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Preconditioning mixed finite elements for tide models
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Abstract

We describe a fully discrete mixed finite element method for the linearized
rotating shallow water model, possibly with damping. While Crank-Nicolson
time-stepping conserves energy in the absence of drag or forcing terms and
is not subject to a CFL-like stability condition, it requires the inversion of
a linear system at each step. We develop weighted-norm preconditioners
for this algebraic system that are nearly robust with respect to the physical
and discretization parameters in the system. Numerical experiments using
Firedrake support the theoretical results.
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1. Introduction

Accurate modeling of tides plays an important role in several disciplines.
For example, geologists use tide models to help understand sediment trans-
port and coastal flooding, while oceanographers study tides to discern mech-
anisms sustaining global circulation [1, 2]. Finite element methods making
use of unstructured (typically triangular) meshes are attractive to handle
irregular coastlines and topography [3]. In many situations, it is sufficient
to use a linearized shallow water model with rotation and a parameterized
drag term. In particular, the literature contains many papers [4, 5, 6, 7, 8, 9]
studying mixed finite element pairs for discretization of each layer for ocean
and atmosphere models, and we continue study of this case here.

Much of the literature relates to dispersion relations and enforcement of
conservation principles by mixed methods, but our prior work in this area
has been to focus on energy estimates. In [10], we gave a careful account of
the effect of linear bottom friction in semidiscrete mixed methods, showing
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that, absent forcing, one obtained exponential damping of a natural energy
functional. This allowed estimates of long-time stability and optimal-order
a priori error estimates. Then, we handled the (much more delicate) case of
a broad family of nonlinear damping terms in [11]. In this case, the energy
decay is sub-exponential (typically bounded by a power law) but still strong
enough to admit long-time stability and error estimates.

While our work in [10, 11] focused on the semidiscrete mixed finite element
case, we now turn to certain issues related to time-stepping. Crank-Nicolson
time-stepping is second-order accurate, A-stable (not subject to CFL-like
stability condition), and exactly energy conserving in the absence of forc-
ing and damping. However, because it is implicit, it requires the solution
of a system of algebraic equations at each time step. For linear damping
models, this system is linear, but nonlinear otherwise. The point of this pa-
per is to develop robust preconditioners for the linear system (or Jacobian
of the nonlinear one) for use in conjunction with a Krylov method such as
GMRES [12].

In addition to the mesh size and time step, our model also depends on
a number of physical parameters, described in the following section. Our
goal is to design a preconditioner that enables GMRES to converge with an
overall iteration counts that depend as little as possible on these parameters.
We follow the technique of using weighted-norm preconditioners [13]. Here,
one designs an inner product with respect to which the variational problem
is bounded with bounded inverse. Such bounds should depend weakly, if at
all, on physical and discretization parameters.

The paper is organized as follows. We describe the particular tide model
of interest and its discretization in Section 2. This includes Crank-Nicolson
time-stepping and a comparison to a symplectic Euler method. Then, we
turn to preconditioning the Crank-Nicolson system in Section 3. After ana-
lyzing a simple block-diagonal preconditioner with scaled mass matrices, we
develop and analyze a parameter-weighted inner product on H(div) x L.
Our estimate shows that the preconditioned system has an intrinsic time
scale determined by the Rossby number that must be resolved by the time
step. This does not seem to be a major practical constraint. After discus-
sion and analysis of these preconditioners, we turn to numerical experiments
validating the theory in Section 4 and draw some conclusions in Section 5.
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2. Description of finite element tidal model

The nondimensional linearized rotating shallow water model with linear
drag and forcing on a two dimensional surface €2 is given by

ut—l—iuL-i—%
€ €

V(in—n)+Cu=0,
m+ V- (Hu) =0.

(1)

Here, the unknowns are u, which is the nondimensional velocity field tangent
to €, and n is the nondimensional free surface elevation above the height
at state of rest. The quantity u™ = (—ug,u;) is just the velocity rotated
by 7/2. The system is driven by the quantity V7', which is the (spatially
varying) tidal forcing. Several physical parameters also appear in the system.
The Coriolis forces are given by f, a non-dimensional parameter which is
equal to the sine of the latitude (which can be approximated by a linear or
constant profile for local area models). The Rossby number, €, measures the
ratio of inertial to Coriolis forces and tends to be small but not singularly
so for global tides (O(107%) — O(107')). The Burger number [ measures
the ratio of vertical forces arising from density stratification to horizontal
rotational forces. In many applications it is O(1). C'is the (spatially varying)
nondimensional drag coefficient modeling bottom friction. H is the (spatially
varying due to bathymetry of the ocean floor) nondimensional fluid depth at
rest, and V and V- are the intrinsic gradient and divergence operators on (2,
respectively. On the boundary 0f2, we specify no-flux boundary conditions
u-n = 0. We must also specify initial conditions u(-,0) = ug and zero-mean
77('7 O) = To-

