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Abstract 
Motivation: Accurate prediction of residue-residue distances is important for protein structure predic-
tion. We developed several protein distance predictors based on a deep learning distance prediction 
method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction 
(CASP14). The prediction method uses deep residual neural networks with the channel-wise attention 
mechanism to classify the distance between every two residues into multiple distance intervals. The 
input features for the deep learning method include co-evolutionary features as well as other sequence-
based features derived from multiple sequence alignments (MSAs).  Three alignment methods are 
used with multiple protein sequence/profile databases to generate MSAs for input feature generation. 
Based on different configurations and training strategies of the deep learning method, five MULTICOM 
distance predictors were created to participate in the CASP14 experiment. 
Results: Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is 
ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 
long-range contact predictions (i.e. classifying distances between two residues into two categories: in 
contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 dis-
tance prediction method. The best performing MULTICOM predictor is also ranked 6th among auto-
mated server predictors in classifying inter-residue distances into 10 distance intervals defined by 
CASP14 according to the precision of distance classification. The results show that the quality and 
depth of MSAs depend on alignment methods and sequence databases and have a significant impact 
on the accuracy of distance prediction. Using larger training datasets and multiple complementary fea-
tures improves prediction accuracy. However, the number of effective sequences in MSAs is only a 
weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there 
is a strong correlation between the accuracy of contact/distance predictions and the average probability 
of the predicted contacts, which can therefore be more effectively used to estimate the confidence of 
distance predictions and select predicted distance maps.  
Availability: The software package, source code, and data of DeepDist2 are freely availa-
ble at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/rec-
ord/4712084#.YIIM13VKhQM. 

 
 

1 Introduction  
Accurate prediction of inter-residue distances (or its simplified represen-
tation - inter-residue contacts) is critical for template-free (ab initio) ter-
tiary structure prediction, i.e., predicting the structure of a protein without 
using any known structure as templates (Kryshtafovych, et al., 2019).  The 
predicted inter-residue distances can be translated into tertiary structures 
by off-shelf tools such as trRosetta (Yang, et al., 2020), CONFOLD2 

(Adhikari and Cheng, 2018) built on top of CNS (Brünger, et al., 1998), 
and DMPfold (Greener, et al., 2019). In the 2018 CASP13 experiment, the 
top-ranked methods (Hou, et al., 2019; Kandathil, et al., 2019; Senior, et 
al., 2020; Xu and Wang, 2019; Zheng, et al., 2019) all used distance or 
contact predictions to guide template-free (FM) structure modeling to 
achieve significant success. Since then, the inter-residue distance predic-
tion has become a focal point of protein structure prediction.    
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In the last several years, the advances in protein distance/contact predic-
tion were mostly driven by two technologies:  the residue-residue co-evo-
lutionary analysis (Ekeberg, et al., 2013; Kamisetty, et al., 2013; 
Seemayer, et al., 2014) for generating informative features for prediction 
and various deep learning methods (Goodfellow, et al., 2013; He, et al., 
2016) for effectively extracting protein distance/contact patterns from the 
features. Since classifying the distances between residues into multiple 
distance intervals (commonly called distance prediction) can provide more 
detailed information about residue-residue distances than classifying them 
into two binary categories - in contact or not in contact (commonly called 
contact prediction), recent methods such as AlphaFold and RaptorX fo-
cused on the distance prediction. The multi-classification or binary classi-
fication of distances produces a multi-class or binary-class distance prob-
ability map. Most recently, some methods such as DeepDist (Wu, et al., 
2020) were developed to predict real-value inter-residue distances using 
deep learning regression methods, in addition to classifying the distances 
into multiple distance intervals. Moreover, the attention mechanism that 
can pick up relevant signals anywhere in the input features was also ap-
plied to predict protein contacts and explain the predictions (Chen, et al., 
2020). In the CASP14 experiment, the attention mechanism was also used 
by AlphaFold2, tFold, and our MULTICOM distance predictors to im-
prove distance/structure prediction.  
In this work, we describe the design and implementation of our 
MULTICOM distance predictors based on our DeepDist2 distance predic-
tion method and analyze their results and performance in CASP14. Fol-
lowing the CASP14 norm, the analysis is focused on hard template-free 
modeling (FM) target domains instead of template-based modeling (TBM) 
domains that have recognizable known template structures in the Protein 
Data Bank (PDB) (Berman, et al., 2000). The FM/TBM domains that 
might have very weak templates that cannot be recognized by existing se-
quence alignment methods are also used in the evaluation.  

