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Abstract

Accurate prediction of protein secondary structure (alpha-helix, beta-strand and coil)

is a crucial step for protein inter-residue contact prediction and ab initio tertiary

structure prediction. In a previous study, we developed a deep belief network-based

protein secondary structure method (DNSS1) and successfully advanced the predic-

tion accuracy beyond 80%. In this work, we developed multiple advanced deep learn-

ing architectures (DNSS2) to further improve secondary structure prediction. The

major improvements over the DNSS1 method include (a) designing and integrating

six advanced one-dimensional deep convolutional/recurrent/residual/memory/frac-

tal/inception networks to predict 3-state and 8-state secondary structure, and

(b) using more sensitive profile features inferred from Hidden Markov model (HMM)

and multiple sequence alignment (MSA). Most of the deep learning architectures are

novel for protein secondary structure prediction. DNSS2 was systematically

benchmarked on independent test data sets with eight state-of-art tools and consis-

tently ranked as one of the best methods. Particularly, DNSS2 was tested on the pro-

tein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV

score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at: https://

github.com/multicom-toolbox/DNSS2.
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1 | INTRODUCTION

Three major types of protein secondary structure are alpha-helix (H),

beta-strand (E), and coil state (C),1 each of which represents the local

structure state of an amino acid in a folded polypeptide chain. The

predicted information of protein secondary structure is useful for

many applications in computational biology, such as protein residue-

residue contact prediction,2-4 protein folding,5-7 ab-initio protein

structure modeling,8-10 and protein model quality assessment.11,12 For

instance, secondary structure prediction was widely utilized in the

template-based structure modeling through threading or comparative

modeling on those proteins that have structurally determined

homologs,10,13,14 and in ab initio modeling for those proteins whose

sequences share few sequential similarities with known solved

structures.15,16

The progress in protein secondary structure prediction over the

past few decades can be generally summarized from two aspects: the

discovery of novel features that are useful for prediction and the

development of effective machine learning algorithms.17,18 The early

attempts utilized statistical propensities of single amino acid observed

from known structures to identify secondary structures in proteins.19

The subsequent improvements came from the inclusion of sequence

evolutionary profile features inferred from multiple sequence align-

ment (MSA) such as position-specific scoring matrices (PSSM).20-25 In

addition to the PSSM, the Hidden Markov model (HMM) profiles

derived from HHblits26 was proposed for predicting protein structuralZhiye Guo and Jie Hou contributed equally to this work
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properties.27 Atchley's factors were also included in some studies to

capture the similarity between the types of amino acids.28,29

Meanwhile, the machine learning algorithms for protein second-

ary structure prediction also continued to improve. Several early

approaches applied shallow neural networks,30,31 information theory

and Bayesian analysis32-34 to secondary structure prediction.

PSIPRED21 method proposed a two-stage neural network to predict

the secondary structure from the PSI-BLAST sequence profiles.

SSpro24 used bi-directional recurrent neural networks (RNN) to cap-

ture the long-range interactions between amino acids. Deep learning

techniques recently achieved significant success in secondary struc-

ture prediction.25,29,35-38 DNSS29 applied an ensemble of deep belief

networks to predict 3-state secondary structure. JPRED39 proposed a

novel consensus prediction based upon major voting of the different

predictors for secondary structure prediction. SPIDER240 employed

stacked sparse auto-encoder neural networks to predict the several

structural properties iteratively, and this method was further

advanced by bidirectional long- and short-term memory (LSTM) neural

networks to capture the long-range interactions.37 DeepCNF36 inte-

grated the convolutional neural networks (CNN) with conditional

random-field to learn the complex sequence-structure relationship

and interdependence between sequence and secondary structure.