Prior energy and error analysis in [10] assumes that the bottom friction
satisfies some 0 < C, < C(x) < C*. The strict lower bound allows one
to show an exponential damping of the energy. However, even without the
lower bound, the model is well-posed and, absent forcing, has non-increasing
energy. Since we are not working with energy estimates, it is sufficient for us
to merely assume the upper bound C(x) < C*. Also, we require bounds on
the bathymetry of 0 < H, < H(x) < H*.

Asin [10], we arrive at a form suitable for discretization by mixed methods
by working with the linearized momentum u = Hu rather than velocity.
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After making this substitution and dropping the tildes, we obtain

1 foo, B ¢

_ — —u=F

Hut+ et + 62V77+ i : @)
e+ V-u=0.

Here, we introduce F' as shorthand for the forcing term F = %Vﬁ’ A
natural weak formulation of this equations is to seek u € H(div) and n € L?

so that
1 1L(f | 6] C B
<Eut,v> +Z<Eu ,v) —E—Q(n,v-v)—i- (Eu,v> = (F,v), 3)

(e, w) + (V- u,w) =0

for all v € H(div) and w € L.

We select suitable mixed finite element spaces V,, C H(div) and W), C
L? of order k satisfying the commuting projection and having divergence
mapping V}, onto W}, [14]. We will need to make use of the inverse assumption
that there exists some C; (typically depending on the polynomial degree and
mesh shape but not element size) such that

IVl < Gl (4)

for all u € Vj,.

Our theory for preconditioners does not depend on the particular choice
of finite element spaces, and so our numerical results will include various
instances of triangular and rectangular elements. A classic element pair on
triangular meshes uses the Raviart-Thomas elements [15] for V}, together
with discontinuous piecewise polynomials for W,. In this case, the space V},
consists of elements that, restricted to a given triangle K, live in the space

VHE) = Py (K)2 + m Pi1(K),

where Py(K) is the space of polynomials of degree k over K and Py(K)?
consists of all 2-vectors of such polynomials. The Raviart-Thomas space
is the smallest possible space that the divergence can map onto Py_;(K).
Here, we follow the ordering of the Periodic Table of Finite Elements [16]
summarizing the Finite Element Exterior Calculus [17] instead of the original
ordering of Raviart and Thomas — the lowest order RT space is indexed with

4
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1 rather than zero. The global spaces consist of functions locally in V*(K)
with continuous normal components between edges for V}, and discontinuous
piecewise polynomials of degree k — 1 for W,.

Raviart-Thomas elements can be defined on rectangular domains in a
similar way — choosing something the divergence maps onto tensor-products
of polynomials. In this case, the local flux space consists of vectors whose
r-components are tensor products of polynomials of degree k in the z vari-
able with polynomials of degree k — 1 in the y variable and vice versa for
the y component. If such vectors, pieced together with continuous normal
components, form the global V}, space, they are combined with discontinuous
tensor-product polynomials of degree k on each cell for W,.

On rectangular elements, using tensor products of degree k polynomials
for W), delivers accuracy of order k 4 1, but at a higher cost than strictly
necessary. It is only necessary that W), contain polynomials of total degree k
for this accuracy to hold. Classically, the Brezzi-Douglas-Marini elements [18§]
do just this, taking V}, to have vectors of polynomials of total degree k suitably
enriched to allow normal continuity. More recently, these elements have
been interpreted in the context of serendipity differential forms, and related,
but smaller spaces of “trimmed” serendipity forms are known [19]. We also
use the second-order instance of these spaces. In the lowest order case, RT
elements with piecewise constants give 4 4+ 1 degrees of freedom per cell. In
the next case, RT elements give 12 + 4 degrees of freedom per cell. The
second-order trimmed serendipity element with linears gives just 10 + 3
degrees of freedom per cell.

