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We introduce and study a new family of q-translation-invariant determinantal point

processes on the two-sided q-lattice. We prove that these processes are limits of the

q–zw measures, which arise in the q-deformation of harmonic analysis on U(∞), and

express their correlation kernels in terms of Jacobi theta functions. As an application,

we show that the q–zw measures are diffuse. Our results also hint at a link between the

two-sided q-lattice and rows/columns of Young diagrams.

1 Introduction

1.1 Preface

The subject of this paper is the study of a family of “tail processes” associated to certain

random point processes of representation-theoretic origin. All the point processes in

this article are determinantal and thus our study will focus on their correlation kernels.

Recall that a random point process on a locally compact space X is defined

by a probability measure on the space Conf(X) of locally finite point configurations.
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2 C. Cuenca et al.

Informally, its associated tail process describes the random point configuration near

infinity. A simple example is provided by the well-known family of Poisson–Dirichlet

distributions PD(τ ), τ > 0, which describe asymptotics of random ranked relative

frequencies in various contexts, see [21, 28] and references therein. In this case, the

space is X = (0, 1]. Locally finite point configurations accumulate near 0, which is

excluded from X and plays the role of the boundary point at infinity. Under the change

of variables x = e−t, the interval (0, 1] is transformed into [0,+∞), so that the boundary

point is transferred to +∞. Here the tail processes turn out to be stationary Poisson

processes; they arise in the limit transition when we set t = A + s and take the limit

A → +∞.

Another example comes from the problem of harmonic analysis on the infinite

symmetric group, [8, 9]. That problem leads to a two-parameter family of measures

on Conf(R \ {0}), called the z-measures (the two parameters are usually labeled z, z′,
hence the terminology). Again, we are interested in the behavior of random point

configurations near the origin. Notice that there is an important difference with the

previous example, namely that points on X can approximate the point 0 from the right

and from the left. As explained in [8], see also [25], the tail process of a z-measure lives

on the space Conf(R � R)—where R � R is the disjoint union of two copies of the real

line—and is stationary in the sense that it is invariant with respect to simultaneous

shifts on both of the lines.

Both the z-measures and their tail processes belong to the class of determi-

nantal measures. A detailed discussion of this notion can be found in [33]; here we

only point out that a determinantal measure on Conf(X) is uniquely determined by a

complex-valued function on X × X called a correlation kernel.

In the case of the tail process of a z-measure, the correlation kernel can be

treated as a certain stationary 2 × 2 matrix kernel on R. It is expressed through

trigonometric functions and we call it the matrix trigonometric kernel.

The matrix trigonometric kernel has some resemblance with the famous sine

kernel from random matrix theory. Like the sine kernel, the matrix trigonometric kernel

possesses a universality property; it serves as the tail kernel for not only the z–

measures, but also for other determinantal measures of representation-theoretic origin,

see [11]. Those other measures arise in the context of harmonic analysis on infinite-

dimensional classical Lie groups: unitary, orthogonal, and symplectic, see [10] for the

unitary picture and [14] for the orthogonal and symplectic pictures.

As shown in [20], the problem of harmonic analysis on the infinite-dimensional

unitary group admits a kind of quantization, which leads to a new family of
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The Elliptic Tail Kernel 3

determinantal point processes. These processes live on a two-sided q-lattice—a

countable subset of R \ {0} accumulating near 0 from both sides (see below). We use

the name q–zw measures for these objects, as the analogous measures in the q = 1 case

are called the zw measures (they depend on four parameters usually labeled z, z′,w,w′).
The study of the tail processes of the q–zw measures is the central topic of this text.

In this direction, we discover a two-parameter family of q-translation-invariant kernels

on the two-sided q-lattice. They are expressed in terms of theta functions. We believe

that these kernels are fundamental objects in the realm of determinantal processes on

the two-sided q-lattice.

The question of quantizations of constructions in asymptotic representation

theory has led to an extensive theory in recent years. In particular, Gorin [19] inves-

tigated the q-versions of the extreme characters of the infinite-dimensional unitary

group, [15] produced such results for the infinite-dimensional orthogonal and symplec-

tic groups, [13] added Macdonald’s parameter t to the theory, [5] studied the related

Markov processes, and [30, 31] linked the extreme q-characters to representations of

inductive limits of compact quantum groups.

There have also been a few combinatorial developments related to the q–zw

measures: in [26], the associated Markov processes and splines were investigated; in

[16, 27], the q–zw measures motivated the construction of new families of orthogonal

symmetric functions. In spite of these efforts, and in contrast to the q = 1 case [10], the

representation–theoretic meaning of the q–zw measures is not fully understood at this

moment. In particular, we do not know the proper role of the two-sided q-lattice in the

representation-theoretic picture.

The study of the tail processes of q–zw measures is, thus, also motivated by the

attempt to better understand the q–zw measures themselves. We partially accomplish

that goal—along the path we show that the q–zw measures are diffuse. Furthermore,

while investigating a q → 1 limit of the tail processes, we manage to link the mysterious

two-sided q-lattice to separate encodings of rows and columns of Young diagrams.

1.2 The measures Mα,β,γ ,δ

The two-sided q-lattice mentioned above has the form

L := {. . . , ζ−q−1, ζ−, ζ−q, . . .} � {. . . , ζ+q, ζ+, ζ+q−1, . . .},

where ζ+ > 0 > ζ− and q ∈ (0, 1) are fixed parameters. The determinantal processes

investigated in [20] are given by certain probability measures Mα,β,γ ,δ on the space of
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4 C. Cuenca et al.

point configurations Conf(L). Here (α,β, γ , δ) is a quadruple of complex numbers subject

to some constraints. We continue to use the name q–zw measure for Mα,β,γ ,δ, although

the origin of the name might not be transparent in our present notation. The measure

Mα,β,γ ,δ is defined as the N → ∞ limit of the measures

Mα,β,γ ,δ
N (X) = 1

ZN

N∏
i=1

(
|xi|

(αxi; q)∞(βxi; q)∞
(γq1−Nxi; q)∞(δq1−Nxi; q)∞

) ∏
1≤i<j≤N

(xi − xj)
2, (1.1)

on N-particle configurations X = {x1, . . . , xN} on L. Here ZN is an explicit normalization

constant and (u;q)∞ = ∏∞
i=0(1 − uqi) is the infinite q-Pochhammer symbol.

