is estimated by [w]sAp

, where [w]Ap
is the 

Ap characteristic of the weight w and s = max(1, 1/(p − 1)); 
as simple examples with power weights show, these estimates 
are sharp.
A natural question to ask, is whether it is possible to improve 
the exponent s in the above estimate if one replaces the Ap

characteristic by its “fattened” version, where the averages 
are replaced by Poisson-like averages. For power weights (for 
example with p = 2 and Poisson averages) one can see that 
there is indeed an improvement in the exponent: but is it true 
for general weights?
In this paper we show that the optimal exponent s remains 
the same by constructing counterexamples for arbitrarily 
“smooth” weights (in the sense that the doubling constant 
is arbitrarily close to 2), so the “fattened” Ap characteristic 
is equivalent to the classical one, and such that ‖T ‖Lp(w) ∼
[w]sAp

.
We use the ideas from the unpublished manuscript by F. 
Nazarov disproving Sarason’s conjecture. We start from sim-
ple classical counterexamples for dyadic models, and then by 
using what we call “small step construction” we transform 
them into examples with weights that are arbitrarily dyadi-
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cally smooth. F. Nazarov had used Bellman function method 
to prove the existence of such examples, but our construction 
gives a way to get such examples from the standard dyadic 
ones. We then use a modification of “remodeling”, introduced 
by J. Bourgain and developed by F. Nazarov, to get from 
examples for dyadic models to examples for the Hilbert trans-
form.
As an added bonus, we present a proof that the Lp analog of 
Sarason’s conjecture is false for all p, 1 < p < ∞.

© 2020 Elsevier Inc. All rights reserved.

Contents

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3. “Large step” examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. “Small step” constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5. Iterated remodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6. The case of dyadic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7. The case of the Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Notation

1E characteristic function of set E;
dx integration with respect to Lebesgue measure;
|E| d-dimensional Lebesgue measure of a measurable set E ⊆ Rd;
〈f〉E average with respect to Lebesgue measure, 〈f〉E := 1

|E|
´

E
f(x)dx;

Lp(w) weighted Lebesgue space, ‖f‖p
Lp(w) :=

´
Rd |f(x)|pw(x)dx;

〈f, g〉 linear duality, 〈f, g〉 =
´

f(x)g(x)dx;
w(I) Lebesgue integral of a weight w over I, w(I) :=

´
I

w(x)dx = 〈w〉I |I|;
p′ Hölder conjugate exponent to p, 1/p + 1/p′ = 1;
D family of all dyadic intervals in R, or of all dyadic subintervals of [0, 1);
D(I) family of all dyadic subintervals of a dyadic interval I, including I itself;
ch(I) family of all dyadic children of the dyadic interval I;
chk(I) family of all dyadic descendants of order k of the dyadic interval I, note that 

ch(I) = ch1(I);
chk(S ) for a family S of dyadic intervals the collection chk(S ) is defined as 

chk(S ) :=
⋃

I∈S chk(I), and ch(S ) = ch1(S );
I−, I+ left, respectively right half of interval I;
hI L∞-normalized Haar function for interval I, hI := 1I+ − 1I− (note the non-

standard normalization!);
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ΔI martingale difference operator, ΔIf :=
∑

I′∈ch(I)

〈f〉I′1I′ − 〈f〉I1I ;

ΔIf difference of averages, ΔIf := 〈f〉I+
− 〈f〉I =

(
〈f〉I+

− 〈f〉I−

)
/2 = 〈fhI〉I ;

Notation x � y means x ≤ Cy with an absolute constant C < ∞, and x �a,b,... y

means that C depends only on a, b, . . .; the notation x � y means y � x, and similarly 
for x �a,b,... y. We use x ∼ y if both x � y and x � y hold, and x ∼a,b... y is defined 
similarly.

1. Introduction

This paper deals with sharp weighted estimates for classical operators in harmonic 
analysis. Our starting point is the famous Hunt–Muckenhoupt–Wheeden theorem [6], 
which says that the so-called Muckenhoupt Ap condition

sup
I

⎛⎝ 1
|I|

ˆ

I

w(x)dx

⎞⎠⎛⎝ 1
|I|

ˆ

I

w(x)−1/(p−1)dx

⎞⎠p−1

=: [w]Ap
< ∞, (1.1)

(the supremum is taken over all intervals I ⊂ R) is necessary and sufficient for the 
Hilbert transform H,

Hf(x) := p.v.
ˆ

R

f(y)
x − y

dy,

to be a bounded operator on the weighted space Lp(w) (1 < p < ∞).
It is also well-known that condition (1.1) (with intervals replaced by cubes) is suffi-

cient for the boundedness on weighted spaces of all Calderón–Zygmund operators in any 
number of dimensions, and it is also necessary for the boundedness on weighted spaces of 
“large” Calderón–Zygmund operators, like the Riesz transforms (see for instance [14]).

Remark. Recall that by a weight people usually understand a locally integrable non-
negative function w, but to define Ap characteristic [w]Ap

in (1.1) one needs to assume 
that w is positive a.e.

However, if we interpret 1/0 as +∞, then for a non-trivial weight w vanishing on a set 
of positive measure we have [w]Ap

= ∞, so the condition (1.1) fails for w. And it is easy 
to see that if a weight w vanishes on a set of positive measure, the Hilbert transform is 
not well defined on Lp(w) (take a function f supported on the set where w vanishes), so 
we can treat the Hilbert transform as unbounded in this case.

So, one can say that the Hunt–Muckenhoupt–Wheeden theorem holds for arbitrary 
non-negative weights, if everything is interpreted the right way. However, to avoid con-
fusing the reader with irrelevant technical details, we assume in this paper that a weight 
is always locally integrable a.e. positive function.
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1.1. Sharp estimates

Qualitative results like the one mentioned above are usually easier to prove than 
quantitative counterparts. In fact, it had been an open problem for some time to find a 
sharp estimate of the norm of H (and other Calderón–Zygmund operators) over Lp(w)
in terms of the powers of the Ap characteristic [w]Ap

defined in (1.1) above. It was 
proved by S. Petermichl in [12] that ‖H‖L2(w) � [w]A2 . She then proved the same 
estimate for the Riesz Transform, and after some results by different authors gradually 
expanding the class of operators for which such an estimate holds, the linear estimate 
‖T‖L2(w) �T,d [w]A2 was established by T. Hytönen [7] (where d is the dimension of the 
underlying Euclidean space).

Using the method of Rubio De Francia extrapolation (see e.g. [3]), one then can show 
that for p > 2 the estimate ‖T ‖Lp(w) �T,p,d [w]Ap

holds; by duality one finally gets the 

estimate ‖T‖Lp(w) �T,p,d [w]1/(p−1)
Ap

for 1 < p < 2. Thus for 1 < p < ∞ one can write

‖T ‖Lp(w) �T,p,d [w]sAp
, (1.2)

where

s = max{1, 1/(p − 1))}. (1.3)

Note, that for the Hilbert transform the above estimate (1.2) is sharp. Namely, even 
before the upper bound for the Hilbert transform was proved by S. Petermichl [12], it 
had already been shown by S. Buckley [2] that given p ∈ (1, ∞) one can find Ap weights 
w with arbitrarily large [w]Ap

for which ‖H‖Lp(w) �p [w]sAp
(with s given by (1.3)). It 

is also not hard to show that the estimate (1.2) is sharp for the Riesz transforms.

1.2. Considering “larger” characteristics

A reasonable attempt to lower the optimal exponent s given by (1.3) might involve 
considering “larger” variants of Ap characteristics where weights are not averaged over 
intervals (or cubes) as in (1.1), but rather integrated against kernels with slower decay. 
Such characteristics arise in fact naturally in many problems not directly related to sharp 
weighted estimates.

For instance, it was proved by the second author and A. Volberg in [15] for p = 2, and 
by F. Nazarov and the second author in [11] for general p, that the following “fattened” 
Ap condition1 Afat

p , [w]fat
Ap

< ∞, where

1 In fact, in both [15] and [11] the estimates with matrix-valued weights were considered, and the Hunt–
Muckenhoupt–Wheeden theorem for the matrix-valued weights was obtained. A matrix-valued analogue of 
the condition [w]fat

Ap
< ∞ was introduced there, and its necessity was proved. The necessity of the scalar 

condition follows immediately from the matrix-result, although just following the proofs from [15], [11] and 
not bothering with the non-commutativity of the matrix-valued case gives a very simple proof for the scalar 
situation.
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[w]fat
Ap

:= sup
λ∈C+

⎛⎝ˆ
R

(Im(λ))p−1

|x − λ|p w(x)dx

⎞⎠⎛⎝ˆ
R

(Im(λ))p′−1

|x − λ|p′ w(x)−1/(p−1)dx

⎞⎠p−1

, (1.4)

is necessary for the boundedness of the Hilbert transform on the weighted space Lp(w); 
here, p′ denotes the Hölder conjugate of p, 1/p + 1/p′ = 1. Note that for p = 2, the inte-
grals in (1.2) are just Poisson extensions of the weights w and w−1 (up to multiplicative 
constants), so one can think of [w]fat

Ap
as a “Poisson-like” Ap condition for any 1 < p < ∞. 

Motivation for considering such “Poisson-like” Ap conditions stems from the theory of 
Toeplitz operators, see for example [5, s. 7.9].

It is easy to see that [w]Ap
�p [w]fat

Ap
. Since the Ap condition is already sufficient for 

the boundedness of H on Lp(w), it follows that the Ap condition and the “fattened” Ap

condition Afat
p are equivalent. However, simple examples involving power weights show 

that for every fixed p, the two characteristics themselves are not equivalent: for any fixed 
1 < p < ∞, one can find Ap weights w with arbitrarily large quotient [w]fat

Ap
/[w]Ap

. 
Moreover, it was shown in [15] that for p = 2 the lower bound for the Hilbert Transform

‖H‖L2(w) �
(
[w]fat

A2

)1/2

holds for all weights w.
So one could hope that a better estimate of the norm ‖T‖Lp(w), and in particular 

of the norm ‖H‖Lp(w), in terms of the “fattened” Ap characteristic [w]fat
Ap

in (1.4) is 
possible. One could even hope, for example, that the estimate ‖H‖L2(w) �

(
[w]fat

A2

)1/2

holds. The main result of this paper destroys all such hopes: we show that for the Hilbert 
transform H there exist Ap weights w with arbitrarily large Ap characteristic [w]fat

Ap
, such 

that ‖H‖Lp(w) �p

(
[w]fat

Ap

)s

, where s is given by (1.3).

1.2.1. “Heat” Ap characteristics
In many problems it is natural to consider other kernels besides “Poisson-like” ones. 

For example, S. Petermichl and A. Volberg [13] considered a “heat” Ap characteristic 
(1 < p < ∞) given by

[w]heat
Ap

:= sup
y∈Rd

t∈(0,∞)

⎛⎝ˆ
Rd

1
td/2 e−|x−y|2/tw(x)dx

⎞⎠⎛⎝ˆ
Rd

1
td/2 e−|x−y|2/tw(x)−1/(p−1)dx

⎞⎠p−1

.

(1.5)
It was shown in [13] that in sharp contrast to the “Poisson-like” case, the “heat” Ap

characteristic in (1.5) is essentially the same as the usual Muckenhoupt Ap characteristic 
in (1.1), more precisely

[w]Ap
∼d,p [w]heat

A (1 < p < ∞). (1.6)

p
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This fact for d = 2 was used [13] to establish sharp weighted estimates for the Ahlfors–
Beurling operator, which allowed the authors to deduce that weakly quasiregular maps 
on the plane are quasiregular.

In view of (1.6) the problems considered in this paper are trivial for the “heat” Ap

characteristic.

1.3. Weights and doubling constants

For a weight w on R we define its doubling constant Dw as

Dw := sup
I

w(2I)/w(I),

where the supremum is taken over all intervals I in R. Here 2I is the interval with the 
same center as I of length 2|I|, and slightly abusing the notation we write w(I) for ´

I
wdx.
It is easy to show that if the doubling constant of the weight w is bounded by 2 + δ

for sufficiently small δ, then we have uniformly over all λ ∈ C+ the estimate

ˆ

R

(Im(λ))p−1

|x − λ|p w(x)dx �p |Iλ|−1
ˆ

Iλ

w(x)dx, (1.7)

where Iλ is the interval [Re(λ) −Im(λ), Re(λ) +Im(λ)]. We emphasize that the particular 
function (Im λ)p−1/|x − λ|p in the left-hand side of (1.7) is of no importance here; any 
“reasonable” approximate identity on the real line can be used in its place.

Thus, if the doubling constants of the weights w and σ = w−1/(p−1) are bounded by 
2 + δ for sufficiently small δ, then the Ap characteristics [w]Ap

and [w]fat
Ap

are equivalent 
in the sense of two sided estimate.

1.4. Main results

The main result of this paper is the following theorem.

Theorem 1.1. Given p ∈ (1, ∞), M > 2 and arbitrarily small δ > 0, there exists an 
Ap weight w on R with M ≤ [w]

Ap
≤ C(p)M , such that the doubling constants of the 

weights w and σ = w−1/(p−1) are bounded by 2 + δ and

‖H‖Lp(w) ≥ c(p)Ms, s = max{1, 1/p − 1}.

By the above discussion about the equivalence of Ap characteristics [w]Ap
and [w]fat

Ap
, 

we can see that Theorem 1.1 implies the following corollary.
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Corollary 1.2. Given p ∈ (1, ∞), M > 2, there exists a weight w on R with M ≤ [w]fat
Ap

≤
C(p)M , such that

‖H‖Lp(w) ≥ c(p)Ms, s = max{1, 1/(p − 1)}.

1.4.1. Two weight estimates and Sarason’s conjecture
One of the main technical tools used in this paper is inspired by the unpublished 

manuscript [9] by F. Nazarov, where he provided a counterexample to the so-called 
Sarason’s conjecture. Let us briefly recall this conjecture.

It is natural to consider two-weight estimates for the Hilbert transform and other 
Calderón–Zygmund operators, i.e. to ask when they are bounded operators from Lp(v)
to Lp(w) for potentially different weights v, w. It is easy to show that the two weight Ap

condition

sup
I

⎛⎝ 1
|I|

ˆ

I

w(x)dx

⎞⎠⎛⎝ 1
|I|

ˆ

I

v(x)−1/(p−1)dx

⎞⎠p−1

=: [w, v−1/(p−1)]Ap
< ∞, (1.8)

is necessary for the Hilbert transform to be a bounded operator from Lp(v) to Lp(w)
(1 < p < ∞). However, as simple examples show, this condition is not sufficient (for the 
reader’s convenience we supply an example in Subsection 8.4 in the Appendix).

It had been shown long ago by the second author that the following “fattened” two 
weight Ap condition

sup
λ∈C+

⎛⎝ˆ
R

(Im(λ))p−1

|x − λ|p w(x)dx

⎞⎠⎛⎝ˆ
R

(Im(λ))p′−1

|x − λ|p′ v(x)−1/(p−1)dx

⎞⎠p−1

< ∞ (1.9)

is also necessary for the Hilbert transform to act boundedly from Lp(v) to Lp(w). Note, 
that unlike the one-weight case, the two-weight conditions (1.8) and (1.9) are not equiv-
alent; simple examples can be easily constructed.

The Poisson averages are less localized than the averages over intervals, so D. Sarason 
hoped that for p = 2 the two weight Poisson A2 condition (1.9) would capture correctly 
the “far” action of the Hilbert transform. In [5, s. 7.9] he conjectured that (for p = 2) 
the Poisson A2 condition (1.9) is necessary and sufficient for the Hilbert transform to be 
a bounded operator from L2(v) to L2(w).2

This conjecture was disproved by F. Nazarov in [9]. In this paper we extend Nazarov’s 
result to all p ∈ (1, ∞) (not just p = 2). While our proof relies heavily on the machinery 

2 It is interesting that when D. Sarason was stating his conjecture he was not aware of the necessity of 
the two weight Poisson A2 condition. The proof of necessity was presented to him by the second author, 
and this is exactly the proof presented (with attribution) in [5, s. 7.9].

The problem in [5, s. 7.9] was stated a bit different, but it was equivalent to the two weight estimate 
for the Hilbert transform. The proof of necessity was presented there only for p = 2, but the same proof 
works for all p, 1 < p < ∞.
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developed in [9], we introduce some crucial new ideas, allowing us to treat the case of 
p �= 2. We should also mention that our counterexample is a “constructive” one; unlike 
[9] we are not using the Bellman function method.