We define u, C V}, and n, C W), as solutions of the discrete variational
problem

1 1 C
(ﬁuh,tavh> + - (%Uﬁavh) - ?2 (Mh, V- vp,) + (ﬁuhavh) = (F,u), (5)
(nh,ta wh) + (V *Up, U}h) = O.

In previous work [10], we analyzed the semi-discrete form of this method,
and in [20] we analyzed a symplectic Euler time discretization of mixed meth-
ods for the simpler (obtained from our current model putting f = 0,C = 0
and possibly allowing f3, € to vary spatially) acoustic wave equation. For each
time step, this method only requires the inversion of a mass matrix for V}, and
another for W;,. However, it requires a CFL-like time step constraint with
At = O(h) (the constant depends somehow on the shape of mesh elements),
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is only first-order accurate, and only conserves a quantity close to the actual
system energy in the undamped case. Moreover, in the finite element context
even explicit methods require the inversion of mass matrices, unless the mesh
and approximating spaces admit some kind of diagonal approximation (e.g.
lumping).

In this paper, we turn to implicit methods, especially Crank-Nicolson.
This method is second-order accurate in time, does not require a CFL condi-
tion for stability, and exactly conserves the system energy for the undamped
equations. We also point out that, for linear problems it is equivalent to
the implicit midpoint rule, which is the lowest-order Gauss-Legendre im-
plicit Runge-Kutta method. In addition to their A-stability, these methods
are both symplectic and B-stable, which makes them seem quite appropriate
for problems based on a energy conservation principle plus some damping
mechanism. (Note: for nonlinear problems, Crank-Nicolson is actually the
lowest-order LobattolIIA method, which is still A-stable but not symplec-
tic.) On the down side, it requires the solution of a more complicated system
of equations at each time step than symplectic Euler. Error analysis goes
through following standard techniques; our goal here is the design and anal-
ysis of an effective preconditioner.

Selecting time levels 0 =ty < t; < --- <ty =T with t, =ty + nAt, we
seek a sequence of {(ul, n?)}\_, such that for each n > 1,

1™ — 1/ f " n
% )y )

€
C n+s
_% (U}VllJrl + 7727v . Uh) + (ﬁ (UZ+1 + U;LL) ,Uh) = <F +2,’Uh) ) <6>
=y Ly7 . (ot n =0
) (5 057 ) -

for all v, € V}, and wy, € W),.

Given ul! and 7}, this defines a linear system for u}*' and 5™ that
must be solved at each time step. Dropping the superscripts and subscripts,
multiplying through by At and putting k£ = %, we arrive at a canonical
equation to be solved at each time step:

(%uv) + (g—]’;ul,v) _ % (V- v) + (%u v) S GRI
(n,w) +k(V-u,w) = (G w),
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where the solution u € Vj, and n € W), and similar for test functions. Equiv-
alently, we can define a bilinear form on the product space Vj,, x W),. Adding
together the first equation and 6% times the second, we let u = (u,n) and
v = (v, w), to define

a(u,v) = (%u,v) + (%uﬁv) — % (n,V-v)

Bk

+<C—u,v>+§(n,w)+€—2(v~u,w). ®

2

Before proceeding, we remark that many other single-stage methods (e.g.
backward Euler or the implicit midpoint rule) would give variational prob-
lems of this form as well. Now, solving a variational problem associated with
this bilinear form gives rise to a block-structured linear system

M —E:DT] Tu f
N
- 5 n g
where for finite element bases {1;}2"" and {¢;} 22" we have matrices

. Ck k
Mij = (%%»%) + (% ]J_>wz> )
Dij - (ij7¢z)7

(10)

Note that M is not just a weighted mass matrix. It is nonsymmetric owing
to the skew off-diagonal terms and the skew term involving -+ in the top left
block. It is the diagonal skew term rather than the off-diagonals that lead
to the parameter-dependence in our weighted-norm estimate.

3. Preconditioning

Now, we turn to developing a preconditioner for (8). Here, we concretize
the abstract approach taken in [21, 22] for our particular tide model. Es-
sentially, a bounded bilinear form a on a Hilbert space V is equivalent to a
linear operator A from V into its topological dual V’. Classical Galerkin dis-
cretization restricts this bilinear form and operator to some finite-dimensional
subspace V;, C V. Moreover, the discrete operator A : Vj, — V) is encoded
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by the usual finite element stiffness matrix A obtained by substituting each
member of a basis for V}, into each argument of a.

