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ABSTRACT

High-level synthesis (HLS) raises the level of design abstraction, ex-

pedites the process of hardware design, and enriches the set of final

designs by automatically translating a behavioral specification into

a hardware implementation. To obtain different implementations,

HLS users can apply a variety of knobs, such as loop unrolling

or function inlining, to particular code regions of the specifica-

tion. The applied knob configuration significantly affects the syn-

thesized design’s performance and cost, e.g., application latency

and area utilization. Hence, HLS users face the design-space explo-

ration (DSE) problem, i.e. determine which knob configurations

result in Pareto-optimal implementations in this multi-objective

space. Whereas it can be costly in time and resources to run HLS

flows with an enormous number of knob configurations, machine

learning approaches can be employed to predict the performance

and cost. Still, they require a sufficient number of sample HLS runs.

To enhance the training performance and reduce the sample com-

plexity, we propose a transfer learning approach that reuses the

knowledge obtained from previously explored design spaces in ex-

ploring a new target design space. We develop a novel neural net-

work model for mixed-sharing multi-domain transfer learning. Ex-

perimental results demonstrate that the proposed model outper-

forms both single-domain and hard-sharing models in predicting

the performance and cost at early stages of HLS-driven DSE.
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Figure 1: Configurable knobs (top) and design space (bottom)

for three applications in Spector: Sobel Filter, BFS (breadth-

first search), and Merge Sort [7].

1 INTRODUCTION

Computer-aided design (CAD) approaches for electronic circuits

have evolved towards raising the level of abstraction. High-level

synthesis (HLS) processes a high-level specification of a design

and automatically generates a hardware implementation that real-

izes the specified behavior [14]. A specification can be written in a

high-level language such as C, C++, SystemC [2], and OpenCL [1],

and HLS tools automatically translate the given specification into

a lower-level description such as a structural register-transfer level

(RTL) one. The RTL description can be further transformed into an

integrated circuit (IC) layout or a field-programmable gate array

(FPGA) hardware configuration file via logic synthesis and physi-

cal implementation. HLS flows expedite the circuit design task of

hardware engineers, and facilitate the FPGA acceleration of soft-

ware applications written in high-level languages. Furthermore,

one specification or application can be synthesized with different

knob configurations that direct HLS flows to generate alternative

but functionally equivalent implementations.

Most HLS-flow knobs define micro-architectural choices or de-

sign options for a specific part of the application’s specification

that eventually affect the performance and cost, also called quality-

of-result (QoR), of the final implementation. For instance, apply-

ing the unrolling option to a loop in the specification code gener-

ally results in a reduction of computational latency in exchange

for an area increase. This prompts the need for performing an ex-

tensive design-space exploration (DSE) by running the HLS flows

with various knob configurations in order to obtain a final imple-

mentation with the desired QoR or a rich set of alternative Pareto-

optimal implementations [20]. The top row in Fig. 1 lists the con-

figurable knobs for three applications belonging to the Spector
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OpenCL FPGA benchmark suite: Sobel Filter, BFS (breadth-first

search), and Merge Sort. The bottom row shows the design space

for each application in terms of the latency and logic resource uti-

lization of final implementations obtained with different configu-

rations of those knobs in the top row. This is a result of a compre-

hensive end-to-end DSE performed by Gautier et al., the authors

of the benchmark suite [7].

For a given application, designers often complete a huge number

of HLS runs with different knob configurations. They do so to ex-

plore the multi-objective design space in search of Pareto-optimal

designs that offer interesting trade-off opportunities across QoR

metrics such as latency, area (resource utilization), and power. The

total number of knob configurations grows exponentially with in-

creasing numbers of knobs. Hence, it can be costly, impractical, or

infeasible to run HLS flows with all those configurations. For effi-

cient DSE, a large number of approaches have been proposed [5,

13, 24, 25]. In particular, approaches based on machine learning

take the HLS flow as a blackbox and train a QoR prediction model

using sampled HLS results [11, 12, 16]. These approaches, however,

still require a sufficient number of samples to train the model with

high accuracy. This number depends on the application and the

set of defined knobs. In the worst cases, however, 20% to 50% of

the design space are sampled and synthesized [11, 12, 16].

Contributions. We propose a new approach to enhance the

training performance and reduce the sample complexity. Our idea

is to extract the knowledge obtained from the previously explored

spaces of source designs and apply it to the early stage of DSE of

a new target design. Taking the three applications in Fig. 1, for

instance, we investigate the following problem: Is it possible to learn

an underlying pattern from DSE results of Sobel Filter that can be

effectively applied to Merge Sort?

