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Abstract5

We describe a fully discrete mixed finite element method for the linearized
rotating shallow water model, possibly with damping. While Crank-Nicolson
time-stepping conserves energy in the absence of drag or forcing terms and
is not subject to a CFL-like stability condition, it requires the inversion of
a linear system at each step. We develop weighted-norm preconditioners
for this algebraic system that are nearly robust with respect to the physical
and discretization parameters in the system. Numerical experiments using
Firedrake support the theoretical results.
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1. Introduction8

Accurate modeling of tides plays an important role in several disciplines.9

For example, geologists use tide models to help understand sediment trans-10

port and coastal flooding, while oceanographers study tides to discern mech-11

anisms sustaining global circulation [1, 2]. Finite element methods making12

use of unstructured (typically triangular) meshes are attractive to handle13

irregular coastlines and topography [3]. In many situations, it is sufficient14

to use a linearized shallow water model with rotation and a parameterized15

drag term. In particular, the literature contains many papers [4, 5, 6, 7, 8, 9]16

studying mixed finite element pairs for discretization of each layer for ocean17

and atmosphere models, and we continue study of this case here.18

Much of the literature relates to dispersion relations and enforcement of19

conservation principles by mixed methods, but our prior work in this area20

has been to focus on energy estimates. In [10], we gave a careful account of21

the effect of linear bottom friction in semidiscrete mixed methods, showing22
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that, absent forcing, one obtained exponential damping of a natural energy23

functional. This allowed estimates of long-time stability and optimal-order24

a priori error estimates. Then, we handled the (much more delicate) case of25

a broad family of nonlinear damping terms in [11]. In this case, the energy26

decay is sub-exponential (typically bounded by a power law) but still strong27

enough to admit long-time stability and error estimates.28

While our work in [10, 11] focused on the semidiscrete mixed finite element29

case, we now turn to certain issues related to time-stepping. Crank-Nicolson30

time-stepping is second-order accurate, A-stable (not subject to CFL-like31

stability condition), and exactly energy conserving in the absence of forc-32

ing and damping. However, because it is implicit, it requires the solution33

of a system of algebraic equations at each time step. For linear damping34

models, this system is linear, but nonlinear otherwise. The point of this pa-35

per is to develop robust preconditioners for the linear system (or Jacobian36

of the nonlinear one) for use in conjunction with a Krylov method such as37

GMRES [12].38

In addition to the mesh size and time step, our model also depends on39

a number of physical parameters, described in the following section. Our40

goal is to design a preconditioner that enables GMRES to converge with an41

overall iteration counts that depend as little as possible on these parameters.42

We follow the technique of using weighted-norm preconditioners [13]. Here,43

one designs an inner product with respect to which the variational problem44

is bounded with bounded inverse. Such bounds should depend weakly, if at45

all, on physical and discretization parameters.46

The paper is organized as follows. We describe the particular tide model47

of interest and its discretization in Section 2. This includes Crank-Nicolson48

time-stepping and a comparison to a symplectic Euler method. Then, we49

turn to preconditioning the Crank-Nicolson system in Section 3. After ana-50

lyzing a simple block-diagonal preconditioner with scaled mass matrices, we51

develop and analyze a parameter-weighted inner product on H(div) × L2.52

Our estimate shows that the preconditioned system has an intrinsic time53

scale determined by the Rossby number that must be resolved by the time54

step. This does not seem to be a major practical constraint. After discus-55

sion and analysis of these preconditioners, we turn to numerical experiments56

validating the theory in Section 4 and draw some conclusions in Section 5.57
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2. Description of finite element tidal model58

The nondimensional linearized rotating shallow water model with linear59

drag and forcing on a two dimensional surface Ω is given by60

ut +
f

ǫ
u⊥ +

β

ǫ2
∇ (η − η′) + Cu = 0,

ηt +∇ · (Hu) = 0.
(1)

Here, the unknowns are u, which is the nondimensional velocity field tangent61

to Ω, and η is the nondimensional free surface elevation above the height62

at state of rest. The quantity u⊥ = (−u2, u1) is just the velocity rotated63

by π/2. The system is driven by the quantity ∇η′, which is the (spatially64

varying) tidal forcing. Several physical parameters also appear in the system.65

The Coriolis forces are given by f , a non-dimensional parameter which is66

equal to the sine of the latitude (which can be approximated by a linear or67

constant profile for local area models). The Rossby number, ǫ, measures the68

ratio of inertial to Coriolis forces and tends to be small but not singularly69

so for global tides (O(10−3) – O(10−1)). The Burger number β measures70

the ratio of vertical forces arising from density stratification to horizontal71

rotational forces. In many applications it is O(1). C is the (spatially varying)72

nondimensional drag coefficient modeling bottom friction. H is the (spatially73

varying due to bathymetry of the ocean floor) nondimensional fluid depth at74

rest, and ∇ and ∇· are the intrinsic gradient and divergence operators on Ω,75

respectively. On the boundary ∂Ω, we specify no-flux boundary conditions76

u · n = 0. We must also specify initial conditions u(·, 0) = u0 and zero-mean77

η(·, 0) = η0.78

Prior energy and error analysis in [10] assumes that the bottom friction79

satisfies some 0 < C∗ ≤ C(x) ≤ C∗. The strict lower bound allows one80

to show an exponential damping of the energy. However, even without the81

lower bound, the model is well-posed and, absent forcing, has non-increasing82

energy. Since we are not working with energy estimates, it is sufficient for us83

to merely assume the upper bound C(x) ≤ C∗. Also, we require bounds on84

the bathymetry of 0 < H∗ ≤ H(x) < H∗.85

As in [10], we arrive at a form suitable for discretization by mixed methods86

by working with the linearized momentum ũ = Hu rather than velocity.87
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After making this substitution and dropping the tildes, we obtain88