When one seeks to solve the linear system for the discrete solution by
means of an iterative method such as GMRES [12], the conditioning of the
matrix A plays a critical role. As the condition number, and hence number
of iterations required, of A degrades under mesh refinement, it is critical to
precondition the linear system by means of (at least morally) pre-multiplying
the system

Ax =10

by some linear operator P~!. Thus, one obtains the equivalent system
P tAx = P,

and if the conditioning of P~'A is much better than that of A, the iterative
method should converge much faster. Of course, the cost of applying P!
at each iteration must not offset the reduction in iteration count for the
preconditioner to be successful.

One can think of the matrix P as discretizing some simpler operator
P :V — V' so that the product P~'A encodes a bounded operator from V,
onto itself. In the simplest case this is the Riesz map, which isometrically
identifies each f € V) uniquely with some v € Vj, so that f(u) = (u,v)
for all u € V. Bounded operators have bounded spectra, and functional-
analytic bounds obtained on P~1A mean that the matrices P~ A will inherit
mesh-independent bounds on their spectra. We refer to [21, 22] for further
discussion of this approach.

In addition to mesh refinement, variation in physical parameters can also
contribute adversely to the conditioning of discrete problems. While the
standard Riesz map serves as a simple preconditioner that eliminates mesh
dependence, it does not address physical constants. Increasingly, attempts
are made to design parameter-robust preconditioners, meaning that they also
eliminate or at least mitigate the dependence of the conditioning on system
parameters.

In this section, we present two preconditioners. One is based on inverting
weighted mass matrices. This utilizes an inverse assumption in H(div) to
work in purely a discrete L? inner product, so that the bounds depend on
the mesh parameter A in such a way that conditioning (as expected) degrades
as h \, 0. However, this dependence can be offset by taking &k = O(h), a
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CFL-like criterion that enforces conditioning rather than stability of the time-
discretization. Our second approach better respects the functional analytic
structure, working in a weighted H (div)x L? inner product. Here, we obtain a
mesh-independent bound that is also far less dependent on other parameters
at the expense of a more complicated operator to invert as a preconditioner.

3.1. Mass matrices: block diagonal

A simple approach that may help for small time steps is to precondition
the linear system with the block diagonal matrix

M
=% 5| (1)

where .
¥t = (0001 (12)

is the mass-like matrix obtained from the %—Weighted inner product of the

V}, basis functions and M is as in (10).

This is motivated by the observing that the bilinear form a from (8) is
continuous and coercive on discrete subspaces of (L?)? x L?, although the
constants depend on the discretization parameters h and k as well as the
physical parameters. We define the norm

B
hallz = flull’s + Il (13)

where |lu||% = (£u,u). The the inner product for this norm generates the
H

matrices in (11).

Establishing well-posedness of variational problems for the bilinear form
a follows from demonstrating continuity and inf-sup estimates in H(div) x
L?. However, we can study the mass matrix preconditioner (11) by means
of establishing continuity and coercivity of a on finite element subspaces
equipped with the L? norms. This analysis is somewhat nonstandard, but
it establishes an alternate proof of solvability of the discrete system and
more importantly, allows us to demonstrate mesh-independence of (11) as a
preconditioner subject to a CFL-like restriction on k.

Proposition 3.1. Let

(14)

m:4max{1+0*k+f K \/BkCI}.

e ' eH.,h

9
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Then, the bilinear form a satisfies
a(u,v) < &l[ullzf| vz, (15)

and
a(u,u) > [Juf/3. (16)

Proof. We begin with the continuity estimate (15).

a(u,v) = (%u,v) + (%UL,U) - % (n,V-v)

Ck 3 Bk
n (?) + 2 )+ 5 (7w w)
*k
< (1 e ZE) gy et

B Bk Bk
+ il + IV - ullllwll + Z [V - vl

Applying the inverse estimate to the divergences and converting to the %—

weighted norm now gives

“k
a(u,v) < (1 + C*k + / ) |2 ||v] L
€ H H
B 5kCI 51{/’0]
& 2ol + 2R ol + 2 o,

The result follows by absorbing +/3/e into the norm of ||w| and ||n| in
the third and fourth term and then recognizing each term as bounded by
klfall[lv]]

The rescaling of the second equation to produce the bilinear form a makes
the coercivity estimate rather simple. Noting that u’ - u = 0 pointwise and
that the divergence terms in a(u,u) cancel, we have

a(u,u) = (%u,u) + (%U,U) + % (n,m)

62
> (14 Cuk) [[ull’y + = [Inl®

> |lull3.