Porter 5.041 ensemble seven bidirectional RNN to improve the protein

structure prediction. Assisted with the power of deep learning, the

accuracy of 3-state secondary structure prediction has been success-

fully improved above 84%36-38 on some benchmark data sets. Several

studies also made efforts to predict 8-state secondary structure,

though more challenging to reach the same accuracy as 3-state sec-

ondary structure prediction.23,36,38,41,42

In this work, we developed an improved version of our ab initio

secondary structure method using multiple advanced deep learning

architectures (DNSS2). Three major improvements have been made

over the original DNSS method. Firstly, besides the PSSM profile

features and Atchley's factors used in DNSS, we incorporated sev-

eral novel features such as the emission and transition probabilities

derived from the HMM profile,26 and profile probabilities inferred

from MSA.22 All three new features represent the evolutionary con-

servation information for amino acids in the sequence. Secondly, we

designed and integrated six types of advanced one-dimensional deep

networks for protein secondary structure prediction, including tradi-

tional CNN,43 recurrent convolutional neural network (RCNN),44

residual neural network (ResNet),45 convolutional residual memory

networks (CRMN),46 fractal networks,47 and Inception network.48

The ensemble of six networks from DNSS2 significantly improved

the secondary structure prediction. Different from the consensus

method employed in JPred39 to acquire the majority voting for the

secondary structure type of each amino acid, we simply average the

probabilities of different states to make a final prediction of second-

ary structure class. Besides, we extended the 3-state secondary

structure prediction to 8-state prediction that assigns the DSSP

8-class secondary structure to amino acid sequence, including

(1) 3-turn 310-helix (G), (2) 4-turn alpha-helix(H), (3) 5-turn pi-helix

(I), (4) hydrogen-bonded turn (T), (5) extended strand in parallel

and/or anti-parallel β-sheet conformation (E), (6) β-bridge (B), (7) bend

(S) and (8) coil (C). Finally, DNSS2 was trained on a large data set,

including 4872 nonredundant protein structures with less than 25%

pairwise sequence identity and 2.5 Å resolution. Our method was

extensively tested on the independent data set and the latest

CASP13 data set with other state-of-art methods and delivered

state-of-the-art performance.

2 | MATERIALS AND METHODS

2.1 | Experimental design

In this work, the main objective was to improve the secondary struc-

ture prediction by developing more advanced deep learning architec-

tures and introducing more useful features. In the process, we have

developed a systematic framework to effectively build deep learning

architectures and obtain features to improve secondary structure pre-

diction. Figure 1 provides an overview of our experimental design.

Figure 1A lists the six major steps of designing, training, and testing

deep learning architectures. Figure 1B illustrates the process of creat-

ing training and validation data sets. The key analysis is to design

appropriate architectures and investigate if they can improve predic-

tion accuracy. Six different deep neural network architectures were

evaluated in the study, including CNN,43 recurrent RCNN,44

ResNet,45 convolutional recurrent memory network (CRMN),46

FractalNet,47 and Inception network.48,49 Most of these architectures

were applied to secondary structure prediction for the first time. The

detailed description of each network is included in section 2.4. To

ensure a fair comparison, each network was optimized using the origi-

nal feature profiles of training proteins and evaluated on the same val-

idation set of DNSS1. The network that achieved the best Q3

accuracy was selected to explore the feature space on the profiles

derived from MSA generated by PSI-BLAST20 and HHblits,26 Atchley

factors, and emission/transition probabilities inferred from the HMM

profile. The optimal feature set was determined according to the

highest Q3 accuracy on the validation data sets. The networks were

then re-trained using the optimal input profiles to obtain the best

models.

Since combining predictors generally improved the prediction

accuracy, the different combinations of networks were also evaluated.

Finally, after the optimal sets of deep learning architectures and fea-

ture profiles were determined, all networks were re-trained on the

large data set that was manually curated, including the nonredundant

proteins whose structures have been released publicly before 2018.

The final networks were used to predict the secondary structure for

the test proteins. The probabilities of the three states (ie, helix, sheet,

and coil) or eight states (ie, H, G, I, E, B, T, S, C) for each residue

predicted by six networks were averaged to make the final secondary

structure prediction. Our method was then benchmarked with other

state-of-art methods on the independent test data sets.
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2.2 | Data sets and evaluation metric

As described in section 2.1, two training data sets were used in our

experiment. In the first stage, the original DNSS data set29 that

included 1230 training proteins and 195 validation proteins was uti-

lized to investigate whether the deep learning architectures and novel

features can boost the prediction accuracy.