The q–zw measure Mα,β,γ ,δ possesses a reflection symmetry property; the

transposition of the positive and negative parts of the two-sided q-lattice (together

with the changes ζ+ → −ζ− and ζ− → −ζ+) is equivalent to changing the signs of the

parameters α,β, γ , δ. We shall later see that a similar property holds for the tail process,

but that the symmetry is destroyed in the limit transition q → 1.

There exists a function Kα,β,γ ,δ(x, y) on L × L such that for any n = 1, 2, . . . , and

any given n-element set {x1, . . . , xn} of L, one has

Prob
({x1, . . . , xn} ⊂ Mα,β,γ ,δ– random subset of L

) = det
1≤i,j≤n

[
Kα,β,γ ,δ(xi, xj)

]
.

This means that Mα,β,γ ,δ is a determinantal measure and Kα,β,γ ,δ(x, y) serves as its

correlation kernel. An explicit expression for the kernel Kα,β,γ ,δ(x, y) was obtained in

[20]; we reproduce it below, see (2.1). The formula involves q-factorials, theta functions,

and the basic hypergeometric function 2φ1 (a q-version of Gauss’ hypergeometric

function). We call Kα,β,γ ,δ(x, y) the basic hypergeometric kernel.

The reader is referred to [20] for more detailed information about the measures

Mα,β,γ ,δ and their connection to the problem of harmonic analysis on the infinite-

dimensional unitary group. Several other kernels of representation-theoretic origin are

known in the literature, see [8–11, 14]. They involve various hypergeometric functions

(up to 4F3), but not q-hypergeometric ones.

1.3 Summary of results

1.3.1 The tail process

Note that the q-lattice L is invariant under the homotheties T±1 : x 
→ q±1x. Given a

probability measure M on Conf(L), define the transformed measure T−kM by

(T−kM)(A) := M(qkA), A ⊂ Conf(L), k ∈ Z.
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The Elliptic Tail Kernel 5

The next result describes the tail processes of the q–zw measures, namely the

behavior of a random point configuration of L (distributed according to the q–zw

measure Mα,β,γ ,δ) near the origin.

Theorem 1.1. [see Theorem 4.1 below] As k → +∞, the measures T−kMα,β,γ ,δ weakly

converge to a probability measure Mγ ,δ, which depends on γ and δ only. The measure

Mγ ,δ is determinantal and a correlation kernel Kγ ,δ(x, y) for it is given in (3.4).

The kernel Kγ ,δ(x, y) is expressed in terms of theta functions, and we call it

the elliptic tail kernel. By its very definition, the measure Mγ ,δ is stationary, that is,

it is invariant under the transformations T±1. After a simple gauge transformation,

which does not affect the measure Mγ ,δ, the kernel Kγ ,δ becomes stationary too—see

Proposition 3.3.

The measures Mγ ,δ are responsible for the limit behavior of the random

configuration near the origin. The proof of Theorem 1.1 relies on the analysis of the

asymptotics of the basic hypergeometric kernel Kα,β,γ ,δ(x, y) at (0, 0) ∈ L2.

The reader might ask why we associate our tail processes exclusively with the

asymptotics at 0 and do not examine the limit behavior of random configurations at

infinity; the reason is that the configurations are almost surely bounded away from

±∞, so that 0 is the only accumulation point (see [20]).

1.3.2 Absence of atoms

Recall that a measure is said to be diffuse if it has no atoms.

Theorem 1.2. [see Theorem 5.3 below] The measures Mα,β,γ ,δ are diffuse.

This result is deduced from the existence of the tail process and a simple general

criterion to determine whether a determinantal measure is diffuse, which is of some

independent interest.

1.3.3 The projection property.

A kernel on a discrete space X is said to be a projection kernel if it corresponds

to a projection operator on the Hilbert space 	2(X) (i.e., the operator of orthogonal

projection onto a subspace). With a suitable modification, the definition can be extended

to nondiscrete spaces too. In many concrete examples of determinantal processes, the

correlation kernels turn out to be projection kernels. The projection property seems to
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6 C. Cuenca et al.

be extremely important: many strong results about determinantal processes rely on it,

see for example, [12, 23].

Theorem 1.3. [see Theorem 6.1 below] The elliptic tail kernel Kγ ,δ(x, y), x, y ∈ L, is a

projection kernel.

One may ask whether the basic hypergeometric kernel Kα,β,γ ,δ(x, y) is a

projection kernel too. We believe that this is true, based on computer experiments—

one plausible approach to prove it is to show that certain orthogonal elements of 	2(L)

form a basis of the range of the projection and that Kα,β,γ ,δ can be expressed in terms

of them, see [23, Rem. 5.8]. However, even if we knew that Kα,β,γ ,δ(x, y) is a projection

kernel, Theorem 1.1 does not imply that Kγ ,δ(x, y) is also a projection kernel, because

the projection property is not necessarily preserved under weak limits. In particular,

the basis elements Fr of [20, Rem. 5.8] do not seem to have any obvious limit in the

regime of Theorem 1.1. Thus, we had to find a different approach.

The plan of our proof of Theorem 1.3 is as follows. Using a natural identification

of L with Z � Z one can treat Kγ ,δ(x, y) as a kernel on Z with values in 2 × 2 matrices.

After a simple gauge transformation, that kernel becomes translation-invariant, so the

Fourier transform of the gauge-transformed operator corresponds to an operator on the

Hilbert space L2(T;C2) (C2-valued functions on the unit circle) given by multiplication

by a 2 × 2 matrix-valued function. Then we check that the values of this function are

projection matrices. The idea is simple, but its realization required a lot of laborious

computations with elliptic functions.

1.3.4 Degeneration to the matrix trigonometric kernel

The particle/hole involution on Z is the involutive map Conf(Z) → Conf(Z) defined as

X 
→ Z \ X (cf. [7, Appendix, §A.3]). Given a measure M on Conf(Z � Z), let M̂ stand for

the pushforward of M under the particle/hole involution on the 1st copy of Z. Let us call

it the partial particle/hole involution. As above, identify the two-sided q-lattice L with

Z�Z (the positive part of L is identified with the 1st copy of Z and the negative part of L

with the 2nd copy), which makes it possible to apply the partial particle/hole involution

to the measure Mγ ,δ. Let us denote the resulting measure by M̂γ ,δ.