10
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It is possible to achieve slightly better constants (e.g. through more care-
ful use of discrete Cauchy-Schwarz), but the main issue remains: the condi-
tioning of the system (continuity divided by coercivity constants) depends
on the discretization (as well as physical) parameters, scaling like % For a
fixed time step, the conditioning degrades like h~!, and so preconditioning
with weighted mass matrices is only scalable if one also imposes a CFL-like
time step restriction. Moreover, even including some weights in the norm,
we still have quite a bit of parameter dependence in our estimate.

3.2. Weighted-norm preconditioning

The mesh-dependence in our estimate comes from invoking the inverse as-
sumption in order to obtain L? estimates. Our bilinear form is not coercive
on subspaces of H(div) x L?, but we can prove that it still defines a bounded
operator with bounded inverse in a weighted norm that nearly eliminates pa-
rameter dependence. Such techniques appear for other applications [23, 24]
as well, and are based on defining a suitable (parameter-dependent) inner
product in which the problem is well-behaved rather than algebraic consid-
erations such as merely selecting the block diagonal or triangular part of the
system matrix [25, 26, 27]

We can equip H(div) with the following weighted norm

]{72
el = 1L+ CR)ully, + — [V - ul? (17)

and, as previously, L? with the norm

B
Il = Sl (18)
We then equip the product space H(div) x L? with the norm

2 2
llall® = 1l Cw, mII™ = llullz + Il

k28 3 (19)
=1+ CRyull’ + = IV ull* + E—QHWH2

This norm is derived from a weighted inner product

K28

€2

((u,v)) =((1+Ck) u,v)% + (V-u,V-v)+§(n,w}. (20)
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Discretizing this bilinear form on mixed function spaces V,, x W) yields a
block-diagonal preconditioning matrix:

[P, 0
p=[l 0], (21)

where the first block handles the parameter-weighted H(div) inner product
and the second is just the standard W), mass matrix scaled by 6% We have

k2
o+ W)+ 8 (VY 0),

(Pv)ij = (1 + Ck) by, )
(22)

ﬁ (¢j7 ¢2) :

(P )is =

In the lowest-order case (either on triangles or squares), W), consists of
piecewise constants so that Py, is simply a diagonal matrix. Since the top
left block discretizes a differential operator, applying Py, ! will constitute the
bulk of the cost in applying the preconditioner. Options based on multigrid
are available, and we discuss these more later.

The following result shows the boundedness of a in this norm, with mild
dependence on parameters, which we discuss below.

Theorem 3.1. For allu = (u,n) and v = (v,w) in H(div) x L?, the bilinear
form a satisfies
a(u,v) < Kl[[ul[[{[[v, (23)

where constant K = K}, . = max {2, 1+ %}

Proof. The proof is a direct calculation using Cauchy-Schwarz, the isometry
of -+, and upper bounds on some of the spatially varying coefficients

a(u,v) = <%u, v) + (%UL,U) - % (n,V-v)

Ck 3 Bk

n (7“) + 2 )+ B (7w w)
F

<1+ CRyull 1+ Okl + -

Bk B Bk
+ 5 IllIV - ol + Slnlllwll + =1V - ll[lw].

el 5l

12



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

Now, we can write

Jull 2 < 1+ Cklully <[[(1+ Ckull,

|
T

1
v1+ C*kH

and recalling that |f*] <1,

a(u,v) < (1 + é) 11+ Chyull 2 |1+ Ch)oll

(25)
Bk 5 Bk
+ = IV - oll + Skl + =V - ull o]
Now, we recognize the right-hand side as the dot product of
t
A+ 5la+cruly | [0+ 500+ Rl
L] BRIV -
| L]
B\ -l <l
whence discrete Cauchy-Schwarz gives
1
k k2 252 2
otwv) < | (14 2 1+ crul, + 700 e+ 2 e
(26)
k k.2 9 2 2
<[ (14 E) na+ omolpy + 20w o+ 2|
€ H € €
and the result follows from a simple bound. n

Note that the Coriolis term %(u{v), which is skew and on the diago-
nal leaves the term scaled by % so that we do not obtain total parameter-
independence. We can interpret this bound as saying that the Rossby number
€ induces a time scale, independent of h, that must be resolved in order to

obtain a robust continuity estimate. More precisely,

Corollary 3.1. For any M > 2 and € > 0, there exists ko such that for any
k S kO)
a(u,v) < M|[[uafl[l}v]]-

Next, we bound the inverse of the operator induced by a by means of
an inf-sup condition. Unlike our continuity estimate, this is completely
parameter-independent.