To utilize more data available since DNSS1 was published, a new,

larger training set of DNSS2 was constructed from CullPDB50 curated

on 18 October 2018 (Figure 1B). The data set consists of 12 566 pro-

teins that share less than 25% sequence identity with 2.5 Å resolution

cutoff and R-factor cutoff 1. The structures of all the proteins were

determined by X-ray crystallography. The data set was then filtered

by removing proteins with non-standard amino acids, chain-break

(ie, the distance of adjacent Ca-Ca atoms is larger than 4 Å), and

sequence length shorter than 30 or longer than 700 amino acids.

These threshold parameter values have been widely used in second-

ary structure prediction methods and other protein bioinformatics

works to avoid the sequence redundancy bias and low-quality struc-

tures.2,22 Considering all external methods benchmarked in this work

were developed prior to the year 2018, the proteins that were

released after 1 January 2018 were extracted as an independent test

set (DNSS2_TEST). The resulting set of proteins was further filtered

against the DNSS2_TEST set using CD-HIT suite51 with criteria of

25% sequence identity cutoff and e-value threshold 0.1. Finally, 5413

proteins released prior to 1 January 2018 were obtained as our train-

ing set, in which 4872 proteins were used for network training

(DNSS2_TRAIN) and 541 proteins were used for model selection

F IGURE 1 Overview of the experimental workflow for improving secondary structure prediction. A, Six principal steps are conducted to
construct and train deep networks. The solid box represents an analysis step. The dashed box represents the output from the previous step. The
scroll represents the data set used in each step. B, Data set generation and filtering process
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(DNSS2_VAL). In addition, the proteins of the CASP13 (2018) experi-

ment were collected and the ones with at least 25% sequence identity

with training proteins were removed, which results in a set of 75 test

proteins. The proteins were also classified into template-based (TBM)

and free-modeling (FM) targets based on the official CASP definition

(CASP 13, 2018, http://www.predictioncenter.org/casp13/index.cgi).

We also benchmarked our method on the three publicly available data

sets that have been widely used in other studies to evaluate second-

ary structure prediction, including CB513,52 CASP11 data set53 and

CASP12 data set.54 The proteins with at most 25% sequence identity

with training proteins were kept for evaluation. It is worth noting that

all test data provide true labels of both 3-state and 8-state secondary

structure. In summary, the final test sets contain 415 proteins from

DNSS2_TEST, 305 proteins from CB513, 71 proteins from CASP11,

36 proteins from CASP12, and 75 proteins from CASP13.

We evaluated our secondary structure prediction based on three

primary metrics: Q3, Q8 accuracy, and Segment Overlap measure

(SOV). Q3 and Q8 scores represent the percent of correctly predicted

secondary structure states in a protein in terms of 3-state and 8-state

prediction. SOV score measures the similarity between the predicted

segments of continuous structure states and those in the experimen-

tal structure.29,55 The Q3(Q8) and SOV scores are complementary

with each other for secondary structure evaluation. All training and

testing proteins' structure files were parsed by DSSP program56 to

obtain the real secondary structure classification for each amino acid

for training and evaluation. Converting 8-state secondary structure in

DSSP into the 3-state secondary structure was implemented in the

following ways: (a) treating 3-turn 310-helix (G) and 5-turn pi-helix

(I) as alpha-helix(H), (b) converting bridge (B) into extended strand (E),

and (c) replacing the rest types including hydrogen-bonded turn (T)/

bend (S) as coil (C).

2.3 | Input features

The profile of each amino acid is represented by 21 numbers from

PSI-BLAST-based position specific scoring matrix (PSSM), 20 emission

probabilities and 7 transition probabilities extracted from HMM pro-

file, 20 probabilities of standard amino acid calculated from the MSA

and 5 numbers derived from Atchley's factor. These features (73 num-

bers in total) represent the evolutionary conservation and physico-

chemical properties for residues in a protein sequence.