2 Materials and Methods 
The overall pipeline of the MULTICOM distance predictors based on our 
latest deep learning method - DeepDist2 is shown in Fig.1. Three methods 
are used to generate multiple sequence alignments (MSAs) for a target 
protein in parallel, including our in-house tool – DeepAln (Wu, et al., 
2020), DeepMSA (Zhang, et al., 2019), and HHblits (Remmert, et al., 
2012). DeepAln and DeepMSA are also used in the original DeepDist 
method. In CASP14,  MULTICOM predictors added the HHblits search 
against the Big Fantastic Database (BFD) (Steinegger, et al., 2019)  (de-
noted as HHblits_BFD) to generate MSAs when the number sequences in 
MSAs generated by DeepAln and DeepMSA was less than 10L (L: se-
quence length).  
Each MSA is used to produce multiple co-evolutionary features such as 
covariance matrix (Jones and Kandathil, 2018), precision matrix (Li, et al., 
2019), and pseudolikelihood maximization matrix (Seemayer, et al., 
2014). The quality of the co-evolutionary features depends on the depth of 
MSA (i.e. the number of sequences) as well as the quality of the MSA 
(e.g., the proportion of true homologous sequences in MSA). For instance, 
when the number of effective sequences (Neff) in an MSA is too small, 
the co-evolutionary scores tend to be noisy and less informative (Wu, et 
al., 2020). To complement the co-evolutionary features, the non-coevolu-
tionary features such as position-specific scoring matrix (PSSM) gener-
ated by PSI-BLAST (Bhagwat and Aravind, 2007) and secondary struc-
tures predicted by PSIPRED (Jones, 1999) are also used.  
Different kinds of co-evolutionary features are combined with non-co-
evolutionary features to generate the four sets of features (COV_Set, 
PRE_Set, PLM_Set, and OTHER_Set; see details in Section 2.2). Each of 

four sets of features derived from the same MSA is used by a deep residual 
network with a channel-wise attention mechanism to predict a distance 
map. The average of the four predicted distance maps is the predicted dis-
tance map for the MSA. Different from DeepDist that uses four different 
deep architectures for different sets of features, DeepDist2 uses the same 
network architecture for all the feature sets. For most CASP14 targets, the 
distance maps predicted from the features generated from DeepAln’s 
MSA and DeepMSA’s MSA were averaged as the final prediction. When 
the number of sequences in the combination of MSAs generated by 
DeepAln and DeepMSA was less than 10 L, the distance map predicted 
from the MSA of HHblits_BFD was averaged with the distance maps pre-
dicted from MSAs of DeepAln and DeepMSA as the final prediction.  

Fig.1. The overall pipeline of the MULTICOM distance predictors based on DeepDist2. 

The two data flows (branches) applied to all the targets are connected by the black solid 

line, while the optional flow (branch) is connected by the red dotted line, which is only 

invoked when the MSAs are produced by DeepMSA and DeepAln are not sufficiently deep. 

Each flow (branch) produces four sets of features (COV_Set, PRE_Set, PLM_Set, and 

OTHER_Set; see details in Section 2.2), each of which is used as input for a deep network 

to predict a distance map. The four distance maps predicted from the four sets of features 

of each branch are averaged as the predicted distance map of the branch. The final predic-

tion is the average of the predicted distance maps of the first two or all the three branches.  

 
Based on the same protocol above, four automated MULTICOM distance 
predictors MULTICOM-CONSTRUCT, MULTICOM-AI, MULTICOM 
-DIST, MULTICOM-HYBRID were trained with different labelings of 
distance intervals. MULTICOM-DEEP used the average of the four pre-
dictors as its prediction. The distance intervals (or bins) of MULTICOM-
CONSTRUCT are 0 to 4 Å, 4 to 6 Å, 6 to 8 Å, …, 18 to 20 Å, and > 20 
Å. MULTICOM-DIST uses 42 bins, i.e. dividing 2 to 22 Å into 40 bins 
with a bin size of 0.5 Å, plus 0 - 2 Å bin and > 22 Å bin. MULTICOM-
HYBRID shares the same distance segmentation strategy as 
MULTICOM-DIST, except that it starts with an interval 0 - 3.5 Å and its 
last interval is set to > 19 Å.  MULTICOM-AI has 37 equally spaced in-
tervals of 0.5 Å between 0 to 20 Å and the > 20 Å interval. Though the 
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predicted multi-class distance prediction maps of the five predictors are 
based on the different distance intervals, they are converted into the 10-
bin classification maps required by CASP14. The 10 bins defined CASP14 
are bin1: d≤4Å, bin2: 4<d≤6Å, bin3: 6<d≤8Å, ..., bin10: >20Å, which are 
the same as MULTICOM-CONSTRUCT.   

