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MATRIX MEASURES AND FINITE RANK PERTURBATIONS OF

S Ut 00 N0

SELF-ADJOINT OPERATORS
CONSTANZE LIAW AND SERGEI TREIL

ABSTRACT. Matrix-valued measures provide a natural language for the theory of
finite rank perturbations. In this paper we use this language to prove some new
perturbation theoretic results.

Our main result is a generalization of the Aronszajn—Donoghue theorem about the
mutual singularity of the singular parts of the spectrum for rank one perturbations
to the case of finite rank perturbations. Simple direct sum type examples indicate
that an exact generalization is not possible. However, in this paper we introduce the
notion of wvector mutual singularity for the matrix-valued measures and show that if
we use this notion, the mutual singularity still holds for the finite rank perturbations.

As for the scalar spectral measures and the classical mutual singularity, we show
that the singular parts are mutually singular for almost all perturbations. One of the
ways to prove that is to use a generalization of the Aleksandrov’s spectral averaging
to the matrix-valued measures, which is also one of the main results of this paper.

Finally, the spectral representation of the perturbed operator is obtained. The
matrix Muckenhoupt As condition appears naturally there, and it plays an important
role in establishing the vector mutual singularity of the spectral measures.
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1. INTRODUCTION

The theory of rank one perturbations can be traced back to a seminal paper in
1910 by Weyl [18], where they were introduced as a tool to determine the spectrum of
Sturm—Liouville operators when objected to changing boundary conditions.

Most of the spectral behavior under rank one perturbations is very well understood
and can be easily obtained by the analysis of the Cauchy transforms of the corre-
sponding spectral measures. One of the consequences of this analysis is a classical
Aronszajn-Donoghue theorem', which states that the singular parts of the spectral
measures from the family of the perturbed operators are mutually singular.

The situation in the case of finite rank perturbations is less understood. While the
Kato—Rosenblum theorem holds for trace class perturbations, the Aronszajn—Donoghue
theory is not developed. And simple direct sum type examples suggest that a result
like the mutual singularity of singular parts should not be possible in the finite rank
case.

In this paper we consider matrix-valued spectral measures, that seem to be the
natural objects in the case of higher rank perturbations. The language of matrix-
and operator-valued spectral measures was developed earlier in the theory, see for
example [5, 12, 13], but became less popular later on. For the perturbations by rank d
operators the corresponding spectral measures take values in the space of d x d positive
semidefinite matrices; very often the density is degenerate a.e.

Using such matrix-valued spectral measures we show our main theorem — that
mutual singularity of singular parts holds for the finite rank perturbations, if by mutual
singularity one understands vector mutual singularity of the matrix-valued measures,
see Definition 6.1 and Theorem 6.2 below.

The proof is rather interesting: we first establish a formula for the spectral represen-
tation of the perturbed operator, see Theorem 5.1 below. This representation formula
implies the two weight estimates for the Cauchy transform, which in turn implies the
matrix Muckenhoupt A, condition for the pair of the spectral measures, see Theorem
6.7 below. The vector mutual singularity of the singular parts of the matrix-valued
measures is then a simple corollary of this Ay condition.

Another interesting result in rank one perturbation theory is the Aleksandrov disin-
tegration theorem, stating that averaging the spectral measures of the family of rank
one perturbations gives us the Lebesgue measure. In Theorems 4.2 and 4.6, we prove
a version of this result for the case of finite rank perturbations; some interesting new
phenomena appear in the statement and in the proof of this result.

The matrix version of the Aleksandrov disintegration theorem allows us to get a
type of mutual singularity result for singular parts for the scalar spectral measures.
Namely, we are able to show that the singular parts of the scalar spectral measures
are mutually singular with the singular parts of the unperturbed operators for almost
all perturbations, see Corollary 4.7 below.

!This result was proved by Aronszajn for Sturm-Liouville operators with varying boundary condi-
tions [3] and by Donoghue in the abstract setting of rank one perturbations [7].
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1.1. Plan of the paper. Section 2 is devoted to a basic set up of finite rank self-
adjoint perturbations and their matrix-valued spectral measures. We include known
results on these measures and cyclic subspaces.

In Section 3 we present well-known basic facts in perturbation theory: an Aronszajn—
Krein type formula relating the Cauchy transforms of the spectral measures M and
M! and the relationship between non-tangential (upper half-plane) boundary values
of the Cauchy transform and its matrix-valued measure.

The results in Sections 2 and 3 are well-known, see e.g. [12, 20]: we present the
proofs only for the reader’s convenience, to make the paper self-contained.

Certain generalizations of the Aleksandrov spectral averaging to matrix-valued spec-
tral measures are proved in Section 4. The averaging formulas are then used to assert
restrictions on the singular spectrum.

Section 5 features a spectral representation formula in the spirit of the authors’ paper
[14]. This representation is then used in Section 6 to show that the singular parts of
the matrix-valued measures M and 'M'T, where M and M" are the matrix-valued
spectral measures of A and the perturbed operator A, are what we call vector mutually
singular. This is one of the main results of the paper, and it should be thought of as a
generalization of the Aronszajn—Donoghue theorem to higher rank perturbations. The
proof involves the matrix Muckenhoupt As-condition.

As it is well known to experts, the technique of matrix-valued measures can be used
to prove many standard results of the perturbation theory. In Appendix A we present
a proof of the Kato-Rosenblum theorem, based on the technique developed in this
paper. While main ideas of the proof are well-known to experts, the proof could be of
interest to non-specialists.

2. FINITE RANK PERTURBATIONS

Let A be a self-adjoint operator on a separable Hilbert space H. Motivated by the
theory of self-adjoint extensions of a symmetric operator with deficiency indices d, we
fix a d dimensional subspace K of H and consider all self-adjoint perturbations of A+T
that satisfy RanT C K.

Such operators A + T can be conveniently parametrized using d x d matrices. To
realize this parametrization, we fix a left invertible operator B : C* —+ H, Ran B = K.
Define

by :=Bey,, k=12_..4d,

where e, ey, ...e, is the standard orthonormal basis in C.
This family of rank d perturbations is now formally associated with

(2.1) A.=A+BI'B* on D(A)
where the d x d matrix I' is self-adjoint; the family of perturbations can be rigorously
defined through resolvents or quadratic forms.

For simplicity the reader can assume that to operator B is bounded. However,
everything works for the (singular) form bounded perturbations; that means that while
B can be unbounded, for each k we have [|(1+]A|) /2|, < co where [A| = (A*A)'/2
is the modulus of A. In other words, the operator (1 + |A|)~'/2B should be bounded.
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Many applications to differential equations fall into this category. While more singular
perturbations are possible (see [1]), they are not uniquely defined and instead require
another parameter choice. In Remark 2.2 below we mention a characterization of form
boundedness in terms of the spectral measure.

Below, we will not assume that I' is invertible. In situations when we do require
invertibility, we will explicitly mention it.

Focussing on the non-trivial part of the perturbation problem we assume that IC
is a cyclic subspace for A, i.e. H = span{(A —2)"'b : 2 € C\ R,b € K}. This
assumption does not essentially restrict generality. Indeed, without this assumption,
the restrictions of A, and A to the orthogonal complement,

H = (span{(4A — zI)'b: 2 € C\R,b € K})*,

(in the possibly larger H) are equal. That is, Ar‘ﬁ = A\ﬁ.
Cyclic subspaces for A are characterized in Lemma 2.3. In Lemma 2.5 we prove

a well-known fact stating that a cyclic subspace for A is also cyclic for all perturbed
operators A,

2.1. Spectral representation in the von Neumann direct integral. By the spec-
tral theorem a self-adjoint operator is unitarily equivalent to the multiplication operator
M, by the independent variable ¢, M, f(t) = tf(t) in the von Neumann direct integral

22) "= [ @H@ut);

here p is a scalar spectral measure of the operator.