1

H
ut +

f

Hǫ
u⊥ +

β

ǫ2
∇η + C

H
u = F,

ηt +∇ · u = 0.
(2)

Here, we introduce F as shorthand for the forcing term F = β

Hǫ2
∇η′. A89

natural weak formulation of this equations is to seek u ∈ H(div) and η ∈ L2
90

so that91

(
1

H
ut, v

)
+

1

ǫ

(
f

H
u⊥, v

)
− β

ǫ2
(η,∇ · v) +

(
C

H
u, v

)
= (F, v) ,

(ηt, w) + (∇ · u, w) = 0

(3)

for all v ∈ H(div) and w ∈ L2.92

We select suitable mixed finite element spaces Vh ⊂ H(div) and Wh ⊂93

L2 of order k satisfying the commuting projection and having divergence94

mapping Vh ontoWh [14]. We will need to make use of the inverse assumption95

that there exists some CI (typically depending on the polynomial degree and96

mesh shape but not element size) such that97

‖∇ · u‖ ≤ CI

h
‖u‖ (4)

for all u ∈ Vh.98

Our theory for preconditioners does not depend on the particular choice99

of finite element spaces, and so our numerical results will include various100

instances of triangular and rectangular elements. A classic element pair on101

triangular meshes uses the Raviart-Thomas elements [15] for Vh together102

with discontinuous piecewise polynomials for Wh. In this case, the space Vh103

consists of elements that, restricted to a given triangle K, live in the space104

V k(K) = Pk−1(K)2 +

[
x
y

]
Pk−1(K),

where Pk(K) is the space of polynomials of degree k over K and Pk(K)2105

consists of all 2-vectors of such polynomials. The Raviart-Thomas space106

is the smallest possible space that the divergence can map onto Pk−1(K).107

Here, we follow the ordering of the Periodic Table of Finite Elements [16]108

summarizing the Finite Element Exterior Calculus [17] instead of the original109

ordering of Raviart and Thomas – the lowest order RT space is indexed with110
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1 rather than zero. The global spaces consist of functions locally in V k(K)111

with continuous normal components between edges for Vh and discontinuous112

piecewise polynomials of degree k − 1 for Wh.113

Raviart-Thomas elements can be defined on rectangular domains in a114

similar way – choosing something the divergence maps onto tensor-products115

of polynomials. In this case, the local flux space consists of vectors whose116

x-components are tensor products of polynomials of degree k in the x vari-117

able with polynomials of degree k − 1 in the y variable and vice versa for118

the y component. If such vectors, pieced together with continuous normal119

components, form the global Vh space, they are combined with discontinuous120

tensor-product polynomials of degree k on each cell for Wh.121

On rectangular elements, using tensor products of degree k polynomials122

for Wh delivers accuracy of order k + 1, but at a higher cost than strictly123

necessary. It is only necessary that Wh contain polynomials of total degree k124

for this accuracy to hold. Classically, the Brezzi-Douglas-Marini elements [18]125

do just this, taking Vh to have vectors of polynomials of total degree k suitably126

enriched to allow normal continuity. More recently, these elements have127

been interpreted in the context of serendipity differential forms, and related,128

but smaller spaces of “trimmed” serendipity forms are known [19]. We also129

use the second-order instance of these spaces. In the lowest order case, RT130

elements with piecewise constants give 4 + 1 degrees of freedom per cell. In131

the next case, RT elements give 12 + 4 degrees of freedom per cell. The132

second-order trimmed serendipity element with linears gives just 10 + 3133

degrees of freedom per cell.134

We define uh ⊂ Vh and ηh ⊂ Wh as solutions of the discrete variational135

problem136

(
1

H
uh,t, vh

)
+

1

ǫ

(
f

H
u⊥h , vh

)
− β

ǫ2
(ηh,∇ · vh) +

(
C

H
uh, vh

)
= (F, vh) ,

(ηh,t, wh) + (∇ · uh, wh) = 0.