2.1   Deep residual neural networks with channel-wise atten-
tion mechanism for inter-residue distance prediction 

The architecture of the deep residual network with the attention mecha-
nism is shown in supplemental Fig. S1.  The input features (a tensor of L 
* L * N  dimension; L: sequence length; N: number of channels)  are first 
fed into an instance normalization layer (Ulyanov, et al., 2016), followed 
by a convolutional layer and a Maxout layer (Goodfellow, et al., 2013). 
The convolutional layer reduces the number of channels to 128 and then 
the Maxout layer halves it to 64.  
Following the Maxout layer are 20 residual blocks with the same input 
and output dimension of 64. Each residual block starts with a normaliza-
tion block (called RCIN) that includes three different kinds of normaliza-
tion layers and one ReLU (Nair and Hinton, 2010) activation function. The 
three normalization layers of RCIN are row normalization layer (RN), col-
umn normalization layer (CN) (Mao, et al., 2019), and instance normali-
zation (IN) layer. The output of the three normalization layers is concate-
nated as input for a ReLU activation function.  Through this operation, the 
information in multiple directions can be effectively integrated to better 
capture contacts/distances between residues. The RCIN block is followed 
by a convolutional layer, an RCIN block, three convolutional layers, an 
RCIN block, and a convolutional layer. The final part of the residual block 
is the squeeze-and-excitation block (SE) (Hu, et al., 2018), which is a 
channel-wise attention method popular in the computer vision field. This 
block has good adaptability and can be embedded into different deep net-
work architectures. It has two parts: one is the squeeze operation that can 
collect the global information between all the feature channels and another 
is the excitation operation that can boost the impact of relevant features by 
two fully connected layers with the ReLU activation function. The SE 
block recalibrates the feature channels through learning so that the net-
work can assign more attention to more essential feature channels. We 
apply a softmax activation to classify inter-residue distances between res-
idues into multiple intervals (bins), i.e. predict the probability distribution 
of inter-residue distances. 

2.2   Multiple sequence alignments and input features 
DeepAln and DeepMSA use HHblits and jackhmmer to search several 
protein sequence datasets to generate MSAs (Wu, et al., 2020).  During 
the CASP14 experiment, all the databases (i.e. UniRef90 (2020-04) 
(Mirdita, et al., 2017), Uniclust30 (2020-03), Metaclust50 (2018-06) 
(Steinegger and Söding, 2018), and Myg_UniRef100) used for MSA gen-
eration were updated to their latest version. The BFD used by HHblits 
search was released by March 2019. 
The residue-residue co-evolutionary features including covariance matrix 
(COV), precision matrix (PRE), and pseudolikelihood maximization ma-
trix (PLM) calculated from MSAs are two-dimensional (2D) features with 
multiple channels, and have a dimension of L×L×441. PSSM generated 
from PSI-BLAST search against UniRef90 is also a useful feature. Other 
features like the Pearson’s correlation between columns of PSSM, the co-
evolutionary contact scores produced by CCMpred, the Shannon entropy 

sum, mean contact potential, normalized mutual information, and mutual 
information from DNCON2 are generated. These features are combined 
to generate four sets of features as follows. (1) COV_Set includes COV, 
PSSM, Pearson correlation, and CCMpred contact scores; (2) PLM_Set 
contains PLM, PSSM, and Pearson’s correlation; (3) PRE_Set has PRE, 
PSSM, and entropy scores (joint entropy, Shannon entropy sum); and (4) 
OTHER_Set has PSSM, CCMpred contact scores, Pearson correlation, 
solvent accessibility, mean contact potential, normalized mutual infor-
mation, and mutual information. 

2.3   Datasets and evaluation metrics 
11,234 proteins used by RaptorX (Xu and Wang, 2019) were employed to 
train the MULTICOM distance predictors. The proteins may have a single 
domain or multiple domains. The sequence identity between any two pro-
teins in the dataset is less than 25%.  Also, the proteins in the training 
dataset have less than 25% sequence identity with the proteins in the three 
test datasets: 43 CASP13 FM and FM/TBM domains, 37 CASP12 FM do-
mains, and 268 CAMEO targets (released between 08/31/2018 and 
08/24/2019). The predictors were trained and internally tested on the test 
datasets before they were blindly tested in CASP14 from May to July 
2020.  
The evaluation of the MULTICOM distance predictors is based on 37 hard 
FM and FM/TBM domains of CASP14 (i.e. 23 FM domains and 14 
FM/TBM domains).  To be consistent with the analysis of CASP14, the 
evaluation is carried out at the domain-level. The distance predictions are 
evaluated by three metrics: (1) the precision of top L/5, L/2, or L long-
range contact prediction after the multi-class distance predictions are con-
verted to binary contact predictions at 8 Å threshold (L: sequence length), 
(2) mean absolute error (MAE) between predicted distances and true dis-
tances; and (3) the average precision, recall, and F-measure of multi-clas-
sification of distances between long-range residue pairs over 10 distance 
bins.   
Two residues are considered in contact if the distance between their β-
carbon atoms (α-carbon for the glycine amino acid) is less than 8 Å. A 
contact map can be obtained by summing up the probability values of the 
intervals within 0-8 Å in a predicted multi-classification distance map. We 
use ConEVA (Adhikari, et al., 2016) to calculate the precision of predicted 
contacts. The CASP14’s assessment results at https://prediction-
center.org/casp14/rrc_avrg_results.cgi are also used. A contact is consid-
ered long-range contact if the sequence separation between the two resi-
dues is >= 24 residues, medium-range if the sequence separation is within 
[12, 23], and short-range if the sequence separation is within [6, 11]. In 
this study, the evaluation is mostly focused on long-range residue-residue 
contact/distance predictions according to the CASP norm.  
The real-value distance between two residues is estimated as the sum of 
the mean distance of each interval times the predicted probability of the 
interval (i.e. the weighted average). Because large distances contribute lit-
tle to tertiary structure prediction, only predicted distances less than 16 Å 
are used for the MAE evaluation. The standard deviation of the MAE is 
also calculated.  When the MAE is close, a smaller standard deviation is 
preferred.  
For the multi-classification prediction, we apply the precision (denoted as 
Precision_m), recall (denoted as Recall_m) to evaluate the multi-classifi-
cation of distances between long-range residue pairs. The precision and 
recall of each distance bin for a target are calculated first. The precision 
and recall of multiple distance bins is the arithmetic average of precision 
and recall of each bin over all the bins (see the detailed formula of Preci-
sion_m and Recall_m in the supplemental document). Therefore, the final 