Let us recall the construction of the von Neumann direct integral. We start with
a separable Hilbert space H with an orthonormal basis (eg)r>1, and a measurable
function N : R — Z; U{+oo}. This dimension function N indicates the multiplicity of
the spectrum. (For example, when considering rank one perturbations, we have N = 1

a.e. with respect to p.)
Define

H(t) =span{e, : 1 <k < N(¢)}.
Then the von Neumann direct integral (2.2) is defined as
H:={fcL*(u;H): f(t) € H(t) p-a.e.}.

For a measure u let the spectral class be the set of all measures mutually absolutely
continuous with respect to p. We will need the following well-known fact, cf. [4, Ch. 7,
Theorem 5.2].

Theorem 2.1. The spectral class of the scalar spectral measure and the dimension

function N completely define a self-adjoint operator up to unitary equivalence.
Namely, two self-adjoint operators (represented in the von Neumann direct integrals

with measures (1 and pq, and the dimension functions N and Ny respectively) are uni-

tarily equivalent if and only if the measures p and py are mutually absolutely continuous
and N(t) = Ny(t) p-a.e.
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2.2. Matrix-valued spectral measures and spectral representations. In this
paper by a matrix-valued measure we will understand a countably additive set function
(defined on bounded Borel subsets of R) with values in the set of dxd Hermitian positive
semidefinite matrices (with complex entries). Here we always assume that the measure
is Radon, i.e. that it is bounded on bounded Borel subsets of R.

A matrix measure M can be represented as a matrix (Nj,k)?,k:p where ;) are
Radon measures on R; the measures (i, are non-negative, and the measures p;; can
be complex-valued. The fact that M takes values in the set of positive semidefinite
matrices simply means that for any bounded Borel set E the matrix (u;x(E))?,_, is
Hermitian positive semidefinite.

For a matrix-valued measure M define the scalar measure p = trM = ZZ:1 Lk k-
Since M(E) is positive semidefinite, we get that ;] < 3(5,; + k). Therefore, the
measures /i, are absolutely continuous with respect to g, |pjx| < p, so the matrix
measure M is absolutely continuous with respect to p, dM = Wdu, where W is
a measurable matrix-valued functions with values in the set of positive semidefinite
Hermitian matrices. Moreover, if g = tr M, then W € L.

Given a matrix-valued measure M, we can define the weighted space L?(M) =
L*(R, M; C%) of C?valued measurable functions f such that

11y = [ (MO, £, = [ (W@, 10, an)

(Cd

The vector-valued integral [[dM]f is naturally defined as

/R M = / W (t) £ (£)dpu(h).

2.2.1. Matriz-valued spectral measures. Let € be the projection-valued spectral mea-
sure of A. Define a matrix-valued measure M (with values in the set of d x d positive
semidefinite matrices) by

(2.3) M(E) =B*¢(E)B for all Borel £ C R.

Equivalently, this can be rewritten as
dM (¢
(2.4) B*(A—:)"'B = / (®)

R t—z

for all z € C\ R. Equation (2.4) can be used when considering general (possibly
unbounded) operators A and a set of vectors that generates a cyclic subspace.

Remark 2.2. 1t is easy to see that the perturbation BI'B* with invertible I is bounded
if and only if the spectral measure M is finite (M(R) < cI), and it is form bounded if

ﬁi\‘/fr(? < cl for some ¢ < 0.

and only it [,

If Ran B is cyclic, meaning that span{(A—zI)"'b, : k=1,2,...,d, 2 € C\R} = H,
the operator A is unitarily equivalent to the multiplication M; by the independent
variable ¢ in the weighted space L?(M) = L?*(R, M; C%). The intertwining unitary map
U : L*(M) — H is given by

(2.5) (t—2)tep = (A—21)" b, = (A — 21) 'Bey,
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where, recall, (e)¢_, is the standard orthonormal basis in C?. It is easy to see that U
is an isometry, and cyclicity of Ran B implies that U/ is unitary.
If A is given in its standard spectral representation, i.e. it is represented as a multi-
plication M; by the independent variable ¢ in the von Neumann direct integral (2.2).
In this case the operator B acts through multiplication by the matrix-valued function
B, B(t) : C* — H(t),

(Be)(t) = B(t)e(t), e € C

the vector by (t) € H(t) is the kth column of the matrix B(t).
The above unitary operator (2.5) can then be rewritten as

[Uhe|(t) = h(t)B(t)e, e € C%, his a scalar-valued function.

Using the density of the linear combinations of the functions of form he in L?*(M) we
obtain the representation

(2.6) Uflt) =B f(t),  feL*(M).
Since U is a unitary operator (and thus surjective), the above representation (2.6)

implies the following simple lemma.

Lemma 2.3. RanB is cyclic for A if and only if
Ran B(t) = span{bi(t) : 1 < k < d} = H(t) [-a.e.

Since U is unitary, we get from (2.6) (assuming that dM = Wdy, and the same
measure f is used in the von Neumann direct integral (2.2)) that

(2.7) W(t) = B*(t)B(t) p-a.e.;
if in (2.2) a different measure p; is used, then the right hand side of (2.7) should be
multiplied by the density du/du.

By Lemma 2.3 rank B(t) = dim H(t) p-a.e.; combining this with Theorem 2.1 we
obtain the following simple statement.

Proposition 2.4. Let M = W and N = Vv be the matriz-valued spectral measures
and let A and B be the multiplication operators by the independent variable t in L?(M)
and L*(N) respectively. Then A and B are unitarily equivalent if and only if the scalar
measures (. and v are mutually absolutely continuous and

rank W (t) = rank V() p-a.e.

Remark. Note, that in the above proposition we do not require that the matrices M
and N are of the same size.

For the matrix spectral measure M its density W does not need to be full rank; if,
for example, A has a cyclic vector, then rank W (t) = 1 p-a.e. More generally, if we
have a spectral representation in the von Neumann direct integral

[ e,
then rank W (t) = dim H (¢) p-a.e.
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2.3. Spectral representation with matrix spectral measures for A.. For the
perturbed operator A, given by (2.1) we can similarly define the matrix-valued spectral
measure M! by

dM" (¢
(2.8) B*(A. — 1) 'B = / ()

R t—=z

= F.(2) Vz € C\R,
or equivalently M"(E) = B*ET(E)B, where E' is the projection-valued spectral mea-
sure of A..

Since RanB is cyclic for A, see Lemma 2.5 below, the operator A is unitarily
equivalent to the multiplication M; by the independent variable t in the weighted
space L>(M"); the intertwining unitary operator U, : L*(M) — # is given by (2.5)
with A replaced by A..

Similarly to the case of unperturbed operator A, define the scalar spectral measure
pl = tr ML, as well as the matrix weight W', dMY = Whdu.

Lemma 2.5. Let RanB be cyclic for A. And let A, be the family of rank d self-adjoint
perturbations, i.e. A, = A+BI'B* for hermitian d x d matriz I'. Then Ran B is cyclic
for all A..

Versions of this result go back to early work on scattering theory, see e.g. [9, Sec. 2].

Proof of Lemma 2.5. Let us use the standard notation for the resolvent
R.=R.(z) = (A, — =)}, and R(z) = Ry(z) = (A—=2I)7".

Take f € H. The cyclicity of Ran B for A means that any such f can be approximated
by linear combinations of R(z2)b, z € C\R, by = Bey. Therefore, in order to show the
cyclicity of RanB for AF, it suffices to show that for each z € C\ R, 1 < k < d the

vector R(z)by belongs to R.(z) RanB. To see this, we re-write the resolvent identity
(2.9) R.=R— R.BI'B*R
and apply it to by:
R(2)by = R..(2)[I + BI'B*R(2)]by.
It remains to point out that [I + BI'B*R]b, € RanB. O

Remark. The standard proof (by straightforward algebra) of the resolvent identity
(2.9) works for bounded operators A. Without going into detail, we point out that the
identity extends to form bounded perturbations.