The properties and constraints of HLS-driven DSE pose three

critical challenges. First, the domain (input feature space) of the

learning task varies across applications. A QoR prediction model

takes as input a knob configuration and outputs predicted QoR val-

ues. However, distinct applications often have different numbers

and types of knobs available. In Fig. 1, Sobel Filter has 8 knobs,

while Merge Sort has 7, and many knobs are different between the

two applications. Second, obtained knowledge for one application

is expected to include application-specific information. Since Sobel

Filter and Merge Sort have different levels and structures of paral-

lelism, applying some common knobs may have different impacts

on their QoR. Third, the target application may contain properties

that have not been observed in other applications. Hence, the ob-

tained knowledge from source applications may be insufficient to

fully describe and predict HLS results of the target application.

In this paper, we address each of the above three challenges as

follows. First, we adopt and extend the notion of transfer learning.

Unlike traditional machine learning (ML), transfer learning aims

to improve the performance of a target learning task by reusing

the knowledge obtained for different but related source tasks or do-

mains. For example, artificial neural network (NN) models trained

for natural image classification have been transferred to aid disease

classification in the medical image domain [21]. In that case, the fi-

nal classifier layer of the pre-trained NN was freshly trained for

the target task. Similarly, we transfer an NN model trained for So-

bel Filter to the domain of Merge Sort. In our case, since the input

layers are domain-specific, the first hidden layer is freshly trained

for the target task.

Second, we proposemulti-domain transfer learningwhere a com-

mon model is trained from multiple source domains. For instance,

if DSE results for BFS are available together with those for Sobel Fil-

ter, we can pre-train a NN model that has two versions of the first

hidden layer, one with 8 elements for Sobel Filter, and the other

with 6 elements for BFS. This is in an attempt to extract effectively

common knowledge between multiple source applications that is

expected to be shared also with the target application.

Third, we propose a novel NN model for mixed-sharing multi-

domain transfer learning. In multi-task learning and transfer learn-

ing, hard parameter sharing refers to the sharing of a common

model by multiple tasks [19]. In soft parameter sharing, each task

has its own model and parameters, where some parameter values

are shared across all tasks [4]. Our transfer learning tasks intrinsi-

cally exploit hard sharing, and we connect the shared model with

an auxiliary and independent sub-model for each task. We intro-

duce thismixed-sharing approach to reflect the diversity of various

source and target applications.

To the best of our knowledge, this is the first paper proposing

transfer learning approaches for HLS QoR prediction where dif-

ferent applications have different knobs or synthesis options. We

present and evaluate two single-domain models and two trans-

fer learning models. The experimental results using the Spector

dataset demonstrate that the proposedmixed-sharingmulti-domain

transfer learning model outperforms the single-domain and hard-

sharing models in the early stages of DSE.

2 PROBLEM DESCRIPTION

Let - denote the set of all configurations G of = HLS knobs defined

for a given application:

G = (G1, · · · , G=) ∈ - ⊂ R= (1)

Let &>' be a function that maps a knob configuration to the QoR

values obtained by applying the target HLS flows:

&>' : - → R< (2)

&>'(G) = (&>'1 (G), · · · , &>'< (G)) (3)

where< denotes the number of QoR metrics of interest. As shown

in Fig. 1, the ranges of QoR values vary depending on the applica-

tion. Let )A08= denote the set of knob configurations G ∈ - with

known QoR values, and )4BC the set of those with unknown QoR

values. A normalized QoR function &̃>')A08= returns the QoR val-

ues for G ∈ )A08= normalized to a fixed interval, e.g., [0, 1]< ⊂ R< ,

where the normalization is performed separately for each QoRmet-

ric.When this function is applied to G ∈ )4BC , some of the resulting

&̃>')A08= (G) values may be out of the original normalization inter-

val. When)A08= is obvious, we omit it from the notation &̃>')A08=.

The target problem for a given application is to learn its &̃>' func-

tion, given a )A08= set labeled with the observed QoR values:

Problem 1. Given)A08= ⊂ - , find a prediction function � : - →

R
< that approximates &̃>':

argmin
�

∑

G ∈-

| |� (G) − &̃>' (G) | |2 (4)
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Figure 2: A fully-connected NN � 8 as a predictive model for

&̃>'
8
(1 ≤ 8 ≤ <) in single-task learning. The input and

output layers represent the knob configuration and the pre-

dicted QoR value, respectively.