PSI-BLAST was run to generate MSA and PSSM profile through

searching a sequence against filtered UniProt sequence database at

90% sequence identity (UniRef90)57 with three iterations and an e-

value cutoff 0.001 (“-evalue .001 -inclusion_ethresh .002”). Less

stringent threshold was used (“-evalue 10 -inclusion_ethresh 10”) in

case some proteins did not have homologous sequences returned. In

a PSSM profile, each position is represented by 20 numbers related

to the probabilities for 20 standard amino acids appearing at the

position in the MSA. In addition, the sequence information in the

second to the last column in PSI-BLAST profile is given for each

residue.

HMM profile was generated by running three iteration of

“HHblits” against the uniclust30 database (version: October 2017).58

Two types of probabilities were associated with each residue in an

HMM profile: emission probability and transition probability. Emission

probability represents the probability of a given amino acid occurring

at the position in the MSA. The transition probability represents the

probability transiting from an alignment state (ie, match, insertion, and

deletion) to another. Similar to PSSM, the emission frequencies of the

20 standard amino acid for each residue were reported in the HMM

profile, and the probabilities were calculated according to the formula:

pik =2
−Freqik

1000

� �
ð1Þ

where i is the i-th residue in sequence and k is the k-th standard

amino acid. And the probability is set to 0 if the frequency is denoted

as “*”. The transition probabilities for each amino acid were also

derived in the same fashion. In total, 20 emission probabilities and

7 transition probabilities for each amino acid were collected to repre-

sent the residue conservation inferred from HMM.

Since HHblits was more sensitive to identify distant homologous

sequences than PSI-BLAST, the probability matrix of amino acids was also

calculated from the MSA generated by HHblits. The conversion from

MSA to a probability matrix follows the same calculation as SSpro.22

2.4 | Deep learning architectures

A widely used deep learning architecture in bioinformatics is deep

CNN. CNN have some distinctive advantages over the traditional neu-

ral networks for the bioinformatics problems in several ways: (a) it can

learn informative representation directly from sequence features

without requiring segmentation (eg, sliding window) or dimension

reduction (eg, principal component analysis) techniques; (b) the con-

volutional network can learn both local and global features to discover

complex patterns; and (c) the architecture is independent of input size

(ie, length or volume). In this work, we design a standard CNN and five

advanced deep learning architectures based on both convolutional

and other useful operations as in Figure 2.

Figure 2A illustrates our standard CNN for secondary structure

prediction, consisting of a sequence of convolutional blocks, each of

which contains a convolutional layer, a batch-normalization layer, and

an activation layer. The original input is a L × K vector (X), where L is

sequence length and K is the number of features per residue position

in the sequence. For each convolution block, the feature maps are

obtained after the convolution operation is applied by multiplying the

weight matrices (called filters, W) with a window of local features on

the previous input layer and adding bias vectors (b) according to the

formula: Xl + 1 = Wl + 1 * Xl + bl + 1, where l is the layer number. The

batch normalization layer is added to obtain a Gaussian normalization

of convolved features coming out of each convolutional layer. Then

an activation function such as rectified linear function (ie, ReLU) is

applied to extract non-linear patterns of the normalized hidden
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features. To avoid overfitting, regularization approaches such as drop-

out59 can be applied in the hidden layers. The final output node (also

a filter) in the output cell uses the softmax function to classify the

input of each residue position from its previous layer into one of three

secondary structure states. The output is a L × 3 vector, holding the

predicted probability of three secondary structure states for each of L

positions in a sequence. The final optimal CNN architecture includes

six convolutional blocks, in which the filter size (window size) for each

convolutional layer is six, and the number of filters (feature maps) in

each convolution layer is 40

F IGURE 2 Six deep learning architectures: A, CNN, B, ResNet, C, InceptionNet, D, RCNN, E, CRNN, F, FractalNet for secondary structure
prediction. L, sequence length; K, number of features per position [Color figure can be viewed at wileyonlinelibrary.com]
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The residual network (ResNet) was designed to make traditional

CNN deeper without gradient vanishing. The architecture constructs

many residual blocks and stacked them up to form a deeper network,

as shown in Figure 2B. In each residual block, the input Xl is fed into a

few convolutional layers to obtain the nonlinear transformation out-

put G(Xl + 1). In order to make the network deeper, an extra skip con-

nection (ie, short-cut) is added to copy the input Xl to the output of

non-linear transformation layer, where X(l + 1)* can be represented as

X(l + 1)* = Xl+ G(Xl + 1) before applying another ReLU nonlinearity. This

process makes neural network deeper by adding shortcuts to facilitate

gradient back-propagation during training and achieve better perfor-

mance. The residual blocks with different configuration can be sta-

cked to achieve higher accuracy. For instance, the final best

architecture in DNSS2 is made up of 13 residual blocks, each of which

includes three convolutional layers with filter size 1, 3, 1, respectively.