Theorem 1.4. [see Theorem 7.1 below] Rescale the lattice Z by a factor of ln (1/q), so

that in the limit q → 1− it becomes the real line R. In the limit regime

ζ− = −qz− , ζ+ = qz+ , γ = qc−z+ , δ = qd−z+ , q → 1−,
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The Elliptic Tail Kernel 7

where z−, z+ (resp. c, d) are fixed real (resp. complex) parameters satisfying certain

constraints, the point process given by the measure M̂γ ,δ weakly converges to the tail

process of the z-measure with appropriately chosen parameters.

Note that the limit transition in question does not exist for the measures Mγ ,δ;

the reason is that the density of particles on the 1st copy of Z tends to 1.

As pointed out in the preface, the tail process of a z-measure has the matrix

trigonometric kernel as a correlation kernel. Note that the matrix trigonometric kernel

is not a projection kernel and is not even symmetric. However, it possesses a different

symmetry property, called J-symmetry, see [8, 9]. The origin of the J-symmetry property

is just the partial particle/hole involution (see [25])—this explains why we have replaced

Mγ ,δ by M̂γ ,δ. In the context of z-measures, the involution is a natural operation,

whose origin is the parameterization of Young diagrams (i.e., labels of irreducible

representations of symmetric groups) via their rows and columns. The particle/hole

involution then becomes the transposition of the diagram interchanging rows and

columns.

Simultaneously, the positive and negative semi-axes for the z-measures and two

copies of R for their tail processes correspond precisely to the rows and columns of the

Young diagrams; as explained in [8], the particles on the positive semi-axis encode rows

and the particles on the negative semi-axis encode columns. Together with Theorem 1.4

this creates a connection between the positive and negative parts of the two-sided q-

lattice on one side and rows and columns of the Young diagrams on the other side.

Hence, one might expect a relation between the two-sided q-lattice and some separate

quantizations for the rows and columns of Young diagrams, parameterizing irreducible

representations. We hope to further develop this point of view in future publications.

1.3.5 Degeneration to the discrete sine process

The discrete sine process is a stationary determinantal process on Z, depending on a

parameter φ ∈ (0,π). It is given by the correlation kernel

Kφ

sine(m,n) :=
⎧⎨⎩

sin(φ(m−n))
π(m−n)

, if m �= n,

φ
π
, if m = n.

Note that Kφ

sine(m,n) is a projection kernel. The discrete sine process 1st appeared as a

limit of the Plancherel measure on partitions in [7]. It also possesses some universality

property, see [1, 24].
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8 C. Cuenca et al.

Theorem 1.5. [see Theorem 8.1 below] Let ϕ ∈ (0,π) and a ∈ R \ {0} be arbitrary

parameters. As q → 1−, the two-sided q-lattice L fills the entire real line. Zooming in

near a, the point process Mγ ,δ converges weakly to a discrete sine process in the regime

ln δ − ln γ

2i
= ϕ, q → 1−.

Moreover, the parameter of such discrete sine process depends only on the sign of a; if

a > 0, the parameter is π − ϕ and if a < 0, the parameter is ϕ.

Finally, let us mention that in all the proofs of this article, we ignore the case

δ = γ . The reason is that this case requires special attention, but the proofs go through,

either by employing the formulas at the end of Section 3.4 or by analytic continuation.

1.4 Organization of the article

In Sections 2 and 3, we introduce the basic hypergeometric kernel and the elliptic tail

kernel, respectively. In Section 4 we prove Theorem 1.1 on the limit from the former

kernel to the latter one. In Sections 5 and 6, we prove Theorems 1.2 and 1.3, respectively.

The continuous limit of the elliptic tail kernel, as in Theorem 1.4, is discussed in

Section 7. The discrete limit of Theorem 1.5 occupies Section 8. Finally, in Appendix A,

we recall Jacobi’s imaginary transformation and apply it to deduce some technical

estimates.

2 q–zw Measures and the Basic Hypergeometric Kernel

We review some definitions and results from [20].

Fix parameters q ∈ (0, 1) and ζ+ > 0 > ζ− for the rest of the paper. Define the

two-sided q-lattice

L := ζ−qZ � ζ+qZ = {. . . , ζ−q−1, ζ−, ζ−q, . . .} � {. . . , ζ+q, ζ+, ζ+q−1, . . .}.

Definition 2.1. We say that (x, y) ∈ C
2 is an admissible pair if one of the following

holds:

• y = x ∈ C \ R (principal series), or

• ζ−1− qm < x, y < ζ−1− qm+1 for some m ∈ Z, or ζ−1+ qn+1 < x, y < ζ−1+ qn for some

n ∈ Z (complementary series).

Note that xy ∈ R whenever (x, y) is an admissible pair.
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The Elliptic Tail Kernel 9

We also say that (α,β, γ , δ) ∈ C
4 is an admissible quadruple if both (α,β) and

(γ , δ) are admissible pairs, and additionally αβ < q2γ δ.

The q–zw measures Mα,β,γ ,δ are probability measures on the space of point

configurations Conf(L) that depend on admissible quadruples of parameters (α,β, γ , δ).

Equivalently, they are point processes on L [17]. It is known that Mα,β,γ ,δ (just like any

point process on a discrete space) is determined by the sequence {ρα,β,γ ,δ
n (x1, . . . , xn)}n≥1

of correlation functions:

ρ
α,β,γ ,δ
n (x1, . . . , xn) := Prob

({x1, . . . , xn} ⊂ Mα,β,γ ,δ– random subset of L
)
, x1, . . . , xn ∈ L.