(5)

In previous work [10], we analyzed the semi-discrete form of this method,137

and in [20] we analyzed a symplectic Euler time discretization of mixed meth-138

ods for the simpler (obtained from our current model putting f = 0, C = 0139

and possibly allowing β, ǫ to vary spatially) acoustic wave equation. For each140

time step, this method only requires the inversion of a mass matrix for Vh and141

another for Wh. However, it requires a CFL-like time step constraint with142

∆t = O(h) (the constant depends somehow on the shape of mesh elements),143
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is only first-order accurate, and only conserves a quantity close to the actual144

system energy in the undamped case. Moreover, in the finite element context145

even explicit methods require the inversion of mass matrices, unless the mesh146

and approximating spaces admit some kind of diagonal approximation (e.g.147

lumping).148

In this paper, we turn to implicit methods, especially Crank-Nicolson.149

This method is second-order accurate in time, does not require a CFL condi-150

tion for stability, and exactly conserves the system energy for the undamped151

equations. We also point out that, for linear problems it is equivalent to152

the implicit midpoint rule, which is the lowest-order Gauss-Legendre im-153

plicit Runge-Kutta method. In addition to their A-stability, these methods154

are both symplectic and B-stable, which makes them seem quite appropriate155

for problems based on a energy conservation principle plus some damping156

mechanism. (Note: for nonlinear problems, Crank-Nicolson is actually the157

lowest-order LobattoIIIA method, which is still A-stable but not symplec-158

tic.) On the down side, it requires the solution of a more complicated system159

of equations at each time step than symplectic Euler. Error analysis goes160

through following standard techniques; our goal here is the design and anal-161

ysis of an effective preconditioner.162

Selecting time levels 0 = t0 < t1 < · · · < tN = T with tn = t0 + n∆t, we163

seek a sequence of {(unh, ηnh)}Nn=0 such that for each n ≥ 1,164

(
1

H

un+1
h − unh
∆t

, vh

)
+

1

ǫ

(
f

2H

(
(un+1

h )⊥ + (unh)
⊥) , vh

)

− β

2ǫ2
(
ηn+1
h + ηnh ,∇ · vh

)
+

(
C

2H

(
un+1
h + unh

)
, vh

)
=

(
F n+

1
2 , vh

)
,

(
ηn+1
h − ηnh
∆t

, wh

)
+
(
1
2
∇ · (un+1

h + unh), wh

)
= 0.

(6)

for all vh ∈ Vh and wh ∈ Wh.165

Given unh and ηnh , this defines a linear system for un+1
h and ηn+1

h that166

must be solved at each time step. Dropping the superscripts and subscripts,167

multiplying through by ∆t and putting k ≡ ∆t
2
, we arrive at a canonical168

equation to be solved at each time step:169

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v) +

(
Ck

H
u, v

)
= (F, v) ,

(η, w) + k (∇ · u, w) = (G,w) ,

(7)
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where the solution u ∈ Vh and η ∈ Wh and similar for test functions. Equiv-170

alently, we can define a bilinear form on the product space Vh×Wh. Adding171

together the first equation and β

ǫ2
times the second, we let u = (u, η) and172

v = (v, w), to define173

a(u,v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
Ck

H
u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w) .

(8)

Before proceeding, we remark that many other single-stage methods (e.g.174

backward Euler or the implicit midpoint rule) would give variational prob-175

lems of this form as well. Now, solving a variational problem associated with176

this bilinear form gives rise to a block-structured linear system177

[
M̌ −βk

ǫ2
DT

βk

ǫ2
D β

ǫ2
M

] [
u
η

]
=

[
f
g

]
, (9)

where for finite element bases {ψi}dimVh

i=1 and {φi}dimWh

i=1 , we have matrices178

M̌ij =

(
1 + Ck

H
ψj, ψi

)
+

(
fk

ǫH
ψ⊥
j , ψi

)
,

Dij = (∇ · ψj, φi) ,

Mij = (φj, φi) .

(10)

Note that M̌ is not just a weighted mass matrix. It is nonsymmetric owing179

to the skew off-diagonal terms and the skew term involving ·⊥ in the top left180

block. It is the diagonal skew term rather than the off-diagonals that lead181

to the parameter-dependence in our weighted-norm estimate.182

3. Preconditioning183

Now, we turn to developing a preconditioner for (8). Here, we concretize184

the abstract approach taken in [21, 22] for our particular tide model. Es-185

sentially, a bounded bilinear form a on a Hilbert space V is equivalent to a186

linear operator A from V into its topological dual V ′. Classical Galerkin dis-187

cretization restricts this bilinear form and operator to some finite-dimensional188

subspace Vh ⊂ V . Moreover, the discrete operator Ah : Vh → V ′
h is encoded189
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by the usual finite element stiffness matrix A obtained by substituting each190

member of a basis for Vh into each argument of a.191

When one seeks to solve the linear system for the discrete solution by192

means of an iterative method such as GMRES [12], the conditioning of the193

matrix A plays a critical role. As the condition number, and hence number194

of iterations required, of A degrades under mesh refinement, it is critical to195