We prove the following theorem:

Theorem 1.3. Given p ∈ (1, ∞), there exist weights w, v on R satisfying (1.9), such that 
the Hilbert transform is not a bounded operator acting from Lp(v) to Lp(w). In particular, 
this means that there exists f ∈ Lp(v) such that ‖Hf‖Lp(w) = ∞.

In light of the discussion in Section 1.3 the above theorem follows from the correspond-
ing counterexample with “smooth” weights (i.e. weights with small doubling constants). 
Namely, we prove the following theorem, which implies the above Theorem 1.3.

Theorem 1.4. Given p ∈ (1, ∞) and arbitrarily small δ > 0, there exist weights w, v on R
satisfying (1.8), such that the doubling constants of the weights w and σ = v−1/(p−1) are 
bounded by 2 +δ and the Hilbert transform is not a bounded operator acting from Lp(v) to 
Lp(w). In particular, this means that there exists f ∈ Lp(v) such that ‖Hf‖Lp(w) = ∞.

1.4.2. A counterintuitive result
It is an easy exercise to construct a weight with a prescribed Ap characteristic. More-

over, one can find a weight taking only 2 values. What is more interesting, and is not 
completely clear, is that in fact one can find such a weight with doubling constant arbi-
trarily close to 2.

Proposition 1.5. Let p ∈ (1, ∞). Then, given Q > 1 and arbitrarily small ε > 0, there 
exists a weight w on R taking only 2 values, with Q ≤ [w]Ap

≤ c(p)Q, such that the 
doubling constants of the weights w and σ = w−1/(p−1) are bounded by 2 + ε.

1.5. Plan of the paper

Our general strategy is as follows. We start with simple examples that give the desired 
lower bounds for dyadic (martingale) analogues of the Hilbert transform, in particular, for 
the so-called Haar shifts. These examples are simple ones, obtained as easy modifications 
of known examples; we call them the “large step” examples, to emphasize that we do 
not have any non-trivial bounds on the doubling constants of the weights involved. This 
is done in Section 3.

From these examples we construct in Section 4 the so-called “small step” examples, 
where we preserve the desired lower bounds, but can make the so-called dyadic smooth-
ness constant (see the relevant definition in Subsection 2.3 below) of the weights as close 
to 1 as we want. We present a general construction that allows us to do so. This step 
is absent in [9], where the “small step” example is obtained implicitly via the Bellman 
function method.
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The next step is to apply remodeling, introduced in [9], which serves two purposes. 
First, it allows us to get from weights with dyadic smoothness constants arbitrarily 
close to 1 to weights with doubling constants arbitrarily close to 2. And second (and 
equally important) it allows us to get from the lower bounds for Haar shifts to the lower 
bounds for the Hilbert transform, which we need. However, the original remodeling from 
[9] does not handle the one-weight situation well, since typically it gives a two-weight 
situation as its output. So to handle the one-weight situation we introduce the so-called 
iterated remodeling, that allows us to prove Theorem 1.1 (and so Corollary 1.2). The 
general method of iterated remodeling is presented in Section 5, while Subsection 7.1
contains the particular application for the Hilbert transform. Subsection 6.1 describes 
analogous examples in the (easier) cases of Haar multipliers and the dyadic Hardy–
Littlewood maximal function. Moreover, Subsection 6.2 contains the counterintuitive 
result of Proposition 1.5, deduced as a byproduct of our general constructions.

Through a standard direct sum of singularities type construction, the family of ex-
amples for the Hilbert transform yields in Subsection 7.2 a counterexample to the Lp

version of the Sarason’s conjecture, (i.e. Theorem 1.4, and therefore Theorem 1.3), so we 
are done in the two-weight case as well.

The main constructions of this paper exploit the usual structure of a filtered prob-
ability space on the unit interval [0, 1), and the fundamental correspondences between 
functions and martingales on the one hand, and martingales and random walks on graphs 
on the other hand. We briefly recall the relevant definitions and results in Subsections 
2.4, 2.5 and 2.6.

Finally, in the Appendix (Section 8) we collect a few results used throughout the 
paper: probability theoretic results on random walks (Subsection 8.1), two remarks about 
“stopping on the lower hyperbola” (Subsection 8.2) and “getting only a little above the 
upper hyperbola” (Subsection 8.3), and we repeat the proofs of F. Nazarov’s lemmas 
about Muckenhoupt characteristics and doubling constants from [9] (Subsection 8.5).

Acknowledgments. We are grateful to Alexander Barron for reading a draft of the 
manuscript and for pointing out typos and other obscurities, and to the anonymous 
referee for the valuable feedback.

2. Preliminaries

2.1. Symmetric “two weight” setup

In weighted estimates it is customary to rewrite a problem in a symmetric two-weight 
setup. For example, in an one-weight situation involving a weight w (Theorem 1.1) let 
us introduce an auxiliary weight σ := w−1/(p−1) (the reader should have noticed that it 
already appears in the statement of Theorem 1.1). If we denote f̃ := σ−1f , so f = f̃σ, 
then

‖f̃‖Lp(σ) = ‖f‖Lp(w) and Tf = T (f̃σ),
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for any linear operator T . Thus any weighted estimate of an operator T over Lp(w)
is equivalent to the estimate of the operator f̃ 
→ T (f̃σ) acting from Lp(σ) to Lp(w); 
note that if T is an integral operator, then in the operator f 
→ T (fσ) integration is 
performed against the measure that defines the norm in the domain Lp(σ).

To prove Theorem 1.1 one needs to find a non-zero f ∈ Lp(w) such that ‖Hf‖Lp(w) ≥
c(p)‖f‖Lp(w). This is equivalent to finding a non-zero f ∈ Lp(σ) (we omit the tilde over 
f here) such that

‖H(fσ)‖Lp(w) ≥ c(p)Ms‖f‖Lp(σ); (2.1)

here, recall, M ≤ [w]Ap
≤ C(p)M , and σ = w−1/(p−1). The weights w and σ should have 

doubling constants as close to 2 as we want.
In a two-weight situation involving two weights w and v (Theorem 1.4) we denote 

σ = v−1/(p−1). To prove Theorem 1.4 we construct for arbitrarily large R weights σ and 
w with doubling constants arbitrarily close to 2 such that

〈w〉I〈σ〉p−1
I ≤ C(p)

(C(p) does not depend on R) and a non-zero f ∈ Lp(σ) such that

‖H(fσ)‖Lp(w) ≥ R‖f‖Lp(σ). (2.2)

2.2. Dyadic intervals and martingale differences

For definiteness, by an interval we will always mean a half-open interval [a, b). For an 
interval I we denote by I+ and I− its right and left halves respectively. The symbol hI

denotes the L∞ normalized Haar function,

hI = 1I+ − 1I− . (2.3)

We emphasize, that in this paper we always use the L∞ normalized Haar functions.
We say that two intervals I, J in R are adjacent if I ∩J = ∅, and they have a common 

endpoint.
An interval I in R is called a dyadic interval if I = [k2n, (k + 1)2n) for some n, k ∈ Z. 

We denote by D the family of all dyadic intervals in R. For a dyadic interval I we denote 
by D(I) the collection of its dyadic subintervals (including I itself). When there is no 
danger of confusion, we will denote D([0, 1)) by D, abusing the notation. For all I ∈ D, 
the number − log2(|I|) will be called generation of the interval I. Moreover, for all N ∈ N

and for all I ∈ D, we denote by chN (I) (simply ch(I) if N = 1) the family of all dyadic 
subintervals of I of length 2−N |I|, and if G is a family of dyadic intervals, then we set 
chN (G) :=

⋃
I∈G chN (I). Moreover, if G is a family of pairwise disjoint dyadic intervals 

then we denote
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EG [f ] :=
∑
I∈G

〈f〉I1I .

For all f ∈ L1
loc(R) and for all I ∈ D, we denote by ΔIf the martingale difference

ΔIf :=
∑

I′∈ch(I)

〈f〉I′1I′ − 〈f〉I1I = 〈f〉I+1I+ + 〈f〉I−1I− − 〈f〉I1I ,

and by ΔIf the difference of averages (or Haar coefficient)

ΔIf := 〈f〉I+
− 〈f〉I =

〈f〉I+
− 〈f〉I−

2 = 〈fhI〉I .

Notice that martingale differences and Haar coefficients are related by

ΔIf = (ΔIf)hI .

2.3. Weights and doubling constants

Given weights w, σ on R and p ∈ (1, ∞), we define the joint dyadic Muckenhoupt Ap

characteristic of w, σ by

[w, σ]Ap,D := sup
I∈D

〈w〉I〈σ〉p−1
I

and the dyadic Muckenhoupt characteristic of w by [w]Ap,D := [w, w−1/(p−1)]Ap,D. Fol-
lowing [9, §1], we define the smoothness constant

Sw = sup
I

max
( 〈w〉I−

〈w〉I+

,
〈w〉I+

〈w〉I−

)
,

where the supremum is taken over all intervals I in R, and the dyadic smoothness 
constant

Sd
w = sup

I∈D
max

( 〈w〉I−

〈w〉I+

,
〈w〉I+

〈w〉I−

)
.

It is easy to see that Dw ≤ Sw + 1. Note also that 1 ≤ Sd
w ≤ Sw. Moreover, as in [9, §6], 

we define the strong dyadic smoothness constant

Ssd
w = sup

I,J

〈w〉I

〈w〉J
,

where the supremum is taken over all adjacent intervals I, J ∈ D with |I| = |J |. Obviously 
Ssd

w ≥ Sd
w. Of course all these definitions can be given over [0, 1), and we will use the 
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same notation as above for Muckenhoupt characteristics and smoothness constants over 
[0, 1) (note that local integrability over [0, 1) means here integrability over [0, 1)).

It turns out that the strong dyadic smoothness constant can provide some control 
over the smoothness constant, and the dyadic Muckenhoupt characteristic over the full 
Muckenhoupt characteristic, provided the strong dyadic smoothness constant is suffi-
ciently close to 1.

Lemma 2.1. (F. Nazarov, [9, §6]) For all ε > 0, there exists δ = δ(ε) > 0, such that for 
all weights w on R with Ssd

w ≤ 1 + δ there holds Sw ≤ 1 + ε.

Lemma 2.2. (F. Nazarov, [9, §11]) For all p ∈ (1, ∞), there exists δ = δ(p) > 0, such 
that for all weights w, σ on R with [w, σ]Ap,D < ∞ and Ssd

w , Ssd
σ ≤ 1 + δ there holds 

[w, σ]Ap
≤ (5/4)[w, σ]Ap,D.

For reasons of completeness, we give the proofs of both these lemmas in Subsection 
8.5 in the Appendix. In this paper, the phrase “smoothness of weights” will always refer 
to the above smoothness constants.

So we see that in order to dominate Muckenhoupt characteristics and doubling con-
stants, it suffices to dominate strong dyadic smoothness constants and dyadic Mucken-
houpt characteristics. We will see in Section 5 that F. Nazarov’s method of remodeling 
will allow us to dominate strong dyadic smoothness constants by dyadic smoothness 
constants.

2.4. Dyadic filtration

For n = 0, 1, 2, . . ., set

Dn = {I ∈ D([0, 1)) : |I| = 2−n},

and let Fn be the σ-algebra of subsets of [0, 1) generated by the family Dn, i.e. the small-
est σ-algebra of subsets of [0, 1) containing Dn. Clearly Fn ⊆ Fn+1, for all n = 0, 1, 2, . . ., 
so the sequence F := (Fn)∞

n=0 of σ-algebras is a filtration on [0, 1) (sometimes called the 
dyadic filtration). Notice that the Borel σ-algebra F of [0, 1) is the smallest σ-algebra 
containing all Fn, or equivalently, the σ-algebra generated by the family 

⋃∞
n=0 Dn.

Taking for the probability measure P the Lebesgue measure on [0, 1), we can see that 
([0, 1), F , P , F) is a filtered probability space. Denote by En the conditional expectation 
with respect to the σ-algebra Fn, En[f ] = E(f |Fn). The operator En admits a simple 
formula

En[f ] =
∑

I∈Dn

〈f〉I1I .

We will use the symbol E for the expectation operator, Ef := E0f = 〈f〉[0,1)1[0,1).
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Recall that a sequence (Xn)∞
n=0 of integrable functions on a filtered probability space 

is called a martingale if Xn is Fn-measurable and

En[Xn+1] = Xn,

for all n = 0, 1, 2, . . .. In the sequel, all martingales on [0, 1) will always be considered 
with respect to the dyadic filtration (and called then just dyadic martingales).

Note that every dyadic interval can be given the structure of a filtered probability 
space by simply translating and rescaling the unit interval.

2.5. Functions and martingales

A function f ∈ L1([0, 1); RN ) naturally induces an RN -valued martingale X =
(Xn)∞

n=0 on [0, 1),

Xn = Enf =
∑

I∈Dn

〈f〉I1I , n = 0, 1, 2, . . . .

Note, that not all martingales are induced by a function, only the so-called uniformly 
integrable ones. However, in this paper we will be considering only uniformly bounded 
martingales, which are trivially uniformly integrable, and so are always induced by a 
function.

If a martingale X is induced by a function f , then f can be easily restored from X, 
namely Xn → f a.e. and in L1; for uniformly bounded martingales we have, in fact, 
convergence in all Lp, 1 ≤ p < ∞.

It turns out that in many problems of harmonic analysis it is more convenient to work 
not with a function, but with the induced martingale. In our context that means that we 
keep track of averages of functions, instead of the functions themselves. In our examples, 
we deal with functions w, σ, f, g, and we are keeping track of the averages of functions 
w, σ, f =: fσ, g =: gw (then f = f/σ and g = g/w).

2.6. Martingales and random walks

Let X = (Xn)∞
n=0 be an RN -valued martingale on [0, 1). For I ∈ Dn the function Xn

is constant on I; we denote by 〈X〉I its constant value there. Note that if the martingale 
X is induced by a function, which we, slightly abusing the notation, also denote by X, 
then 〈X〉I as defined above is indeed the average of the function X. It is easy to see that

〈X〉I =
〈X〉I−

+ 〈X〉I+

2 , ∀I ∈ D. (2.4)

In the language of [4, Subsection 5.1] the above identity says that the family {〈X〉I}I∈D
has “martingale dynamics”.
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We also define the difference of averages (or Haar coefficient) ΔIX,

ΔIX := 〈X〉I+ − 〈X〉I =
〈X〉I+ − 〈X〉I−

2 , I ∈ D.

Again, if, slightly abusing the notation, we denote by X the function inducing the uni-
formly bounded martingale X, then the two definitions of ΔIX are consistent.

The dyadic martingale X can be interpreted as a random walk on an image of a binary 
tree; in what follows we will call this image the graph of X.

To describe this random walk, notice that the collection D of dyadic intervals carries 
a natural structure of the full binary tree, with vertices being the dyadic intervals, and 
the edges connecting an interval with its two children.

The collection D of dyadic intervals can be naturally interpreted as the standard 
random walk on the full dyadic tree, where one moves from a vertex I to each of its 
children with probability 1/2. Each point x ∈ [0, 1) represents a trajectory on the full 
binary tree D, that at the time n it is at the unique I ∈ Dn containing x.

The martingale X naturally induces a map from the dyadic tree D to RN , where the 
vertex corresponding to I ∈ D goes to the point 〈X〉I ∈ RN , and the edges go to straight 
line segments connecting the corresponding points; we will call this image the graph of 
X. The random walk on the dyadic tree D is then mapped to the random walk on the 
graph of X, that moves from a point 〈X〉I by the steps ±ΔIX with equal probabilities 
1/2.

In view of the martingale dynamics identity (2.4) above, 〈X〉I always occupies the 
midpoint of the straight line segment connecting 〈X〉I− and 〈X〉I+ ; we will say in what 
follows that this segment corresponds to the interval I ∈ D.

The interpretation of dyadic martingales as random walks on images of a binary tree 
gives helpful intuition into the constructions we are using. While it is not required for 
the formal construction, we feel that it could help the reader to understand and visualize 
what is going on.

In our examples, we deal with functions w, σ, f, g, where w = σ−1/(p−1) for some 
1 < p < ∞, and random walks correspond to the martingales induced by the functions 
w, σ, f := fσ, g := gw. Our transforms will be applied to the functions w, σ, f , g, to pro-
duce functions w̃, ̃σ, ̃f , ̃g respectively. The random walk corresponding to the martingale 
induced by the function (w, σ) terminates with probability 1 on the hyperbola given 
in the uv-plane by uvp−1 = 1, because wσp−1 = 1 a.e. on [0, 1). Our transforms will 
need to guarantee that the new weights w̃, ̃σ we get continue to satisfy this relation. 
As we will see, on the level of weights our transforms will amount to composition with 
measure-preserving transformations, and therefore such relations will be automatically 
preserved. In addition, we will see that the relevant weighted norms ‖f̃‖Lp(σ̃), ‖g̃‖

Lp′
(w̃)

are not larger (up to constants depending only on p) than ‖f‖Lp(σ), ‖g‖
Lp′

(w) respec-
tively, where f̃ = f̃/σ̃ and g̃ = g̃/w̃.
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Fig. 1. Random walk in the uv-plane corresponding to the pair of weights (w, σ).