In [20, Thm. 5.2], for each admissible quadruple (α,β, γ , δ), the q–zw measure

Mα,β,γ ,δ is defined as the unique point process on L whose correlation functions are

given by

ρ
α,β,γ ,δ
n (x1, . . . , xn) = det

1≤i,j≤n

[
Kα,β,γ ,δ(xi, xj)

]
, n ≥ 1,

where x1, . . . , xn ∈ L are pairwise disjoint, and

Kα,β,γ ,δ(x, y) = C(α,β, γ , δ) · F1(x)F0(y) − F1(y)F0(x)

x − y
, x, y ∈ L, (2.1)

the constant is

C(α,β, γ , δ) := θq(γ ζ−, γ ζ+, δζ−, δζ+)

ζ+ · θq

(
ζ−
ζ+

, γ δζ−ζ+
) ·

(
αβ

γ δ
,

αβ

qγ δ
; q
)

∞(
α

γ
,
α

δ
,
β

γ
,
β

δ
, q,q;q

)
∞

(2.2)

and the functions F0(x),F1(x) on L are

Fr(x) :=
√

|x| (xα, xβ; q)∞
θq(xγ , xδ)

· (−x)1−r

(
βqr−1

γ
,
qr

δx
; q
)

∞(
αβq2r−2

γ δ
; q
)

∞

· 2φ1

⎛⎜⎝αqr−1

δ
,

q

βx
qr

δx

∣∣∣∣βqr−1

γ

⎞⎟⎠ , r = 0, 1.

(2.3)

(In [20], there was a sign mistake in the correlation kernel—the version here is correct.)

Above we used traditional q-calculus notation [18] for the q-Pochhammer symbols, theta
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10 C. Cuenca et al.

functions, and q-hypergeometric functions:

(z;q)∞ :=
∞∏
i=1

(1 − zqi−1), (z1, . . . , zm; q)∞ := (z1; q)∞ · · · (zm; q)∞,

θq(z) := (z,q/z;q)∞, θq(z1, . . . , zm) := θq(z1) · · · θq(zm),

2φ1(a1,a2; b | z) = 2φ1

(
a1,a2

b

∣∣∣∣z
)
:= 1 +

∞∑
n=1

zn
n∏

i=1

(1 − a1q
i−1)(1 − a2q

i−1)

(1 − bqi−1)(1 − qi)
. (2.4)

A few remarks are in order:

1. The q-Pochhammer symbol (z;q)∞ is an entire function of z, whose set of

zeroes is qZ≤0 . Likewise, the theta function θq(z) is holomorphic on C
∗ = C \ {0} and

its zeroes are the points of qZ. It follows that the denominator of C(α,β, γ , δ) does not

vanish: ζ−/ζ+, γ δζ−ζ+ < 0, so ζ−/ζ+, γ δζ−ζ+ /∈ qZ, whereas if α/γ ∈ qZ≤0 , then αβ <

q2γ δ is impossible (similarly for the other fractions α/δ,β/γ ,β/δ). Also, the denominator√
θq(xγ , xδ) · (αβq2r−2/(γ δ);q)∞ of Fr(x) is nonzero for x /∈ γ −1qZ ∪ δ−1qZ, in particular

for x ∈ L.

2. The q-hypergeometric function 2φ1(a1,a2; b | z) is analytic on the unit disk

|z| < 1. As a function of z—denote F(z) := 2φ1(a1,a2; b | z)—it satisfies the q-difference

equation (see e.g., the survey [22])

(b − a1a2qz)F(q2z) + (−b − q + (a1 + a2)qz)F(qz) + q(1 − z)F(z) = 0, |z| < 1. (2.5)

This implies that the value of F(z) can be obtained as a linear combination of F(qz)

and F(q2z). The expressions for the coefficients of the linear combination are rational

functions with, at most, simple poles at z = 1. Consequently the q-hypergeometric

function can be analytically continued to a meromorphic function with simple poles at

the points 1,q−1, q−2, . . .. The analytic continuation will also be denoted by 2φ1(a1,a2; b |
z). The meromorphicity of the q-hypergeometric function is not present when q = 1—in

that case, the hypergeometric function 2F1(a1,a2; b | z) is often defined only on C\[1,∞).

3. The previous remark implies that (z;q)∞ · 2φ1(a1,a2; b | z) is an entire

function of z. As a function of b, the q-hypergeometric function 2φ1(a1,a2; b | z) is also

meromorphic with simple poles at the points of qZ≤0 and therefore (b;q)∞ · 2φ1(a1,a2; b |
z) is an entire function of b. Both these points imply that (b, z;q)∞ · 2φ1(a1,a2; b | z) is
an entire function on b and z. As a result (see also the 1st remark), the right-hand side

of (2.3) is well defined whenever x /∈ γ −1qZ ∪ δ−1qZ ∪ {0}, that is, the function Fr(x) of x

can be continued from L to C \ (γ −1qZ ∪ δ−1qZ ∪ {0}).
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The Elliptic Tail Kernel 11

4. When x = y, we make sense of (2.1) by using L’Hôpital’s rule:

Kα,β,γ ,δ(x, x) = C(α,β, γ , δ) · (F′
1(x)F0(x) − F1(x)F′

0(x)), x ∈ L,

where F′
r is the derivative of Fr (when Fr is now seen as a function on C\(γ −1qZ∪δ−1qZ∪

{0})).
5. From the 1st and 3rd remarks above, the functions F0(x),F1(x) admit analytic

continuations to the domains D± := C± \ (γ −1qZ ∪ δ−1qZ), where C± := {z ∈ C : ±�z > 0}
(replace

√|x| by (±x)1/2, for x ∈ D±). The previous remark and Cauchy’s integral formula

then show

Kα,β,γ ,δ(x, x) =
∮

|z−x|=ε

Kα,β,γ ,δ(z,x)

z − x
dz, x ∈ L, (2.6)

for a sufficiently small ε > 0 (depending on x). If we letD := D+�D− = C\(γ −1qZ∪δ−1qZ∪
{�z = 0}), then Kα,β,γ ,δ(x, y) admits an analytic continuation to the domain (x, y) ∈ D2.

The point processes Mα,β,γ ,δ on L (or the corresponding probability measures

on the space of point configurations on L) are called the q–zw measures. They are

determinantal point processes with correlation kernelsKα,β,γ ,δ(x, y). We callKα,β,γ ,δ(x, y)

the basic hypergeometric kernel.

3 The Elliptic Tail Kernel

3.1 Theta functions

One of the basic properties of the theta function θq(z) = (z,q/z;q)∞ is the quasi-

periodicity

θq(q
nz) = (−1)nq−n(n−1)

2 z−nθq(z), n ∈ Z, (3.1)

which we often use without mention. They also satisfy the following fundamental

identity.