The first three residual blocks used 37 filters to learn features, while

the middle four blocks used 74 filters for each convolution layer, and

the last six residual blocks used 148 filters. In total, 39 convolutional

layers are included in the final residual network. In the network, the

dropout and batch normalization were also added to prevent network

from overfitting.

Inception network is an advanced architecture for building deeper

networks by repeating a bunch of inception modules, as shown in

Figure 2C. Instead of trying to determine the best values for certain

hyper-parameters (ie, number of filter size, number of layers, inclusion

of pooling layer), inception network proposes to concatenate outputs

of hidden layers with different configuration through an inception

module and trains the network to learn patterns from the combination

of diverse hyper-parameters. Despite its high computation cost,

inception network has performed remarkably well in many applica-

tions.38,48 For secondary structure prediction, a combination of three

filter sizes 1 × K, 3 × K, and 5 × K was applied to convolve feature

input, where K is the number of original input features for each resi-

due position. The concatenation of the convolution outputs is fed into

an activation layer for non-linear activation calculation. This kind of

inception module is repeated to make a deeper network. After the

parameter tuning, the optimal inception network comprises three

inception blocks with 24 convolution layers included.

In addition, we designed three more deep learning architectures:

RCNN,44 CRMN,46 and fractal network for secondary structure pre-

diction. The RCNN was designed to model sequential dependency

hidden inside the sequential features (Figure 2D), It firstly extracts the

higher-level feature maps by a convolution block, and then uses a

RNN (ie, bi-directional LSTM network) for modeling the inter-

dependence among the convolved features. Such a recurrent con-

volutional block with four convolutional layers included is repeated

five times to build a deep RCNN for secondary structure prediction in

this work. The CRMN network augmented the architectures by inte-

grating convolutional residual networks with LSTM (Figure 2E) (eg,

2 residual blocks and 2 LSTM in the network). Both methods

advanced the CNN by introducing the memory mechanisms of RNN.

Moreover, inspired by ResNet and Inception Network, we built a Frac-

tal network stacking up different number of convolution blocks in

both parallel and hierarchical fashion by adding several shortcut paths

to connect lower-level layers and higher-level layers, as shown in

Figure 2F. After tuning, the fractal network was assembled with

16 convolution layers for one fractal block.

2.5 | Training and evaluation procedure

Deeper networks with complex architectures are generally difficult to

train effectively due to the high-dimensional hyper-parameter space.

To obtain good performance on specific feature sets within a reason-

able amount of time for each deep network, we developed an efficient

heuristic random sampling approach for model hyperparameter opti-

mization. Specifically, based on the several trials on network training,

we first determined a reasonable range heuristically for each type of

network hyperparameters, including the number of filters from 20 to

50, the number of convolution blocks from 3 to 7, and the filter size

from 3 to 7. For each subsequent trial, the values of hyper-parameters

were randomly sampled from their specified range, and the Q3 accu-

racy of the network on the validation data set under the specific

parameter combination was assessed. For each deep network, the

best parameter set was determined after 100 trials were evaluated.

Considering different network architectures have different parame-

ters, on average, each trial took around 6 hours to train on the CPU

node with the core “Intel(R) Xeon(R) CPU E5-2680 v4” and �1 hour

on the GPU node with “GeForce GTX 1060 Ti” GPUs each having

6 GB of GPU memory. We found that using the random sampling

technique was able to generate better models in most cases and was

also more efficient than the traditional grid search or greedy search.

The performance of different deep architectures and different

feature profiles on the secondary structure prediction were rigorously

examined using the training and validation set from the original DNSS

method. After the parameters and input features were determined,

we trained each deep network on the latest curated data set

(DNSS2_TRAIN) and selected best models using the Q3 accuracy on

the independent validation data set (DNSS2_VAL). We used the Keras

library (http://keras.io/) along with Tensorflow as a backend to train

all networks.