precondition the linear system by means of (at least morally) pre-multiplying196

the system197

Ax = b

by some linear operator P−1. Thus, one obtains the equivalent system198

P−1Ax = P−1b,

and if the conditioning of P−1A is much better than that of A, the iterative199

method should converge much faster. Of course, the cost of applying P−1
200

at each iteration must not offset the reduction in iteration count for the201

preconditioner to be successful.202

One can think of the matrix P as discretizing some simpler operator203

P : V → V ′ so that the product P−1A encodes a bounded operator from Vh204

onto itself. In the simplest case this is the Riesz map, which isometrically205

identifies each f ∈ V ′
h uniquely with some v ∈ Vh so that f(u) = (u, v)206

for all u ∈ Vh. Bounded operators have bounded spectra, and functional-207

analytic bounds obtained on P−1A mean that the matrices P−1A will inherit208

mesh-independent bounds on their spectra. We refer to [21, 22] for further209

discussion of this approach.210

In addition to mesh refinement, variation in physical parameters can also211

contribute adversely to the conditioning of discrete problems. While the212

standard Riesz map serves as a simple preconditioner that eliminates mesh213

dependence, it does not address physical constants. Increasingly, attempts214

are made to design parameter-robust preconditioners, meaning that they also215

eliminate or at least mitigate the dependence of the conditioning on system216

parameters.217

In this section, we present two preconditioners. One is based on inverting218

weighted mass matrices. This utilizes an inverse assumption in H(div) to219

work in purely a discrete L2 inner product, so that the bounds depend on220

the mesh parameter h in such a way that conditioning (as expected) degrades221

as h ց 0. However, this dependence can be offset by taking k = O(h), a222
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CFL-like criterion that enforces conditioning rather than stability of the time-223

discretization. Our second approach better respects the functional analytic224

structure, working in a weightedH(div)×L2 inner product. Here, we obtain a225

mesh-independent bound that is also far less dependent on other parameters226

at the expense of a more complicated operator to invert as a preconditioner.227

3.1. Mass matrices: block diagonal228

A simple approach that may help for small time steps is to precondition229

the linear system with the block diagonal matrix230

PM =

[
M̃ 0

0 β

ǫ2
M

]
, (11)

where231

M̃ij =

(
1

H
ψj, ψi

)
(12)

is the mass-like matrix obtained from the 1
H
-weighted inner product of the232

Vh basis functions and M is as in (10).233

This is motivated by the observing that the bilinear form a from (8) is234

continuous and coercive on discrete subspaces of (L2)2 × L2, although the235

constants depend on the discretization parameters h and k as well as the236

physical parameters. We define the norm237

‖u‖22 = ‖u‖21
H

+
β

ǫ2
‖η‖2, (13)

where ‖u‖21
H

=
(

1
H
u, u

)
. The the inner product for this norm generates the238

matrices in (11).239

Establishing well-posedness of variational problems for the bilinear form240

a follows from demonstrating continuity and inf-sup estimates in H(div) ×241

L2. However, we can study the mass matrix preconditioner (11) by means242

of establishing continuity and coercivity of a on finite element subspaces243

equipped with the L2 norms. This analysis is somewhat nonstandard, but244

it establishes an alternate proof of solvability of the discrete system and245

more importantly, allows us to demonstrate mesh-independence of (11) as a246

preconditioner subject to a CFL-like restriction on k.247

Proposition 3.1. Let248

κ = 4max

{
1 + C∗k +

f ∗k

ǫ
,

√
βkCI

ǫH∗h

}
. (14)
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Then, the bilinear form a satisfies249

a(u,v) ≤ κ‖u‖2‖v‖2, (15)

and250

a(u,u) ≥ ‖u‖22. (16)

Proof. We begin with the continuity estimate (15).251

a(u,v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
Ck

H
u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w)

≤
(
1 + C∗k +

f ∗k

ǫ

)
‖u‖ 1

H

‖v‖ 1

H

+
β

ǫ2
‖η‖‖w‖+ βk

ǫ2
‖∇ · u‖‖w‖+ βk

ǫ2
‖η‖‖∇ · v‖.

Applying the inverse estimate to the divergences and converting to the 1
H
-252

weighted norm now gives253

a(u,v) ≤
(
1 + C∗k +

f ∗k

ǫ

)
‖u‖ 1

H

‖v‖ 1

H

+
β

ǫ2
‖η‖‖w‖+ βkCI

hH∗ǫ2
‖u‖ 1

H

‖w‖+ βkCI

hH∗ǫ2
‖η‖‖v‖ 1

H

.

The result follows by absorbing
√
β/ǫ into the norm of ‖w‖ and ‖η‖ in254

the third and fourth term and then recognizing each term as bounded by255

κ‖u‖‖v‖.256

The rescaling of the second equation to produce the bilinear form a makes257

the coercivity estimate rather simple. Noting that u⊥ · u = 0 pointwise and258

that the divergence terms in a(u,u) cancel, we have259

a(u,u) =

(
1

H
u, u

)
+

(
Ck

H
u, u

)
+
βk

ǫ2
(η, η)

≥ (1 + C∗k) ‖u‖21
H

+
β

ǫ

2

‖η‖2

≥ ‖u‖22.