Page 3 of 8 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab355/6271413 by guest on 07 June 2021



 

precision and recall (Precision_m and Recall_m) can evaluate the accu-
racy of the overall performance of multi-classification of distances for a 
target. We only calculate the precision and recall of the multi-classifica-
tion prediction of the distances between long-range residue-residue pairs. 
The F1-measure is the geometric mean of Precision_m and Recall_m.  

3 Results 

3.1 Overall performance of distance prediction in CASP14 
In this study, we only compare CASP14 server predictors, excluding 
CASP14 human predictors that had more prediction time and could use 
some server predictions as input. The performance of the top 20 out of 30 
CASP14 automated server predictors on 37 FM and FM/TBM domains in 
terms of precision of top L/5 long-range contact predictions (called top 
L/5 precision) is shown in supplemental Table S1. The top L/2 precision 
of the predictors is also reported in the table. The result was compiled from 
the evaluation data at the CSAP website after excluding human distance 
predictors. Our best server predictor MULITCOM-CONSTRUCT has a 
top L/5 precision of 64.99% and is ranked no. 5 after TripletRes from 
Zhang Group and three tFold servers (tFold-CaT, tFold-IDT, and tFold) 
from tFold Group. Other MULTICOM predictors are also ranked among 
the top 20. Moreover, the top L/5 (or L/2) precision of the MULTICOM 
predictors is higher than RaptorX - the best contact predictor in CASP13, 
showing that multiple predictors including ours in the CASP14 experi-
ment improve over the best CASP13 contact predictor.  
Among the 30 server predictors, 19 of them submitted multi-class distance 
predictions, while the rest only submitted binary contact predictions. 
Three of the 19 groups missed some FM and/or FM/TBM targets. Supple-
mental Table S2 reports the precision (Precision_m), recall (Recall_m), 
and F1-measure of multi-classification distance prediction of the 16 pre-
dictors that submitted predictions for all 37 FM and FM/TBM domains. 
Our best server predictor MULTICOM-DEEP is ranked no.6 after two 
tFold servers (tFold, tFold-CaT), TripletRes from Zhang group, and two 
servers (FoldX and TOWER) from Microsoft in terms of Precision_m.  
The detailed results of the MULTICOM distance predictors (precision of 
top L/5, L/2, L long-range contact predictions, the mean absolute error and 
standard deviation of long-range distance predictions, and the precision_m 
and recall_m of multi-classification of distances) on 37 FM and FM/TBM 
domains are reported in supplemental Table S3. The MULTICOM dis-
tance predictors have similar performance. MULTICOM-CONSTRUCT 
performs best in terms of contact precision, MULTICOM-AI has the low-
est MAE, and MULTICOM-DEEP has the highest multi-classification 
precision. 

3.2 Comparison of different MSAs for distance prediction 
The performance of deep learning distance predictors depends on the qual-
ity of the input features, particularly the most important co-evolutionary 
features whose quality is largely determined by the depth and quality of 
MSAs (Wu, et al., 2020).  
The depth of an MSA is usually measured by the number of effective se-
quences (Neff) in the MSA. It is calculated using the formula 𝑁𝑒𝑓𝑓 =
∑ !

"#$!

%
#&! , where N denotes the number of sequences in the MSA and Simi 

the sum of the identity between Sequence i and all the sequences in the 
MSA. Higher similarity (Simi), lower weight Sequence i contributes to the 
count of  Neff. 