3. CAUCHY TRANSFORM AND SPECTRAL MEASURES

Much of the perturbation theory for rank one perturbations relies on relating the
Cauchy transform corresponding to A with that corresponding to the perturbed oper-
ator. In the case of finite rank self-adjoint perturbations A, = A + BI'B*, we work
with matrix-valued Cauchy transforms. Namely, we define the matrix-valued analytic
function

r t—=z
For I' = 0 we abbreviate F' := FO.

F.(z):= /R dMT(r) _ B*(4, —2I)"'B  forze C\R.
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Again, we can obtain an Aronszajn—Krein type relationship between the Cauchy
transforms F}, and F.

The following three lemmata are well-known to experts, see e.g. [20, 12, 10]. We
provide complete proofs for the convenience of the reader.

Lemma 3.1. Let RanB be cyclic for A. Then for all z € C\ R and all Hermitian
matrices I' the matrices 1 + F(2)I", I+ I'F(z) are invertible, and

(3.1) F =(I+FT)'F=FI+TF)"".
Note that the inverse ezists on C\ R.
Proof. The resolvent identity says
(AL —zD) ' =(A—2D)' = (A—2I)"'BI'B*(4, — 2I)"'
=(A—20)"" = (A, — 2I)'BI'B*(A —zI)~".

Right and left multiplying the first identity by B* and B respectively and recalling
that F(z) = B*(A - 21)7'B, F.(z) = B*(A, — 21)"'B we get

F.=F—FTF,
or, equivalently
(3.2) (I+ FD)F, = F.
From here we get by simple algebra that
(3.3) I+ F(z)D)(I - F(2).I') =1, Vz € C\ R,

which implies that that for all z € C\ R the matrices I + I'F'(z) are invertible for
all z € C4 \ R (the matrices are square, so one-sided invertibility is equivalent to the
invertibility).

Left multiplying (3.2) by (I + F(2)[')~! gives the first equality.

The second formula together with the invertibility of I4+I'F(z) follows similarly from
the second resolvent identity. 0

A matrix-valued analytic function F' on the upper half-plane is said to be Herglotz,
if for all z € C, the matrix F'(z) is positive semidefinite.

Lemma 3.2. The matriz-valued functions Iy, are Herglotz for all self-adjoint T".
Proof. For I' = 0 we have
Im F(z) = [F(2) — F(2)*]/2i = B*[(A — z2I) ! — (A - 2I)"1|B/2i
=B (A—2I) A - 21 — (A—2D)](A - 2I)"'B/2i
=B*(A—2I) ' Imz(A — 2I)"'B.

That F is Herglotz can now be seen by taking (Im F(z)e, e><cd for e € C%.
For general T" one just need to replace A by A in the above formula. O

We need the following simple lemma, relating Im /. and Im F.
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Lemma 3.3. For F and F,, defined above
(3.4) ImF.(z2) = I+ F(2)'T) ' Im F(2) I+ TF(z))"
=TI+ F)D) ' ImF(z)I+TF(2)*)"
Proof. Using the second identity from Lemma 3.1 we obtain
Im F,, = (2i)" (FF - F;) = (20" (FA+TF)" — 1+ FT)'F)

= 20) ' A+ FT) I+ FFT)F — F*I+TF)]I+TF)™!

=1+ FT) ' ImFI+TF)™!,
which is the first identity in (3.4).

The second identity in (3.4) is obtained similarly from the first identity in Lemma
3.1. OJ

3.1. Retrieving spectral information from Cauchy transforms. We need the
following well-known result connecting boundary behavior of the Poisson extension of
a measure to its Radon-Nikodym derivative.

For a (possibly complex-valued) measure 7 on R denote by 7(z) its Harmonic exten-
sion to a point z € C\ R. We assume here that the Poisson extension is well defined,
ie. that [,(1+ 2%)7'd|7|(2) < co. If d7 = fdu, where f is a scalar function, we use
the notation [fu](z) or (fu)(z) to denote the Poisson extension of fu.

Theorem 3.4.

(i) Let measure pn > 0 and a measurable function f be such that the Poisson
extensions of i and fu are well defined. Then the non-tangential limit

POIDIC)
—a u(z)
(i) If du = wdx + dps is the Lebesgue decomposition of the measure u, then

= f(x) for p almost all x € R.

lim p(z) = w(z) for Lebesgue almost all x € R,

z2—x]
(3.5) Zl_iglqu(z) =400  for us almost all x € R.

Part (i) is well-known; it is essentially a version of the Lebesgue differentiation
theorem. For a self-contained presentation, see e.g. [15, Lemma 1.2]. A proof of
the first statement of part (ii) can be found in [16, Theorem 11.124]. Although the
statement of (3.4) can be found in several places in the literature, we could not find a
self-contained proof. We provide a simple proof in the Appendix Section B below.

Let dAM = Wdpu. The Lebesgue decomposition du = dpse + dps = wdx + duys,
w = dp/dz into absolutely continuous and singular parts yields the corresponding
decomposition of the matrix-valued measure M,

dM(z) = Wdpae + Wdps = dM,e(x) + dMg(z).
Defining W, := wW = dM/dz, we can write dM,. = W,.dz.
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Theorem 3.5. Let M be a matriz-valued measure and let Wy be its density dM /dx
as defined above.
Then W, is determined by the non-tangential limits of the Cauchy transform,

1
Wae(z) = — lim Im F(2) for Lebesgue a.a. x € R.
T z—x]
Remark. We encourage the reader to find results about the relation between the bound-
ary values of the Cauchy transform and its matrix-value spectral measure in [8, Theo-

rems 5.5 and 6.1].

Proof. Theorem 3.5 follows immediately from Theorem 3.4, because 7~ Im F(2) is
exactly the Poisson extension of M at the point z. Then, applying Theorem 3.4 to
entries of M we get the result. O

4. SPECTRAL AVERAGING AND MUTUALLY SINGULAR MEASURES

The spectral averaging formula by Aleksandrov [2] is one of the most curious results
in rank one perturbation theory: it states that the average of the spectral measures of
the family of the rank one perturbation is the Lebesgue measure on the real line.

More precisely, if

A, = A+ ~bb", veR

is a one parameter family of the rank one perturbations (here b : C — H is a rank one
operator), and u” are the corresponding spectral measures (associated with the vector
(operator) b), then for any Borel measurable function f € L'(R)

(4.1) [ @i @ar = [ s

The above identity means that f € L'(u?) for almost all v € R, and that the function
v = [ f(z)dp?(z) belongs to L'(R).

As the averaging formula can be used to obtain spectral and cyclicity information
of perturbed operators, we set out to find a generalization of the formula to the finite
rank setting.

We first prove a result about averaging over the line, see Theorem 4.1 below. As one
can see from this theorem, integrating over all perturbation parameters I' would give
a divergent integral, so one needs to introduce weights to get the convergence.

In our case it is easy to get the result for the “cylindrical” weights, i.e. L! functions
on the space of d x d Hermitian matrices that are constant in the direction given by an
arbitrary (fixed) positive definite matrix I, see Theorem 4.6. As a spectral corollary of
this theorem we will get the Aronszajn—Donoghue type result about mutual singularity
of the singular parts for almost all perturbations, see Corollary 4.7 below

4.1. Averaging over the line for finite rank perturbations. Let A and A be
finite rank perturbations given by (2.1). Recall that M' is the matrix-valued spectral
measure of A as defined in Section 3.
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Theorem 4.1 (Aleksandrov Spectral-type Averaging). Let Iy be a self-adjoint and T’
be a positive definite d x d matriz. Consider a scalar-valued Borel function f € L'(R).
We have

(4.2) /R < /R f(x)dmfwf(z)) dt = ! /R Fa)da.

Remark. Note that for a generalization of (4.1), the outside integral should be replaced
by integration with respect to the Haar measure over the space of complex Hermitian
matrices. However, such a left hand side will in general be infinite.

Parts of the following proof are an adaptation and generalization of the proofs in
(17, 5. 9.4].