3. “Large step” examples

We construct in this section “large step” examples for the Haar multiplier, and for a 
special type of Haar shift, defined in Subsection 3.2.

Let p ∈ (1, ∞) and M > 2. Set β = 1 − 1
2Me ∈

( 1
2 , 1
)
. Set I0 = [0, 1) and In =

[
0, 1

2n

)
, 

Jn =
[ 1

2n , 1
2n−1

)
, for all n = 1, 2, . . .. Consider the functions w, σ on [0, 1) given by

w =
∞∑

n=1
2nβ1Jn

, σ =
∞∑

n=1
2−nβ/(p−1)1Jn

.

Then, w, σ are weights on [0, 1) with σ = w−1/(p−1). Note that w([0, 1)) ∼ M and 
σ([0, 1)) ∼p 1. Notice that x−β ≤ w(x) ≤ 2βx−β and 2−β/(p−1)xβ/(p−1) ≤ σ(x) ≤
xβ/(p−1), for all x ∈ (0, 1). Then, direct computation shows that

M ≤ 2−β (1 − β)−1

e
≤ 〈w〉In

〈σ〉In

p−1 ≤ 2β(1 − β)−1 ≤ 4Me, ∀n = 0, 1, 2, . . . .

It follows that M ≤ [w]Ap,D ≤ 4Me. Direct computation gives also ΔIn
w < 0 and 

−ΔIn
w ∼ (1 − β)−12nβ , for all n = 0, 1, 2, . . ..

Consider the uniformly integrable real-valued martingales X, Y induced by w, σ re-
spectively. Note that by a very easy application of Jensen’s inequality as in [10, Lemma 
4.1] we have XnY p−1

n ≥ 1, for all n = 0, 1, 2 . . .. Also note that the graph of the martin-
gale Z = (X, Y ) consists of the straight line segments connecting 〈Z〉Jn

and 〈Z〉In
, for 

n = 1, 2, . . ., see Fig. 1 (the constant cp,β in Fig. 1 satisfies 1 ≤ cp,β ≤ 4e).
Notice moreover that Sd

w ∼ (1 − β)−1 ∼ M , therefore we have no control over the 
dyadic smoothness constant of w.
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We will now truncate the weights w, σ. We have

∞∑
n=0

2n(β−1) = 1
1 − 2β−1 � (1 − β)−1 = 2Me.

Therefore, there exists a positive integer N = NM greater than 1, such that

N∑
n=0

2n(β−1) � M.

The following lemma, whose proof is given in Subsection 8.2 of the appendix, implies 
that there exist a1, a2, b1, b2 > 0 such that (a1 +a2)/2 = 〈w〉IN+1 , (b1 +b2)/2 = 〈σ〉IN+1
and a1bp−1

1 = a2bp−1
2 = 1.

Lemma 3.1. Let x, y > 0 be arbitrary, such that xyp−1 ≥ 1. Then, there exist 
a1, b1, a2, b2 > 0 with a2 ≤ x ≤ a1 and b1 ≤ y ≤ b2, such that a1bp−1

1 = a2bp−1
2 = 1 and 

x = a1+a2
2 , y = b1+b2

2 .

Without loss of generality, we may assume that a1 < a2. Consider the bounded weights

w′ =
N+1∑
n=1

2nβ1Jn
+a11JN+2 +a21IN+2 , σ′ =

N+1∑
n=1

2−nβ/(p−1)1Jn
+b11JN+2 +b21IN+2

on [0, 1). Notice that ΔIN+1w′ = (a1 − a2)/2 < 0. In what follows, we abuse the notation 
denoting w′, σ′ by w, σ respectively.

3.1. Example for the Haar multiplier

For any choice of signs ε = (εI)I∈D denote by Tε the Haar multiplier on [0, 1) corre-
sponding to ε, i.e. Tε acts on functions f ∈ L2([0, 1)) via

Tε(f) =
∑
I∈D

εI(ΔIf)hI .

Consider the function f on [0, 1) given by

f =
∞∑

n=1
(−1)n−11Jn

.

Direct computation gives that for all I ∈ D, we have ΔIf �= 0 if and only if I = In for 
some n ∈ N, in which case ΔIf = 2(−1)n+1

3 . Consider also the function g = −w on [0, 1). 
Consider the functions f = f/σ, g = g/w on (0, 1). Then
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‖f‖p
Lp(σ) = w([0, 1)) ∼ M, ‖g‖p′

Lp′
(w)

= w([0, 1)) ∼ M.

Moreover, we have

sup
ε∈E

|〈Tε(fσ), gw〉| = sup
ε∈E

∣∣∣∣∣∑
I∈D

εI |I|(ΔIf)(ΔIg)

∣∣∣∣∣ =
∑
I∈D

|I| · |ΔIf | · |ΔIw|

≥
N∑

n=0
|In| · |ΔIn

f | · |ΔIn
w| ∼ (1 − β)−1

N∑
n=0

2n(β−1) � (1 − β)−1M ∼ M2,

where E is the set of all choices of signs ε = (εI)I∈D. It follows that

sup
ε∈E

|〈Tε(fσ), gw〉|
‖f‖Lp(σ)‖g‖

Lp′
(w)

�p
M2

M1/pM1/p′ = M.

3.2. Example for a special type of Haar shift

Let T be the Haar shift on [0, 1) acting on functions f ∈ L2([0, 1)) by

Tf = 2
∑
I∈D

(ΔIf)(hI+ − hI−).

Then, we have

〈Tf, g〉 =
∑
I∈D

|I|(ΔIf)(ΔI+g − ΔI−g),

for all f, g ∈ L2([0, 1)).
Consider the function f on [0, 1) given by

f =
∞∑

n=1
hJn

.

Notice that |f | ≤ 1. It is obvious that for all I ∈ D, we have ΔIf �= 0 if and only if 
I = Jn for some positive integer n, in which case ΔIf = 1 > 0. Consider also the function 
g = −w on [0, 1). Consider the functions f = f/σ, g = g/w on [0, 1). We have

‖f‖p
Lp(σ) =

∥∥∥∥ 1
σ

∥∥∥∥p

Lp(σ)
= w([0, 1)) ∼ M, ‖g‖p′

Lp′
(w)

= w([0, 1)) ∼ M.

Moreover, we have

〈fσ, T (gw)〉 = 〈f , T (g)〉 ≥
N∑

n=0
|In|(ΔIn

g)(ΔJn+1f) ∼
N∑

n=0
(1 − β)−12n(β−1) � M2.
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It follows that

〈fσ, T (gw)〉
‖f‖Lp(σ)‖g‖

Lp′
(w)

�p
M2

M1/pM1/p′ = M.

4. “Small step” constructions

We describe in this section different variants of “small step” constructions, that allow 
us to get from the examples constructed above in Section 3 to examples with dyadic 
smoothness constants arbitrarily close to 1.

We fix the following notation: for all intervals J, K in R, we denote by ψJ,K the unique 
orientation-preserving affine transformation mapping J onto K.

4.1. A warmup: the “small step” construction for the Haar multiplier

Let p ∈ (1, ∞) and M > 2. Recall that in Subsection 3.1 we constructed bounded 
weights w, σ on [0, 1) with σ = w−1/(p−1), such that

M ≤ w([0, 1))σ([0, 1))p−1, [w]Ap,D ≤ 4Me, w([0, 1)) ∼ M, σ([0, 1)) ∼p 1,

and non-zero bounded functions f ∈ Lp(w), g ∈ Lp′(σ) such that

sup
ε∈E

|〈Tε(fσ), gw〉| =
∑
I∈D

|I| · |ΔIf | · |ΔIg| ≥ c(p)‖f‖Lp(σ)‖g‖
Lp′

(w), (4.1)

where f := fσ and g := gw. Recall that in this example we do not have any control over 
the dyadic smoothness constants Sd

w and Sd
σ of the weights w and σ.

Based on this example we want to construct weights w̃, ̃σ with σ̃ = w̃−1/(p−1), and 
non-zero functions f̃ ∈ Lp(w̃), g̃ ∈ Lp′(σ̃) such that (4.1) holds with f̃ , g̃, w̃, σ̃ in place of 
f , g, w, σ (with another constant c(p)); and what is essential, that the dyadic smoothness 
constants of the new weights are as close to 1 as we want.

As we will see, in our construction we will keep track of the averages and martingale 
differences of the weight w, σ and of the functions f and g, and their counterparts with 
tildes.

4.1.1. A general “small step” construction
We begin by describing a “small step” construction that does not exploit any intrica-

cies of the particular “large step” example for Haar multipliers.
Let us first give an informal description. Let X be an RN -valued martingale on [0, 1). 

Consider the graph of the martingale X, see Subsection 2.6. Recall, that the segment 
of the graph, corresponding to an interval J ∈ D is a straight line segment, connecting 
points 〈X〉J− and 〈X〉J+ ; note that 〈X〉J is the midpoint of this segment.
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Fig. 2. Dividing the segments of the graph of X. (For interpretation of the colors in the figure, the reader is 
referred to the web version of this article.)

Fig. 3. Random walk on the new graph. (For interpretation of the colors in the figure, the reader is referred 
to the web version of this article.)

Take a sufficiently large positive integer d. We divide each of the segments of the 
graph of X in 2d parts, so that we get a new graph containing the vertices of the old 
graph, along with several new vertices, 2 · (d −1) in number, on each segment, see Fig. 2, 
where new points are marked in red.

Let us describe a new random walk on the new graph, which can be thought of as 
a “small step” version of the random walk corresponding to the original martingale, 
producing a new martingale X̃.

As in the original random walk, we start from the average 〈X〉[0,1), which, recall, is 
the midpoint of the segment corresponding to [0, 1). From each point 〈X〉J we perform 
a “small step” random walk of order d along the segment corresponding to J , moving by 
±ΔJX/d with probability 1/2. Thus, from each point of the new graph, we move with 
equal probability 1/2 to one of the two immediately closest points (of the new graph) 
on the corresponding segment (see Fig. 3). When we reach one of the two endpoints of 
this segment, we get into a new segment, and we repeat this procedure along the new 
segment.

Let us now make all this formal. In our case the martingale is always a uniformly 
bounded one, induced by a function F ∈ L∞([0, 1); RN ); usually in our situation N = 4
and F = (w, σ, f , g). The construction will be described in terms of the function F , so no 
deep knowledge of probability is required, although the above probabilistic description 
could help the reader to understand what is going on.

Given a dyadic subinterval I of [0, 1), we define the family S (I) of stopping intervals 
for I as the family of all maximal dyadic subintervals J of I such that

∣∣∣∣ ∑
I′∈D(I)

′

hI′

∣∣∣∣ = d, (4.2)
I �J



20 S. Kakaroumpas, S. Treil / Advances in Mathematics 376 (2021) 107450
and we also define the subset S+(I) as the family of all intervals J in S (I) for which 
the sum in (4.2) is equal to d, and similarly we define S−(I). Coupled with a translation 
and rescaling invariance lemma, part (i) of the following lemma implies that the family 
S (I) forms a partition (up to a Borel set of zero measure) of I, and part (ii) of it implies 
that 

⋃
S+(I), 

⋃
S+(I) have both measure equal to |I|/2.

Lemma 4.1. Consider the sequence (rn)∞
n=1 of Rademacher functions on [0, 1), i.e.

rn :=
∑

I∈Dn−1

hI , n = 1, 2, . . . .

Set S0 = 0 and Sn =
∑n

k=1 rk, for all n = 1, 2, . . .. Let a, b ≥ 0, not both of them equal 
to 0. Consider the stopping times τ1, τ2, τ given by

τ1 := inf{n ∈ N : Sn = b}, τ2 := inf{n ∈ N : Sn = −a}, τ := min(τ1, τ2).

(i) There holds τ1 < ∞ and τ2 < ∞ a.e. on [0, 1).
(ii) There holds P (τ = τ1) = a

a+b and P (τ = τ2) = b
a+b .

The proof of the lemma is given in Subsection 8.1 of the Appendix.
The transformation we describe here acts on functions in L∞(I) as follows. Let G ∈

L∞(I; RN ). Then, we define the function RIG := G ◦ ψI , where ψI : I → I is given by

ψI(x) =
{

ψJ,I−(x), if x belongs to some J ∈ S−(I)
ψJ,I+(x), if x belongs to some J ∈ S+(I)

, for almost every x ∈ I. (4.3)

It is clear that ψI : I → I is a measure-preserving transformation.
The “small step” transform described here is obtained though iterating the above 

transform in every stopping interval. Namely, we first apply the above construction on the 
function F , along the interval [0, 1). We thus obtain a function R[0,1)F ∈ L∞([0, 1); RN ). 
Then, we apply the above transform on the function (R[0,1)F )|I along the interval I, 
producing new stopping intervals, for all I ∈ S ([0, 1)), and afterwards we repeat this 
along every stopping interval that will have come up, etc. Therefore, after this process 
has been completed we will have obtained a new function F̃ ∈ L∞([0, 1); RN ).

It is important to note that in fact this transform (called in what follows “small step” 
transform of order d) amounts just to a composition of limiting functions with a certain 
measure-preserving transformation (so in particular, it does not matter whether we apply 
it to a martingale as a whole or to each of its coordinates separately). Indeed, it is clear 
that F̃ = F ◦ Φ, where Φ : [0, 1) → [0, 1) is the measure-preserving transformation 
given at almost every point of [0, 1) as the composition of all the measure-preserving 
transformations ψI : I → I, where I runs over [0, 1) and all stopping intervals containing 
that point (note that the order of composition respects inclusion of dyadic intervals).
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We now specialize to the case N = 4 and F = (w, σ, f , g). We write then F̃ =
(w̃, ̃σ, ̃f , ̃g), where tilde denotes just composition with the measure preserving transfor-
mation Φ. In particular, w̃, ̃σ are weights on [0, 1) with w̃σ̃p−1 = 1 a.e. on [0, 1).

4.1.2. Getting the damage
We first show that the “small step” transform preserves “damage” for Haar multipliers.

Lemma 4.2. Let the functions f , g, ̃f , ̃g be as above. There holds∑
I∈D

|I| · |ΔI f̃ | · |ΔI g̃| =
∑
J∈D

|J | · |ΔJ f | · |ΔJg|.

Proof. First of all, it is immediate by translation and rescaling invariance that∑
J∈S (I0)

∑
K∈D(J)

|ΔK f̂ | · |ΔK ĝ| · |K| =
∑

J∈D(I0)
J �=I0

|ΔJ f | · |ΔJg| · |J |,

where I0 = [0, 1) and f̂ := RI0f , ĝ := RI0g. Therefore, since the transform is given by 
iteration of the same fundamental transform over [0, 1) and all stopping intervals, up to 
translation and rescaling, it suffices only to verify that∑

K∈D(I0)\
(⋃

J∈S (I0) D(J)
) |ΔK f̂ | · |ΔK ĝ| · |K| = |ΔI0f | · |ΔI0g| · |I0|. (4.4)

It is easy to verify that

ΔK f̂ = 1
d

ΔI0f , ∀K ∈ D(I0) \

⎛⎝ ⋃
J∈S (I0)

D(J)

⎞⎠ , (4.5)

and similarly for g. It follows that∑
K∈D(I0)\

(⋃
J∈S (I0) D(J)

) |ΔK f̂ | · |ΔK ĝ| · |K|

= 1
d2

⎛⎜⎝ ∑
K∈D(I0)\

(⋃
J∈S (I0) D(J)

) |K|

⎞⎟⎠ |ΔI0f | · |ΔI0g|.

Therefore, it suffices to verify that

∑
|K| = 1

d2 |I0|, (4.6)

K∈T (I0)
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where T (I0) := D(I0) \
(⋃

J∈S (I0) D(J)
)

. Consider the limiting function S =∑
K∈T (I0) hK (the sum should be understood in both the a.e. on I0 and L2(I0) senses). 

By the definition (4.2) of the stopping intervals for I0 we obtain |S| = d a.e. on I0. In 
view of orthogonality of Haar functions, it follows that∑

K∈T (I0)

|K| =
∑

K∈T (I0)

‖hK‖2
L2(I0) = ‖S‖2

L2(I0) = d2|I0|,

concluding the proof. �
Remark 4.3. Consider the dyadic Hardy-Littlewood maximal functions M f , M f̃ of f , ̃f
respectively. We claim that M f̃ ≥ (M f) ◦ Φ a.e. on [0, 1).