Here we use the performance of MULTICOM-CONSTRUCT with three 
kinds of MSAs on the 37 FM and FM/TBM domains to compare their 
performance in distance prediction. Supplemental Table S4 shows the 
performance of the long-range distance prediction of MULTICOM-
CONSTRUCT with MSAs of DeepAln, DeepMSA, and HHblits_BFD ac-
cording to multiple metrics, including Top L/2 and Top L precisions of 
long-range contact predictions, mean absolute error of long-range pre-
dicted distances < 16 Å (MAE_16) and their standard deviation (STD_16), 
the accuracy and recall of multi-classification of distances (Precision_m 
and Recall_m). HHblits_BFD performs best among the three according to 
all the metrics, DeepMSA works better than DeepAln.  For instance, the 
top L/2 precision of HHbits_BFD is 51.33%, higher than DeepMSA’s 
46.18% and DeepAln’s 43.87%. The reason is that the BFD database (re-
leased in April 2019) contains the hidden Markov model (HMM) profiles 
for the proteins in both UniProt and the metagenomics databases, which 
enables HHblits to generate high-quality alignments with the sequences in 
the databases. In contrast, DeepMSA or DeepAln uses HHblits to search 
the HMM profiles in UniProt and Jackhmmer to the sequences in the met-
agenomics database. Because Jackhammer’s alignment quality and sensi-
tivity are lower than HHblits, even though DeepMSA and DeepAln search 
a target against a newer version of UniProt and metagenomics databases 
than the BFD database, the quality gain of HHblits search on the BFD still 
outweighs the increase of the size of databases used by DeepMSA and 
DeepAln, leading to the better distance predictions with HHblits_BFD. 
To further quantitatively analyze the impact of different MSA generation 
pipelines on the performance of the distance prediction, we study the re-
lationship between the accuracy of distance prediction and the logarithm 
of the number of effective sequences (Neff) in the MSAs generated by 
DeepAln, DeepMSA, and HHblits_BFD in supplemental Fig. S2. Because 
our automatic domain parsing did not predict domains accurately in some 
cases during CASP14 where the predicted domain boundaries were differ-
ent from the ground truth, here we only analyze the 31 full-length hard 
targets in which the 37 FM and FM/TBM domains are located.  The Neff 
and prediction accuracy are calculated on the 31 full-length hard targets.  
The correlation coefficients between top L/2 precision and the common 
logarithm of Neff for DeepAln and DeepMSA are 0.417 and 0.462, re-
spectively. The correlation between the two is not very strong, mainly be-
cause some targets have a large Neff but low prediction accuracy due to 
the existence of the false-positive sequences in their MSAs. 10 (or 9) out 
of 31 hard targets that have a Neff > 10 for DeepAln (or DeepMSA) have 
the precision of < 50%. Interestingly, the correlation coefficient between 
the top L/2 precision and the common logarithm Neff is 0.357 for the 
HHblits_BFD on all the 31 hard targets, which is even lower than DeepAln 
and DeepMSA. The correlation coefficients between the precision of the 
multi-class classification of distances and the logarithm of Neff are 0.373, 
0.414, and 0.295 for DeepAln, DeepMSA, and HHblits_BFD, respec-
tively, which is lower than the correlation for the binary contact predic-
tion. The correlation coefficients between the MAE of multi-classification 
of distances and the common logarithm Neff are -0.488, -0.546, and -0.370 
for the DeepAln, DeepMSA, and BFD, respectively. These results show 
that there is only a weak correlation between Neff and the accuracy of 
distance predictions for the three MSA generation pipelines (DeepAln, 
DeepMSA, Hblits_BFD), while the correlation is weakest for 
HHblits_BFD that generates the MSAs of the best quality.   
Therefore, we conclude that both the quality and depth of MSAs impact 
the accuracy of distance predictions, and the depth measured by Neff is 
only a weak indicator of the accuracy of distance prediction. Indeed, some 
CASP14 targets (e.g., T1093) have deep MSAs with a large Neff but get 
a low distance prediction accuracy. Different from the depth of MSAs that 
can be measured by a single quantity - Neff, the quality of MSA depends 
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on alignment accuracy, and relationships between sequences (homologous 
or not) in MSA are hard to quantify. 