Proof. Let us first prove the theorem for the Poisson kernels

1 1 1
p0) = (713 ) . sech

2m\r—2 x—2Z2

(here x is not the real part of z); the rest will be done by the approximation.
For f =p,, z € C, the right hand side of (4.2) evaluates to

r-! /pz(x)d:c = 2mil ! for all z € Cy;
R

this follows because p, is the Poisson kernel. It can also be done via a standard
integration using residues.

For the evaluation of the left hand side recall the definition of the matrix-valued
Cauchy transforms F' and FF0 L glven in Subsection 2.2. In combination with a
variant of Lemma 3.1, we obtain

(4.3) /R p. (2)dAMH (2) = (277) (FFOHF(z) - FFO+tF(Z)>
= (2m) " ([F7'(2) + Do + )7 = [FH(2) + To + tI]7") =t ha(¢).
Since T' is positive, its positive square root I''/2 is well defined and one can easily verify
that with F := I''/2FT'/2 we have
F' 4Ty +t0 =DV + F~' + D720, 0~ Y/2)ri/2
=IV2(11 - QI3
where G := —(F~1 4+ D=1/21,[~1/2),

Again, we will perform the standard residue calculation with the semi-circle in the
upper half-plane. To that end, recall that F' is Herglotz, i.e. Im F'(z) > 0 for z € C,.

And since I'V/2 is positive, F' is Herglotz, too.
Since for a matrix T’

(4.4) Im(T™) = —(T"H*(ImT)T ™,

we conclude that the function —F~! is also Herglotz. The operator [~V/2['~1/2 is
self-adjoint, therefore the function G is also Herglotz, so ImG(z) > 0 for all z € C,..
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Since trivially, F(z) = F(2)*, we have that G(2) = G(2)*, so Im(G(2)™") > 0 for all
z € C+.

So when z € C, , then we have for the spectra 0(G(z)) C Cy and o(G(z)) C C_.

We need to evaluate the integral

(4.5) / = = [ (- GE) " — (- GE) ) d.

R 2wt Jp
The evaluation is pretty standard residue calculation. We consider the closed contour
v, consisting of the interval [ R, R] and the semicircle S, = {w € C; : |w| = R}; R
is assumed to be sufficiently large, so that o(G(z)) is inside the domain bounded by
the contour 7.

Since [|h.(w)| ., = O(R™?) for w € S,, as R — oo, we see that

I
/ h.(w)dw — 0 as R — oo,
SR

so for sufficiently large R we have

(4.6) /R h.(t)dt = / h. (£)dt.

R

Recall (see (4.5)) that h.(t) = (2mi)~' (I — G(2))™! — (tI — G(z))™'). The second
term (tI — G(z))~! is analytic for t € C,, so its contribution to the integral (4.6) is 0.
Therefore (for sufficiently large R)

/hz(t)dt:/ hz(t)dt:% (11— G(2))"\dt = T

the last equality follows from the Riesz functional calculus. This proves Theorem 4.1
for the Poisson kernels p.,.

Let us now extend identity (4.2) to wider classes of functions.
We will need the following simple lemma. Let H(d) be the set of d x d Hermitian
matrices.

Lemma 4.2. The matriz measures MY are uniformly Poisson bounded, i.e. there exists
P < oo (independent of ') so that

/ dM" ()
R 1 + QU2

Moreover, if I'(t) = I'g + tI' with invertible I' then

/ dM"® (1)
R 1 + 1’2

of course, the constants depend on I'y, T.

<P VI € H(d).

= O(t%) as |t| — oo;
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Proof. Consider function p;(x) = (2mi) ™ ((x — i)™ — (z +4)7") = (7)o —i| 2. Us-
ing the calculation (4.3) with I" instead of 'y 4 tI" we estimate
< [FGO =D+ [[(F(=) + D)7

dMY (z
H/ 1+x2
< [ Im(F(i)" )1||+||Im( (=)™ H)7H =2l Im(F (@)~ 713

here, in the second inequality we used the fact that if ImT is invertible, then T is
invertible and || 77| < ||(ImT)_1||

The invertibility of Im(F(¢)~!) follows from identity (4.4) applied to T' = F(i) and
from the invertibility of F'(7).

To prove the second statement we first notice that for sufficiently large |¢| the oper-
ators I + I'(¢) F'(i) are invertible and

IT+TOF@) " =0™)  as [t] = oo;

here the invertibility of I' is used. By Lemma 3.3
ITm F ) (D < | Tm F @[T+ T (@) F (0],
and the second statement follows. O

Let us now prove that (4.2) holds for the class C.(R) of continuous functions with
compact support; in fact we will prove it for a wider class Cp,iss 0f Poisson bounded
continuous functions.

Namely, let R be the one point compactification of R, where we identify the points
+00 and —oo. Define the space Cpyiss = (1 + 22)"1C(R) equipped with the norm

£ [|poiss := sup{(1 + 2*)| f(z)|}.
z€R
Lemma 4.3. Let f € Cpyiss- Then the function
A / F)dME (z)
r

is a continuous function on H(d), and (4.2) holds for f € Cpyiss and all T' > 0.

Proof. 1t easily follows from the Stone-Weierstraf theorem, that the linear combina-
tions of 1 and the Poisson kernels f,, are dense in C'(R), so the linear combinations of
the Poisson kernels f,, are dense in Cpyjgs.

Let f € Cpyiss. Take linear combinations f,, of Poisson kernels, such that

(4.7) If = fallPoiss = 0 asn — oo.

The uniform Poisson boundedness of the measures M (Lemma 4.2) implies that

[ st @) = [ sapan (@
)

uniformly in I" € H(d).
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For the Poisson kernel p,
2mi /sz(:z)dMF(:z) = F.(2) = FL(2)
=F()I+TF(2) ' —FEA+TF(Zz)™,

and clearly the right hand side here continuously depends on I". Therefore the functions
I'— [ fodM" are continuous, and so is the function T' — [, fdMF", as a uniform limit
of continuous functions.

We already proved that (4.2) holds for the Poisson kernels p,, so it holds for the
functions f,,. The convergence (4.7) implies that || f,,||poiss < C' < 0o uniformly, so

(4.8) Ifu(@)] < C(1+2%)"" VnVreR
Therefore by Lemma 4.2

(4.9) <Cl+)™!

/R o) AMTOHT ()

(with different C'). Then applying the Dominated Convergence Theorem twice we get

that
/R ( /R f(z)dMFoHF(x)) dt = lim : ( /R fn(:c)dMF°+tF(x)) dt
— lim 1! / £o(2)dx

=1 [ fa)d

here in the first equality we use the estimate (4.9) and the Dominated Convergence
Theorem. The second equality is just (4.2) for the functions f,, and the last equality
follows by the Dominated Convergence Theorem from the estimate (4.8).

The lemma is proved. U

To extend (4.2) to integrable Borel functions we use the standard reasoning, cf. [6,
s. 9.4] based on the Monotone Class Theorem. Recall that a collection T of subsets
is called a m-system, if it is closed under finite intersections. We denote by o(7) the
sigma-algebra generated by 7.

We need the following well-known theorem, see [19, s. 3.14].

Theorem 4.4. Let S be a set of bounded functions f : X — R, and T be a w-system
such that
(i) S is a real vector space;
(ii) the constant function 1 belongs to S;
(iii) of (fn)n21 is an increasing sequence of nonnegative functions in S such that its
limit f
f(z) = lim f,(x)
is bounded, then f € S;
(iv) S contains all indicator functions 1., I € T.
Then S contains all bounded o (T )-measurable functions.
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We apply this theorem to the collection 7 of all bounded open intervals (a,b); note
that the corresponding sigma-algebra is the Borel sigma-algebra. For the class S of
functions we take all bounded measurable real functions g on R such that

(i) the function

s /R lgj(f;dl\/[r(x)

is Borel measurable;
(i) for all I'y € H(d) and for all positive definite I' € H(d) the identity (4.2) (with
integrals being finite) holds for f, f(z) = g(z)/(1 + z?).