The performance of DNSS2 was evaluated on the independent

data sets and compared with a variety of the state-of-art secondary

structure prediction tools, including SSpro5.2,22 PSSpred,60

MUFOLD-SS,38 DeepCNF,36 PSIPRED,61 SPIDER3,37 Porter 5,41 and

our previous method DNSS1.29 All the methods were assessed

according to the Q3 (Q8) and SOV scores on each data set.

3 | RESULTS

3.1 | Benchmarking different deep architectures of
DNSS2 with DNSS1

The first evaluation was to investigate whether the new deep archi-

tectures networks (DNSS2) outperform the deep belief network
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(DNSS1) for the secondary structure prediction. In order to fairly com-

pare them, we trained and validated the six deep networks on the

original input features of the same 1230 training and 195 validation

proteins used to train and test DNSS1. Table 1 compares the Q3 and

SOV scores of DNSS1 and DNSS2 architectures on the validation set.

The results show that five out of six new advanced deep networks

(RCNN, ResNet, CRMN, FractalNet, and InceptionNet) except the

standard CNN network obtain higher Q3 scores than the deep belief

network that used in DNSS1, while, only FractalNet and InceptionNet

achieved higher SOV scores. The different relative performance (ie,

higher Q3 score vs lower SOV score) may happen when the predicted

secondary structures of residues break the continuous segment in the

reference structure. Overall, the InceptionNet worked best among

individual deep architectures. The ensemble of the six deep architec-

tures (DNSS2) achieved the highest Q3 score of 83.04% and SOV

score of 72.74%, better than or equal to all the six individual deep

architectures and 79.1% Q3 score and SOV score of 72.38%, of

DNSS1.

3.2 | Impact of different input features

After the best deep learning architecture (ie, InceptionNet) was deter-

mined, it was utilized to examine the impact of the different input fea-

tures including PSSM, Atchley factor (FAC), Emission probabilities

(Em), Transition probabilities (Tr), and amino acids probabilities from

HHblits alignments (HHblitsMSA). In this analysis, the protein

sequence databases required for alignment generation were updated

to the latest and all the input features for DNSS1 data sets were

regenerated. Specifically, the Uniref90 database that was released in

October 2018 was used to generate PSSM profiles by PSI-BLAST, and

the latest version of Uniclust30 database (October 2017) was used to

generate HMM profiles by HHblits. The Inception network was then

trained on the 1230 proteins using the combination of five kinds of

features. We tested six feature combinations shown in Table 2.

Hyper-parameter optimization was applied to obtain the best model

on each feature combination. Table 2 shows the performance of

different input feature combinations with the inception network on

the validation data set of 195 proteins. Adding the emission profile

inferred from HMM model on top of PSSM and Atchley factor fea-

tures increased the Q3 score from 79.81% to 82.31%. In addition,

since PSI-BLAST is a profile-sequence alignment method and HHblits

uses both profile-sequence alignment and profile-profile alignment,

both methods are able to generate MSA with different sensitivity and

specificity. Therefore, combining the features such as PSSM or poste-

rior amino acid substitution probabilities produced by the two com-

plementary methods tend to improve prediction performance. In

Table 2, the results show that adding the features derived from the

HHblits alignments on top of PSI-BLAST PSSM improves the Q3

accuracy of secondary structure prediction from 79.81% to 81.98%

and the SOV score from 71.43% to 74.67%. Finally, Integrating all the

five kinds of features will yield the highest Q3 score (ie, 82.72%), with

slightly decreased SOV score (75.89%) compared with the best one.