3.3 The strong correlation between distance prediction ac-
curacy and predicted probability scores and its applica-
tion to select/combine predicted distance maps 

According to the analysis above, different MSAs generated by different 
methods may work well on different sets of targets. Therefore, there is a 
need to find good metrics to select or combine MSAs or distance maps to 
improve prediction. However, since Neff of MSAs has only a weak corre-
lation with the accuracy of distance/contact prediction, it cannot accu-
rately select MSAs or predicted distance maps. In order to find better met-
rics to select MSAs and predicted distance maps, we calculate the corre-
lation between the precision of top L/2 long-range contact predictions and 
the average probability of the top L/2 contact predictions (Fig. 2) as 
folllows. The multi-class distance predictions for a target are converted 
into binary contact probability predictions by summing up the probabili-
ties of all the bins falling in the interval [0, 8 Å] as contact probability at 
8 Å threshold. Top L/2  long-range contact predictions with highest prob-
abilities are selected, and their probabilities are averaged. The correlation 
between the average probability of top L/2 long-range contact predictions 
and the precision of top L/2 long-range contact predictions is then calcu-
lated. The correlation between the average probability of top L/2 long-
range contact predictions and other merics (e.g., the precision of multi-
class distance prediction, and the mean absolute error of the real-value 
distance prediction) can be calculated in the same way. The correlation 
between the precision of top L/2 long-range contact predictions and their 
average contact probability is 0.819. Moreover, the average probability 
also has a relatively strong correlation with the precision of multi-class 
classification of distances (correlation = 0.654) and the mean absolute er-
ror of the real-value distance prediction (correlation = -0.790). The preci-
sion of top L/2 long-range contact predictions, the precision of multi-class 
distance prediction, the mean absolute error of the real-value distance pre-
dictiion, and the average probability of top L/2 long-range contact predic-
tions for 31 hard targets and their correlation coefficients are reported in 
Table S5. These correlations are much stronger than that between Neff 
and contact/distance prediction accuracy.  

 
Fig.2. A plot of precisions of top L/2 long-range contact predictions against the average 

probabilities of the top L/2 predicted contacts.  MULTICOM-CONSTRUCT with 

HHblits_BFD alignments were used to predict the distance maps. 

 

The relatively strong correlation between the predicted contact probabili-
ties and the accuracy of predicted distance maps provides a better ap-
proach to select distance maps predicted from different MSAs than Neff. 
To analyze the effectiveness of this approach for improving distance/con-
tact predictions, we compare it with two approaches of combining MSAs 
or predicted distance maps: Combine_MSA_Map and Average_Map. 
Combine_MSA_Map merges the three MSAs generated by DeepAln, 
DeepMSA, and HHblits_BFD into one MSA file and uses CD-HIT (Li 
and Godzik, 2006) and HH-filter to do two rounds of redundancy filtering 
to generate a final MSA for MUlTICOM-CONSTRUCT to predict a dis-
tance map. Average_Map simply calculates the average of the distance 
maps predicted from the three MSAs as the final distance map prediction. 
We use Probability_Map to denote the approach of selecting a distance 
map whose corresponding/converted contact map has the highest average 
probability of top L/2 longe-range contact predictions from the three dis-
tance maps predicted from the three MSAs. Finally, Optimal_Map repre-
sents the ideal approach of always selecting the most accurate distance 
map in terms of evaluation metric (top L/2 precision, top L precision, Pre-
cision_m, Recall_m, and MAE_16) from the three maps predicted from 
the three MSAs, which is the upper limit that any distance map combina-
tion or selection methods can reach.   
Supplemental Table S6 reports the distance prediction results of using 
these approaches to select or combine the distance maps predicted from 
the three kinds of MSAs. Probability_Map works better than both Aver-
age_Map and Combine_MSA_Map in terms of almost all metrics and its 
performance is even close to Optimal_Map, indicating that the probability 
of top predicted contacts is a good metric to select distance maps predicted 
from different MSAs to improve distance prediction. In order to assess the 
significance of the difference in the performance of the three approaches, 
we apply the paired t-test compare their mean absolute errors (MAE) on 
the 31 hard targets in Table S7. The p-value between Probability_Map 
and Average_Map is 0.0129 (i.e., < 0.05), indicating that Probability_Map 
performs significantly better than Average_Map in terms of MAE. How-
ever, the p-value between Probability_Map and Combine_MSA_Map is 
0.0942 (i.e., >0.05), indicating that there is no significant difference in 
their MAEs. We further use the paired t-test to compare the precisions of 
their top L/2 long-range contact predictions and get the p-value of 0.0242 
(< 0.05), showing that Probability_Map performs significantly better than 
Combine_MSA in terms of this metric.  
It is worth noting that Combine_MSA_Map performs worse than always 
selecting the distance maps predicted from the HHblits_BFD MSAs that 
work better than the MSAs of DeepAln and DeepMSA on average. The 
reason is that a simple combination of the MSAs from HHblits_BFD, 
DeepAln, and DeepMSA may introduce some noise (i.e., false positive - 
non-homologous sequences) into MSA, even though there are more se-
quences in the combined MSAs (higher depth).   