Lemma 4.3 implies that C(R) C 8. Assumptions (i), (ii) of Theorem 4.4 are triv-
ially satisfied. The assumption (iii) is also satisfied: equality of the integrals follows
from the Monotone Convergence Theorem (the boundedness of limit implies that the
integral is finite), and the measurability is preserved under limits (which exist because
of monotonicity).

Finally, for any open interval I, the function 1, can be represented as an increasing

limit of non-negative functions f, € C, C C(R). So the assumption (iv) follows from
the fact C(R) C S and from the assumption (iii) (which as we know is satisfied).
Thus, the class S contains all bounded Borel measurable functions. Taking increasing
limits we can see that the class S contains all non-negative Borel measurable functions
g satisfying [, (1 4+ 2*)7'g(x)dz < oco. Therefore S > L'((1 + 2®)~'dx), and thus
Theorem 4.1 is proved in full generality. U

Theorem 4.1 has an immediate perturbation theoretic consequence:

Corollary 4.5. Assume the setting of Theorem J.1. Let B be a Borel set of zero
Lebesgue measure. Then MY T(B) = 0 for Lebesgue a.a. t € R.

4.2. Averaging over all I". Recall that H(d) denotes the complex Hermitian d x d
matrices. Clearly H(d) is a real vector space of dimension d?; the Frobenius inner
product

(5,T), = Re(tr(T"S)) = Re(tr(S°T))

makes it into an inner product space. Thus H(d) is isometrically isomorphic to R%, so
on any subspace of H(d) we can define the standard Lebesgue measure of appropriate
dimension (which equals to the appropriately normalized Hausdorff measure). We use
the notation

I':={SeH(d):(ST), =0}
Since I'* has infinite measure, integrating (4.2) with f >0, [ f(z)dz > O over Iy € T+
gives us a divergent integral, so Aleksandrov’s disintegration formula does not directly

generalize to the case of rank d perturbations with d > 1. To get a generalization we
can introduce a weight in the direction of I'*.

Theorem 4.6. Let ' € H(d) be a positive definite matriz. Let ® : T+ — R be integrable
(with respect to the Lebesgue measure on T't) and abbreviate [, ®(T9)dTy = a. Then



16 CONSTANZE LIAW AND SERGEI TREIL

for all f € L'(R) we have

/m/ / J (@)@ (Lo) [dMT* (2)]dtdly = ol / fo

where dT'y denotes the Lebesque measure of dimension d*> —1 on I't.

Proof. The result follows immediately from Theorem 4.1 by the Fubini—Tonelli theo-
rems; the measurability of the function I' — [ f(2)®(To)[dM" ()] was just proved
above. 0

Taking a non-vanishing integrable ® > 0 in the above Theorem 4.6, we conclude that
for any Borel set B of zero Lebesgue measure M'(B) = 0 for almost all ' € H(d).
Taking the trace we see that for the scalar measures p! := tr M! we also have ' (B) = 0
for almost all I'. This immediately gives us the following Aronszajn—Donoghue type
result.

Corollary 4.7. For a singular measure v on R the singular parts (u%)s of the scalar
spectral measures b of the operators AL are mutually singular with v for almost all T'.
In particular, for any fived Ty € H(d) the singular parts of ' and p*° are mutually
singular for almost all T € H(d).

5. REPRESENTATION THEOREM

In this section we assume that the unperturbed operator A is given in its spectral
representation in the weighted space L?(M), where M is its matrix-valued spectral
measure defined by (2.3) and (2.4).

In this representation the operator B is given by (Bc)(t) = ¢, ¢ € C¢, t € R; in
other words, the operator B maps a vector ¢ € C? to the function in L?(M) identically
equal c. The adjoint operator B* is then given by

B'f = / AM(E)] ().

As we discussed above in Section 2.3, the perturbed operator A, = A + BI'B” is

unitarily equivalent to the multiplication M, by the independent variable s in the

weighted space L?(M"), where the matrix-valued measure M' is defined by (2.8).
We want to find a formula for the spectral representation of A, i.e. for a unitary

operator V. : L*(M) — L*(M") intertwining A and M,

VLAL = M VL.
Theorem 5.1. The spectral representation V. takes the form
h(t) —h
(5.1) (Vohe)(s) = h(s)e — T / %[dm@]e
R _

for e € C¢ and compactly supported h € C1(R).
Proof. By the formula (2.5) with M" instead of M we get that

(5.2) V. ((Ap — z2I)7'Be) (s) = (s — z) e, e c C
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From the resolvent formula
(A—2D)7' = (A, — 2I)7' = (A, — 2I) 'BI'B*(A — 2I)~!
we get that for e € C¢

(5.3) (A—2I)"'Be = (A, — 2I) 'Be + (4, — 2I) 'BI'B*(A — zI) 'Be
= (A, —zI)"'Be + (A — 2I) 'Brle,,

where e, € C?¢ is given by

e, =B*(A—2I)"'Be= /

Rt—z

[dAM(¢)]e.

Therefore, applying (5.2) to the right hand side of (5.3) we obtain that

(Vi(A=2D)"'Be) (s) = (s — ) 'e+ (s — 2)"'Te..

Denoting by k.(s) := (s—z)~! and noticing that the vector (4 — 2I)"'Be is represented
in L?(M) by the function k.e, we can rewrite the above identity as

(Vok.e) (s) = ks(s)e + k.(s)Te..

Since
kz(t) - kz(s) - -1
t—s (s —2)(t—2)

we see that

k.(t) — k.
k.(s)e, = —/ M[dl\/[(t)]e,
R t—s
o (5.1) holds for h = k,.
Standard approximation reasoning, like the one performed in [14] can be applied to
complete the proof of the theorem. O

6. VECTOR MUTUAL SINGULARITY AND ARONSZAJN-DONOGHUE THEOREM

In the rank one setting, Aronszajn—Donoghue theorem asserts the mutual singularity
of the singular parts & and u? whenever o # 3 (see e.g. [17, Theorem 12.2], or [3, 7]
for the original result). In the higher rank setting, this certainly is not true for the
canonical scalar-valued spectral measures. In fact, when dealing with the perturbation
theory of the singular parts, the proofs from Aronszajn—Donoghue theory encounter
serious road blocks.

Nonetheless, we can obtain a matrix mutual singularity under the assumption that
we are perturbing by a positive definite finite rank operator, see Theorem 6.2. Key
is an adaption of methods like those in the proof of the necessity of the two weight
(As)-condition for the boundedness of the two-weight Hilbert transform.
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6.1. Vector mutually singular matrix-valued measures.

Definition 6.1. We say that matrix-valued measures M and N are vector mutually
singular (and write M L N) if there exists a measurable function IT whose values are
orthogonal projections on C¢ such that

IMII=0, (I-I)N(I-I)=0;

here for a measure dM = Wdp and a measurable matrix-valued function ®, the mea-
sure ®*M® is defined as

wmym:/¢mmmm@m=/®mmw@m@m.
E E
for any measurable set F.

Sometimes we will omit “vector” and just write mutually singular.

It is easy to show that the measures M = Wy, N = Vv (W, V are matrix-valued
functions, u, v are scalar measures) are vector mutually singular if and only if one can
pick densities W and V' (that are originally defined only p-a.e. and v-a.e. respectively)
such that

Ran W (x) L RanV(x) p-a.e. and v-a.e.

Theorem 6.2. Let M and MY be matriz-valued spectral measures, defined by (2.8),
of the operators A and Ay, respectively. Then their singular parts My and ML satisfy
the following vector mutual singularity condition:

M, L I'M!T or equivalently I'MI L M.

Remark. This theorem can be seen as a generalization to the finite rank case of the clas-
sical (scalar) Aronszajn—Donoghue theorem; the mutual singularity here is the vector
mutual singularity of the matrix spectral measures.