Indeed, note first that |̃f | = |f | ◦ Φ = |f ◦ Φ| = |f̃ |, so |f̃ | is obtained from |f | through 
the same “small step” transform as f̃ is obtained through f . It suffices now to note that 
for all I ∈ D and for all G ∈ L∞(I) we have

〈RIG〉J = 〈G〉I± , ∀J ∈ S±(I).

4.1.3. Supressing dyadic smoothness constants
We next show that the “small step” construction as given above provides very tight 

control over dyadic smoothness constants, provided d is large enough.

Lemma 4.4. Let the weights w, w̃ be as above. Given ε > 0, assume that d > (Sd
w − 1)/ε. 

Then, the dyadic smoothness constant Sd
w̃ of the weight w̃ is less than 1 + ε.

Proof. First of all, it is immediate by rescaling and translation invariance that for all 
I ∈ D and for all weights ρ on I, the dyadic smoothness constant of the weight (RIρ)|J is 
not larger than Sd

ρ , for all J ∈ S (I). Therefore, since the transform is given by iteration 
of the same fundamental transform over [0, 1) and all stopping intervals, up to translation
and rescaling, it suffices only to verify that

max
( 〈ŵ〉K−

〈ŵ〉K+

,
〈ŵ〉K+

〈ŵ〉K−

)
≤ 1 + ε, ∀K ∈ D(I0) \

⎛⎝ ⋃
J∈S (I0)

D(J)

⎞⎠ , (4.7)

where I0 = [0, 1) and ŵ := R[0,1)w, provided that d > (Sd
w − 1)/ε.

Let K ∈ D(I0) \
(⋃

J∈S (I0) D(J)
)

be arbitrary. We have ΔKŵ = (1/d)ΔI0w. Moreover, 
K+ can be written as a union of stopping intervals (up to a set of zero measure), therefore 
〈ŵ〉K+ = a〈w〉(I0)− + (1 − a)〈w〉(I0)+ , for some a ∈ [0, 1]. It follows that

∣∣∣∣ 〈ŵ〉K−

〈ŵ〉K+

− 1
∣∣∣∣ =

|〈ŵ〉K− − 〈ŵ〉K+ |
〈ŵ〉K+

≤ 1
d

·
|〈w〉(I0)+ − 〈w〉(I0)− |

min(〈w〉(I0)+ , 〈w〉(I0)−) .
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Without loss of generality, we may assume that 〈w〉(I0)− ≤ 〈w〉(I0)+ (the other case is 
symmetric). Then, we have

1
d

·
|〈w〉(I0)+ − 〈w〉(I0)− |

min(〈w〉(I0)+ , 〈w〉(I0)−) = 1
d

·
〈w〉(I0)+ − 〈w〉(I0)−

〈w〉(I0)−

≤ 1
d

(Sd
w − 1) < ε.

Similarly 〈ŵ〉K+/〈ŵ〉K− < 1 + ε, concluding the proof. �
4.1.4. Respecting dyadic Muckenhoupt characteristics

We next show that the “small step” construction does not ruin dyadic Muckenhoupt 
constants, up to constants depending only on p. Namely, we claim that [w̃, ̃σ]Ap,D ≤
2p[w, σ]Ap,D. To see that, note first that it immediate from translation and rescaling 
invariance that for all J ∈ S (I0) we have [ŵ|J , ̂σ|J ]Ap,D(J) ≤ [w, σ]Ap,D(I0), where 
I0 := [0, 1) and ŵ := R[0,1)w, σ̂ := R[0,1)σ. Therefore, since the transform is given 
by iteration of the same fundamental transform over [0, 1) and all stopping intervals, up 
to translation and rescaling, it suffices only to verify that

〈ŵ〉K〈σ̂〉p−1
K ≤ 2p[w, σ]Ap,D(I0), ∀K ∈ D(I0) \

⎛⎝ ⋃
J∈S (I0)

D(J)

⎞⎠ . (4.8)

Let K ∈ D(I0) \
(⋃

J∈S (I0) D(J)
)

be arbitrary. Since K can be written as a union 

of stopping intervals (up to a set of zero measure), we have 〈ŵ〉K = a〈w〉(I0)− + (1 −
a)〈w〉(I0)+ and 〈σ̂〉K = a〈σ〉(I0)− +(1 −a)〈σ〉(I0)+ , for some a ∈ [0, 1]. Then, the following 
lemma, whose proof is given in Subsection 8.3 in the Appendix, implies immediately the 
required result.

Lemma 4.5. Let x1, y1, x2, y2 > 0 and A > 0, such that

x1yp−1
1 ,

(
x1 + x2

2

)(
y1 + y2

2

)p−1

, x2yp−1
2 ≤ A.

Then, there holds

(x1 + a(x2 − x1))(y1 + a(y2 − y1))p−1 ≤ 2pA, ∀a ∈ [0, 1].

4.1.5. Respecting weighted norms
Finally, we show that weighted norms do not get larger. Consider the function g̃ =

g̃/w̃. Obviously g̃ = g ◦ Φ. It follows that

‖g̃‖p′

Lp′
(w̃)

=
ˆ

[0,1)

|g(Φ(x))|p′
w(Φ(x))dx =

ˆ

[0,1)

|g(x)|p′
w(x)dx = ‖g‖p′

Lp(w). (4.9)

Similarly ‖f̃‖p
p = ‖f‖p

p , where f̃ = f̃/σ̃.
L (σ̃) L (σ)
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4.2. The “small step” construction for Haar shifts

In this section, we describe one variant of the “small step” construction of the previous 
subsection which exploits the special structure of the martingales in the example of 
Subsection 3.2

Let p ∈ (1, ∞) and M > 2. Recall the Haar shift T on [0, 1) considered in Subsection 
3.2:

Tf := 2
∑
I∈D

(ΔIf)(hI+ − hI−).

Then, we have

〈Tf, g〉 =
∑
I∈D

|I|(ΔIf)(ΔI+g − ΔI−g), ∀f, g ∈ L2([0, 1)).

Let us first recall the “large step” example of Subsection 3.2. Set I0 = [0, 1) and 
In =

[
0, 1

2n

)
, Jn =

[ 1
2n , 1

2n−1

)
, for all n = 1, 2, . . .. Recall that in Subsection 3.2 we 

showed that there exist bounded weights w, σ on [0, 1) with σ = w−1/(p−1),

M ≤ w([0, 1))σ([0, 1))p−1, [w]Ap,D ≤ 4Me, w([0, 1)) ∼ M, σ([0, 1)) ∼p 1,

with the additional properties ΔIw = ΔIσ = 0, for all I ∈ D \ {I0, I1, I2, . . .}, ΔIl
w ≤ 0, 

for all l = 0, 1, 2, . . ., and nonzero bounded functions f ∈ Lp(σ), g ∈ Lp′(w) with

〈fσ, T (gw)〉 �p M‖f‖Lp(σ)‖g‖
Lp′

(w). (4.10)

We recall that g = −1[0,1), so g := gw = −w. Moreover, for the function f := fσ on 
[0, 1) we have 〈f〉[0,1) = 0, and for all I ∈ D we have ΔIf �= 0 if and only if I = Jn for 
some positive integer n, in which case ΔIf > 0.

Based on this example we want to construct weights w̃, ̃σ with σ̃ = w̃−1/(p−1), and 
non-zero functions f̃ ∈ Lp(w̃), g̃ ∈ Lp′(σ̃) such that (4.10) holds with f̃ , g̃, w̃, σ̃ in place 
of f , g, w, σ. Again, it will be essential that the dyadic smoothness constants of the 
new weights are as close to 1 as we want. This new example will be used to obtain a 
“small step” example for the Hilbert transform in Subsection 7.1. For reasons to become 
apparent there, we will want the martingale differences of the function g̃ := g̃w̃ over 
dyadic intervals of odd generation to vanish. Thus, we cannot just mimic naively the 
“small step” construction of the previous subsection.

4.2.1. “Small step” random walk on a triangle
Consider the R4-valued martingale X induced by the function F = (w, σ, g, f). Then, 

we have ΔIX = 0 for all I ∈ D different from I0, I1, I2, . . . and J1, J2, J3, . . .. Notice 
that the vectors ΔIn

X, Δ(In)+X are either linearly independent (in fact orthogonal to 
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Fig. 4. The triangle corresponding to interval Il.

each other), or one of them is equal to 0, for all n = 0, 1, 2, . . .. Therefore, the random 
walk corresponding to the four-dimensional martingale X takes place on the “union” of 
a family of isosceles triangles in R4 (maybe degenerate) as in Fig. 4, corresponding to 
the intervals I0, I1, I2, . . . respectively.

Starting with the interval I0 = [0, 1), we replace the constant function X0 ≡ 〈X〉I0

with the function X1 = 〈X〉I0 + (ΔI0X)hI0 + (Δ(I0)+X)h(I0)+ . This function is constant 
on (I0)− = I1 and the children (I0)+− = (J0)−, (I0)++ = (J0)+ of (I0)+ = J0. In each 
of the children of (I0)+, we just stop, i.e. the function F is constant there, while in the 
interval (I0)− = I1 we repeat this procedure, starting with the constant function X1|I1 , 
and using the martingale differences of X over I1, (I1)+ this time, and then we repeat 
the same pattern in the interval (I1)− = I2, etc. So the random walk corresponding to 
X consists of rescaled and translated copies of the same pattern, independent from each 
other. Our main object now is to replace the term (ΔIn

X)hIn
+ (Δ(In)+X)h(In)+ by a 

linear combination of Haar functions with “smaller” coefficients, reflecting a “small step” 
random walk, for all n = 0, 1, 2, . . ..

Choose a sufficiently large positive integer d > 100. Condider the model triangle on 
R2 with vertices −e1, e1 + e2 and e1 − e2, where e1 = (1, 0) and e2 = (0, 1). Given a 
dyadic subinterval I of [0, 1) of even generation, we can describe a random walk in I as 
follows. Starting with the constant function taking value c[0,1) = 0 ∈ R2, we replace it 
with the function (1/d)hIe1 +(1/2d)hI+e2. Notice that the latter function is constant on 
grandchildren on I. We then repeat the same pattern in the grandchildren of I, and we 
repeat again this pattern in the grandchildren of the latter intervals, etc. The pattern 
continues until for some interval J which will have arisen as a grandchild during this 
process, the current constant value cJ on J is located on the boundary of the triangle. 
We will say that such intervals J are preliminary stopping intervals. In particular, the 
preliminary stopping intervals are of even generation. Denote the family of all preliminary 
stopping intervals by S̃ (I).
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If J is a preliminary stopping interval such that the constant value cJ on J is located on 
a side of the model triangle other than its base (that is the vertical side of the triangle), 
then we replace the constant function cJ on J with the function cJ + (1/d)hJe1 ±
(1/2d)hJe2, where ± = +, respectively ± = −, if cJ is located on the upper, respectively 
lower, side of the model triangle. Then we repeat this in the grandchildren of J , and 
then we repeat the pattern in the grandchildren of the latter intervals, etc. The pattern 
continues until for some interval K which will have arisen as a grandchild during this 
process, the current constant value cK on K is located on one of the three vertices of the 
triangle. We will say that such intervals K are stopping intervals. In particular, these 
stopping intervals are of even generation.

If J is a preliminary stopping interval such that the constant value cJ on J is located 
on the base of the triangle, then we replace the constant function cJ on J with the 
function cJ + (1/2d)hJe2. Then we repeat this in the grandchildren of J , and then we 
repeat the pattern in the grandchildren of the latter intervals, etc. The pattern continues 
until for some interval K which will have arisen as a grandchild during this process, the 
current constant value cK on K is located on one of the two vertices of the base. We 
will also say that such intervals K are stopping intervals. In particular, these stopping 
intervals are of even generation.

We will denote the family of all stopping intervals by S (I). We will also denote the 
family of all stopping intervals J such that cJ is located on the vertex (i.e. −e1) opposite 
to the base of the model triangle, respectively on the upper vertex (i.e. e1 + e2) of the 
base, respectively on the lower vertex (i.e. e1 −e2) of the base, by S−(I), respectively by 
S++(I), respectively by S+−(I). We also set S+(I) = S++(I) 

⋃
S+−(I). We will call 

the elements of S−(I), respectively S+(I), left, respectively right, stopping intervals.
Given now a function G ∈ L∞(I; R4), the variant of the “small step” transform we 

are describing here maps it to the function RIG := G ◦ ψI , where (compare with (4.3))

ψI(x) =
{

ψJ,I−(x), if x ∈ J for some J ∈ S−(I)
ψJ,I+±(x), if x ∈ J for some J ∈ S+±(I)

, ∀x ∈ I. (4.11)

The symmetries of the walk imply that ψI : I → I is measure preserving.
The variant of the “small step” transform described here is obtained through iterating 

the above fundamental transform as follows. We first apply the above construction on the 
function F , along the interval [0, 1). We thus obtain a function R[0,1)F ∈ L∞[0, 1); R4). 
In each interval in S+(I), we just stop (recall that the original function F is constant on 
the children on I0), while we apply the above transform on the function (R[0,1)F )|I along 
the interval I, for all I ∈ S−([0, 1)), and then we stop on every right stopping interval 
that will have come up, while we repeat the same transform along every left stopping 
interval that will have come up, etc. Therefore, after this process has been completed we 
will have obtained a new function F̃ ∈ L∞([0, 1); R4).

Recall that the original function F is constant on the children on (In)+, for all n =
0, 1, 2, . . .. Note also that In+1 = (In)−, for all n = 0, 1, 2, . . .. It follows that F̃ = F ◦ Φ, 
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where Φ : [0, 1) → [0, 1) is the measure-preserving transformation given at almost every 
point of [0, 1) as the composition of all the measure-preserving transformations ψI : I →
I, where I runs over [0, 1) and all left stopping intervals containing that point (note that 
the order of composition respects inclusion of dyadic intervals). We write F̃ = (w̃, ̃σ, ̃g, ̃f), 
where tilde denotes just composition with the measure preserving transformation Φ.

Notice that I0 is an interval of even generation, so its grandchildren are also of even 
generation, etc. It is then clear that the functions w̃, ̃σ are in fact obtained from the 
functions w, σ respectively thought “small step” transform of order d as in the previous 
section, but “skipping” intervals of odd generations (i.e. omitting the Haar functions 
corresponding to them). This means that dyadic intervals I of odd generation “do not 
split”, i.e. 〈w̃〉I = 〈w̃〉I− = 〈w̃〉I+ , and similarly for σ̃. It is clear that this will be only a 
minor modification of the construction described in Subsection 4.1. In particular, w̃, σ̃

are weights on [0, 1) with w̃σ̃p−1 = 1 a.e. on [0, 1), and for large enough d the weights 
w̃, σ̃ will possess the required dyadic Muckenhoupt characteristic and dyadic smoothness 
properties.

4.2.2. Getting the damage
We show that the “small step” transform we just described preserves damage for the 

Haar shift T , i.e. that 〈f̃ , T (g̃)〉 � 〈f , T (g)〉.

Lemma 4.6. Let the functions f , g, ̃f , ̃g be as above. There holds∑
I∈D

(ΔI g̃)(ΔI+ f̃ − ΔI− f̃)|I| �
∑
J∈D

(ΔJg)(ΔJ+f − ΔI−f)|J |.

Proof. First of all, it is immediate by translation and rescaling invariance that∑
J∈S (I0)

∑
K∈D(J)

(ΔK ĝ)(ΔK+ f̂ − ΔK− f̂)|K| =
∑

J∈D(I0)
J �=I0,(I0)+

(ΔJg)(ΔJ+f − ΔJ−f)|J |,

where I0 = [0, 1) and f̂ := R[0,1)f , ĝ := R[0,1)g. Note also that Δ(I0)+g = 0. Therefore, 
as in Lemma 4.2, it suffices only to prove the following analog of (4.4):∑

I∈T (I0)

(ΔI ĝ)(ΔI+ f̂ − ΔI− f̂)|I| � (ΔI0g)(Δ(I0)+f − Δ(I0)−f)|I0|, (4.12)

where T (I0) := D(I0) \
(⋃

J∈S (I0) D(J)
)

. Notice that there is an implied absolute 

constant in the inequality in (4.12), unlike (4.4), where there was just equality. This 
is no problem (for instance, there will not be accumulation of this constant), since the 
transform is given by iteration of the same fundamental transform over [0, 1) and all left 
stopping intervals, up to translation and rescaling (essentially, the iterative nature of the 
transform and translation and rescaling invariance imply that one needs only to verify 
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the damage inside each triangle separately, and these verifications are independent from 
each other).