Lemma 3.1. For any X,Y, Z,W ∈ C
∗,

θq(qYZ, Z/Y, qXW, W/X) − θq(qYW, W/Y, qXZ, Z/X)

= − Z

Y
· θq(qXY, Y/X, qZW, W/Z). (3.2)
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Proof. This is known as the three-term relation due to Weierstrass, see for example,

[29, (1.12)]. The formula in this reference is seen to be equivalent to (2) by use of the

identities (3.1) and θq(z) = θq(q/z). �

3.2 Definition of the elliptic tail kernel

For any admissible pair (γ , δ) ∈ C
2, as in Definition 2.1, let

C = C(γ , δ) := θq(γ ζ−, γ ζ+, δζ−, δζ+)

ζ+ · θq

(
ζ−
ζ+

, γ δζ−ζ+
) · (δ − γ )

γ δ ·
(

δ

γ
,
γ

δ
, q,q;q

)
∞

. (3.3)

The elliptic tail kernel associated to (γ , δ) is the function on L × L given by

Kγ ,δ(x, y) := C · P(x)Q(y) − Q(x)P(y)

x − y
, x, y ∈ L, (3.4)

where

P(x) := √|x| θq(xδ)√
θq(xγ , xδ)

, Q(x) := √|x| θq(xγ )√
θq(xγ , xδ)

, x ∈ L. (3.5)

When x = y, the kernel is given by L’Hôpital’s rule:

Kγ ,δ(x, x) := C · (P′(x)Q(x) − Q′(x)P(x)), x ∈ L. (3.6)

The formulas in (3.5) give analytic continuations for the functions P(x),Q(x) to the

domains D± := C± \ (γ −1qZ ∪ δ−1qZ), where C± := {z ∈ C : ±�z > 0} (replace
√|x|

by (±x)1/2 if x ∈ D±). Let D := D+ �D− = C \ (γ −1qZ ∪ δ−1qZ ∪ {�z = 0}). Note that L ⊂ D
because (γ , δ) is an admissible pair. Thus, (3.6) implies

Kγ ,δ(x, x) =
∮

|z−x|=ε

Kγ ,δ(z,x)

z − x
dz, x ∈ L, (3.7)

for a sufficiently small ε > 0 (depending on x). It follows that Kγ ,δ(x, y) admits an

analytic continuation to D2.
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Remark 3.2. Another determinantal point process whose correlation kernel is

expressed through theta-functions was introduced in [34], see equations (1.25) and

(1.26) there. The key difference is that the kernel of [34] is a function of a continuous

argument and the configurations of the process are subsets of R≥0, while our kernel is

a function of a discrete argument, and our configurations are subsets of the q-lattice.

One can draw here a vague analogy with the theory of orthogonal polynomials, where

same hypergeometric functions can be linked to polynomials both on continuous and on

discrete orthogonality sets. For instance, specializations of the hypergeometric function

3F2 give rise both to Hahn polynomials (whose orthogonality set is a segment in Z) and

continuous Hahn polynomials (whose orthogonality set is R).

3.3 The q-translation-invariance property

Let ε : L → {+1,−1} be defined by ε(x) := 1 if x = ζ+qm, and ε(x) := (−1)n if x = ζ−qn.
Consider the gauge-transformed kernel

K̃γ ,δ(x, y) := ε(x)ε(y)−1Kγ ,δ(x, y) = ε(x)ε(y)Kγ ,δ(x, y). (3.8)

Proposition 3.3. The kernel K̃γ ,δ is q-translation-invariant, that is, K̃γ ,δ(qx, qy) =
K̃γ ,δ(x, y), for any x, y ∈ L.

Proof. From the definitions (3.4) and (3.8), we can write

K̃γ ,δ(x, y) := C · P̃(x)Q̃(y) − Q̃(x)̃P(y)

x − y
, x, y ∈ L,

where

P̃(x) := ε(x)
√|x| θq(xδ)√

θq(xγ , xδ)
, Q̃(x) := ε(x)

√|x| θq(xγ )√
θq(xγ , xδ)

, x ∈ L.

The quasi-periodicity property of the theta functions shows

P̃(qx) = −|x|
x

ε(qx)ε(x)−1
√
qγ δ

δ
P̃(x), Q̃(qx) = −|x|

x
ε(qx)ε(x)−1

√
qγ δ

γ
Q̃(x), x ∈ L.

If x > 0, then ε(x) = ε(qx) = 1, so P̃(qx) = −(
√
qγ δ/δ)̃P(x) and Q̃(qx) = −(

√
qγ δ/γ )Q̃(x). If

x < 0, then ε(qx) = −ε(x), so again P̃(qx) = −(
√
qγ δ/δ)̃P(x) and Q̃(qx) = −(

√
qγ δ/γ )Q̃(x).
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It follows that K̃γ ,δ(qx, qy) = K̃γ ,δ(x, y) whenever x �= y are points in L. It remains to

prove the equality when x = y is a point in L.

Similarly as above, one has Kγ ,δ(qx, qy) = Kγ ,δ(x, y) whenever x �= y are points in

L of the same sign (note that this equality is for Kγ ,δ and not K̃γ ,δ). Since Kγ ,δ(x, y) admits

an analytic continuation to the q-invariant domain D2+ � D2− ⊂ D2 and both D−,D+ are

path-connected, then also Kγ ,δ(qx, qx) = Kγ ,δ(x, x), for all x ∈ D = D+ �D−, in particular

for all x ∈ L. Hence, K̃γ ,δ(qx, qx) = Kγ ,δ(qx, qx) = Kγ ,δ(x, x) = K̃γ ,δ(x, x), for all x ∈ L. �

3.4 Simplified formulas for the elliptic tail kernel

We simplify Kγ ,δ(x, y) when x = ζ±qm, y = ζ±qn, for m,n ∈ Z. The next two lemmas are

simple consequences of the quasi-periodicity property of the theta function; we omit

their proofs. Recall that C = C(γ , δ) was defined in (3.3).

Lemma 3.4. For any integers m �= n,

Kγ ,δ(ζ+qm, ζ+qn) = C(−1)m+n ×
γmδn

(
√

γ δ)m+n
− γ nδm

(
√

γ δ)m+n

q
m−n
2 − q

n−m
2

,

Kγ ,δ(ζ−qm, ζ−qn) = C ×
γ nδm

(
√

γ δ)m+n
− γmδn

(
√

γ δ)m+n

q
m−n
2 − q

n−m
2

.