3.4 Comparison of different feature sets on distance predic-
tion 

Each of the MULTICOM distance predictors uses four different sets of 
features derived from an MSA to predict distance maps and then average 
them as the final prediction from the MSA to improve the accuracy and 
stability of prediction. Supplemental Table S8 summarizes the distance 
prediction performance of four different feature sets using MULTICOM-
CONSTRUCT with HHblits_BFD alignments on 37 FM and FM/TBM 
domains in comparison with the ensemble approach of averaging the four 
predicted distance maps from the four sets of features as the prediction. 
The ensemble approach performs better than using each feature set alone 
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in terms of all evaluation metrics. Its mean precision of top L/2 long-range 
contacts is 50.18%, which is 3.33, 3.34, 3.47, and 6.19 percentage points 
higher than COV_set, PLM_set, PRE_set, and OTHER_set, respectively. 
The mean absolute error of the ensemble approach is 3.95 Å, lower than 
all the four feature sets. Also, the precision of the multi-class classification 
is 33.55%, higher than each feature set.  
Although the average performance of the ensemble approach is better, it 
does not perform best on every individual target. Supplemental Fig. S3 
compares the max long-range top L/2 contact precision (diamond shape), 
average long-range top L/2 contact precision of four feature sets (square 
shape), and the long-range top L/2 contact precision of the ensemble ap-
proach (triangle shape). The results of the ensemble are not as good as the 
results of the best single feature set, especially for the target T1040-D1, 
T1047s1-D1, T1049-D1, T1082-D1, and T1096-D2 which are marked by 
red arrows. The gaps between the max precision of four feature sets and 
the precision of the ensemble approach on these targets are all greater than 
8%, suggesting that there is still some room for improving the combination 
of features.  
As a special case, Supplemental Fig. S4 illustrates the top L/2 long-range 
contacts of T1047s1-D1 predicted by the ensemble approach and from the 
PRE_Set in comparison with the true contacts.  The ensemble approach 
predicted more false positives marked in the eclipse than the PRE_Set.  
After CASP14, we tried to ensemble the distance prediction of multiple 
deep learning models trained on a single feature set and found that the 
integration of the results of multiple models can improve the stability and 
accuracy of the prediction. Supplemental Table S9 shows the comparison 
of a single deep learning model and the ensemble of four deep learning 
models that were trained on the COV_set and based on the approach sim-
ilar to MULTICOM_CONSTRUCT. The performance of the ensemble of 
the four deep learning models using COV_set on CASP14 37 FM and 
FM/TBM domains is better than the single model in terms of all the eval-
uation metrics. The same phenomenon is also observed for the other three 
feature sets. Moreover, the ensemble of the four ensembles of the four 
feature sets obtains the long-range top L/2 contact prediction precision of 
51.80%, the mean absolute error of 2.687Å, and the multi-classification 
precision of 34.17%, which is better than the ensemble of four single deep 
learning models trained on the four feature sets (i.e., 50.18%, 3.949Å, and 
33.55% in Table S8). 

3.5 Impact of the size of the training dataset on prediction 
accuracy 

We investigated the impact of the size of training datasets on the accuracy 
of protein distance prediction using the deep learning model of 
MULTICOM-CONSTRUCT on CASP14 37 FM and FM/TBM domains. 
MULTICOM-CONSTRUCT was trained on two datasets of different 
sizes. Dataset_1 introduced in DeepDist1 has 6463 proteins. Dataset_2 has 
11034 proteins. The precision of top L/2 long-range contact predictions 
for the deep learning model trained on Dataset_2 is 50.18%, nearly 3% 
percentage point higher than on Dataset_1. A target-to-target comparison 
of mean absolute error (MAE) on 37 domains for the two models is shown 
in supplemental Fig. S5. On almost all the domains, the model trained on 
Dataset_2 has a lower MAE than that on Dataset_1.  In some cases, such 
as T1038-D2, the difference is substantial. 
The comparison between the distance maps predicted by the deep learning 
models trained on Dataset_1 and Dataset_2 and the true distance map of 
T1038-D2 is illustrated in supplemental Fig. S6. The distance map 

predicted by the model trained on Dataset_2 is very similar to the true 
distance map, but the distance map predicted by the model trained on Da-
taset_1 is very different.  