3 PROPOSED QOR PREDICTION MODELS

The goal of classification and regressionML tasks is to learn a label-

prediction function, given an input domain (a set of knob configu-

rations), output label space (the range of normalized QoR values),

and training data (sampled DSE results). Recently, NNmodels have

been extensively used inML tasks to represent the prediction func-

tions. Inspired by the human brain, a NN consists of processing lay-

ers that contain computation units called nodes or neurons [15]. By

the universal approximation theorem, any continuous function on

a compact set can be approximated by a fully-connected NN [3, 9].

Below, we present a series of fully-connected NN models for HLS

QoR prediction in the order of evolution towards the proposed

mixed-sharing multi-domain transfer learning.

Single-Task Learning. Fig. 2 illustrates a fully-connected NN

model � 8 : - → R for learning the unknown target function &̃>'
8
.

A NN consists of layers, and each layer contains nodes, depicted

as small solid squares in the figure. Each node represents a single

value, and the width of a layer is the number of nodes contained

in it. The input layer represents a knob configuration G from the

domain - . The 9-th layer ℓ89 is computed with a function 5 89 that

takes the previous layer as input and outputs a vector of dimension

equal to the width of ℓ89 . Layer functions 5
8
9 are defined as follows:

5 89 (~) = �2C8E0C8>=(�8
9~ + 189 ) (5)

where �8
9 is a weight matrix, 189 is a bias vector (of appropriate di-

mensions), and�2C8E0C8>= denotes a nonlinear activation function

such as hyperbolic tangent, sigmoid, rectified linear unit, or soft-

max. A network function � 8 with 5 layers (as shown in Fig. 2) is a

composition of the 5 layer functions 5 89 (1 ≤ 9 ≤ 5):

� 8 (G) = ( 5 8
5
◦ 5 8

4
◦ 5 8

3
◦ 5 8

2
◦ 5 8

1
)(G) = 5 8

5
( 5 8
4
( 5 8
3
( 5 8
2
( 5 8
1
(G))))) (6)

The objective of the learning is to minimize the difference be-

tween the predicted QoR � 8 (G) and the actual QoR value &̃>'
8
(G)

for all knob settings G . Given a configuration set )A08=, Problem 1

can be re-written as follows:

argmin
� 8=(�8

1
,18

1
, · · · ,�8

5
,18

5
)

∑

G ∈)A08=

‖ � 8 (G) − &̃>'
8
(G) ‖2 (7)

Stochastic gradient descent and its variants with optimization tech-

niques have been demonstrated to solve effectively the above prob-

lem [8]. The L1 norm and squared L2 norm of the weights�8
9 multi-

plied by a small coefficient are often added to the objective function

in Eq. (7) as regularization terms.

Multi-TaskLearning. Fig. 3 (a) shows one larger NN represent-

ing a multi-task model for all QoR metrics of interest. Instead of

learning one model for each metric as in Fig. 2, multi-task learning

attempts to improve the performance of multiple learning tasks

by using some common knowledge contained in those tasks [23].

The function � computed by the proposed multi-task NN for <

QoR metrics is defined as follows:

� (G) = (�1 (G), · · · ,�< (G)) (8)

�8 (G) = ( 5 8
5
◦ 5 8

4
◦ 63 ◦ 62 ◦ 61)(G) = 5 8

5
( 5 8
4
(63 (62 (61 (G))))) (9)

where 61, 62, and 63 are nonlinear functions for the first three hid-

den layers. The input for 61 is a knob setting G ∈ - for the target

application. The output of 63 represents the common feature that

is used as an input to 5 8
5
◦ 5 8

4
for each task 8 .

From our experiments, when the size of )A08= is large enough,

single-taskmodels can approximate the target functionwith higher

accuracy on)4BC thanmulti-task ones, butwhen)A08= is relatively

small, multi-task models outperform single-task ones. We mainly

explore multi-task models in the next subsections.