260
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It is possible to achieve slightly better constants (e.g. through more care-261

ful use of discrete Cauchy-Schwarz), but the main issue remains: the condi-262

tioning of the system (continuity divided by coercivity constants) depends263

on the discretization (as well as physical) parameters, scaling like k
h
. For a264

fixed time step, the conditioning degrades like h−1, and so preconditioning265

with weighted mass matrices is only scalable if one also imposes a CFL-like266

time step restriction. Moreover, even including some weights in the norm,267

we still have quite a bit of parameter dependence in our estimate.268

3.2. Weighted-norm preconditioning269

The mesh-dependence in our estimate comes from invoking the inverse as-270

sumption in order to obtain L2 estimates. Our bilinear form is not coercive271

on subspaces of H(div)×L2, but we can prove that it still defines a bounded272

operator with bounded inverse in a weighted norm that nearly eliminates pa-273

rameter dependence. Such techniques appear for other applications [23, 24]274

as well, and are based on defining a suitable (parameter-dependent) inner275

product in which the problem is well-behaved rather than algebraic consid-276

erations such as merely selecting the block diagonal or triangular part of the277

system matrix [25, 26, 27]278

We can equip H(div) with the following weighted norm279

‖u‖2a = ‖(1 + Ck)u‖21
H

+
k2β

ǫ2
‖∇ · u‖2 (17)

and, as previously, L2 with the norm280

‖η‖2b =
β

ǫ2
‖η‖2. (18)

We then equip the product space H(div)× L2 with the norm281

|||u|||2 = |||(u, η)|||2 = ‖u‖2a + ‖η‖2b

= ‖(1 + Ck)u‖21
H

+
k2β

ǫ2
‖∇ · u‖2 + β

ǫ2
‖η‖2

(19)

This norm is derived from a weighted inner product282

((u,v)) = ((1 + Ck) u, v) 1

H

+
k2β

ǫ2
(∇ · u,∇ · v) + β

ǫ2
(η, w) . (20)
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Discretizing this bilinear form on mixed function spaces Vh × Wh yields a283

block-diagonal preconditioning matrix:284

P =

[
PVh

0
0 PWh

]
, (21)

where the first block handles the parameter-weighted H(div) inner product285

and the second is just the standard Wh mass matrix scaled by β

ǫ2
. We have286

(PVh
)ij = ((1 + Ck)ψj, ψi) 1

H

+ (ψj, ψi) +
k2β

ǫ2
(∇ · ψj,∇ · ψi) ,

(PWh
)ij =

β

ǫ2
(φj, φi) .

(22)

In the lowest-order case (either on triangles or squares), Wh consists of287

piecewise constants so that PWh
is simply a diagonal matrix. Since the top288

left block discretizes a differential operator, applying P−1
Vh

will constitute the289

bulk of the cost in applying the preconditioner. Options based on multigrid290

are available, and we discuss these more later.291

The following result shows the boundedness of a in this norm, with mild292

dependence on parameters, which we discuss below.293

Theorem 3.1. For all u = (u, η) and v = (v, w) in H(div)×L2, the bilinear294

form a satisfies295

a(u,v) ≤ K|||u||||||v|||, (23)

where constant K = Kk,ǫ = max
{
2, 1 + k

ǫ

}
.296

Proof. The proof is a direct calculation using Cauchy-Schwarz, the isometry297

of ·⊥, and upper bounds on some of the spatially varying coefficients298

a(u,v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
Ck

H
u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w)

≤ ‖(1 + Ck)u‖ 1

H

‖(1 + Ck)v‖ 1

H

+
f ∗k

ǫ
‖u‖ 1

H

‖v‖ 1

H

+
βk

ǫ2
‖η‖‖∇ · v‖+ β

ǫ2
‖η‖‖w‖+ βk

ǫ2
‖∇ · u‖‖w‖.

(24)
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Now, we can write299

‖u‖ 1

H

≤ 1√
1 + C∗k

‖(1 + Ck)u‖ 1

H

≤ ‖(1 + Ck)u‖ 1

H

and recalling that |f ∗| ≤ 1,300

a(u,v) ≤
(
1 +

k

ǫ

)
‖(1 + Ck)u‖ 1

H

‖(1 + Ck)v‖ 1

H

+
βk

ǫ2
‖η‖‖∇ · v‖+ β

ǫ2
‖η‖‖w‖+ βk

ǫ2
‖∇ · u‖‖w‖.

(25)

Now, we recognize the right-hand side as the dot product of301




√
(1 + k

ǫ
)‖(1 + Ck)u‖ 1

H√
β

ǫ
‖η‖√

β

ǫ
‖η‖

k
√
β

ǫ
‖∇ · u‖




t 


√
(1 + k

ǫ
)‖(1 + Ck)v‖ 1

H

k
√
β

ǫ
‖∇ · v‖√
β

ǫ
‖w‖√

β

ǫ
‖w‖



,

whence discrete Cauchy-Schwarz gives302

a(u,v) ≤
[(

1 +
k

ǫ

)
‖(1 + Ck)u‖21

H

+
k2β

ǫ2
‖∇ · u‖2 + 2β

ǫ

2

‖η‖2
] 1

2

×
[(

1 +
k

ǫ

)
‖(1 + Ck)v‖21

H

+
k2β

ǫ2
‖∇ · v‖2 + 2β

ǫ

2

‖w‖2
] 1

2

,

(26)

and the result follows from a simple bound.303

Note that the Coriolis term fk

ǫ
(u⊥, v), which is skew and on the diago-304

nal leaves the term scaled by k
ǫ
so that we do not obtain total parameter-305

independence. We can interpret this bound as saying that the Rossby number306

ǫ induces a time scale, independent of h, that must be resolved in order to307

obtain a robust continuity estimate. More precisely,308

Corollary 3.1. For any M ≥ 2 and ǫ > 0, there exists k0 such that for any309

k ≤ k0,310

a(u,v) ≤M |||u||||||v|||.
Next, we bound the inverse of the operator induced by a by means of311

an inf-sup condition. Unlike our continuity estimate, this is completely312

parameter-independent.313
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Theorem 3.2. The bilinear form a satisfies the estimate314

inf
u 6=0

sup
v

a(u,v) ≥
√
3

6
. (27)