First of all, notice that only intervals in T̃ (I0) := D(I0) \
(⋃

J∈S̃ (I0) D(J)
)

that are 

of even generation may contribute to the sum in (4.12), and for each such interval I

we have ΔI ĝ = (1/d)ΔI0g, ΔI+ f̂ = (1/2d)Δ(I0)+f and ΔI− f̂ = 0 = Δ(I0)−f . Therefore, it 
suffices to check that ∑

I∈T̃e(I0)

|I| � d2, (4.13)

where T̃e(I0) is the family of all intervals in T̃ (I0) that are of even generation. Orthog-
onality of Haar functions yields

∑
I∈T̃e(I0)

|I| ∼
∑

I∈T̃e(I0)

∥∥∥∥hIe1 + 1
2hI+e2

∥∥∥∥2

L2(I0;R2)
= ‖S‖2

L2(I0;R2),

where we are considering the limiting function S :=
∑

I∈T̃e(I0)
(
hIe1 + 1

2hI+e2
)

(the sum 

should be understood in both the pointwise a.e. on I0 and L2(I0; R2) senses). Rescaling 
the canonical triangle by d we see that this limiting function is taking values on the 
boundary of the triangle in R2 with vertices (−d, 0), (0, d), (0, −d). Since the distance 
of the origin from the boundary of this triangle is d/

√
5, we obtain |S| ≥ d/

√
5, therefore 

‖S‖2
L2(I0;R2) � d2, concluding the proof. �

4.2.3. Respecting weighted norms
Identically to (4.9) we have ‖g̃‖p′

Lp′
(w̃)

= ‖g‖p′

Lp′
(w)

and ‖f̃‖p
Lp(σ̃) = ‖f‖p

Lp(σ), where 

g̃ := g̃/w̃ and f̃ := f̃/σ̃.

5. Iterated remodeling

In this section we describe the method of iterated remodeling, which is a variant of 
the powerful method of remodeling, introduced by F. Nazarov in [9].

Throughout this section, for all intervals I, J we denote by ψI,J the unique orientation-
preserving affine transformation mapping I onto J .

5.1. Periodisations

Let f ∈ L∞([0, 1); Rn). For a given interval I and for a given positive integer N , we 
define the periodisation ΠN

I f of f of frequency N over I as the unique periodic function 
over I of period |I|

2N consisting of 2N repeated copies of the function f , i.e. ΠN
I f = f ◦ψN

I , 
where ψN

I (x) = ψJ,I(x) for all x ∈ J , for all J ∈ chN (I), see Fig. 5 (here we abuse the 
terminology regarding the use of the term “frequency”).



S. Kakaroumpas, S. Treil / Advances in Mathematics 376 (2021) 107450 29
Fig. 5. Periodization Π2
I f of function f .

Note that ψN
I : I → I is measure preserving. We define the family EN(I) of exceptional 

stopping intervals for I of order N as the family of all intervals in chN (I) that touch 
the boundary of I (so EN (I) has exactly two elements), and the family RN (I) of regular 
stopping intervals for I of order N as the family of all intervals in chN (I) that do not 
touch the boundary of I.

5.2. From Bourgain’s localizing trick to Nazarov remodeling and iterated remodeling

F. Nazarov’s method of remodeling [9] had been inspired by a new technique for 
localizing the action of operators introduced by J. Bourgain in [1]. There, Bourgain 
showed that UMD property for a Banach space X follows from the boundedness of the 
Hilbert transform over Lp(T ; X) for all 1 < p < ∞, where T denotes the unit circle. 
Bourgain related estimates for the Lp norm of the Hilbert transform, a non-localized 
operator, to estimates for the Lp norm of the square function, a well-localized operator, 
through the trick of iteratively replacing portions of functions with their periodisations.

Bourgain’s [1] basic idea was the following. Given a function f ∈ L2(T ), one can 
consider its Fourier series

f̂(0) +
∑

m∈Z\{0}
f̂(m)zm. (5.1)

One way to make the action of a bounded in L2(T ) operator on f localized is to create 
very “large gaps” in expansion (5.1), by considering the function f̃ with Fourier series

f̃ = f̂(0) +
∑

m∈Z\{0}
f̂(m)zmNm ,

where the Nm’s are large enough positive integers chosen through an inductive procedure. 
Here one exploits the fact that zN converges weakly in (say) L2(T ) to 0 as N → ∞. 
Note that the “transformed” Fourier series is still a Fourier series.

Given now an X-valued function f (say bounded) on [0, 1)) (we freely identify T with 
[0, 1)), one can consider its martingale difference decomposition in L2([0, 1); X):

f = 〈f〉[0,1) +
∑

ΔIf. (5.2)

I∈D
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In general, when the Hilbert transform acts on f its action will not be localized, i.e. 
there will be interactions between martingale differences over different intervals. One 
could then think of attempting to somehow introduce very large “gaps” in (5.2), inspired 
from the respective situation in Fourier series. This is not directly possible, and instead 
one has to notice that the idea in the setting of Fourier series was to replace each zm with 
(zNm)m, which is a just a periodisation of zm. Then one notices that the periodisations of 
a given martingale difference converge weakly to 0 in (say) L2 as the frequency increases 
(see Lemma 7.2). Therefore, one can attempt to replace each martingale difference in 
(5.2) with a periodisation of it. The frequencies would be chosen large enough through an 
inductive procedure. Note that the “transformed” martingale difference decomposition 
should be still a martingale difference decomposition, thus the periodised martingale 
differences should still somehow respect the hierarchy of dyadic intervals.

Bourgain [1] not only came up with the above intuition, but also found a sleek way 
to make it precise. Namely, given an X-valued function f (say bounded) on the unit 
interval I0 := [0, 1), one begins by choosing a frequency N(I0) and replacing f with its 
periodisation f̃1 := ΠN(I0)

I0
f . Consider the collection S 1 := chN(I0)(I0). Note that

Ech(S 1)[f̃1] − 〈f〉I0 = ΠN(I0)
I0

(ΔI0f). (5.3)

Then, for all I ∈ ch(S 1), one can replace the function f̃1|I with a periodisation 
ΠN(I)

I (f̃1|I) of it over I, for some choice of frequency N(I). After this has been com-
pleted for every interval in ch(S 1), one will have obtained a new function f̃2 and a new 
collection of intervals S 2 :=

⋃
I∈ch(S 1) chN(I)(I). Then, one can repeat this process in 

each of the intervals in ch(S 2) for the function f̃2, etc.
One finally obtains a new function f̃ . Note that this function is given as the com-

position of f with a certain measure-preserving transformation (depending only on 
the choices of the frequencies), basically because each step in the iterative procedure 
amounted to composing with a measure-preserving transformation. Notice also that the 
choices of frequencies of each step of periodisation are separated from each other, so one 
has really complete freedom in performing them.

It is important to note that the function f̃ can be obtained as the limit (in any reason-
able sense) of a sequence of averaged periodisations Ech(S 1)[f̃1], Ech(S 2)[f̃2], Ech(S 3)[f̃3],
. . ., enabling us to keep track of the averages of the new function. It is also essential to 
note that since the iterative scheme consists in an iteration of the same fundamental 
construction (that of replacing by a periodisation), up to translating and rescaling, one 
deduces that an appropriately rescaled and translated version of (5.3) will hold for each 
iteration over every interval in ch(S 1), ch(S 2), ch(S 3), . . ., namely

Ech(chN(I)(I))[f̃
k+1] − 〈f̃k〉I = ΠN(I)

I (ΔI f̃k), ∀I ∈ ch(S k), ∀k = 1, 2, . . . ,

so each difference Ech(S k+1)[f̃k+1] −Ech(S k)[f̃k] can be written as a sum of periodisations 
of the martingale differences of f over the intervals in chk([0, 1)). Thus f̃ satisfies the 
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original intuition. It is also worth noting that for the purpose of just obtaining estimates 
it is not necessary to go all the way down to f̃ , one can stop only after a finite number 
of steps.

J. Bourgain’s technique in [1] works really well in the unweighted setting of Banach 
space valued estimates, but in situations of weighted estimates, such as the setup of 
Sarason’s conjecture, it has the drawback that in general it gives no control over strong 
dyadic smoothness of weights, even if the original weights are dyadically smooth, basically 
because it gives no control over averages taken over consecutive dyadic intervals, so it is 
not well-suited for problems involving fattened Ap characteristics. In order to overcome 
this difficulty, F. Nazarov [9] came up with the idea of “keeping endpoints”, as a means 
of controlling intervals touching each other.

Namely, one replaces f with the function f̃1 which is equal to ΠN(I0)
I0

f on each interval 
in chN(I0)(I0) not touching the boundary of I0, but equal to just the average 〈f〉I0

=
〈ΠN(I0)

I0
f〉J over each interval J ∈ chN(I0)(I0) that touches the boundary of I0. Moreover, 

one considers the collection S 1 of intervals in chN(I0)(I0) that do not touch the boundary 
of I0, and simply forgets the ones that touch it.

Then, one follows the same iterative scheme as above, always putting averages over 
intervals touching the boundary, and then forgetting those intervals. One has again 
complete freedom in choosing the frequencies, and this allowed F. Nazarov to re-
duce the estimate of the norm of the Hilbert transform over a weighted L2 space to 
estimating the norm of the square function over the same weighted L2 space. Just 
as before, f̃ can be realized as the limit of the sequence of averaged counterparts 
Ech(S 1)[f̃1], Ech(S 2)[f̃2], Ech(S 3)[f̃3], . . .. The latter sequence allowed F. Nazarov to 
deduce that this process, termed by F. Nazarov remodeling, produces (as will be ex-
plained below in 6.1.2) strongly dyadically smooth weights, provided that the original 
weights are dyadically smooth, precisely because original averages are put in intervals 
that touch the boundary. Of course, one can again stop only after a finite number of 
steps.

Although F. Nazarov’s remodeling from [9] behaves really well with respect to smooth-
ness, it has the drawback that the new functions are not given just as composition of the 
original functions with a certain measure-preserving transformation (as was the case in 
Bourgain’s technique [1]) due to putting averages over intervals touching the boundary 
and then forgetting these intervals. As a consequence, one-weight situations of weights 
w, σ satisfying wσp−1 = 1 a.e. on [0, 1), as the ones that we are primarily interested in 
here, will in general be transformed to two-weight situations of weights w̃, ̃σ not satisfying 
any such relation. To overcome this difficulty and at the same time preserve smoothness, 
one has essentially to not just forget the intervals that touch the boundary, but rather 
apply again remodeling in them, and do the same for all intervals touching the boundary 
that will ever come up. Thus, one can say that one has to apply iterated remodeling.

We also note that if one is interested in estimates for the norm of the Hilbert transform 
over weighted Lp spaces for any 1 < p < ∞ (not just p = 2), then one cannot just reduce 
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the estimate of this norm to the estimate of the norm of the square function or the Haar 
multiplier over the same weighted space, but rather one has to use some other slightly 
more complicated Haar shift, like the one introduced in Subsection 3.2:

Tf := 2
∑
I∈D

(ΔIf)(hI+ − hI−).

This will force us to move one generation deeper during remodeling, that is to consider 
grandchildren rather than just children of intervals in S 1, S 2, . . ., essentially because 
this Haar shift involves interaction of intervals with their children. We emphasize (and 
it will become clear in Subsection 6.1) that for the purpose of obtaining examples just 
for dyadic operators (e.g. Haar multipliers, dyadic maximal function) one can use just 
children of intervals. The reduction of the estimate for the Hilbert transform to that for 
the special Haar shift of Subsection 3.2 is done in Subsection 7.1.

5.3. The iterative construction

We now describe in detail iterated remodeling.
Let X be a uniformly bounded Rn-valued martingale on [0, 1), induced by a function 

F ∈ L∞([0, 1); Rn) (one should again think here of the special case of weighted estimates, 
where n = 4 and X is induced by the bounded function F = (w, σ, f , g), where f := fσ

and g := gw).
Set I0 := [0, 1) and F̃ 0 := F . Pick a frequencly N(I0) and replace F with the function 

F̃ I0 := ΠN(I0)
I0

F . We can consider a family RN(I0)(I0) of regular stopping intervals 
(intervals not touching the boundary) and a family EN(I0)(I0) of exceptional stopping 
intervals (intervals touching the boundary).

Then, for all J ∈ EN(I0)(I0), we do the same thing in J for the function (F̃ I0)|J =
F ◦ψJ,I0 , with respect to some new choice of frequency N(J), obtaining a family RN(J)(J)
of regular stopping intervals and a family EN(J)(J) of exceptional stopping intervals. We 
afterwards repeat this in each new exceptional stopping interval that will have come 
up, etc. We continue this until the entire I0 has been covered, up to a Borel set of 
zero measure, by regular stopping intervals. We note that this will happen because the 
sum of the measures of the exceptional stopping intervals decays at each step at least 
geometrically with ratio 1/2.

After this process has been completed, we will have obtained a new function F̃ 1. We 
denote by S 1 the family of all regular stopping intervals that will have been collected 
during this procedure. We also denote by Ŝ 1 the family of all exceptional stopping 
intervals that will have been collected during this procedure, together with I0. We define 
the starting intervals of order 1 as all elements of the family Ŝ 1. Note that the elements 
of S 1 are pairwise disjoint and 

⋃
S 1 = I0 up to a Borel set of zero measure. Note also 

that F̃ 1|I = F ◦ ψI,I0 , for all I ∈ S 1.
For the next step, we repeat the same procedure in the interval I and for the function 

F̃ 1|I , for all I ∈ ch2(S 1) (and not just ch(S 1)). Here we note that F̃ 1|I = F ◦ ψI,J
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for some grandchild J of I0, for all I ∈ ch2(S 1). After this has been completed for all 
intervals in ch2(S 1), we will have obtained a new function F̃ 2 ∈ L∞([0, 1); Rn). We 
denote by S 2 the family of all regular stopping intervals that will have been collected 
during this step. Moreover, we denote by Ŝ 2 the family of all new exceptional stop-
ping intervals that will have been collected during this step, together with all intervals 
in ch2(S 1). We define the starting intervals of order 2 as all elements of the family 
Ŝ 2.

Afterwards, we repeat the same procedure along the interval I and for the function 
F̃ 2|I , for all I ∈ ch2(S 2), etc.

After this process has been completed, we will have obtained a sequence of functions 
F̃ 1, F̃ 2, F̃ 3, . . . and a new function F̃ ∈ L∞([0, 1); Rn).

5.3.1. Measure-preserving transformation
It is important to note that this process of iterated remodeling amounts just to com-

position of limiting functions with a certain measure-preserving transformation that 
depends only on the choice of frequencies. Indeed, is clear that for all l = 0, 1, 2, . . ., there 
exists a measure-preserving transformation Ψl : [0, 1) → [0, 1) such that F̃ l = F̃ l−1 ◦ Ψl, 
for all l = 1, 2, . . .. Then, we have F̃ = F ◦ Ψ, where Ψ : [0, 1) → [0, 1) is the measure-
preserving transformation given at almost every point of [0, 1) as the composition of 
these measure-preserving transformations Ψ1 ◦ Ψ2 ◦ Ψ3 ◦ . . .. Note that Ψ depends only 
on the choices of frequecies N(I), I ∈ Ŝ :=

⋃∞
k=1 Ŝ k.

So in particular, it does not matter whether we apply iterated remodeling with respect 
to a given choice of frequencies to a martingale as a whole or to each of its coordinates 
separately with respect to the same choice of frequencies.

5.3.2. Averaged counterparts
Note that the inductive procedure will have also produced the families S 1, S 2, S 3, . . .

of all regular stopping intervals that will have been collected during the first, second, 
third etc respectively step, and the families Ŝ 1, Ŝ 2, Ŝ 3, . . . of all starting intervals of 
order 1, 2, 3, . . . respectively. Then, one can realize F̃ as the limit, say, pointwise a.e. 
on [0, 1) and in L2([0, 1); Rn), of the sequence of averaged counterparts X̃0, X̃1, X̃2, . . ., 
where X̃0 := X0 ≡ 〈F 〉I0 and X̃k := Ech2(S k)[F̃ k], for all k = 1, 2, . . ..