The performance of the six deep architectures and their ensemble

on the latest features (the combination of all five kinds of features) of

the DNSS1 validation data set was also reported in Table 3. All six

architectures were re-trained on the 1230 proteins and evaluated on

the validation data set. Compared with the results in Table 1, the pre-

diction accuracy of all the networks on the validation set was

improved. The Q3 and SOV scores of the ensemble (DNSS2) were

increased to 83.84% and 75.5%, respectively. The results indicate that

TABLE 1 Performance of the six different deep architectures and
their ensemble on the DNSS1 validation data set

Method Q3 (%) SOV (%)

DNSS1 79.1 72.38

DNSS2_CNN 77.86 68.42

DNSS2_RCNN 79.87 72.34

DNSS2_ResNet 79.61 69.94

DNSS2_CRMN 79.32 69.21

DNSS2_FractalNet 79.85 72.82

DNSS2_InceptionNet 80.68 72.74

DNSS2 83.04 72.74

Note: DNSS2 represents the ensemble of six deep architectures (CNN,

RCNN, ResNet, CRMN, FractalNet, and InceptionNet).

TABLE 2 Performance of different input feature combinations on
the validation data set of 195 proteins

Rank Feature name Q3 (%) SOV (%)

1 PSSM + FAC + Em + Tr + HHblitsMSA 82.72 75.89

2 PSSM + FAC + Em + Tr 82.36 76.03

3 PSSM + FAC + Em 82.31 74.15

4 PSSM + FAC + HHblitMSA 81.98 74.67

5 PSSM + FAC + Tr 80.13 71.61

6 PSSM + FAC 79.81 71.43

Note: PSSM, FAC, Em, Tr, HHblitsMSA denote five kinds of features:

PSSM, atchley factor, emission probabilities, transition probabilities, amino

acid probabilities from HHblits alignments.

TABLE 3 Performance of the six different deep learning

architectures (CNN, RCNN, ResNet, CRMN, FractalNet, and
InceptionNet) and their ensemble (DNSS2) on DNSS1 validation data
set and the updated protein sequence database

Method Q3 (%) SOV (%)

DNSS2_CNN 80.29 72.1

DNSS2_RCNN 81.83 73.97

DNSS2_ResNet 81.53 73.71

DNSS2_CRMN 81.91 73.37

DNSS2_FractalNet 82.02 73.8

DNSS2_InceptionNet 82.74 75.3

DNSS2 83.84 75.5
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the update of the protein sequence databases helps improve predic-

tion accuracy.

3.3 | Comparison of DNSS2 with eight state-of-
the-art tools on independent test data sets

DNSS2 was compared with eight state-of-art methods including

SSPro5.2, DNSS1, PSSpred, MUFOLD-SS, DeepCNF, PSIPRED, SPI-

DER3, and Porter 5 on the chosen independent test data sets data

set. Particularly, the DNSS_test data set contains nonredundant pro-

teins released after 1 January 2018, which are more likely not

included in the training data for all selected state-of-art methods. All

the tools were downloaded and configured based on their instruc-

tions. The sequence databases that the tools require were updated to

the latest version.

The Q3 score of each tool on the test data set was reported in

Table 4. In general, DNSS2 is comparable to the two predictors

(Porter 5 and SPIDER3) on these data sets and outperforms the other

six methods. Specifically, DNSS2 achieved a Q3 accuracy of 84.64%

and SOV accuracy of 75.57% on the DNSS2_TEST data set, which

was significantly better than DNSS 1.0 on the DNSS2_test data set

with P-value equal to 2.2E−16.

Besides, we also compared these methods on the 75 protein tar-

gets of the 2018 CASP13 experiment, which share less than 25%

sequence identity with the training proteins of DNSS2. Both

template-based (TBM) and free-modeling (FM) protein targets were

used to evaluate the methods and the results are summarized in

Table 5. Consistent with the performance on the test data set shown

in Table 4, DNSS2 achieved comparable performance to SPIDER3

and Porter 5. Table 6 summarized the confusion matrix of predic-

tions of three kinds of secondary structures (helix, sheet, coil) by

DNSS2 on the CASP13 data set. DNSS2 yields the highest accuracy

for helical prediction (87.91%), followed by the coil prediction

(80.21%) and the sheet prediction (76.45%). The prediction errors

between helix, sheet, and coil were also reported. The error rate of

misclassifying helix as sheet is the lowest (0.57%), and sheet as coil

is the highest (22.46%).