Cross-DomainTransferLearning.TheQoRpredictionmodel

in Fig. 3 (a) learned for one application can be transferred to a dif-

ferent target domain, as shown in Fig. 3 (b). More precisely, a part

of the NN learned for the source task is transferred to be a part of

another NN for the target task. The shaded box in Fig. 3 (b) cor-

responds to the transferred part of the NN from Fig. 3 (a). Given

a pre-trained multi-task model � , the proposed transfer learning

model � is defined as follows:

� (G) = (�1(G), · · · , �< (G)) (10)

� 8 (G) = ( 5 8
5
◦ 5 8

4
◦ 63 ◦ 62 ◦ ℎ)(G) = 5 8

5
( 5 8
4
(63 (62 (ℎ(G))))) (11)

where ℎ denotes the new nonlinear function in the first hidden

layer (the brown layer in Fig. 3 (b)). Pre-trained functions 62, 63,

5 8
4
, and 5 8

5
(in the shaded box in Fig. 3 (b)) are transferred from � .

The leftover part in � is its first hidden layer 61. The domain of

61 is the knob configuration space of the synthesized application

that � has been trained for. The codomain of 61 is a vector space

of a fixed dimension, which is the domain of 62. The new function

ℎ is defined with the domain of the knob configuration space for

the new target application and its codomain is equal to that of 61.

Since this codomain coincides with the domain of 62, the function

composition of62◦ℎ is well-defined in the newmodel� . The trans-

ferred part determines how to compute the predicted QoR values

from the intermediate feature and it remains fixed during training

for the new target task. Only the new function ℎ from the target

domain to the intermediate feature space is learned, possibly with

much smaller samples. The optimization problem can be expressed

as follows:

argmin
ℎ=(�ℎ,1ℎ)

∑

G ∈)A08=

‖ � (G) − &̃>' (G) ‖2 (12)

Multi-Domain Transfer Learning. Transfer learning aims to

improve the performance of the target learning task by discover-

ing and transferring latent or hidden knowledge from the source

domain and task [22]. One of the main research topics in transfer

learning is “what to transfer.” Some knowledge is specific for indi-

vidual domains or tasks, whereas some other common knowledge

can be transferred to help improve the performance of the target
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For the target task, only the first hidden

layer (the brown layer) is freshly trained.
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(c) A multi-domain model for transfer learning.

This model is trained onmultiple source domains.

Then, the trained sub-network (in the dotted box)

is transferred (to the shaded box in (b)).

Figure 3: A single-domain and two multi-domain multi-task models for transfer learning.

task [18]. Thus, it is critical to identify such common knowledge,

which is often latent. In an attempt to more effectively disentangle

common latent knowledge from what is specific for the source do-

main and task, we propose a multi-domain transfer learning model

that interacts with multiple source domains.

Fig. 3 (c) illustrates the proposedmulti-domainmulti-taskmodel

for transfer learning. In this model, we assume that HLS results for

multiple source applications are available for pre-training. For �

source applications with heterogeneous knob configuration spaces

-3 (1 ≤ 3 ≤ �), the proposedmulti-domainQoR predictionmodel

% is defined as follows:

% (3, G3 ) = (%1 (3, G3 ), · · · , %
< (3, G3 )), 1 ≤ 3 ≤ �, G3 ∈ -3 (13)

%8 (3, G3 ) = ( 5 8
5
◦ 5 8

4
◦ 63 ◦ 62 ◦ ?3 )(G3 )

= 5 8
5
( 5 8
4
(63 (62 (?3 (G3 ))))), G3 ∈ -3 (14)

where ?3 represents the individual feature function for applica-

tion 3 . The domain of each ?3 is the knob configuration space for

application 3 , but their codomain is the common feature vector

space with a fixed dimension, which is also the domain of the next

layer function 62 . In this model, ?3 functions for 3 ≠ 1 have some

similarities with ℎ in the cross-domain transfer learning model �

(in Fig. 3 (b)). However, whereas ℎ and its inputs are not used for

the pre-training of the rest of � (which has been transferred from

�), all ?3 functions and their inputs are used for training the en-

tire model % . By exploring multiple source domains and individ-

ual feature functions simultaneously, the shared part of the model

5 8
5
◦ 5 8

4
◦ 63 ◦ 62 (in the dotted box in Fig. 3 (c)) is expected to ex-

tract common latent knowledge while individual ?3 functions are

expected to interpret knowledge specific to each application. Then,

the shared part can be transferred to a new model for the target ap-

plication, as in Fig. 3 (b).