Lemma 3.5. For any m,n ∈ Z,

Kγ ,δ(ζ+qm, ζ−qn) = Kγ ,δ(ζ−qn, ζ+qm)

= C(−1)m(
√

γ δ)−(m+n)√
θq(ζ−γ , ζ−δ, ζ+γ , ζ+δ)

· γmδnθq(ζ−γ , ζ+δ) − γ nδmθq(ζ−δ, ζ+γ )

|ζ+/ζ−| 12 qm−n
2 + |ζ−/ζ+| 12 qn−m

2

.

Lemma 3.6. For any m ∈ Z,

Kγ ,δ(ζ+qm, ζ+qm) = Kγ ,δ(ζ+, ζ+) = Cζ+

{
δ
θ ′
q(δζ+)

θq(δζ+)
− γ

θ ′
q(γ ζ+)

θq(γ ζ+)

}
, (3.9)

Kγ ,δ(ζ−qm, ζ−qm) = Kγ ,δ(ζ−, ζ−) = Cζ−

{
γ

θ ′
q(γ ζ−)

θq(γ ζ−)
− δ

θ ′
q(δζ−)

θq(δζ−)

}
. (3.10)
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The Elliptic Tail Kernel 15

Proof. Proposition 3.3 proves the 1st equalities in (3.9) and (3.10). Let us prove the 2nd

equality in (3.9); the proof of the 2nd equality in (3.10) is similar and we omit it.

At the points (x, x) ∈ L2 of the diagonal, the elliptic tail kernel is

Kγ ,δ(x, x) = C · (Q(x)P′(x) − P(x)Q′(x)),

where P(x) :=
√

|x|θq(xδ, xγ )/θq(xγ ), Q(x) :=
√

|x|θq(xγ , xδ)/θq(xδ). Then P(x)2 =

|x| θq(xδ)

θq(xγ )
. When x > 0, we can take derivatives and obtain

2P(x)P′(x) = x
d

dx

θq(xδ)

θq(xγ )
+ θq(xδ)

θq(xγ )
= x

δθq(xγ )θ ′
q(xδ) − γ θq(xδ)θ ′

q(xγ )

θq(xγ )2
+ θq(xδ)

θq(xγ )
.

Multiply by Q(x)/(2P(x)) = θq(xγ )/(2θq(xδ)) to get

Q(x)P′(x) = 1

2

{
x

δθq(xγ )θ ′
q(xδ) − γ θq(xδ)θ ′

q(xγ )

θq(xγ , xδ)
+ 1

}
;

similarly P(x)Q′(x) is given by the same formula with the swap γ ↔ δ. Hence,

Kγ ,δ(ζ+, ζ+) = C · (Q(ζ+)P′(ζ+) − P(ζ+)Q′(ζ+)) = Cx · δθq(xγ )θ ′
q(xδ) − γ θq(xδ)θ ′

q(xγ )

θq(xγ , xδ)

∣∣∣∣∣ x=ζ+ ,

which proves (3.9). �

Finally, we comment on the elliptic tail kernel with parameters δ = γ ∈ R

(part of the complementary series). In the limit δ → γ , we have

(δ − γ )

γ δ · (δ/γ , γ /δ; q)∞
= 1

(γ − δ) · (qδ/γ , qγ /δ; q)∞
∼ 1

(γ − δ) · (q;q)2∞

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa038/5775498 by guest on 07 June 2021



16 C. Cuenca et al.

and

θq(xδ)θq(yγ ) − θq(xγ )θq(yδ)

γ − δ
→ yθq(xγ )θ ′

q(yγ ) − xθ ′
q(xγ )θq(yγ ).

Then, when δ = γ , the elliptic tail kernel can be simplified to

Kγ ,γ (x, y) = θq(γ ζ−, γ ζ+)2

ζ+ · (q;q)4∞ · θq

(
ζ−
ζ+

, γ 2ζ−ζ+
) ·

√|xy|
x − y

·
(
y

θ ′
q(yγ )

θq(yγ )
− x

θ ′
q(xγ )

θq(xγ )

)
(3.11)

in the case x �= y, and it is analytically continued according to L’Hôpital’s rule in the

case x = y.

4 Limit from the Basic Hypergeometric Kernel to the Elliptic Tail Kernel

This section is devoted to proving the following limit.

Theorem 4.1. For any x, y ∈ L, we have

lim
M→∞(sgn(x) sgn(y))MKα,β,γ ,δ(qMx, qMy) = Kγ ,δ(x, y),

where Kα,β,γ ,δ is defined by (2.1) and Kγ ,δ is defined by (3.4).

Proof. We first transform the functions Fr(x) so that they are well suited for the x → 0

limit.

The Heine transformation formula for 2φ1 (cf. [18, Sec. 1.4]) yields

2φ1

(
A,B

C

∣∣∣∣z
)

= (B,Az;q)∞
(C, z;q)∞

2φ1

(
C/B, z

Az

∣∣∣∣B
)
.

We use it with

A = αqr−1

δ
, B = q

βx
, C = qr

δx
, z = βqr−1

γ
,
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The Elliptic Tail Kernel 17

to get

Fr(x) =
√

|x| (xα, xβ; q)∞
θq(xγ , xδ)

· (−x)1−r

(
βqr−1

γ
,
qr

δx
; q
)

∞(
αβq2r−2

γ δ
; q
)

∞

· 2φ1

⎛⎜⎝αqr−1

δ
,

q

βx
qr

δx

∣∣∣∣βqr−1

γ

⎞⎟⎠

=
√

|x| (xα, xβ; q)∞
θq(xγ , xδ)

· (−x)1−r ·
(

q

βx
; q
)

∞
· 2φ1

⎛⎜⎜⎝
βqr−1

δ
,

βqr−1

γ
αβ

γ δ
q2r−2

∣∣∣∣ q

βx

⎞⎟⎟⎠ .