13
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Theorem 3.2. The bilinear form a satisfies the estimate

inf sup a(u,v) > \/§

— 27
Inf su 5 (27)

Proof. We let u = (u,n) be given and put v = (v,w) = (u,n + kV - u) so
that

a(u,v) = (%uu) + (gj u) —@(n,v )

+ <C—u,u) —|—g(n,n+kv-u)+%(V-u,n—l—kv-u) (28)

p k*p kf
=1+ Ch)ul’ + 6—2||77H2 + IV ull* + — (0, V-u).

The last term is readily bounded below by — =5 (|[n||* + &*||V - u||?) so that

262
5 kB 1
a(w,v) 2 (14 Okl + gl + S 019 -l > Ljll®. (20)

Now, we have that

k2 B
VP =11+ Ck)uH% + —HV cull®+ —Hn + kV - ul?

< 1+ Rl + 351V - ull + 25 P )
< 3[ull”,
and combining this with (29) gives the result. O

Because the spectral radius of a matrix is bounded above by any natural
norm, these results prove that the moduli of the eigenvalues of P~1A are
bounded below by a constant (in fact, %3) independently of the mesh size
and all the physical constants. The moduli of the eigenvalues of P71A are
further bounded above the greater of 2 and 1 + %, which can degrade as the
Rossby number decreases.

3.3. Dropping the damping term from the preconditioner

In [11], we consider energy and error analysis of a possibly degenerate
nonlinear damping term, where the term Cu in (2) is replaced by a more

14
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general g(u). Typical use cases have a power law such as g(u) = |u|P"u,
modified to have linear growth for large u (at least as a technical assumption).
In this case, g(u) tends to zero as |u| does so that the effective damping
decays.

Carrying out the same manipulations that leads to (8) for nonlinear damp-
ing leads to the nonlinear variational form

F(u;v) = (%uv) + (f—flui,v) fk( V)
+ (o) + G oo+ 5 .

(V- u,w).

Newton-type methods require the Jacobian of this system. Linearizing
about some state uy = (ugp,79), we have

JuO(U'V)—(%u,U>+(Ef; ,v> fk’( V)
+ (g o) + S o+ 5

All of the analysis carried out in [11] required monotonicity of g, so that
g’ > 0. In this case, (32) takes the same form as (8) with C' > ¢'(up). As a
result, our theory carries over directly to preconditioning each Newton step
provided that the Riesz map (20) is updated at each iteration (of each time
step).

On the other hand, many preconditioners such as algebraic multigrid can
be relatively expensive to initialize, so that it is helpful to reuse the same
bilinear form between successive linear solves as the damping changes. We
drop the damping term in the bilinear form in (20) to define

+ﬁ(v u, V- v) + 6(?7,11))7 (33)

(32)
(V- u,w).

((0,v)). = (u, )

and an associated norm

L
H

lulllf = ((u, ). (34)

This norm is, at the cost of some dependence on C*, equivalent to ||-|

Proposition 3.2. For allu = (u,n) € Vj, x Wy,
I < il < [flul® (35)

1+C*
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Proof. The proof is elementary and uses that lljgkk <1< 1+ Ck in the

definition of ((-,-)). O
Theorems 3.1 and 3.2 can be readily restated using this norm:

Corollary 3.2. For all u,v € H(div) x L?
a(u, v) < K[l [[[v]],. (36)

where K, = (1 + C*k)max{2,1 + £}, and the inf-sup constant of a with

respect to |||-||l, is also at least %g.

Typically, the linear damping is small compared to the other effects in the
equation so that the effective bounds on the preconditioner are essentially
unchanged. Much as with the Rossby number, the time step can be reduced
to accommodate large C* if it becomes a problem.

4. Numerical results

We have implemented a mixed finite element discretization of the tide
model and developed all of our preconditioners within the Firedrake frame-
work [28]. Firedrake is an automated system for the solution of PDE using
the finite element method. It allows users to specify the variational form of
their problems using the Unified Form Language (UFL) in Python [29], gen-
erates efficient low-level code for the evaluation of operators, and interfaces
tightly with PETSc for scalable algebraic solvers. Firedrake also allows users
to specify UFL for preconditioning operator that is distinct from that for
the problem being solved, and we make use of this facility. A sample listing
is shown in Figure 1. The solver/preconditioner is typically configured by
passing a dictionary into solve function as a keyword argument.