Using this theorem one can obtain an improved result about mutual singularity of
the scalar spectral measures of the perturbation.
Namely, consider the family of operators AF(t) = A+BI'(t)B*, where I'(t) = 'y 41T,

t € R. Let M"*" be the matrix spectral measure of the operator Al"(t) and let
plot " = tr Mo+ be its scalar spectral measure. Denote by (ur°™), the singular
part of plo+iT,

Theorem 6.3. Let I'(t) = Ty + tI', where I' > 0 and let "ot be the scalar spectral
measures of Al"(t)' For an arbitrary singular Radon measure v on R,

To+tI
S

v.1u
for all except maybe countably many t € R.

Remark 6.4. Corollary 4.5 implies that the singular measure v is mutually singular
with plo™ for almost all ¢ € R. The above Theorem 6.3 strengthens this result.
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Proof of Theorem 6.5 (assuming Theorem 6.2). Since A, = Ay, + (to —t;)BI'B*, The-
orem 6.2 implies that we can pick densities W;, , k = 1,2 of the measures M) such
that

Ran Wy, (z) L I'Ran W, (x) for p't + p' almost all x.

We introduce an equivalent inner product (-, -), in C%, (x,y), = (I'x,y) (Since

cd’
I > 0, this inner product defines a norm on C? that is equivalent to the standard norm.)
So the above orthogonality condition just means that the ranges are orthogonal in the

inner product (-, ),

(6.1) Ran Wy, (x) L. Ran Wi, (z)  for pf + pg almost all z.

Consider the space L?(T'v) = L?(T'v;C%). If for some t € R the measure plo+®T
is not mutually singular with v (i.e. ul°™ has a non-trivial part that is absolutely

continuous with respect to v), then there exists non-trivial f; € L?(T'v) such that
(6.2) fi(x) € Ran Wy(z) for v almost all x.

Let t1,t2 € R be such that p* f v, k= 1,2, and let f;, € L*(Tv) be a non-trivial
functions satisfying (6.2). Then (6.2) together with the orthogonality condition (6.1)
implies that f;, and f;, are orthogonal in L?(T'v). The separability of the space L*(T'v)
immediately implies the conclusion of the theorem. O

6.2. Matrix A; condition. For a matrix-valued measure M and z € C\ R denote by
M(z) its Poisson extension,

M(z):l Imz

T Jr |z — s

dM(s).

Consider matrix-valued spectral measures M and M given by (2.4) of the operators
A and A respectively.

We say that a pair of matrix measures M, N satisfies the joint Poisson matrix A,
condition, and write (M, N) € (Ay) if

(6.3) sup ||[M(2)Y2N(2)2||? = [M,N],, < oo.

zeCy

The constant [M, NJ, is called the joint (Poisson) A, characteristic of the pair M, N.

Remark 6.5. Since (M(z)Y2N(2)Y/2)* = N(2)/2M(2)"/? the order of terms M(z)"/?
and N(2)'/? in (6.3) is not essential, and [M,N], = [N,M]

Remark 6.6. The matrix A, condition is monotone in the measures M and N. Namely,
if M <M and N < N, then

IM(2)°N (=) < [ M(2) "N ()2

Therefore, if (M, N) € (A,) then (M, N) € (4,) and [M,N], < [M,N], .
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Theorem 6.7. Let M and MY be the matriz-valued spectral measures (given by (2.4))
of the operators A and A" respectively. Then the measures M and TM'T satisfy the
matriz Ay condition with [M, FMFF]A2 < (8/7)3,

(6.4) IM(2)Y2(TMY(2)D)V?| < 8/7  VzeCy.
Remark. Since for an operator T' the identity | T'||? = ||T*T|| = || TT*|| holds, we can

write
IM(2)/2(TM" (2)0) V212 = [|M(2) 2 TM" (2)TM ()2
= [ M(2)/2TM" (2) /2%,
So, one can put ||M(z)2T'M"(2)/2|| on the left hand side of (6.4).
The above identity also implies that one can place I' with M, i.e. that [M, TM'T] 4, =
[TMT, MF]AQ.

Proof of Theorem 6.2. Let us show how Theorem 6.7 implies Theorem 6.2. By part (i)
of Theorem 3.4 we have that for a Radon measure 4 > 0 on R and f € L'(u)

(f1)(z)
p(z)
as z — x non-tangentionally; here recall u(z) and (fu)(z) are the respective Poisson

extension of the measures p and fu to the point z € C\ R.
By part (ii) of Theorem 3.4 we know that for a singular measure 15 the non-tangential
limit

(6.5)

— f(x) for p almost all x € R

(6.6) lim pg(z) = +o0 ps-a.e. r € R.

z—x]

By the monotonicity of the A; condition, see Remark 6.6, we conclude that
M (2)2(PM (2)D) 2| < 8/m V2 € Cs.

(i) ()
By (6.5) we have ) )

M, ML dpul

lim (2) = W(z), lim : (2) = b

= fg(2) = fg(2) d s

If the measures My and ML T are not vector mutually singular, then there exists a
Borel set E C R, pus(E) > 0 such that

duf

dpes

Therefore W (z)"/2(TW" (2)[')}/2 # 0 pe-a.e. on E, and it follows from (6.7) and (6.6)

that

We can rewrite

(6.7)  IMu(=) 2 (CM (2)T)2 ] = pus(2)

()W () s-a.e.

(x) >0, Ran W (z) £ Ran (TW'(z)I) Us-a.e. on E.

lim ||Mg(2)Y2(I'ML (2)D)Y?| = o0 for psa.a. x € E.

z—x]
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But this contradicts (6.4), and thereby proves Theorem 6.2 (modulo Theorem 6.7). [

6.3. Uniform bounds on some integral operators. To prove Theorem 6.7 we need
to prove uniform bounds for some integral operators

For an integral operator T'f(s) = [, K t)dt with bounded kernel K and a
matrix-valued measure M = W,u, define the operator TM . acting on vector-valued
functions by

™ f(s) /Ksth /Kst V() dp(t).

We assumed that K is bounded, so everything is well defined say for bounded compactly
supported functions.

For & > 0 denote by T. the integral operator with kernel 1/(s —t £ ig), and let TN
denote its vector version with matrix measure M.

Theorem 6.8. Let M and M be matriz-valued spectral measures, defined by (2.8),
of the operators A and A, respectively.

Then operators TY : L*(M) — L*(TM'T) are (uniformly in ) bounded with norm
at most 2.

Proof. Take a scalar h € C3(R), and ¢ € C? From the representation formula in
Theorem 5.1 we get that for a € (0, 00)

r s—t

V.hc — 6iasVF(e—iathc) — F/ (1 _ ez’a(s—t)) h( ) [dM( )]

note that the kernel (1 — e™*=") /(s — t) is bounded, so the integral is well-defined.

Recall that V], is a unitary operator from L*(M) to L*(M") and notice that multi-
plication by €% is a unitary operator on both L?(M) and L?*(MY'). Together with the
previous equality we obtain

HF/ (1= e0) M fanrgoe

< 2||hc|
L2 (M) L2(M)

The above inequality holds for all a # 0, so if we average the integrand on the left
hand side in a with any probability measure, we will have the same upper bound.
Let us average over a > 0 with the weight ce™*%; note that fooo ce **da = 1. We get

fore >0
1 _ ta(s—t) 1 : 1
5/ 1O e = - e — = —,
0 s—1t s—t s—t+iwe s—t+ue
S0,
h(t)
o[ 2O < 2lhel
R~ — (23

L2(Mb)

holds uniformly in e.
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Since functions of the form hc (where h € C} is a scalar function and ¢ € C?) are
dense in L?*(M), we get

1
[ ——[dM(@)]f(t <2
[ <2,
L2(M")
for all f € L*(M), uniformly with respect to e. Since ||Fg||L2(MF) = ||g||L2(rMFr)’ the
above inequality is exactly the conclusion of the theorem for T M
Averaging over a < 0 with the weight % we get the result for T™. O

For a € C\ R let P, be the integral operator with kernel %, and let PM be

the vector-valued matrix version, as defined in the beginning of this subsection.