Proof. We let u = (u, η) be given and put v = (v, w) = (u, η + k∇ · u) so315

that316

a(u,v) =

(
1

H
u, u

)
+

(
fk

ǫH
u⊥, u

)
− βk

ǫ2
(η,∇ · u)

+

(
Ck

H
u, u

)
+
β

ǫ2
(η, η + k∇ · u) + βk

ǫ2
(∇ · u, η + k∇ · u)

= ‖(1 + Ck)u‖21
H

+
β

ǫ2
‖η‖2 + k2β

ǫ2
‖∇ · u‖2 + kβ

ǫ2
(η,∇ · u).

(28)

The last term is readily bounded below by − β

2ǫ2
(‖η‖2 + k2‖∇ · u‖2) so that317

a(u,v) ≥ ‖(1 + Ck)u‖21
H

+
β

2ǫ2
‖η‖2 + k2β

2ǫ2
‖∇ · u‖2 ≥ 1

2
|||u|||2. (29)

Now, we have that318

|||v|||2 = ‖(1 + Ck)u‖21
H

+
k2β

ǫ2
‖∇ · u‖2 + β

ǫ2
‖η + k∇ · u‖2

≤ ‖(1 + Ck)u‖21
H

+ 3
β

ǫ2
‖∇ · u‖2 + 2

β

ǫ2
‖η‖2

≤ 3|||u|||2,

(30)

and combining this with (29) gives the result.319

Because the spectral radius of a matrix is bounded above by any natural320

norm, these results prove that the moduli of the eigenvalues of P−1A are321

bounded below by a constant (in fact,
√
3
6
) independently of the mesh size322

and all the physical constants. The moduli of the eigenvalues of P−1A are323

further bounded above the greater of 2 and 1 + k
ǫ
, which can degrade as the324

Rossby number decreases.325

3.3. Dropping the damping term from the preconditioner326

In [11], we consider energy and error analysis of a possibly degenerate327

nonlinear damping term, where the term Cu in (2) is replaced by a more328
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general g(u). Typical use cases have a power law such as g(u) = |u|p−1u,329

modified to have linear growth for large u (at least as a technical assumption).330

In this case, g(u) tends to zero as |u| does so that the effective damping331

decays.332

Carrying out the same manipulations that leads to (8) for nonlinear damp-333

ing leads to the nonlinear variational form334

F (u;v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
k

H
g(u), v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w) .

(31)

Newton-type methods require the Jacobian of this system. Linearizing335

about some state u0 = (u0, η0), we have336

Ju0
(u;v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
k

H
g′(u0)u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w) .

(32)

All of the analysis carried out in [11] required monotonicity of g, so that337

g′ > 0. In this case, (32) takes the same form as (8) with C ↔ g′(u0). As a338

result, our theory carries over directly to preconditioning each Newton step339

provided that the Riesz map (20) is updated at each iteration (of each time340

step).341

On the other hand, many preconditioners such as algebraic multigrid can342

be relatively expensive to initialize, so that it is helpful to reuse the same343

bilinear form between successive linear solves as the damping changes. We344

drop the damping term in the bilinear form in (20) to define345

((u,v))∗ = (u, v) 1

H

+
k2β

ǫ2
(∇ · u,∇ · v) + β

ǫ2
(η, w), (33)

and an associated norm346

|||u|||2∗ ≡ ((u,u))∗. (34)

This norm is, at the cost of some dependence on C∗, equivalent to |||·|||347

Proposition 3.2. For all u = (u, η) ∈ Vh ×Wh,348

1
1+C∗k

|||u|||2 ≤ |||u|||2∗ ≤ |||u|||2 (35)
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Proof. The proof is elementary and uses that 1+Ck
1+C∗k