Further, recall Watson’s formula (see [18, (4.3.2)])

2φ1

(
A, B

C

∣∣∣∣z
)

= (B,C/A,Az,q/Az;q)∞
(C,B/A, z,q/z;q)∞

2φ1

(
A, Aq/C

Aq/B

∣∣∣∣Cq/ABz

)

+ (A,C/B,Bz,q/Bz;q)∞
(C,A/B, z,q/z;q)∞

2φ1

(
B, Bq/C

Bq/A

∣∣∣∣Cq/ABz

)

and apply it with

A = βqr−1

δ
, B = βqr−1

γ
, C = αβq2r−2

γ δ
, z = q

βx
,

to get

Fr(x) =
√

|x| (xα, xβ; q)∞
θq(xγ , xδ)

· (−x)1−r 1(
βx,

αβq2r−2

γ δ
; q
)

∞

×
[(βqr−1

γ
,
αqr−1

γ
; q
)

∞
θq
(
xδq1−r

)
(

δ

γ
; q
)

∞

2φ1

⎛⎜⎝βqr−1

δ
,

γq2−r

α
γq

δ

∣∣∣∣αx
⎞⎟⎠

+ {same expression after the swapγ ↔ δ}
]
.

In the formula above, do the change of variables x 
→ qMx (later we send

M → ∞). The quasi-periodicity of the theta function implies

θq(Aq
Mx) = (−Ax)−Mq−M(M−1)/2θq(Ax),
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18 C. Cuenca et al.

thus

Fr(q
Mx) =

√
|qMx| (qMxα, qMxβ; q)∞

q−M(M−1)(x2γ δ)−Mθq(xγ , xδ)
· (−xqM)1−r 1(

βqMx,
αβq2r−2

γ δ
; q
)

∞

·

×
[(βqr−1

γ
,
αqr−1

γ
; q
)

∞
θq
(
xδq1−r

)
(

δ

γ
; q
)

∞

q−M(M−1)/2(−xδq1−r)−M
2φ1

⎛⎜⎝βqr−1

δ
,

γq2−r

α
γq

δ

∣∣∣∣αqMx

⎞⎟⎠
+ {same expression after the swapγ ↔ δ}

]

= (− sgn(x))M

√
|qMx| (q

Mxα, qMxβ; q)∞
θq(xγ , xδ)

· (−x)1−r 1(
βqMx,

αβq2r−2

γ δ
; q
)

∞

·

×
[(βqr−1

γ
,
αqr−1

γ
; q
)

∞
θq
(
xδq1−r

)
(

δ

γ
; q
)

∞

(γ

δ

)M/2

2φ1

⎛⎜⎝βqr−1

δ
,

γq2−r

α
γ

δ
q

∣∣∣∣αqMx

⎞⎟⎠
+ {same expression after the swapγ ↔ δ}

]
.

For the correlation kernel, we only need F0 and F1. Let us analyze them more carefully,

keeping only the 1st term of the M → ∞ asymptotics (for F0, we also need θq(xγq) =
(−xγ )−1θq(xγ ) and θq(xδq) = (−xδ)−1θq(xδ)):

F0(q
Mx) = (− sgn(x))M

√
|qMx| (q

Mxα, qMxβ; q)∞
θq(xγ , xδ)

· 1(
βqMx,

αβ

q2γ δ
; q
)

∞

·

×
[
δ−1

(
1 − βq−1

γ

)(
1 − αq−1

γ

)
·

(
β

γ
,
α

γ
; q
)

∞
θq (xδ)(

δ

γ
; q
)

∞

(γ

δ

)M/2 (
1 + O(qM)

)

+ {same expression after the swapγ ↔ δ}
]
,
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The Elliptic Tail Kernel 19

F1(q
Mx) = (− sgn(x))M

√
|qMx| (q

Mxα, qMxβ; q)∞
θq(xγ , xδ)

· 1(
βqMx,

αβ

γ δ
; q
)

∞

·

×
[(β

γ
,
α

γ
; q
)

∞
θq (xδ)(

δ

γ
; q
)

∞

(γ

δ

)M/2 (
1 + O(qM)

)
+ {same expression after the swapγ ↔ δ}

]
.

Then

Kα,β,γ ,δ(qMx, qMy) = C(α,β, γ , δ) · F1(q
Mx)F0(q

My) − F1(q
My)F0(q

Mx)

qMx − qMy

= C(α,β, γ , δ) ·

(
α

γ
,
α

δ
,
β

γ
,
β

δ
; q
)

∞(
αβ

γ δ
,

αβ

q2γ δ
,
δ

γ
,
γ

δ
; q
)

∞

· (sgn(x) sgn(y))M

×
√

|x| (q
Mxα, qMxβ; q)∞

θq(xγ , xδ)
· 1

(βqMx; q)∞

√
|y| (q

Myα, qMyβ; q)∞
θq(yγ , yδ)

· 1

(βqMy; q)∞

×
[(

γ −1
(
1 − βq−1

δ

)(
1 − αq−1

δ

)
− δ−1

(
1 − βq−1

γ

)(
1 − αq−1

γ

))
θq(xδ)θq(yγ ) − θq(xγ )θq(yδ)

x − y

+O
(
qM(γ /δ)M/2 + qM(δ/γ )M/2

) ]

∼ C(α,β, γ , δ) ·

(
α

γ
,
α

δ
,
β

γ
,
β

δ
; q
)

∞(
αβ

γ δ
,

αβ

q2γ δ
,
δ

γ
,
γ

δ
; q
)

∞

· (δ − γ )(γ δq2 − αβ)

γ 2δ2q2

×(sgn(x) sgn(y))M

√
|x|

θq(xγ , xδ)

√
|y|

θq(yγ , yδ)
· θq(xδ)θq(yγ ) − θq(xγ )θq(yδ)

x − y
,

where we denoted A ∼ B to mean limq→1 |A − B| = 0. Note that we used O(qM(γ /δ)M/2 +
qM(δ/γ )M/2) = o(1), as M → ∞, which is a consequence of the fact that if (γ , δ) is an

admissible pair, then |q2γ /δ|, |q2δ/γ | ∈ (0, 1).