Before proceeding with the numerical investigation of our weighted-norm
preconditioner, we confirm that the mass matrix preconditioner (11) in fact
performs poorly as suggested by Proposition 3.1. In this experiment, we
fix exemplary values of C' = f = H = 1 and f = € = 0.01. We consider
several values of k and a sequence of refined meshes. We subdivide the unit
square into an N X N mesh of squares, each of which is further subdivided
into two right triangles. On each mesh, we approximate u in the lowest-
order Raviart-Thomas space and 7 in the space of discontinuous piecewise
constants. Figure 2 shows the GMRES(100) iteration count required to solve

16



from firedrake import x*

mesh = UnitSquareMesh (16, 16)

V = FunctionSpace (mesh, "RT", 1)
Q = FunctionSpace(mesh, "DG", 0)

Z

V *x Q

x, y = SpatialCoordinate (mesh)
k = Constant (k)

Eps = Constant (0.1)

Beta = Constant (0.1)

C = Constant (1.0)

f = Constant (1.0)

beps2 = Beta / Eps*%*2

up = Function(Z)
v, q = TestFunctions(Z)

u, p = split(up)

F = (inner(u, v) * dx
+ k / Eps * f * inner(perp(u),v) * dx
k * beps2 * inner(p, div(v)) * dx
C * k * inner(u,v) * dx
beps2 * inner(p, q) * dx
k * beps2 * inner (div(u), q) * dx
- beps2 * inner(sin(pi*x)*cos(pi*y),q)*dx)

+ o+ o+

uu, pp = TrialFunctions(Z)

Jpc = ((Constant(1.0) + C * k) * inner (uu,v)*dx
+ k**x2 * beps2 * inner (div(uu),div(v)) =*dx
+ beps2 * inner (pp,q)*dx)

becs = [DirichletBC(Z.sub(0), O, ’on_boundary’)]

solve (F==0, up, bcs=bcs, Jp=Jpc)
solver.solve ()

Figure 1: Sample Firedrake code for solving the tide model using the Riesz map (20) as
a preconditioner. The user can optionally pass a Python dictionary containing PETSc
options into the solve function.
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the linear system using (11) as a preconditioner. As expected, for fixed k, the
iteration count increases under mesh refinement. For a fixed mesh, increasing
k also dramatically increases the iteration count. We should hope for lower
iteration counts and greater parameter robustness from our weighted-norm
preconditioner.

In our next sequence of experiments, we test the results of Theorems 3.1
and 3.2. We keep the damping coefficient C, Coriolis parameter f, and
bathymetry H all equal 1, the Burger number § = 0.1 and Rossby number
e = 0.01, and continue a division of the unit square into an N x N mesh.
To demonstrate the independence of our preconditioning technique with re-
spect to the particular discretization, we consider both triangular Raviart-
Thomas elements and rectangular Raviart-Thomas and serendipity H (div)
elements [30] in our experiments. Figures 3, 4, 5, and 6 plot GMRES(100)
iteration counts using preconditioners (21) and (33) for various values of N
and k for these discretizations. While the particular iteration counts vary
slightly for different elements in the figures, several trends are consistent.
The curves showing mesh refinement for a given k are largely flat, indicating
a high degree of mesh-independence.

We do see some dependence of the iteration count on & for a fixed mesh.
For the smaller and larger values of k, the iteration count is smaller, and
it is largest for intermediate values of k. We explain this as follows. Com-
paring the preconditioning bilinear form (20) to the bilinear form (8) when
k ™\, 0 decreasing, we observe that the bilinear form and the preconditioner
approach the same limit, explaining the iteration counts dropping to 1 or
2. The case for k large is more subtle. However, we observe that (8) ap-
proaches a variable-coefficient Laplace operator (scaled by k) and that the
preconditioner is just k£ times a Riesz map with respect to which that opera-
tor is known to be well-conditioned. The case of intermediate k is somewhere
between these limiting cases, and the observed behavior is closer to the worst-
case estimate.