≤ 1 ≤ 1 + Ck in the349

definition of ((·, ·)).350

Theorems 3.1 and 3.2 can be readily restated using this norm:351

Corollary 3.2. For all u,v ∈ H(div)× L2,352

a(u,v) ≤ K∗|||u|||∗|||v|||∗, (36)

where K∗ = (1 + C∗k)max{2, 1 + k
ǫ
}, and the inf-sup constant of a with353

respect to |||·|||∗ is also at least
√
3
6
.354

Typically, the linear damping is small compared to the other effects in the355

equation so that the effective bounds on the preconditioner are essentially356

unchanged. Much as with the Rossby number, the time step can be reduced357

to accommodate large C∗ if it becomes a problem.358

4. Numerical results359

We have implemented a mixed finite element discretization of the tide360

model and developed all of our preconditioners within the Firedrake frame-361

work [28]. Firedrake is an automated system for the solution of PDE using362

the finite element method. It allows users to specify the variational form of363

their problems using the Unified Form Language (UFL) in Python [29], gen-364

erates efficient low-level code for the evaluation of operators, and interfaces365

tightly with PETSc for scalable algebraic solvers. Firedrake also allows users366

to specify UFL for preconditioning operator that is distinct from that for367

the problem being solved, and we make use of this facility. A sample listing368

is shown in Figure 1. The solver/preconditioner is typically configured by369

passing a dictionary into solve function as a keyword argument.370

Before proceeding with the numerical investigation of our weighted-norm371

preconditioner, we confirm that the mass matrix preconditioner (11) in fact372

performs poorly as suggested by Proposition 3.1. In this experiment, we373

fix exemplary values of C = f = H = 1 and β = ǫ = 0.01. We consider374

several values of k and a sequence of refined meshes. We subdivide the unit375

square into an N × N mesh of squares, each of which is further subdivided376

into two right triangles. On each mesh, we approximate u in the lowest-377

order Raviart-Thomas space and η in the space of discontinuous piecewise378

constants. Figure 2 shows the GMRES(100) iteration count required to solve379
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✞ ☎
from firedrake import *

mesh = UnitSquareMesh (16, 16)

V = FunctionSpace(mesh , "RT", 1)

Q = FunctionSpace(mesh , "DG", 0)

Z = V * Q

x, y = SpatialCoordinate(mesh)

k = Constant(k)

Eps = Constant (0.1)

Beta = Constant (0.1)

C = Constant (1.0)

f = Constant (1.0)

beps2 = Beta / Eps **2

up = Function(Z)

v, q = TestFunctions(Z)

u, p = split(up)

F = (inner(u, v) * dx

+ k / Eps * f * inner(perp(u),v) * dx

- k * beps2 * inner(p, div(v)) * dx

+ C * k * inner(u,v) * dx

+ beps2 * inner(p, q) * dx

+ k * beps2 * inner(div(u), q) * dx

- beps2 * inner(sin(pi*x)*cos(pi*y),q)*dx)

uu , pp = TrialFunctions(Z)

Jpc = (( Constant (1.0) + C * k) * inner(uu ,v)*dx

+ k**2 * beps2 * inner(div(uu),div(v)) *dx

+ beps2 * inner(pp ,q)*dx)

bcs = [DirichletBC(Z.sub(0), 0, ’on_boundary ’)]

solve(F==0, up , bcs=bcs , Jp=Jpc)

solver.solve ()
✝ ✆

Figure 1: Sample Firedrake code for solving the tide model using the Riesz map (20) as
a preconditioner. The user can optionally pass a Python dictionary containing PETSc
options into the solve function.
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the linear system using (11) as a preconditioner. As expected, for fixed k, the380

iteration count increases under mesh refinement. For a fixed mesh, increasing381

k also dramatically increases the iteration count. We should hope for lower382

iteration counts and greater parameter robustness from our weighted-norm383

preconditioner.384

In our next sequence of experiments, we test the results of Theorems 3.1385

and 3.2. We keep the damping coefficient C, Coriolis parameter f , and386

bathymetry H all equal 1, the Burger number β = 0.1 and Rossby number387

ǫ = 0.01, and continue a division of the unit square into an N × N mesh.388

To demonstrate the independence of our preconditioning technique with re-389

spect to the particular discretization, we consider both triangular Raviart-390

Thomas elements and rectangular Raviart-Thomas and serendipity H(div)391

elements [30] in our experiments. Figures 3, 4, 5, and 6 plot GMRES(100)392

iteration counts using preconditioners (21) and (33) for various values of N393

and k for these discretizations. While the particular iteration counts vary394

slightly for different elements in the figures, several trends are consistent.395

The curves showing mesh refinement for a given k are largely flat, indicating396

a high degree of mesh-independence.397

We do see some dependence of the iteration count on k for a fixed mesh.398

For the smaller and larger values of k, the iteration count is smaller, and399

it is largest for intermediate values of k. We explain this as follows. Com-400

paring the preconditioning bilinear form (20) to the bilinear form (8) when401

k ց 0 decreasing, we observe that the bilinear form and the preconditioner402

approach the same limit, explaining the iteration counts dropping to 1 or403

2. The case for k large is more subtle. However, we observe that (8) ap-404

proaches a variable-coefficient Laplace operator (scaled by k) and that the405

preconditioner is just k times a Riesz map with respect to which that opera-406

tor is known to be well-conditioned. The case of intermediate k is somewhere407

between these limiting cases, and the observed behavior is closer to the worst-408

case estimate.409

As a final note on this discussion, we compare the left and right hand410

plots in each of the Figures 3, 4, 5, and 6. We typically see a slight increase411

in iteration count, although this could become more significant for strongly412

heterogeneous problems.413
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Figure 2: Iteration count versus mesh refinement under various k values for C = f = 1,
β = 0.1, and ǫ = 0.1. The unit square is divided into an N × N mesh of squares, each
subdivided into two right triangles. Lowest-order Raviart-Thomas discretization is used,
with mass matrix (11) as a preconditioner.