Proposition 6.9. Under assumptions of Theorem 6.8 the operators PM : L?(M) —
L*(CM'T) are uniformly (in o) bounded with norm at most 4.

Proof. For v € C\ R define @, (t) := (t —«)/(t —@). Using the above operator T, with
kernel 1/(s —t + ic), we formally define an auxiliary operator S,

Sa’gf - TE - M@—aTgM@

where M, is the multiplication operator, M,f = ¢f.

Let S}XIE be the vector-valued matrix version, as defined in the beginning of this
subsection. Since |p,(t)] = 1 on R, the operator M, is a unitary operator in both
L*(M) and L*(’'M'T), so the operators S). : L*(M) — L*(TM'T) are uniformly in
a and € bounded with the norm at most 4.

Computing the kernel of S, . we get

1 (s —a)(t —a) 2ilma(s —t)

s—t+ic (s—a)s—ttic)t—a) (s—ttie)s—a)t—a)
so for compactly supported f € L?(M)

M B 2ilma(s —t)
Sa,af (S) - / (s—t+z€)(s—a)(t—d) [dM(t)]f(t)

The operators Syt : L*(M) — L*('M'T) are uniformly bounded, so by an /3 ar-

gument SOIXIa — iPM as ¢ — 0 in the strong operator topology (the convergence on
compactly supported f is trivial, due to the uniform on compact subsets convergence
of the kernels).

Thus we get the desired bound on PM. O

o)

6.4. Bounds for operators PM imply matrix A,-condition. We need the follow-
ing simple lemma.

Lemma 6.10. Let T be an integral operator with kernel K, K(s,t) = ki(s)ka(t) (as-
sume for simplicity that k1, ko are bounded), and let M, N be matriz-valued measures.
If operator TM : L*(M) — L?(N) is bounded, then

(6.8) H (/ |k:1|2dN) v (/ |k:2|2dM) v

M
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Remark. In fact one can show that equality holds in (6.8), but for our purpose the
inequality suffices. So, we state and prove the lemma as stated.

Proof of Theorem 6.7. The above Lemma 6.10 implies Theorem 6.7. Indeed, the kernel
of the operator P, is represented as K(s,t) = 2(Ima)/((s — a)(t — @)) = k1(s)ko(t)

_ (2Ima)'?  (2Ima)'?
]{71(8)— s — o s ]{Zg(t)— —a .
Recall that the Poisson kernel of the upper half plane C, is given by
Ima
Pa(t) = W for a € C+,t - ]R,

50 |k1]? = |ka|* = (7/2)P,. Therefore
/\klPdMF = §Mr(oz), /\k2\2d1\/1 = gM(a).

Recalling that ||JD§>/I]|L2 M)s L2(CMTT)

conclusion of Theorem 6.7 from (6.8); recall, see Remark 6.5, that the order of terms
in the definition (6.3) of the matrix A, condition is not essential. O

< 4 by Proposition 6.9, we immediately get the

Proof of Lemma 6.10. Take a unit vector e € C?, |le|| = 1. Define a vector-valued

function f = f. as
~1/2
7(t) = (/|k2|2dM) e TalD):

note that Hf||L2(M) = 1. Let us compute TMf:

T™f(s) = ki(s)e,

~—

where € € C? is given by

a:/kg( )[dM(2) (/\kg\ dM) 2e.

Therefore we obtain

1/2 1/2 1/2
clusion of the lemma by taking supremum over all e € C%, ||e|| = 1. O

APPENDIX A. KATO-ROSENBLUM THEOREM

The technique of matrix-valued measures can be used to prove many standard results
in the perturbation theory. Thus, in this Appendix we present a proof of the Kato—
Rosenblum theorem. The easy part (unitary equivalence of a.c. parts), see Subsection
A.1 below, is a simple corollary of the known facts of the perturbation theory discussed
in Sections 2, 3.



24 CONSTANZE LIAW AND SERGEI TREIL

The existence of the wave operators, discussed in Subsection A.2 is deduced from
our representation theorem (Theorem 5.1).

A.l. Density and an easy part of the Kato—Rosenblum theorem (unitary
equivalence of a.c. parts). The proof below is essentially the proof by Kuroda [13]
presented in slightly different language.

Theorem A.1. Let A and C' be self-adjoint operators that differ by a finite rank op-
erator. Then the absolutely continuous parts of A and C' are unitarily equivalent.

Proof. Without loss of generality we can assume that C = A, = A + BI'B* with
invertible I'; and that Ran B is cyclic for A.
From Lemma 3.3 recall that

(A.1) Im F(2) = (I+ F(2)'T) ' Im F(2) I+ TF(z))"
=TI+ F)D) ' ImF(z)I+TF(2)*)™

for z € C\ R.
By Proposition 2.4 it is sufficient to show that
dim W, = dim W},

ac?

and in light of (A.1) it is sufficient to show that the non-tangential boundary values
of I+ T'F(2) (or of I+ T'F(2)*) are invertible a.e. on R. So the theorem follows from
Lemma A.2 below. O

Lemma A.2. The non-tangential boundary values of I + T'F(z) and of I + I'F(z)*
(equivalently, of 1+ F(2)T') as z — x<, z € C,, x € R are invertible a.e. on R (with
respect to Lebesgque measure).

Proof. By Lemma 3.1 the matrices I+T'F(z), I+ F(2)I" are invertible for all z € C,, so
det(I+TF(2)), det(I+ F(2)I') are non-trivial (not identically zero) analytic functions
in C,.

The function z — F(z), z € C, (i.e. its matrix entries) has non-tangential boundary
values a.e. on T, so the same holds for det(I + I'F'(z)).

By Privalov’s theorem, see, for example [11, Section II1.D.3], if a non-trivial analytic
function f in C, has non-tangential boundary values f(x) a.e. on R, then f(z) # 0
a.e.” The lemma (and so Theorem A.1) is proved. O

Combining equation (A.1) with Theorem 3.5 and with the above Lemma A.2, we
obtain the density of the matrix-valued spectral measure of the perturbed operator.

Lemma A.3. With respect to Lebesgque a.e. x € R we have
W)ac(z) = lim I+ F(z)'T)'Wy(z) lim  (I+TF(2))"

r z—x,z€C1 z—x<,z€C1

2In [11, Section II1.D.3] the theorem was stated for the unit disc I, but the standard conformal
map gives the result for C.
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A.2. Kato—Rosenblum theorem: existence of wave operators. In this section
we prove the hard part of the Kato—Rosenblum theorem, i.e. the existence of the wave
operators
Wi = s-lim ¢ Are="4p,
T—ZFo00
where P,. is the orthogonal projection onto the absolutely continuous spectrum of A.

The proof is rather standard, although we did not see exactly the same proof in the
literature. We first establish the existence of the weak wave operators (the limits are
in the weak operator topology). Then, using that the operators are unitary, we obtain
that the limits also exist in the strong operator topology. The existence of weak limits
is deduced from our representation theorem (Theorem 5.1).

As we discussed above in Section 6.3: if T, is an integral operator with kernel
(s —t £ie)™!, then the corresponding operators with TM matrix measure M, TM :
L*(M) — L*(TM'T) are uniformly in & bounded.

A natural idea would be to take the limit in weak operator topology (w.o.t.); but
for this one needs to show that there is a unique w.o.t. limit point as ¢ — 0. For the
projection on the absolutely continuous part of L2(I'M!T) the result is easy.

Denote by (TM),.f the non-tangential boundary values of C(Mf) as z — z € R,
z € C4 respectively. By the classical results the non-tangential boundary values of
C(MY) exist a.e. with respect to the Lebesgue measure.