Remark 5.1. It is clear that for all k = 1, 2 we have Echk(S 1)[F̃ ] = Echk(S 1)[F̃ 1] = Xk◦Ψ, 
where recall that Xk = Echk(I0)[F ]. Since the iterative scheme consists in an iteration of 
the same fundamental construction, up to translating and rescaling, we deduce that

Echk(S l)[F̃ ] = X2l+k ◦ Ψ, ∀k = 1, 2, ∀l = 1, 2, . . . ,

where X2l+k = Ech2l+k(I0)[F ]. In particular, the family of all averages of F̃ over dyadic 
intervals coincides with the family of all averages of F over dyadic intervals. This had 
been noted in [9, §10].
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5.3.3. Martingale difference decomposition
We now provide a description for the martingale difference decomposition of the 

function F̃ . Note here that the iterative scheme involved considering grandchildren of 
S 1, S 2, . . ., rather than just children. This means that the martingale difference de-
composition of F̃ will involve periodisations of second order martingale differences of 
F , and not just of martingale differences of F (unlike Bourgain’s [1] construction and 
Nazarov’s [9] constructions). At the same time, the fact that we do distinguish between 
intervals that touch the boundary and intervals that do not mean that these periodis-
ations will extend only over intervals that do not touch the boundary, so there will be 
quasi-periodisations rather than just periodisations (like Nazarov’s [9] construction, but 
unlike Bourgain’s [1] construction).

Namely, define the second order martingale difference Δ2
If of a function f ∈

L∞(I; Rn) over an interval I by

Δ2
If := Ech2(I)f − 〈f〉I1I = ΔIf +

∑
J∈ch(I)

ΔJf. (5.4)

Moreover, given a frequency N , define the averaged quasi-periodisation QΠN

I f of f of 
frequency N over I as the function QΠN

I f := EEN (I)∪ch2(RN (I))[ΠN
I f ], i.e.

QΠN

I f(x) =

⎧⎪⎪⎨⎪⎪⎩
(Ech2(I)[f ] ◦ ψJ,I)(x), if x belongs to some J ∈ RN (I)

〈f〉I , if x belongs to some J ∈ EN (I)
. (5.5)

Note that

QΠN

I f − 〈f〉I1I = QΠN

I (Δ2
If). (5.6)

(notice that Δ2
If is constant on the grandchildren of I). It is clear that

F̃ 1(x) = ΠN(J)
J (F ◦ ψJ,I0)(x), ∀x ∈

⋃
RN(J)(J), ∀J ∈ Ŝ 1.

Therefore, we deduce

X̃1 − X̃0 =
∑

J∈Ŝ 1

(QΠN(J)
J (F ◦ ψJ,I0) − 〈F 〉I01J), (5.7)

which implies

X̃1 − X̃0 =
∑

QΠN(J)
J (Δ2

J(F ◦ ψJ,I0)) =
∑

QΠN(J)
I0

(Δ2
I0

F ) ◦ ψJ,I0 . (5.8)

J∈Ŝ 1 J∈Ŝ 1
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For all J ∈ Ŝ 1, we call the function DJF := QΠN(J)
J (Δ2

J(F ◦ ψJ,I0)) contribution of the 
starting interval J to the martingale difference decomposition of F̃ .

We emphasize again that the iterative scheme consists in an iteration of the same 
fundamental construction, up to translating and rescaling. Therefore, an appropriately 
rescaled and translated copy of (5.8) will hold for each iteration over every interval in 
the collections ch2(S 1), ch2(S 2), . . .. Therefore, one can write

X̃k+1 − X̃k =
∑

J∈Ŝ k+1

DJF,

where for all J ∈ Ŝ k+1 we have DJF = QΠN(J)
J (Δ2

I(F ◦ ψJ,I)) for some I ∈ ch2k(I0), 
for all k = 1, 2, . . .. The reason for the “2k” is again that at the (k + 1)-th step we repeat 
the same fundamental process inside each grandchild of each regular stopping interval 
of the k-th step. In particular

F̃ = 〈F 〉[0,1) +
∑

J∈Ŝ

DJF (5.9)

in L2([0, 1); Rn), where Ŝ :=
⋃∞

k=1 Ŝ k is the family of all starting intervals.

Remark 5.2. Note that 〈QΠN

I f〉J = 〈f〉I , for all dyadic subintervals J of I that touch its 
boundary. In particular 〈QΠN

I (Δ2
If)〉J = 0, for all dyadic subintervals J of I that touch 

its boundary.
This observation, coupled with (5.8) and a simple inductive argument yields that for 

all k = 0, 1, 2 . . ., the average of X̃k over every dyadic interval that touches the boundary 
of [0, 1) is equal to 〈F 〉[0,1). It follows that the average of F̃ over every dyadic interval 
that touches the boundary of [0, 1) is equal to 〈F 〉[0,1).

6. The case of dyadic models

In this section we apply iterated remodeling to obtain examples for dyadic models 
with weights possessing the required smoothness.

6.1. Estimate for Haar multipliers

Let p ∈ (1, ∞). Let M > 2. Let δ > 0 be arbitrarily small. Recall the Haar multiplier 
Tε corresponding to any choice of signs ε = (εI)I∈D:

Tεf :=
∑
I∈D

εI(ΔIf)hI .

Recall that in Subsection 4.1 we constructed bounded weights wσ on [0, 1) with σ =
w−1/(p−1) and
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M ≤ [w]Ap,D, 〈w〉[0,1)〈σ〉[0,1)
p−1 ≤ 2p4eM

and Sd
w, Sd

σ ≤ 1 + δ, and non-zero bounded functions f ∈ Lp(σ), g ∈ Lp′(w), such that 
for the functions f = fσ, g = gw there holds

supε |〈Tε(fσ), gw〉|
‖f‖Lp(σ)‖g‖

Lp′
(w)

=
∑

I∈D |I| · |ΔIf | · |ΔIg|
‖f‖Lp(σ)‖g‖

Lp′
(w)

�p M. (6.1)

We apply the iterated remodeling transform on the martingale induced by the function 
(w, σ, f , g), for an arbitrary choice of frequencies. As it had been observed in 5.3.1, 
this is the same as applying the iterated remodeling transform separately to each of 
the functions w, σ, f , g, for the same choice of frequencies. Then, the new martingale 
is induced by the function (w̃, ̃σ, ̃f , ̃g), where tilde denotes just composition with the 
measure preserving-transformation Ψ : [0, 1) → [0, 1) of 5.3.1. Then σ̃, w̃ are weights on 
[0, 1) with σ̃ = w̃−1/(p−1) a.e. on [0, 1).

6.1.1. Respecting dyadic Muckenhoupt constants
Remark 5.1 shows that for all I ∈ D there exists J ∈ D (depending only on the 

choices of frequencies) such that 〈w̃〉I = 〈w〉J and 〈σ̃〉I = 〈σ〉J . It follows immediately 
that [w̃]Ap,D = [w]Ap,D.

6.1.2. Dominating strong dyadic smoothness via dyadic one
Let ε > 0. Assume that δ is small enough, so that (1 + δ)3 ≤ 1 + ε. We claim that 

Ssd
w̃ ≤ 1 +ε. Indeed, let X be the martingale induced by the function w. Recall from 5.3.2

that w̃ is realized as the limit of the sequence of averaged counterparts X̃0, X̃1, X̃2, . . .. 
Recall the expression (5.7):

X̃1 − X̃0 =
∑

J∈Ŝ 1

(QΠN(J)
J (w ◦ ψJ,I0) − 〈w ◦ ψJ,I0〉J1J).

Note that the function X̃0 is constant, so Ssd
X̃0 = 1, and also that Sd

w ≤ 1 + δ by 
construction. Then, the following lemma, proved by F. Nazarov in [9, §10], shows that 
Ssd

X̃1 ≤ 1 + ε. Induction then gives Ssd
X̃k ≤ 1 + ε, for all k = 0, 1, 2, . . .. It follows that 

Ssd
w̃ ≤ 1 +ε, independently of the choices of frequencies. The lemma shows that replacing 

a portion of a strongly dyadically smooth weight with an averaged quasi-periodisation of 
another dyadically smooth weight preserves the strong dyadic smoothness of the original 
weight.

Lemma 6.1. Let w be a weight on an interval I ∈ D, and assume that Ssd
w ≤ 1 + ε for 

some ε > 0. Let J be a dyadic subinterval of I, such that w is constant on J . Let v be a 
weight on J such that 〈v〉J = 〈w〉J and Sd

v ≤ 1 +δ, where δ > 0 satisfies (1 +δ)3 ≤ 1 +ε. 
Consider the weight w̃ := w + (QΠN

J v)1J − 〈v〉J1J on I, i.e.
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w̃(x) =

⎧⎪⎪⎨⎪⎪⎩
w(x), if x /∈ J

(QΠN

J v)(x), if x ∈ J

, ∀x ∈ I.

Then, there holds Ssd
w̃ ≤ 1 + ε.

Proof. Let K, L ∈ D(I) be adjacent with |K| = |L|. If either both K and L are not 
contained in J or both K and L touch the boundary of J , we have

〈w̃〉K

〈w̃〉L
= 〈w〉K

〈w〉L
≤ Ssd

w ≤ 1 + ε.

If one of K, L is contained in J and does not touch the boundary of J , then it is clear 
that 〈w̃〉K = 〈v〉K′ and 〈w̃〉L = 〈v〉L′ for some K ′, L′ ∈

⋃2
k=0 chk(J), therefore

〈w̃〉K

〈w̃〉L
≤ (Sd

v )3 ≤ (1 + δ)3 ≤ 1 + ε,

concluding the proof. �
6.1.3. Extending the weights to the entire real line

Consider now the weights w̃′, ̃σ′ on R given by

w̃′(x) =
{

w̃(x − k), ∀x ∈ (k, k + 1), if k is even
w̃(k + 1 − x), ∀x ∈ (k, k + 1), if k is odd

, ∀k ∈ Z,

and similarly for σ̃′. Obviously σ̃′ = (w̃′)−1/(p−1). Translation and reflection invariance 
shows immediately that [w̃′]Ap,D = [w̃]Ap,D([0,1)). Moreover, translation and reflection 
invariance yields that Ssd

w̃′ over [k, k + 1) is equal to Ssd
w̃ , for all k ∈ Z. Noticing now that 

for all adjacent I, J ∈ D with |I| = |J | whose common endpoint is an integer there holds 
〈w̃′〉I = 〈w̃′〉J , we deduce Ssd

w̃′ = Ssd
w̃ . Similarly Ssd

σ̃′ = Ssd
σ̃ .

For any ε > 0, one can then achieve Sw̃′ , Sσ̃′ ≤ 1 + ε and [w̃′]Ap
�p [w̃′]Ap,D =

[w]Ap,D([0,1)) by taking δ > 0 sufficiently small, per Lemmas 2.1 and 2.2 respectively.

Remark 6.2. We notice that the above estimates yield that the Muckenhoupt character-
istic [w̃′]Ap

is comparable to M but in an exponential way with respect to p. In fact, we 
get M ≤ [w̃′]Ap

≤ 2p5eM . If one cares only about dyadic Muckenhoupt characteristics
and ignores the “small step” requirement, then as we saw in Section 3 it is possible to give 
an example with dyadic Muckenhoupt characteristic comparable to M within absolute 
constants.



38 S. Kakaroumpas, S. Treil / Advances in Mathematics 376 (2021) 107450
6.1.4. Respecting weighted norms
Consider the functions f̃ ′ = (f̃/σ̃)1[0,1), g̃′ = (g̃/w̃)1[0,1) on the real line. Identically 

to the case of the “small-step” transform, see (4.9), we have ‖f̃ ′‖Lp(σ̃′) = ‖f‖Lp(σ) and 
‖g̃′‖

Lp′
(w̃′) = ‖g‖Lp(w).

6.1.5. Getting the damage
It remains now to verify that we get the desired damage.

Lemma 6.3. Let f , g, ̃f , ̃g be as above. There holds∑
I∈D

|I| · |ΔI f̃ | · |ΔI g̃| =
∑
J∈D

|J | · |ΔJ f | · |ΔJg|.

Proof. First of all, since 
∑

I∈S 1 |I| = |I0|, where I0 := [0, 1), (5.8) coupled with a 
translation and rescaling argument yields∑

I∈S 1∪ch(S 1)

|I| · |ΔI f̃ | · |ΔI g̃| = |I0| · |ΔI0f | · |ΔI0g| +
∑

J∈ch(I0)

|J | · |ΔJ f | · |ΔJg|,

independently of the choices of frequencies. Since the iterative scheme consists in iteration 
of the same fundamental construction, up to translating and rescaling, over every interval 
in ch2(S 1), ch2(S 2), . . ., we deduce∑

I∈S k+1∪ch(S k+1)

|I| · |ΔI f̃ | · |ΔI g̃| =
∑

J∈ch2k(I0)

|J | · |ΔJ f | · |ΔJg|

+
∑

J∈ch(ch2k(I0))

|J | · |ΔJ f | · |ΔJg|,

for all k = 1, 2, . . .. This yields immediately the desired result. �
Remark 6.4. Consider the dyadic Hardy-Littlewood maximal functions M f , M f̃ of f , ̃f
respectively. Then, similarly to Remark 4.3 we have that the function |̃f | is obtained 
from the function |f | through the same iterated remodeling transform as the function f̃
is obtained from the function f . Remark 5.1 yields then M f̃ = (M f) ◦ Ψ a.e. on [0, 1).

This observation, coupled with Remark 4.3, shows that any “large step” family of 
examples establishing sharpness of weighted estimates for the dyadic Hardy-Littlewood 
maximal function over [0, 1) (see [2]) yields a family of examples (on the entire real line) 
with weights of arbitrary smoothness achieving that, in exactly the same way that this 
was done for the Haar multipliers above.

Remark 6.5. We see that in this simple case of dyadic models, the choices of frequencies 
were irrelevant. It is also clear that one could have considered just children of intervals 
instead of grandchildren. We will however see that in the more subtle case of the Hilbert 
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transform, frequencies will have to be chosen appropriately in order to achieve localiza-
tion of the action of the operator, and considering grandchildren instead of just children 
will be essential, given the nature of the special Haar shift.

6.2. Muckenhoupt weights taking only two values with prescribed smoothness

We now show how the discussion in Subsection 6.1 implies the result of Proposition 1.5.
Let p ∈ (1, ∞). Let Q > 1. Let ε > 0 be arbitrarily small. Choose A0, B0 > 0 with 

A0Bp−1
0 = Q. By the results in the appendix we have that there exist a1, b1, a2, b2 > 0, 

such that a1bp−1
1 = a2bp−1

2 = 1 and A0 = (a1 + a2)/2, B0 = (b1 + b2)/2. Consider the 
weights w, σ on [0, 1) given by

w := a11I1 + a21J1 , σ := b11I1 + b21J1 ,

where I1 =
[
0, 1

2
)

and J1 =
[1

2 , 1
)
. Then w, σ are bounded, σ = w−1/(p−1) and [w]Ap,D =

w([0, 1))σ([0, 1))p−1 = A0Bp−1
0 = Q. It is also obvious that Sd

w, Sd
σ < ∞. Choose a 

sufficiently large positive integer d > 100. Apply “small step” transform to the weights 
w, σ of order d, in order to obtain new weights w̃, ̃σ respectively on [0, 1), and then the 
iterated remodeling transform on the functions w̃, ̃σ, for an arbitrary choice of frequencies 
(the same for both functions), in order to obtain new weights w̃′, ̃σ′ respectively on [0, 1). 
Extend the latter weights to weights w̃′′, ̃σ′′ respectively on R as in 6.1.3. Then, combining 
the results of Subsections 4.1 and 6.1 we have σ̃′′ = w̃′′ −1/(p−1), Q ≤ [w̃′′]Ap

≤ 2p(5/4)Q
and Sw̃′′ , Sσ̃′′ ≤ 1 + ε, for small enough ε. Moreover, we have w̃′′ ∈ {a1, a2} a.e. on R, 
since w̃′ is obtained from w via composition with measure-preserving transformations.

7. The case of the Hilbert transform

In this section we apply iterated remodeling transform on the martingales in the “small 
step” example of Subsection 4.2, in order to obtain a “small step” example for the Hilbert 
transform, proving Theorem 1.1. We then show how this leads to a counterexample to 
the Lp version of Sarason’s conjecture.

7.1. Estimate for the Hilbert transform

We first recall what we achieved in Subsection 4.2. Recall the special Haar shift T
from Subsection 4.2:

Tf = 2
∑
I∈D

(ΔIf)(hI+ − hI−).