TABLE 4 Q3 scores of 9 secondary
structure prediction methods on
DNSS2_test, CB513, CASP11, and
CASP12 data set

DNSS2_test CB513 CASP11 CASP12

Method Q3 (%) SOV (%) Q3 (%) SOV (%) Q3 (%) SOV (%) Q3 (%) SOV (%)

SSPro5.2 79.38 71.02 77.64 69.17 77.72 69.08 76.16 66.59

PSSpred 81.84 71.64 79.60 69.38 79.92 70.57 78.15 67.03

MUFOLD 81.71 73.50 81.05 73.27 81.28 73.91 79.48 69.26

DeepCNF 82.76 70.25 80.87 68.27 81.46 71.40 80.35 67.92

PSIPRED 83.85 74.33 80.40 70.31 82.67 73.88 79.65 70.74

SPIDER3 85.26 77.35 83.48 75.22 83.45 76.09 81.84 71.78

Porter 5 84.92 76.50 83.81 75.25 83.16 75.66 80.58 72.76

DNSS1 80.38 73.89 78.39 71.45 78.59 72.04 76.17 67.40

DNSS2 84.64 75.57 82.56 73.12 82.84 74.34 80.95 71.76

TABLE 5 Comparison of methods on
the CASP13 data set in terms of all
CASP13 targets, template-based targets,
and template-free targets

All TBM FM

Method Q3 (%) SOV (%) Q3 (%) SOV (%) Q3 (%) SOV (%)

SSPro5.2 76.05 69.13 77.25 69.91 76.12 70.88

PSSpred 78.45 67.07 81.47 71.92 76.99 64.55

MUFOLD 79.88 71.28 81.14 74.53 79.80 70.79

DeepCNF 79.75 68.31 82.21 72.68 78.36 65.55

PSIPRED 80.24 70.87 83.71 75.87 78.41 68.14

SPIDER3 81.20 73.64 84.73 77.93 78.89 71.10

Porter5 81.77 73.85 85.11 78.81 79.42 70.30

DNSS1 76.54 69.29 79.15 72.18 75.46 68.79

DNSS2 81.62 72.19 85.14 76.46 79.82 70.56

TABLE 6 Confusion matrix of helix, sheet, and coil predicted by
DNSS2 on CASP13 data set

C pred E pred H pred

Coil (C) 80.21% 9.51% 10.28%

Sheet (E) 22.46% 76.45% 1.10%

Helix (H) 11.52% 0.57% 87.91%
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The experimental results demonstrate that DNSS2 can achieve

state-of-the-art performance in the 3-state secondary structure

prediction. However, we found that DNSS2 outperformed the

state-of-the-art methods in terms of 8-state secondary structure

prediction. Tables 7 and 8 show the Q8 accuracy of the five

selected methods (ie, SSPro, DeepCNF, MUFOLD, Porter5, and

DNSS2) that provide the prediction of 8-state secondary structure.

According to the results, DNSS2 obtains Q8 scores of 75.46%,

73.36%, 73.04%, 70.82%, and 72.72% on DNSS_test, CB513,

CASP11, CASP12, and CASP13 data set respectively, consistently

outperforming all the other four methods and achieving �2% to

�4% improvements. Particularly, for those CASP13 free-modeling

targets that do not have protein homologs, DNSS2 can also achieve

70.99% Q8 accuracy and 70.19% SOV score, while the highest

scores delivered by other methods in this subset are 66.07% and

68.33% for Q8 and SOV score, respectively. The analysis demon-

strates that DNSS2 delivers the best performance for 8-state sec-

ondary structure prediction.

4 | CONCLUSION

In this work, we developed several advanced deep learning architectures

and their ensemble to improve secondary structure prediction. We inves-

tigated six advanced deep learning architectures and five kinds of input

features on secondary structure prediction. Several deep learning archi-

tectures such as fractal network, and convolutional residual memory net-

work are novel for protein secondary structure prediction, and

performed better than the deep belief network. The performance of the

deep learning method is comparable to or better than seven external

state-of-the-art methods on the several independent test data sets,

especially for the 8-state secondary structure prediction. Our experiment

also demonstrated that emission/transition probabilities extracted from

HMM profiles are useful for secondary structure prediction.
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