Lemma A.4. In the weak operator topology of B(L*(M); L>(TML.I")) we have

w.0.t-lim T = (TM),..
e—0t

Proof. Take f € L*(M). Since
TMf — (TM) e f a.e.,

ase — 07, [14, Lemma 3.3] says that for any weakly convergent sequence T f, e — 0F
we have w-lim, TN f = (TV)ac f -

Combining this with the fact that any sequence TEIZI f has a weakly convergent sub-
sequence, we get the conclusion of the lemma for TM. The case of T™ is treated
absolutely the same way. O

Let PL be the (orthogonal) projection in L?(M") onto its absolutely continuous part
L*(M,.), and let F. be the non-tangential boundary values of F(z) = [CMf](z) as
z — x € R, z € C4 respectively; recall that the boundary values F. exist Lebesgue
a.e.

Lemma A.5. For the spectral representation V;, : L*(M) — L*(M") from Theorem
5.1 we have

(A.2) P Vif = Po (T+TFL) f = T(Tacf) -

ac’/T

Proof. Lemma 3.3 implies that the multiplication operator f — (I + 'FL)f is a con-
traction acting L?(M) — L*(ML).
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Denote by VIf the operator, defined on functions of form he, where h is a scalar
function in C!, and e € C%, as
h(s) — h(t)

(VE=he)(s) = h(s)e — T /R M fangr e

It is easy to see that for h € C! the functions Vriehe converge to V. he as ¢ — 0F
uniformly on compact subsets of R. Therefore for any f = >")_, hycy, where hy, are

scalar functions in C!(R) and c, € C¢, and for any bounded compactly supported
g € L*(ML)) we have

lim (VEf, g)

e—ot T

The limits in the left hand side give us
(T+TFy)f = T(T2)act, 9)

oy ~ Vel 9 o,

L2(MEe) |
which is exactly the bilinear form of the operator on the right hand side of (A.2). Thus,

the bilinear forms of the operators in (A.2) coincide on a dense set, so the operators
are equal. O

Lemma A.6. The multiplication operators f — (I + I'FL)f are unitary operators
acting from L*(M,.) to L*(M},).

Proof. Since F(z) = F(z)* for z € C\ R, we can conclude that the non-tangential
boundary values of F'(z), and F(z)*, z € C. are given by Fy. Lemma A.2 implies that
the functions I + I'F. are invertible a.e. on R. Recall that by Lemma A.3 we have

WL = (I4+TF)) " Wa(I+TF) = (I+TF)) "W (I+TF_)"L.

Since the functions I 4+ I'Fy are invertible a.e. on R (by Lemma A.2), we easily con-
clude that the corresponding multiplication operators are unitary operators acting from
L*(M,.) to L?(ML)). O

For a € R, let S, be the multiplication by the function z + ¢“* z € R. Denote

WE(7) = €™ re=m4. Let PAr be the spectral projection on the absolutely continuous
part of A (acting in L?*(M)), so V. P4r = PL.V,.. Lemma A5 then yields

(A.3) ViPAWE (a) f = PoVWV (a) f = (T4 TFy) f — DS, T (S_0 f).

Lemma A.7. For any f € L?*(M,.) we have convergence in the weak topology of
L2(ML),

w-lim V. PPW! (a) f = (T+TFL) f.

a—+oo

Proof. Let W,. and WL be the densities (with respect to the Lebesgue measure) of the
absolutely continuous parts of the measures M and M! respectively,

dM _du podMb o Ldpt
Wae = da _Wdz’ Wae = da =W da
Take f € L2(M,), g € L* (ML), such that f := W,.f € L% §:= WEg € L? (note

that such f and g are dense in L?*(M,.) and L*(ML,) respectively).
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Using (A.3) we can write

V. PAWE (a) f, — (I+TFf, ~ (TS_Te(8.).3)
( T ac ( )f g)LQ(MF) (( :t)f g)L2(MgC) :t( f) g L2
here by T.h we denote the non-tangential boundary values of Cf(z), z € CL respec-
tively. We should emphasize here that the second inner product is in the non-weighted
L?!
One can easily see that for h € L? the functions T h are just the orthogonal projec-
tions of h onto the Hardy spaces H?(C.) respectively. Therefore,

Tim [ T(S, )], = 0.
and since S, are unitary (and so uniformly bounded),

lim (FS_aTi(Saf),fq'> =0

a—+oo

So, on the dense set of f and g as above,

aligl:noo (VFP;?:FWF(a)f’ g)LZ(MF) = ((I + F}7’:|:>.]‘?7 g)LQ(MgC) .
Together with the uniform boundedness of the operators V. PT W' (a) this implies the
desired weak convergence. 0

To prove the strong convergence we need the following simple and well-known lemma.

Lemma A.8. Let z(t), be a family of vectors in a Hilbert space such that w-lim,_;, x(t) =
x and limy_, ||z(t)|| = ||z||. Then xz(t) converges to x in norm,

lim ||z(t) — z| = 0.

t—to

The proof is very simple, we leave it to the readers as an exercise.

The existence of the wave operators follows from the theorem below.
Theorem A.9. For any f € L*(M,.)

: ArypT _
asjlirgo ViP, W (a)f = (I+TFL)f.

Proof. By Lemma A.7 we already have weak convergence.

For a function with values in a Hilbert space, the weak convergence w-lim,_,;, x(t) = =
implies that lim inf,_, |z(¢)|| > [|2||. But the operators V, PArW" (a) are contractions,
and the multiplication by (I 4+ I'FL) is a unitary operator from L*(M,.) to L*(ML,).
Therefore

timsup [V PAW (@)l ngey < I angsy = 10+ TED e

a—+oo

so we have equality for the limit. O
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APPENDIX B. PROOF OF THE STATEMENT (3.5) OF THEOREM 3.4

The second part of statement (ii) of Theorem 3.4, see (3.5), appears a lot in the
literature, but we were not able to find a good reference to a self-contained proof of
this fact. Most sources just refer without any specifics to classical monographs, where
after some time one can extract the needed facts from a proof of a more general result.

So, for convenience of the reader we present here a simple self-contained proof of this
statement.

Let D,, be the collection of dyadic intervals of length 27"

D, :={27"([0,1)+ k) : ke Z},

and let D := |, ., be the collection of all dyadic intervals.
For a Radon measure 1 on R define the “conditional expectation” E,u by

Enp(x) = Y (u(D)/|1)1,(x),

I€D,
and the dyadic lower density D as
Dip(z) = lir{gicgf E,(z).
Lemma B.1. Let for a Borel set E C R
(B.1) Dipu(z) < a Vo e L,

where 0 < o < 0.

Then p(F) < alE|.

Proof. We only need to consider the case |F| < 0o, because otherwise the inequality is
trivial.

Take ¢ > 0. By the regularity of the Lebesgue measure there exists an open set
U D E such that |U| < |E|+ . Let £ be the collection of maximal (by inclusion)
intervals I € D, I C U such that u(I) < a|I|. Note that the intervals in D are disjoint,
and the collection £ is countable. _ _

By the assumption (B.1) we have E' C | ;.o I =: E, and by the construction £ C U.
Therefore

WE) < u(E) =) u(l) <a) |I|=alE| < ofU| < a(|E| +2),
Te€ Ie€
and since € > 0 is arbitrary, we get the conclusion of the lemma. O

Corollary B.2. Let X, := {z € R: Du(z) < a}, a < co. Then us(X,) = 0.

Proof. If us(X,) > 0, then there exists a Borel set £ C X, |E| = 0 such that u(E) > 0.
But that contradicts the above Lemma B.1. O

Proof of the statement in (3.5). Let X,, denote X, from the above Corollary B.2 with
a = n. Since X := {z € R: D%(z) < oo} = U,en Xn, the above Corollary B.2
implies that z(X) = 0. But this means exactly that D%u(z) = co ps-a.e.

The trivial inequality

Du(z) < Climinf pu(z2),

z—x]
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where C' is an absolute constant, gives us the desired statement. O
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