Mixed-Sharing Multi-Domain Transfer Learning. To fur-

ther separate commonknowledge frompossibly application-specific

and domain-specific knowledge, we present another multi-domain

multi-task model, illustrated in Fig. 4, that reconciles two types of

parameter sharing: hard and soft. Themodels in Fig. 3 employ hard

parameter sharing, where individual active networks for different

applications share a common sub-network (the dotted box in (c)

and the shaded box in (b)). In soft parameter sharing, each task has

its own network and parameters where some parameter values are

shared (the values are either identical or very similar) across those

tasks [4, 19]. The proposedmodel& incorporates both hard param-

eter sharing and a variant of soft parameter sharing:

& (3, G3 ) = (&1 (3, G3 ), · · · ,&
< (3, G3 )), G3 ∈ -3 (15)

&8 (3, G3 ) = U3 ( 5
8
5
◦ 5 8

4
◦ 63 ◦ 62 ◦ ?3 )(G3 ) + @3 (G3 )

= U3 · 5 8
5
( 5 8
4
(63 (62 (?3 (G3 ))))) + @3 (G3 ) (16)

(1 ≤ 3 ≤ �, G3 ∈ -3 , 1 ≤ 8 ≤ <,U3 ∈ R)

Here, @3 represents an auxiliary function for application 3 (the

light purple sub-network on the top for application 1 and the light

orange sub-network at the bottomfor application� in Fig. 4). These

auxiliary functions are expected to capture the application-specific

knowledge in a stronger sense than ?3 functions and to separate

it from the shared sub-network (in the dotted box in Fig. 4). A

learnable parameter U3 determines the ratio of the contribution of

the shared function to the final output (predicted QoR). After the

pre-training using multiple source applications, only the shared

sub-network 5 8
5
◦ 5 8

4
◦ 63 ◦ 62 is transferred to a new model for
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Figure 4: A mixed-sharing multi-domainmodel for transfer

learningwithbothhard and soft parameter sharing. Thenet-

work in the dotted box is transferred to the target domain.

the target application. This new model also has its application-

specific auxiliary part, in addition to its feature function, that will

be freshly trained for the target application while the transferred

sub-network parameters are fixed.

4 EXPERIMENTAL RESULTS

To evaluate the performance of the proposed models, we used the

set of comprehensive DSE results from the Spector benchmark suite

repository [7] containing the nine applications reported in Table 1.

The authors of the benchmark suite synthesized the applications

using theAlteraOpenCL SDK v14.1, and executed successfully syn-

thesized designs on a Terasic DE5 boardwith a Stratix V FPGA. The

QoR metrics of interest are the latency and utilization of the four

types of resources: logic, RAM, on-chip memory, and DSP. For each

of bfs and spmv, there are two sets of QoR obtained with different

input datasets. We trained the following predictive models.

Single-task single-domain: model � 8 in Fig. 2 for 8 = 1, · · · , 5.

Each � 8 has 4 hidden layers with 25 nodes per hidden-layer.

Multi-task single-domain: model� in Fig. 3 (a) with 4 hidden

layers. Each hidden layer contains 125 nodes.

Multi-domain transfer:model % in Fig. 3 (c) for the pre-training

in the source domains, and model � in 3 (b) for the transfer learn-

ing in the target domain. Model % has 1 domain-specific hidden

layer with 10 nodes per domain, and 3 shared hidden layers each

125 nodes each. Model� consists of 1 domain-specific hidden layer

with 10 nodes, and the transferred sub-network from % .

1 2 3 4 5 6 7 8 9 10

0.1
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0.2
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G
eo
m
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ri
c
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Single-task single-domain

Multi-task single-domain

Multi-domain transfer
Mixed-multi-transfer

Figure 5: Geometricmean of RMSE across the 11 sets of HLS

QoR, achieved by each of the 4 predictive models.

Mixed-multi-transfer: mixed sharing multi-domain model &

in Fig. 4 for the pre-training, and a variation of model � with

an auxiliary network for the transfer learning. & has 1 domain-

specific hidden layer containing 10 nodes, one shared sub-network

with 3 hidden layers each containing 100 nodes, and a domain-

specific auxiliary network that has 4 hidden layers with 25 nodes

per hidden-layer for each source domain.

The structure of the single-task model was determined empiri-

cally based on the observation that as the numbers of layers and

nodes increase, the model’s prediction accuracy first increases and

then decreases; the structure with the peak accuracy was selected.