As a final note on this discussion, we compare the left and right hand
plots in each of the Figures 3, 4, 5, and 6. We typically see a slight increase
in iteration count, although this could become more significant for strongly
heterogeneous problems.
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Figure 2: Iteration count versus mesh refinement under various k values for C' = f =1,
B8 = 0.1, and ¢ = 0.1. The unit square is divided into an N x N mesh of squares, each
subdivided into two right triangles. Lowest-order Raviart-Thomas discretization is used,
with mass matrix (11) as a preconditioner.

To further confirm our theorem, we now fix the mesh at N = 128 and
studying the iteration count as a function of € and k. These results are
shown in Figures 7, 8, and 9. This shows that, for fixed k, increasing e also
increases the iteration count. On the other hand, for fixed €, one finds the
largest iteration counts for intermediate values of the time step. Much as the
mesh-dependence study, we remark that varying the discretization order and
cell shape has little effect on the results.

While these numerical results demonstrate the theoretical robustness of
our preconditioner, they have been obtained by applying the preconditioner
with a sparse direct solver. Using an iterative solver with sufficiently tight tol-
erance should give identical iteration counts, but it is also interesting to con-
sider an inexact application of the top left block of (21) or (33). Here, we use
the H(div) geometric multigrid algorithm of Arnold, Falk, and Winther [31].
(As an alternative, one could employ an algebraic approach such as that
in [32].) Rather than pointwise smoothers, multigrid in H(div) requires the
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Figure 3: Iteration count versus mesh refinement under various k values for C' = f =1,
B = 0.1, and € = 0.01. The unit square is divided into an N x N mesh of squares, each
subdivided into two right triangles. Lowest-order Raviart-Thomas discretization is used.
The iteration counts are largest for moderate k and decrease as k is either very large or
small. Also, removing the damping term (right) from the weighted inner product leads to
a small increase in iteration count.

solution of local problems associated with vertex patches on each level. This
approach is accessible in Firedrake through the high-level solver interface
described in [33] and the pcpatch package [34]. We use full multigrid with
a sparse direct coarse-grid solve. Comparing Figures 10 and 11 to Figure 3,
we see larger iteration counts when a multigrid sweep replaces the sparse
direct method. Since the preconditioner is applied inexactly, an increase in
iteration counts is not surprising. On the other hand, the trend lines in
Figures 10 and 11 are mostly downward with respect to mesh refinement.
We conjecture this is due to using a fixed number of multigrid levels with a
sparse direct coarse grid solve. As the mesh is refined, a finer coarse grid and
hence smaller perturbation in the preconditioner application is obtained.
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Figure 4: Experiment in Figure 3 is repeated, except with the next-to-lowest Raviart-
Thomas elements. Since the bilinear form (20) is also discretized in this space, very little
changes relative to the lowest-order case.

As a final example, we consider the effect of nonlinear damping on our pre-
conditioner. In particular, we choose g(u) = |ul*u in (31) (this bypasses nu-
merical wrinkles in differentiating through the singularity of quadratic damp-
ing). Our typical use case is within a time-stepping loop, where the solution
at the previous time step serves as an initial guess for Newton iteration. To
imitate having such a suitable initial guess, we seed Newton’s method with
the solution of the linear, undamped problem. In this case, we observed that
Newton requires but a single iteration to converge. Iteration counts for the
linear solve in this situation are presented in Figure 12, and similar results
are obtained for other discretizations. For more rapidly-varying Jacobians,
one might require adaptive time stepping or more iterations, but robustly
handling time discretizations is beyond the scope of our present investiga-
tion.
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Figure 5: Experiment in Figure 3 is again repeated, except with lowest Raviart-Thomas
elements on squares. Again, little changes relative to the triangular case.

5. Conclusions

We have developed effective weighted-norm preconditioners for a mixed fi-
nite element /Crank-Nicolson discretization of the linearized rotating shallow
water equations with (possibly nonlinear) damping. These preconditioners
are based on defining a suitable inner product in which the operators are
bounded with bounded inverse in a relatively parameter-independent way.
These estimates in turn control the spectrum of the preconditioned operator.
Our estimates remain dependent on the ratio %, although this seems relatively
benign in practice. Moreover, inexactly applying the preconditioner through
a multigrid sweep and neglecting damping terms in the inner product lead
to further simplifications with only mild effects on iteration count.

This work suggests many future research directions. Since our theory
and numerical observations both seem independent of mesh type and dis-
cretization order, we hope to apply these preconditioners to unstructured
quadrilateral elements such as Arbogast-Correa [35]. Moreover, our tech-
niques should be applicable to more complex tide models that might include
additional nonlinearities or layering.
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