To further confirm our theorem, we now fix the mesh at N = 128 and414

studying the iteration count as a function of ǫ and k. These results are415

shown in Figures 7, 8, and 9. This shows that, for fixed k, increasing ǫ also416

increases the iteration count. On the other hand, for fixed ǫ, one finds the417

largest iteration counts for intermediate values of the time step. Much as the418

mesh-dependence study, we remark that varying the discretization order and419

cell shape has little effect on the results.420

While these numerical results demonstrate the theoretical robustness of421

our preconditioner, they have been obtained by applying the preconditioner422

with a sparse direct solver. Using an iterative solver with sufficiently tight tol-423

erance should give identical iteration counts, but it is also interesting to con-424

sider an inexact application of the top left block of (21) or (33). Here, we use425

the H(div) geometric multigrid algorithm of Arnold, Falk, and Winther [31].426

(As an alternative, one could employ an algebraic approach such as that427

in [32].) Rather than pointwise smoothers, multigrid in H(div) requires the428
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(a) Using the bilinear form (20) (includes damp-
ing) as a preconditioner
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(b) Using the bilinear form (33) (without damping)
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Figure 3: Iteration count versus mesh refinement under various k values for C = f = 1,
β = 0.1, and ǫ = 0.01. The unit square is divided into an N × N mesh of squares, each
subdivided into two right triangles. Lowest-order Raviart-Thomas discretization is used.
The iteration counts are largest for moderate k and decrease as k is either very large or
small. Also, removing the damping term (right) from the weighted inner product leads to
a small increase in iteration count.

solution of local problems associated with vertex patches on each level. This429

approach is accessible in Firedrake through the high-level solver interface430

described in [33] and the pcpatch package [34]. We use full multigrid with431

a sparse direct coarse-grid solve. Comparing Figures 10 and 11 to Figure 3,432

we see larger iteration counts when a multigrid sweep replaces the sparse433

direct method. Since the preconditioner is applied inexactly, an increase in434

iteration counts is not surprising. On the other hand, the trend lines in435

Figures 10 and 11 are mostly downward with respect to mesh refinement.436

We conjecture this is due to using a fixed number of multigrid levels with a437

sparse direct coarse grid solve. As the mesh is refined, a finer coarse grid and438

hence smaller perturbation in the preconditioner application is obtained.439
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(b) Using the bilinear form (33) (without damping)
as a preconditioner

Figure 4: Experiment in Figure 3 is repeated, except with the next-to-lowest Raviart-
Thomas elements. Since the bilinear form (20) is also discretized in this space, very little
changes relative to the lowest-order case.

As a final example, we consider the effect of nonlinear damping on our pre-440

conditioner. In particular, we choose g(u) = |u|2u in (31) (this bypasses nu-441

merical wrinkles in differentiating through the singularity of quadratic damp-442

ing). Our typical use case is within a time-stepping loop, where the solution443

at the previous time step serves as an initial guess for Newton iteration. To444

imitate having such a suitable initial guess, we seed Newton’s method with445

the solution of the linear, undamped problem. In this case, we observed that446

Newton requires but a single iteration to converge. Iteration counts for the447

linear solve in this situation are presented in Figure 12, and similar results448

are obtained for other discretizations. For more rapidly-varying Jacobians,449

one might require adaptive time stepping or more iterations, but robustly450

handling time discretizations is beyond the scope of our present investiga-451

tion.452
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(b) Using the bilinear form (33) (without damping)
as a preconditioner

Figure 5: Experiment in Figure 3 is again repeated, except with lowest Raviart-Thomas
elements on squares. Again, little changes relative to the triangular case.

5. Conclusions453

We have developed effective weighted-norm preconditioners for a mixed fi-454

nite element/Crank-Nicolson discretization of the linearized rotating shallow455

water equations with (possibly nonlinear) damping. These preconditioners456

are based on defining a suitable inner product in which the operators are457

bounded with bounded inverse in a relatively parameter-independent way.458

These estimates in turn control the spectrum of the preconditioned operator.459

Our estimates remain dependent on the ratio k
ǫ
, although this seems relatively460

benign in practice. Moreover, inexactly applying the preconditioner through461

a multigrid sweep and neglecting damping terms in the inner product lead462

to further simplifications with only mild effects on iteration count.463

This work suggests many future research directions. Since our theory464

and numerical observations both seem independent of mesh type and dis-465

cretization order, we hope to apply these preconditioners to unstructured466

quadrilateral elements such as Arbogast-Correa [35]. Moreover, our tech-467

niques should be applicable to more complex tide models that might include468

additional nonlinearities or layering.469
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Figure 6: Experiment in Figure 3 is again repeated, except second-order trimmed serendip-
ity elements on squares. Again, little changes relative to the triangular case.
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Figure 9: Iteration count with weighted-norm preconditioning as a function of k and ǫ on
a 128× 128 mesh of squares using lowest-order Raviart-Thomas elements. Again, results
are nearly identical to the two triangular cases.
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