Let p ∈ (1, ∞) and M > 2. Let δ > 0 be arbitrarily small. We constructed bounded 
weights w, σ on [0, 1), such that σ = w−1/(p−1),
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M ≤ w([0, 1))σ([0, 1))p−1, [w]Ap,D ≤ 2p4Me

and w([0, 1)) ∼ M , σ([0, 1)) ∼p 1, and also Sd
w, Sd

σ ≤ 1 + δ, and non-zero bounded 
functions f ∈ Lp(σ), g ∈ Lp′(w), such that

〈fσ, T (gw)〉 =
∑
J∈D

(ΔJ(gw))(ΔJ+(fσ) − ΔJ−(fσ))|J | ≥ CpM‖f‖Lp(σ)‖g‖
Lp′

(w). (7.1)

Moreover, by construction for the functions f := fσ, g =: gw there holds ΔIg = 0, for all 
dyadic intervals I of odd generation, and (ΔIg)(ΔI−f) = 0 ≤ (ΔIg)(ΔI+f), for all dyadic 
intervals I of even generation. Note that then

|〈f , T (g)〉| = 〈f , T (g)〉 =
∑

J

(ΔJg)(ΔJ+f)|J |,

where the summation runs over all J ∈ D that are of even generation.

7.1.1. Setting up iterated remodeling
We apply the iterated remodeling transform on the functions w, σ, f , g, for some 

choices of frequencies to be determined later (the same for all functions), obtaining 
functions w̃, ̃σ, ̃f , ̃g respectively. We extend w̃, ̃σ to weights on the whole real line having 
the desired smoothness and Muckenhoupt characteristic properties, as in 6.1.3. Let us 
abuse the notation and denote these extensions by the same letter.

Remark 7.1. From Remark 5.2 we deduce that 〈w̃〉I = w([0, 1)) = w̃([0, 1)), for all dyadic
subintervals I of [0, 1) that touch its boundary, and similarly for σ̃. This observation will 
be crucial later in Subsection 7.2.

We denote by H the Hilbert transform on the real line. We consider the oper-
ator H( · ̃σ), acting from Lp(σ̃) into Lp(w̃). Consider the functions f̃ = (f̃/σ̃)1[0,1), 
g̃ = (g̃/w̃)1[0,1) on the real line. Our goal is to show that if the frequencies are chosen 
appropriately through an inductive procedure, then one can achieve

|〈f̃ , H(g̃)〉| = |〈f̃ σ̃, H(g̃w̃)〉| �p M‖f‖Lp(σ)‖g‖
Lp′

(w). (7.2)

Assuming that this has been achieved, we will have (since the Hilbert transform is 
antisymmetric)

‖H‖Lp(w̃) =‖H( · σ̃)‖Lp(σ̃)→Lp(w̃) ≥ |〈H(f̃ σ̃), g̃w̃〉|
‖f̃‖Lp(σ̃)‖g̃‖

Lp′
(w̃)

= |〈f̃ σ̃, H(g̃w̃)〉|
‖f‖Lp(σ)‖g‖

Lp′
(w)

�p M

and hence the desired “small step” example for the Hilbert transform.



S. Kakaroumpas, S. Treil / Advances in Mathematics 376 (2021) 107450 41
7.1.2. Decomposing the bilinear form
We begin by writing the functions f̃ , g̃ as the unconditional sums of their martingale 

differences in L2([0, 1)) (up to a constant) as in (5.9), i.e.

f̃ = 〈f〉[0,1) +
∑
I∈Ŝ

DIf , g̃ = 〈g〉[0,1) +
∑
I∈Ŝ

DIg, (7.3)

and similarly for g̃, where Ŝ :=
⋃∞

k=1 S k is the family of all starting intervals and 
DIf , DIg are the contributions of the starting interval I to the martingale differences 
decomposition of f̃ , ̃g respectively. Since the Hilbert transform is bounded in L2(R) and 
antisymmetric, we have

〈H(g̃1[0,1)), f̃ 1[0,1)〉 =
∑
I∈Ŝ

〈H(DIg), DIf〉 + cross terms, (7.4)

where the cross terms consist of pairings involving either the average of f or g over 
[0, 1) and the contribution of some starting interval, or contributions of different starting 
intervals.

Our object is to show that the main term in the right-hand side of (7.4) produces the 
desired damage, while the sum of the cross terms can be forced to be arbitrarily close to 
0, through an appropriate choice of frequencies (thus essentially achieving localization 
of the action of the operator).

7.1.3. Forcing the sum of the cross terms to be arbitrarily small
We need the following lemma, whose statement is mentioned in [9, §12], showing 

essentially that the functions DIf , DIg oscillate arbitrarily fast for large enough fre-
quency N(I). Recall from (5.8) that for all I ∈ Ŝ , there exist mean zero functions 
φI , ψI ∈ L∞(I) such that DIf = QΠN(I)

I φI and DIg = QΠN(I)
I ψI .

Lemma 7.2. Let I ∈ D. Let φ ∈ L∞(I) with 〈φ〉I = 0. Then, there holds QΠN

I φ → 0
weakly in Lq(I) as N → ∞, for all q ∈ (1, ∞) and QΠN

I φ → 0 weakly∗ in L∞(I) as 
N → ∞.

Proof. It is clear from definition (5.5) of averaged quasi-periodisations that for all N =
3, 4, . . ., there holds 〈h, QΠN

I φ〉 = 0, for all functions h on I that are constant on all 
intervals in chN (I). Note that QΠN

I φ, N = 3, 4, . . . are uniformly bounded (say by 
‖φ‖L∞(I)) in L∞(I). Then, an “ ε

3 argument” yields the desired result. �
Now, for all I ∈ D := D([0, 1)), set rk(I) := − log2(�(I)). Recall that D =

⋃∞
k=0 Dk, 

where Dk := {I ∈ D : rk(I) = k} is finite, for all k = 0, 1, 2, . . .. It follows immediately 
that one can enumerate the elements of the subset Ŝ of D as I0, I1, I2, I3, . . ., where 
I0 := [0, 1), such that for all 0 ≤ l < k there holds rk(Il) ≤ rk(Ik). Note then that in 
particular, for all 0 ≤ l < k we have either Ik ∩ Il = ∅ or Ik ⊂ Il.
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Note also that for all I ∈ Ŝ , the functions φI , ψI ∈ L∞(I) depend only on f , g
and the choices of frequencies for starting intervals strictly containing I. Therefore, if 
for some k = 1, 2, 3, . . . we have already picked N(Il), for all l = 0, . . . , k − 1, then by 
Lemma 7.2 we can choose the frequency N(Ik), in a way depending only on the previous 
choices and the functions f , g, such that

Tk := H(〈f〉I0
1I0), DIk

g〉 + 〈H(DIk
f), 〈g〉I0

1I0)〉

+
〈

H(DIk
f),

k−1∑
l=0

DIl
g
〉

+
〈

H

( k−1∑
l=0

DIl
f
)

, DIk
g
〉

is as small in absolute value as we want (since the Hilbert transform is bounded in 
L2(R)). In particular, we can achieve |Tk| ≤ ε′

2k+1 , where ε′ := cCp

2 M‖f‖Lp(σ)‖g‖
Lp′

(w), 
provided the choice of N(Ik) is allowed to depend also on M, p and the functions w, σ. 
Here, c > 0 is an absolute constant to be determined in Lemma 7.3.

Clearly the sum of cross terms is equal to 
∑∞

k=1 Tk, thus one can force this sum to be 
less that ε′ in absolute value, by choosing the frequencies to be large enough, in a way 
depending only on M, p and the functions w, σ, f, g.

This way of forcing the sum of the cross terms to be arbitrarily close to 0 in absolute 
value is essentially the same as in [9, §11]. The choice of ε′ is also the same as in [9, §11], 
up to the constant c.

7.1.4. Getting the damage from the main term
We will now show that the main term in the right-hand side of (7.4) produces the 

desired damage, independently of the above choice of frequencies. More precisely, we will 
show that ∑

I∈Ŝ 1

〈H(DIg), DIf〉 ≤ −c(ΔI0g)(Δ(I0)+f)|I0|, (7.5)

independently of the choice of frequencies for intervals in Ŝ 1, where I0 := [0, 1). Keeping 
in mind that iterated remodeling as described here moves two generations deep at each 
step, we deduce through a translation and rescaling argument that∑

I∈Ŝ

〈H(DIg), DI f〉 ≤ −c
∑
J∈D

J is of even generation

(ΔJg)(ΔJ+f)|J | = −c〈f , T (g)〉,

i.e.

−
∑
I∈Ŝ

〈H(DIg), DI f〉 ≥ c〈f , T (g)〉 = c|〈f , T (g)〉|.

The last equation, coupled with (7.4), (7.1) and the choice of ε′, implies (7.2) (with 
constant cCp ), yielding the desired result.
2
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We now establish (7.5). Recall that the regular stopping intervals in S 1 cover 
I0 up to a set of zero measure, so it suffices to show that 〈H(DIg), DIf〉 ≤
−c(ΔI0g)(Δ(I0)+f)| 

⋃
RN(I)(I)|, for all I ∈ Ŝ 1. Recall from (5.8) that for all I ∈ Ŝ 1, 

DIg is just a rescaled and translated copy of QΠN(I)
I0

(Δ2
I0

g) over I, and similarly for f . 
Therefore, it suffices only to prove that

〈H(QΠN

I0
(Δ2

I0
g)), QΠN

I0
(Δ2

I0
f)〉 ≤ −c(ΔI0g)(Δ(I0)+f)|

⋃
RN (I0)|, ∀N = 3, 4, . . . .

Let us fix a positive integer N ≥ 3. Recall that from the definition (5.4) of the second 
order martingale differences we have

Δ2
I0

g = (ΔI0g)hI0 + (Δ(I0)−g)h(I0)− + (Δ(I0)+g)h(I0)+ ,

and similarly for f . It follows from definition (5.5) of averaged quasi-periodisations, and 
the facts that Δ2

I0
g has mean zero and that it is constant on the grandchildren of I0, 

that

QΠN

I0
(Δ2

I0
g) =

∑
J∈G

[(ΔI0g)hJ + (Δ(I0)−g)hJ+ + (Δ(I0)+g)hJ− ],

and similarly for f , where G := RN (I0). Recall that Δ(I0)+g = Δ(I0)−g = (ΔI0g)(Δ(I0)−f) =
0 and that the Hilbert transform is antisymmetric. It follows that

〈H(QΠN

I0
(Δ2

I0
g)), QΠN

I0
(Δ2

I0
f)〉 = (ΔI0g)(Δ(I0)+f)

〈
H
(∑

J∈G
hJ ,

)
,
∑
J∈G

hJ+

〉
.

Coupled with the fact that (ΔI0g)(Δ(I0)+f) ≥ 0, the following lemma yields then the 
desired result.

Lemma 7.3. (a) For all intervals I, J in R with |I| = |J | and I ∩ J = ∅, there holds

〈H(hI), hJ+〉 + 〈H(hJ), hI+〉 < 0.

(b) There holds 
〈
H
(∑

J∈G hJ), 
∑

J∈G hJ+ , 
〉

≤−c |
⋃

G|, where c = −〈H(h[0,1)), h[ 1
2 ,1

)〉
∈ (0, ∞).

Proof. (a) First of all, direct computation gives

H(h[0,1))(x) = 1
π

ln
(

4|x(x − 1)|
(2x − 1)2

)
for almost every x ∈ R \

{
0,

1
2 , 1

}
,

so H(h[0,1)) can be identified as a smooth function on R \
{

0, 1
2 , 1
}

. Direct computation 
shows then that H(h[0,1)) is strictly increasing and strictly concave in (1, ∞), and strictly 
decreasing in 

(1 , 1
)
.
2
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Fig. 6. Illustration of 〈H(hJ ), hI+ 〉 = −〈H(hI ), hJ− 〉.

Let now I, J be intervals in R with |I| = |J | and I ∩J = ∅. Without loss of generality, 
we may assume that inf J ≥ sup I. Note that H(h[0,1))(1 − x) = H(h[0,1))(x), for all x ∈
R \

{
0, 1

2 , 1
}

. It follows that for almost every x ∈ R, if we denote by s(x) the symmetric 
point to x with respect to the center of I, then we have H(hI)(s(x)) = H(hI)(x). Then, 
a simple symmetry and translation argument, illustrated in Fig. 6, shows that

〈H(hJ), hI+〉 = −〈H(hI), hJ−〉.

Therefore, rescaling and translating we obtain

〈H(hI), hJ+〉 + 〈H(hJ ), hI+〉 = 〈H(hI), hJ+ − hJ−〉 = |I|〈H(h[0,1)), hK+ − hK−〉,

for some interval K in R with |K| = 1 and inf K ≥ 1. Therefore, it suffices to prove 
that the continuous function 〈H(h[0,1)), h[a,a+ 1

2
)〉, a ∈ [1, ∞) is strictly decreasing. This 

follows immediately from the fact that the function H(h[0,1)) is strictly concave in (1, ∞).
(b) Since H(h[0,1)) is strictly decreasing in 

(1
2 , 1
)
, we have c := −〈H(h[0,1)), h[ 1

2 ,1
)〉 ∈

(0, ∞). Moreover, rescaling and translating we obtain 〈H(hI), hI+〉=|I|〈H(h[0,1)), h[ 1
2 ,1

)〉, 
for all intervals I in R. Since the intervals in G are pairwise disjoint and have the same 
length, we deduce from (a)

〈
H
(∑

J∈G
hJ

)
,
∑
J∈G

hJ+

〉
= 1

2
∑

J,K∈G
J �=K

(〈H(hJ), hK+〉 + 〈H(hK), hJ+〉) +
∑
J∈G

〈H(hJ ), hJ+〉

≤ −c
∑
J∈G

|J | = −c
∣∣∣⋃G

∣∣∣ ,
concluding the proof. �
Remark 7.4. The constructions show that for every fixed M, δ and p, one can give ex-
amples for the Hilbert transform and Haar multipliers differing only in the function f
(and in particular one can take g = −1[0,1) in both cases).
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Remark 7.5. If we were interested just in two-weight estimates, then F. Nazarov’s re-
modeling from [9] would suffice, i.e. one could completely ignore exceptional stopping 
intervals (except for [0, 1) of course), and in fact one could even stop after only a finite 
number of steps, without losing damage or smoothness of weights. Iteration here only 
guarantees that the transforms are measure-preserving, so that one-weight situations 
remain such after applying them.

7.2. Counterexample to Lp version of Sarason’s conjecture

Here we describe how the family of examples of Subsection 7.1 will provide through a 
direct sum of singularities type construction a counterexample to the analog of Sarason’s 
conjecture for every fixed p. Roughly speaking, by direct sum construction one should 
understand that the unit interval is partitioned into subintervals J1, J2, . . ., and then each 
Jk is equipped with an (appropriately shifted and rescaled) example from the previous 
section, in such a way that estimates of the norm of the operator blow up as k → ∞.

Fix p ∈ (1, ∞). Let δ > 0 be sufficiently small. For all k = 1, 2, . . ., by Subsection 7.1
we have that there exist bounded weights wk, σk on [0, 1) with

[wk, σk]Ap,D ∼p k, wk([0, 1)) ∼ k, σk([0, 1)) ∼p 1,

and Ssd
wk

, Ssd
σk

≤ 1 + δ, and non-zero functions fk ∈ Lp(σk), gk ∈ Lp′(wk), such that

|〈H(fkσk1[0,1)), gkwk1[0,1)〉| �p k‖fk‖Lp(σk)‖gk‖
Lp′

(wk). (7.6)

Set I0 := [0, 1) and

Ik =
[
0,

1
2k

)
, Jk =

[
1
2k

,
1

2k−1

)
, k = 1, 2, . . . .