3.6 The study of good and bad CASP14 cases 
The MULTICOM distance predictors performed very well on T1052-D3. 
The average precision of top L/2 long-range contact predictions of 
MULTICOM predictors is close to 100%, while the average top L/2 pre-
cision of all CASP14 server predictors is 58.13%. T1052 is a multi-do-
main protein that has 832 amino acids, Neff of the MSA of the full-length 
T1052 is less than 15. The domain parsing program of MULTICOM pre-
dictors was able to identify a hard modeling region [590, 688] covering 
the range ([589, 668]) of the third domain of the target (T01052-D3) well. 
The sequence of the region was used to search against the sequence data-
bases to build deeper MSAs to predict distance maps for the region. The 
distance maps predicted for the regions were combined with the full-
length distance maps as in DeepDist (Wu, et al., 2020). This domain-based 
distance map prediction substantially increased the quality of the distance 
prediction for T1052-D3.  
Fig. 3 compares the domain-based distance map prediction and the full-
length distance map prediction made by MULTICOM-CONSTRUCT 
with the true distance map of T1052-D3. The domain-based distance map 
prediction is much better and clearer than the full-length distance map pre-
diction for T1052-D3. The results show that good domain parsing can im-
prove the quality of MSAs and therefore the quality of distance predic-
tion.   
Usually, the poor prediction of protein distances is due to a lack of effec-
tive homologous sequences in MSAs (e.g., lower Neff on T1029, T1033, 
T1043, T1064) to generate good input features. The deep learning predic-
tors cannot effectively extract distance patterns from them. However, in 
some cases, even though MSAs have high Neff, the accuracy of the dis-
tance prediction is still very low. For instance, the Neff of the MSAs gen-
erated by DeepAln for T1093 is 689.36 and that generated by DeepMSA 
is 425.12, which are high values. However, all of the MULTICOM pre-
dictors got 0% top L/2 contact prediction precision, even the domain of 
the target can be reasonably identified.  Fig. 4 compares the distance maps 
predicted by four different approaches with the ground truth: (1) the dis-
tance map predicted from MSAs generated from DeepAln and DeepMSA 
with the predicted domain information (our original CASP14 submission, 
denoted as Original_dm), (2) the distance map predicted from MSA gen-
erated by HHblits_BFD without utilizing the domain information (denoted 
as BFD_full), (3) the distance map predicted from MSA generated by 
HHblits_BFD with the predicted domain information (denoted as 
BFD_dm). All these four distance maps above were predicted by 
MULTICOM-CONSTRUCT to ensure consistency.  

Fig. 3. Comparison of the domain-based distance prediction and the full-length distance 

prediction with true distance map of T1052-D3. In the subfigure on the left, the upper tri-

angle denotes the domain-based distance prediction, and the lower triangle the true distance 

map.  In the figure on the right, the upper triangle denotes the full-length distance 
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Article short title 

prediction, and the lower triangle the true distance map. The patterns in the domain-based 

distance prediction map are much clear and closer to the true distance map than the full-

length distance prediction map. 

Fig.4. (A) The distanced map predicted from MSAs generated by DeepAln and DeepMSA 

with predicted domain information (upper triangle) versus the true distance map (lower 

triangle), (B) The distance map predicted from the HHblits_BFD MSA without domain 

information (upper triangle) versus true distance map (lower triangle), (C). The predicted 

distance map from the HHblits_BFD MSA with predicted domain information (upper tri-

angle) versus the true distance map (lower triangle). 

 

It can be seen that although MSAs generated by DeepAln and DeepMSA 
have a lot of sequences, most of them are false-positive positives leading 
to the prediction of many false-positive contact predictions (Fig. 4A). In 
Fig. 4B, the distance map predicted from the HHblits_BFD MSA without 
using predicted domain information is somewhat better, indicating that 
HHblits_BFD MSA (Neff = 133.0) has the better quality than MSAs of 
DeepAln and DeepMSA. If the predicted domain information is used, the 
distance prediction predicted from HHblits_BFD MSA is further im-
proved in Fig. 4C, even though the Neff of the HHblits_BFD MSA for the 
domain is only 15, which is much lower than MSAs of DeepAln and Deep-
MSA. The long-range top L/2 contact prediction precision, the MAE of 
long-range distance prediction less than 16 Å, and the precision of multi-
classification of distances using the different approaches for this domain 
are reported in supplemental Table S10. This case shows the quality of 
MSAs is important for distance prediction, and Neff is not always a good 
indicator of the quality of MSAs when there are false positives in MSAs. 

4 Conclusion and future work 
We developed several deep learning distance predictors and rigorously 
benchmarked them in CASP14. The predictors performed reasonably well 
in the highly competitive CASP14 experiment. The results demonstrate 
that MSAs generated from different alignment methods on different data-
bases for distance prediction have different quality. The MSAs generated 
by HHblits on the BFD database lead to the most accurate distance pre-
diction, but different MSAs are still complementary and can be combined 
to improve distance prediction. However, the number of effective 

sequences of MSAs has only a weak correlation with the quality of MSA 
and therefore is not a strong indicator of the quality of MSAs and the ac-
curacy of the distance maps predicted from them because of the frequent 
existence of false positives (non-homolgous sequences) in some deep 
MSAs containing a lot of sequences. In contrast, the predicted probabili-
ties of top long-range contact predictions have a strong correlation with 
the accuracy of distance map predictions, and therefore is a better metric 
to select or combine predicted distance maps to improve distance predic-
tion. Moreover, we show that the distance maps predicted from different 
features generated from the same MSA are also complementary and can 
be integrated to improve prediction accuracy. Finally, using larger training 
datasets to train deep learning models, ensembling multiple deep learning 
models, or applying domain predictions to MSA generation of some multi-
domain targets can also improve the accuracy of the distance prediction.     
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