Other models were defined to have the same number of hidden

layers and nodes with the single-task ones. For two transfer learn-

ing models, all applications except the target one were used as the

source applications. The models were trained using the PyTorch

library with the iterations of 100,000 and the learning rate of 0.001

for % and & , and of 0.01 for all other NNs. For each application,

pre-training with % or & took between 100 and 160 minutes using

Intel i7-6700K CPU running Ubuntu 16.04.6 LTS. The target pre-

dictive models took between 10 and 30 minutes, depending on the

sample complexity. Fig. 5 shows the geometric mean of the RMSE

(root mean squared error) of the four predictive models across all

target applications for each of the sample size 1%, 2%, · · · , 10%

of the design space [8]. Those RMSE values were computed after

normalizing the entire DSE results - , whereas for training, )A08=

sets were independently normalized. With small sample complex-

ity from 1% to 3%, the multi-task single-domain model achieves

lower error rates, and thus higher accuracy, than the single-task

model. For all sample complexities tested, themixed-sharing multi-

domain transfer learning model achieves the lowest error rates.

Using the Spector dataset, we simulated the DSE by reading the

reported QoR values instead of running HLS flows to train and

test the single-task, multi-task, and mixed-multi-transfer learning

models. As DSE objectives, we used the latency and logic utiliza-

tion; it is also possible to perform a multi-dimensional DSE with

more metrics. We used the models trained with 3% of the target de-

sign space, and selected 3% Pareto-optimal and near-optimal con-

figurations from the predicted QoR. Fig. 6 shows the ADRS (av-

erage distance from reference set) of the proposed configurations

by each model with respect to the golden Pareto-optimal set [20].
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Table 1: Design spaces of the 9 applications in the Spector dataset. Each of bfs and spmv has 2 versions of the QoR results.

Application bfs_dense bfs_sparse dct fir hist mergesort mm normals sobel spmv_5000 spmv_500000

# Knobs 6 6 9 8 7 7 9 7 8 4 4

# Designs 507 507 211 1173 896 1532 1180 696 1381 740 740

bfs_dense bfs_sparse dct fir hist mergesort mm normals sobel spmv_5000 spmv_500000
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.20 0.84 0.34

0.15

0.20 0.23 0.22

0.15

A
D
R
S

Single-task single-domain

Multi-task single-domain

Mixed-multi-transfer

Figure 6: Simulated DSE results for 9 Spector applications with 3%-sample and 3%-proposed configurations.

Themixed-multi-transfer model achieves the lowest ADRS inmost

cases. The geometric mean of its ADRS for all applications is 0.034.

5 RELATED WORK

Design Space Exploration. A recent work by Schafer et al. clas-

sifies the HLS-driven DSE techniques into three categories: 1) syn-

thesis based, 2) model based, and 3) supervised learning, which

is a mix of the first two [20]. The synthesis-based approaches ob-

serve the QoR of synthesized designs and select knob configura-

tions for the next iterations of HLS flows. To generate configu-

rations, meta-heuristic methods such as genetic algorithms have

been exploited [5, 10]. Mahapatra et al. perform simulated anneal-

ing and use a decision tree to reduce the search space [13]. The an-

alytical model-based approaches construct a predictive model, in-

stead of invoking HLS flows, based on the information about appli-

cations, HLS tools, and hardware platforms [24, 25]. The supervised-

learning approaches sample the design space (synthesis-based) and

train predictive models (model-based). Liu et al. perform active

learning for sampling, and train a random forest to predict the

QoR [12]. Mahapatra et al. execute simulated annealing, and use

a decision tree to reduce the search space [13]. Meng et al. elimi-

nate the design points that are likely to be Pareto-dominated [16].

Ferretti et al. propose a lattice-traversing based exploration ap-

proach [6]. Lin et al. exploit four classes of machine learning meth-

ods to estimate the power, and NN models has shown the best per-

formance [11]. O’Neal et al. predict theQoR on FPGA given the pro-

filed information of the target application running on CPUs [17].

With all those approaches, the results from previous applications

are not exploited during the DSE of a new application.

TransferLearning.Transfer learning allows the domains, tasks,

and distributions used in pre-training and testing to be different

but related. The transfer-learning settings and methods presented

in this paper can be considered as examples of inductive transfer

learning [18] as well as network-based deep transfer learning [22].

6 CONCLUSION

We propose a transfer learning approach to aid HLS-driven DSE

when the target application’s design space is huge and DSE results

from other source applications are available. Successfully trained

predictivemodels can approximateQoRwithout invoking HLS tools

for an exhaustive DSE. As demonstrated using the Spector dataset,

themixed-sharingmulti-domainmodel outperforms the othermod-

els in QoR prediction and in the simulated DSE.
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