For all k = 1, 2, . . ., consider the weights w̃k, ̃σk on Jk that are obtained as rescaled 
and shifted copies of the weights 1

wk([0,1)) wk, 1
σk([0,1)) σk respectively on the interval Jk =[ 1

2k , 2
2k

)
, i.e.

w̃k(x) = 1
wk([0, 1))wk(2kx − 1), σ̃k(x) = 1

σk([0, 1))σk(2kx − 1), ∀x ∈ Jk,

and consider also similarly rescaled and shifted copies f̃k, ̃gk of the functions fk, gk re-
spectively on the interval Jk. For all k = 1, 2, . . ., we extend the functions f̃k, ̃gk on 
the whole real line by letting them vanish outside of Jk. Consider the weights w̃, ̃σ on 
[0, 1) given by w̃(x) = w̃k(x), for all x ∈ Jk, for all k = 1, 2, . . ., and similarly for σ̃. 
We extend the weights w̃, ̃σ to weights on the whole real line, as in 6.1.3, and abusing 
the notation we denote the extended weights by the same letter. Then, translation and 
rescaling invariance shows that
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|〈H(f̃kσ̃1[0,1)), g̃kw̃〉| �p k1/p′‖f̃k‖Lp(σ̃)‖g̃k‖
Lp′

(w̃). (7.7)

It follows that ‖H( · ̃σ1[0,1))‖Lp(σ̃)→Lp(w̃) = ∞. An easy application of the closed graph 
theorem implies then that there exists f ∈ Lp(σ̃) with H(fσ̃1[0,1)) /∈ Lp(w̃). For instance, 
one can use the facts that

‖fσ̃1[0,1)‖L1(R) ≤ σ̃([0, 1))1/p′‖f‖Lp(σ̃), ∀f ∈ Lp(σ̃),

and that the linear operator H : L1(R) → L1,∞(R) is bounded.
It remains now to prove that the joint “fattened” Ap characteristic of the weights 

w̃, ̃σ, that is the quantity

sup
λ∈C+

⎛⎝ˆ
R

(Im(λ))p−1

|x − λ|p w̃(x)dx

⎞⎠⎛⎝ˆ
R

(Im(λ))p′−1

|x − λ|p′ σ̃(x)dx

⎞⎠p−1

,

is finite. As in Subsection 6.1, it suffices to prove that

[w̃, σ̃]Ap,D([0,1)) ∼p 1 (7.8)

and

Ssd
w̃ , Ssd

σ̃ ≤ 1 + δ. (7.9)

Note that translation and rescaling invariance yields immediately that condition (7.8) is 
fulfilled over Jk, for all k = 1, 2, . . .. To check it over intervals that are not contained in 
any Jk, it suffices to note that 〈w̃〉Jk

= 1, for all k = 1, 2, . . ., and similarly for σ̃.
Moreover, translation and rescaling invariance yields immediately that condition (7.9)

is fulfilled over Jk, for all k = 1, 2, . . .. Thus, it suffices to check that it still holds for 
adjacent dyadic intervals of equal length whose common endpoint is also an endpoint of 
some Jk. To that end, notice that for all k = 1, 2, . . ., by Remark 7.1 we have 〈wk〉[0,a) =
〈wk〉[a,1) = wk([0, 1)), for all a ∈ (0, 1), and similarly for σk. It follows that 〈w̃〉J = 1, for 
all J ∈ D(Jk) sharing an endpoint with Jk, and similarly for σ̃, concluding the proof.

Remark 7.6. It is clear that the proof remains valid if we have (7.7) with k raised to 
any (fixed) positive exponent. Thus, the proof remains valid if we have (7.6) with k

raised to any (fixed) exponent greater than 1/p. Therefore, as long as the Muckenhoupt 
characteristic estimate in the “large step” examples features an exponent greater than 
1/p, the Lp version of Sarason’s conjecture cannot be true.
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8. Appendix

8.1. Facts about simply symmetric random walks

We give here the proof of Lemma 4.1. It can be found in any probability theory 
textbook (see e.g. [8]). We do not follow the notation from Section 2.

Let (Ω, F , P , F = (Fn)∞
n=0) be a filtered probability space. Let (ωn)∞

n=1 be a sequence 
of random variables on Ω, such that for all n = 1, 2, . . . the random variable ωn is 
Fn-measurable with P (ωn = 1) = P (ωn = −1) = 1

2 , and such that the σ-algebras 
σ(ωn, ωn+1, . . .) and Fn−1 are independent. Set S0 = 0 and Sn =

∑n
k=1 ωk, for all 

n = 1, 2, . . .. Then, S = (Sn)∞
n=0 is a martingale on Ω. In the statement and the proof of 

the following lemma, we denote x ∧ y := min(x, y).

Lemma 8.1. Let a, b ∈ (0, ∞). Consider the stopping times τ1, τ2, τ on Ω given by

τ1 := inf{n ∈ N : Sn = b}, τ2 := inf{n ∈ N : Sn = −a}, τ := τ1 ∧ τ2.

(a) There holds τ1, τ2 < ∞ a.e. on Ω.
(b) There holds P (τ = τ1) = a

a+b and P (τ = τ2) = b
a+b .

Proof. Let θ ∈ (0, ∞) be arbitrary. Consider the martingale M given by

Mn := eθSn

(cosh θ)n
, n = 0, 1, 2, . . .

(note that 0 < Mn ≤ enθ

(cosh θ)n , for all n = 0, 1, 2, . . .). By optional sampling theorem, we 

have that the stopped process Mτ1 := (Mn∧τ1)∞
n=0 is also a martingale. We notice that

0 < Mn∧τ1 = eθSn∧τ1

(cosh θ)n∧τ1 ≤ eθb, ∀n = 0, 1, 2, . . . ,

thus Mτ1 is uniformly bounded. Therefore, by basic convergence facts for martingales 
it follows that Mτ1 is uniformly integrable, therefore there exists X ∈ L1(Ω) such that 
Mτ1

n → X a.e. pointwise on Ω as n → ∞. It is clear that limn→∞ Mτ1

n (x) = e
θS

τ1(x)(x)

(cosh θ)τ1(x) , 

for all x ∈ Ω with τ1(x) < ∞, and that Mτ1

n (x) = eθSn(x)

(cosh θ)n , for all n = 0, 1, 2, . . ., for all 
x ∈ Ω with τ1(x) = ∞. Then, for all x ∈ Ω with τ1(x) = ∞, we have

Mτ1

n (x) = eθSn(x)

(cosh θ)n
≤ eθb

(cosh θ)n
, ∀n = 0, 1, 2, . . . ,

therefore since cosh θ > 1 we obtain X(x) = 0. It follows that

E

[
eθSτ1

τ1 1{τ1<∞}

]
= E[X] = E[M0] = 1,
(cosh θ)
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therefore since Sτ1 = b on {τ1 < ∞} we obtain

E[(cosh θ)−n1{τ1<∞}] = e−θb.

Since cosh θ > 1, for all θ > 0, taking the limit as θ → 0+ and applying the Dominated 
Convergence Theorem we obtain P (τ1 < ∞) = 1. Similarly τ2 < ∞ a.e. on Ω.

(b) Set P (τ = τ1) = p1 and P (τ = τ2) = p2. Then, since τ1, τ2 < ∞ a.e. on Ω we 
obtain τ1 �= τ2 a.e. on Ω, therefore p1 + p2 = 1. We also have p1 = P (Sτ = b) and 
p2 = P (Sτ = −a). An application of the optional sampling theorem yields E[Sτ ] = 0, 
i.e. bp1 − ap2 = 0. Therefore p1 = a

a+b and p1 = b
a+b . �

8.2. Stopping on the lower hyperbola

We give here the proof of Lemma 3.1.
Let p ∈ (1, ∞). Let x, y > 0 be arbitrary, such that xyp−1 ≥ 1. We claim that there 

exist a1, b1, a2, b2 > 0 with a2 ≤ x ≤ a1 and b1 ≤ y ≤ b2, such that a1bp−1
1 = a2bp−1

2 = 1
and x = a1+a2

2 , y = b1+b2
2 .

Indeed, consider the function f : (0, 2y) → (0, ∞) given by f(b) = 1
bp−1 + 1

(2y−b)p−1 , 
for all b ∈ (0, 2y). We have limb→0+ f(b) = ∞ and f(y) = 2

yp−1 ≤ 2x. Therefore, an 
application of the Intermediate Value Theorem yields that there exists b1 ∈ (0, y] with 
f(b1) = 2x. Then, we take b2 = 2y − b1 and a1 = b1−p

1 , a2 = b1−p
2 .

8.3. Getting a little above the upper hyperbola

We give here the proof of Lemma 4.5.
Let p ∈ (1, ∞). Let x1, y1, x2, y2 > 0 and A > 0, such that

x1yp−1
1 ,

(
x1 + x2

2

)(
y1 + y2

2

)p−1

, x2yp−1
2 ≤ A.

We will show that

(ax2 + (1 − a)x1)(ay2 + (1 − a)y1)p−1 ≤ 2pA, ∀a ∈ [0, 1].

If x1 ≤ x2 and y1 ≤ y2, or x1 ≥ x2 and y1 ≥ y2, then we have nothing to show. Assume 
now that either x2 > x1 and y1 < y2, or x1 > x2 and y2 > y1. Replacing if necessary 
A by Ap′−1, p by p′, and xi by yi for i = 1, 2, we can without loss of generality assume 
that there holds x1 > x2 and y2 > y1. Set

x = x1 − x2

x1 + x2
, y = y2 − y1

y2 + y1
, B = A(

x1+x2
2
) (

y1+y2
2
)p−1 .

Then, we have x, y ∈ (0, 1), B ≥ 1 and (1 + x)(1 − y)p−1, (1 − x)(1 + y)p−1 ≤ B, and 
we want to show that
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sup
s∈[−1,1]

(1 − sx)(1 + sy)p−1 ≤ 2pB.

This is clear, because B ≥ 1 and (1 − sx)(1 + sy)p−1 ≤ 2 · 2p−1 = 2p, for all s ∈ [−1, 1], 
concluding the proof.

Remark 8.2. Although the above estimate is crude, it can be seen that in general one 
cannot obtain an estimate better that 2p/p as p → ∞.

8.4. A counterexample

We show here that finiteness of joint Muckenhoupt Ap characteristic does not guaran-
tee two-weight estimates for the Hilbert transform H. We will use a modified version of 
F. Nazarov’s example in [9, p. 1]. Let p ∈ (1, ∞). Consider the weights w, σ on R given 
by

w(t) := |t|p−1, σ(t) :=
{

|t|−p/(p−1), if |t| > 1
1, if |t| ≤ 1

, ∀t ∈ R.

We show first that [w, σ]Ap
< ∞. It is clear that 〈w〉[a,b)〈σ〉p−1

[a,b) �p 1, for all a, b ∈ R

with −2 ≤ a < b ≤ 2. For all a ∈ (1, ∞), we have

〈w〉[0,a)〈σ〉p−1
[0,a) ∼p ap−1

(
1 + 1 − a−1/(p−1)

a

)p−1

≤ 2p−1.

Then, for all a, b ∈ [0, ∞) with 0 < a ≤ b
2 , we have b − a ≥ b

2 , therefore

〈w〉[a,b)〈σ〉p−1
[a,b) �p 〈w〉[0,b)〈σ〉p−1

[0,b) �p 1.

Moreover, for all a, b ∈ [0, ∞) with 0 < 1 < b
2 < a < b, we have w(t) ∼p ap−1, for all 

t ∈ [a, b) and σ(t) ∼p a−p/(p−1), for all t ∈ [a, b), therefore

〈w〉[a,b)〈σ〉p−1
[a,b) ∼p ap−1(a−p/(p−1))p−1 = a−1 < 1.

Thus 〈w〉[a,b)〈σ〉p−1
[a,b)�p 1, for all a, b ∈ [0, ∞) with a < b. This implies 〈w〉[−b,−a)〈σ〉p−1

[−b,−a)
�p 1, for all a, b ∈ [0, ∞) with a < b. Moreover, for all a, b ∈ (0, ∞), setting c = max(a, b)
and noticing that b + a ≥ c we obtain

〈w〉[−a,b)〈σ〉p−1
[−a,b) �p 〈w〉[−c,c)〈σ〉p−1

[−c,c) = 〈w〉[0,c)〈σ〉p−1
[0,c) �p 1,

yielding the desired result.
Consider now the function f := 1[0,1). We have ‖f‖Lp(σ) = 1, just as in [9, p. 1]. 

Direct computation shows then that H(fσ)(t) = H(1[0,1))(t) = 1 ln
(

t
)

for almost 
π t−1
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every t ∈ (1, ∞), so since limt→∞ t ln
(

t
t−1

)
= 1 we deduce H(fσ)(t) ∼ 1

t for almost 
every t ∈ (2, ∞), thus |H(fσ)(t)|pw(t) ∼p

1
t for almost every t ∈ (2, ∞), just as in [9, 

p. 1], thus H(fσ) /∈ Lp(w).

8.5. Proofs of F. Nazarov’s lemmas

We give here the proofs of F. Nazarov’s lemmas from [9].

Proof of Lemma 2.1. We follow the proof in [9, §6]. Let ε > 0 be arbitrary. We have 
limδ→0+(1 + δ)1/

√
δ = limδ→0+(1 + δ) = 1, therefore there exists δ ∈

(
0, 1

4
)

such that

(1 − 2
√

δ)(1 + δ)−2/
√

δ > (1 + ε)−1/2, (1 + 2
√

δ)(1 + δ)2+2/
√

δ < (1 + ε)1/2.

Let now w be a weight on R with Ssd
w ≤ 1 + δ.

Claim. For all intervals I in R, for all J ∈ D with |J | ≤
√

δ|I| ≤ 2|J | and containing 
one of the endpoints of I, there holds 〈w〉J/〈w〉I , 〈w〉I/〈w〉J ≤ (1 + ε)1/2.

Assume the claim for the moment. Let I be an arbitrary interval in R. There exists 
J ∈ D, such that 2|J | ≤

√
δ|I| ≤ 4|J | and J contains the center of I. Then, by the claim, 

applied for I−, J and I+, J , we have

〈ρ〉J

〈ρ〉I−

,
〈ρ〉J

〈ρ〉I+

≤ (1 + ε)1/2,
〈ρ〉I+

〈ρ〉J

,
〈ρ〉I−

〈ρ〉J

≤ (1 + ε)1/2,

therefore 〈ρ〉I+/〈ρ〉I− , 〈ρ〉I−/〈ρ〉I+ ≤ 1 + ε, yielding the desired result.
We now prove the claim. Let I be an interval in R, and let J ∈ D with |J | ≤

√
δ|I| ≤

2|J |, containing one of the endpoints of I.
Set J∗ = {K ∈ D : |K| = |J |, K ⊆ I} and I∗ =

⋃
J∗. Clearly J∗ �= ∅, since 

|J | < 1
2 |I|. It is clear that

#J∗ ≤ |I|
|J | ≤ 2√

δ
.

For all K ∈ J∗, there exist l ∈ {1, . . . , #J∗} and J1, . . . , Jl+1 ∈ D of length equal to |J |, 
such that J1 = K, Jl+1 = J and Ji, Ji+1 are adjacent or coincide, for all i = 1, . . . , l, 
therefore

〈w〉K

〈w〉J
=

l∏
i=1

〈w〉Ji

〈w〉Ji+1

≥ (1 + δ)−l ≥ (1 + δ)−2/
√

δ,

thus

〈w〉I∗

〈w〉J
= |J |

|I∗|
∑ 〈w〉K

〈w〉J
≥ |J |

|I∗| (#J∗)(1 + δ)−2/
√

δ = (1 + δ)−2/
√

δ.

K∈J∗
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Note also that |I∗| ≥ |I| − 2|J | ≥ (1 − 2
√

δ)|I|, therefore

〈w〉I

〈w〉J
≥ |I∗|

|I|
〈w〉I∗

〈w〉J
≥ (1 − 2

√
δ)(1 + δ)−2/

√
δ ≥ (1 + ε)−1/2.

Set also J∗ = {K ∈ D : |K| = |J |, K ∩ I �= ∅} and I∗ =
⋃

J∗. It is clear that

#J∗ ≤ |I|
|J | + 2 ≤ 2√

δ
+ 2.

Then, similarly to previously we have

〈w〉I∗

〈w〉J
≤ (1 + δ)2+2/

√
δ.

Note also that |I∗| ≤ |I| + 2|J | ≤ (1 + 2
√

δ)|I|, therefore

〈w〉I

〈w〉J
≤ |I∗|

|I|
〈w〉I∗

〈w〉J
≤ (1 + 2

√
δ)(1 + δ)2+2/

√
δ ≤ (1 + ε)1/2,

concluding the proof. �
Proof of Lemma 2.2. We follow the proof in [9, §11]. Set ε = (25/16)1/p − 1. Choose 
δ ∈

(
0, 1

4
)

as in the proof of Lemma 2.1 for this ε. Let ρ be a weight on R with [ρ]Ap,D < ∞
and Ssd

ρ , Ssd
τ ≤ 1 + δ, where τ = ρ−1/(p−1). Let I be an arbitrary interval in R. By the 

proof of Lemma 2.1 we have that there exists J ∈ D such that

〈ρ〉I ≤ (1 + ε)1/2〈ρ〉J , 〈τ〉I ≤ (1 + ε)1/2〈τ〉J ,

therefore

〈ρ〉I〈τ〉p−1
I ≤ (1 + ε)p/2〈ρ〉J〈τ〉p−1

J ≤ 5
4 [ρ]Ap,D.

It follows that [ρ]Ap,D ≤ [ρ]Ap
≤ (5/4)[ρ]Ap,D, concluding the proof. �
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