Plugging (2.2) into the estimate above gives

(sgn(x) sgn(y))MKα,β,γ ,δ(qMx, qMy) ∼ θq(γ ζ−, γ ζ+, δζ−, δζ+)

ζ+ · θq

(
ζ−
ζ+

, γ δζ−ζ+
)

· (q;q)2∞
· 1(

δ

γ
,
γ

δ
; q
)

∞

· (δ − γ )

γ δ

×
√

|x|
θq(xγ , xδ)

√
|y|

θq(yγ , yδ)
· θq(xδ)θq(yγ ) − θq(xγ )θq(yδ)

x − y
,
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and the expression above is exactly the right-hand side of (3.4). Thus, we have shown

the desired limit for any x �= y in L. Recall that both kernels Kα,β,γ ,δ(x, y) and Kγ ,δ(x, y)

admit analytic continuations to D2, where D = C \ (γ −1qZ ∪ δ−1qZ ∪ {�z = 0}). Such
analytic continuations are given by (2.1) and (3.4) when x �= y. Then the estimates above

actually show

lim
M→∞(sgn(x) sgn(y))MKα,β,γ ,δ(qMx, qMy) = Kγ ,δ(x, y),

for any x �= y in D, where sgn(x) := sgn(�x). Moreover, the limit is uniform for (x, y)

varying over compact subsets of D2 \ {(z, z) : z ∈ D}. Then the integral representations

(2.6) and (3.7) imply that the desired limit also holds for x = y. �

Remark 4.2. Notice that due to presence of the terms with both factors
( γ

δ

)M/2

and
(

δ
γ

)M/2
in the asymptotic expansions of functions Fr(q

Mx) deduced above, these

functions do not have any meaningful non-degenerate asymptotic behavior as M → ∞.

However, in the formula for Kα,β,γ ,δ(qMx, qMy) these factors
( γ

δ

)M/2 and
(

δ
γ

)M/2
cancel

out leading to our limit theorem.

5 An Application: The Absence of Atoms in the q–zw Measures

5.1 A dichotomy for determinantal measures

Let X be a countable set and � be the set of all subsets of X. Observe that any ω ∈
� can be interpreted as a {0, 1}-valued function on X if we identify a subset with its

indicator function. As a result, � is in bijection with {0, 1}X and we can equip it with

the product topology, so that it becomes a compact space. Let P(�) denote the space of

Borel probability measures on �. Any measure M ∈ P(�) is uniquely determined by its

correlation functions ρ1, ρ2, . . . . Here

ρn(x1, . . . , xn) := M({ω ∈ � : {x1, . . . , xn} ⊆ ω}), n = 1, 2, . . . ,

where x1, . . . , xn are pairwise distinct points of X. M is said to be a determinantal

measure if there exists a complex-valued function K(x, y) on X × X such that

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1, n = 1, 2, . . . .

In particular, ρ1(x) = K(x, x). Any such function is called a correlation kernel of M.
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The Elliptic Tail Kernel 21

Let 	2(X) be the complex Hilbert space formed by complex-valued, square-

summable functions on X and {ex : x ∈ X} be its natural orthonormal basis formed

by the delta functions. Given a bounded operator K on 	2(X), we set

K(x, y) := (Key, ex), x, y ∈ X,

and call K(x, y) the kernel of K.

Suppose that K is a positive contraction, meaning that K = K∗ and 0 ≤ K ≤ 1.

Then K gives rise to a determinantal measure MK ∈ P(�), see for example, [23, Sec. 8],

[32, Thm. 2.1]. Namely, the kernel of K serves as a correlation kernel for MK .

Recall that a measure is said to be diffuse if it has no atoms.

Theorem 5.1. Let M ∈ P(�) be a determinantal measure defined by a positive

contraction on 	2(X). Let ρ1(x) be the 1st correlation function of M and set

ρ∗
1(x) := min(ρ1(x), 1 − ρ1(x)).

Then the following dichotomy holds: M is either diffuse or purely atomic,

depending on whether the series
∑

x∈X ρ∗
1(x) diverges or converges, respectively.

We give the proof after a little preparation. We need the following elementary

lemma.

Lemma 5.2. If A = [A(i, j)] is a matrix of finite size, A = A∗ ≥ 0, then

detA ≤
∏
i

A(i, i).

Proof of the lemma. Use induction on N, the size of A. Write A in the block form

corresponding to the partition N = (N − 1) + 1:

A =
[
A B

B∗ D

]
.

Assume first that A is nonsingular. Then A > 0, A is invertible, and we may write

detA = detA · (D − B∗A−1B).
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Observe that D − B∗A−1B ≤ D, since A−1 is positive-definite. Hence, detA ≤
detA · D, and we may apply induction.

If A is singular, then we apply the above argument to A + ε1 with small ε > 0

and pass to the limit as ε → 0. �

We will also use the particle-hole involution ω 
→ ω◦, where ω◦ := X \ ω. It

induces an involutive transformation M 
→ M◦ of the space P(�). Note that if M = MK ,

where K is a positive contraction, then 1 − K is a positive contraction too, and we have

M◦ = M1−K , see [7, Appendix §A.3].

A trivial but important observation is that the particle-hole involution leaves the

function ρ∗
1(x) invariant.

Finally, suppose that X′ is a subset of X and let �′ be the set of subsets

of X′ equipped with the product topology (after identifying �′ with {0, 1}X′
). The

correspondence ω 
→ ω ∩X′ defines a projection � → �′ and hence a map P(�) → P(�′).
If M ∈ P(�) is a determinantal measure, then its pushforward M ′ under that map is

a determinantal measure too, and if M = MK for a positive contraction, then M ′ has a

similar form, with the positive contraction K′ on 	2(X′) whose kernel is the restriction

of the kernel K(x, y) to X′ × X′. In particular, the function ρ∗
1 is simply restricted to X′.

Proof of Theorem 5.1. 1. We assume that
∑

x∈X ρ∗
1(x) = ∞ and prove that M is diffuse.

This means that M assigns mass 0 to any singleton {ω}. We will first prove this for

ω = X. For any n-point subset X = {x1, . . . , xn} ⊂ X we have

M({X}) ≤ ρn(x1, . . . , xn).

By Lemma 5.2,

ρn(x1, . . . , xn) ≤
n∏

i=1

ρ1(xi) =
∏
x∈X

ρ1(x).

Therefore, for any finite subset X ⊂ X,

M({X}) ≤
∏
x∈X

ρ1(x).

On the other hand, for any x ∈ X,

ρ1(x) ≤ 1 − ρ∗
1(x).
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It follows that

M({X}) ≤
∏
x∈X

(1 − ρ∗
1(x))

for any finite X. Since
∑

x∈X ρ∗
1(x) = ∞, the right-hand side can be made arbitrarily

small with an appropriate choice of X. We conclude that M({X}) = 0, as desired.

Now let us consider the general case ω ∈ �. Set

X0 := {x ∈ X : x /∈ ω}, X1 := {x ∈ X : x ∈ ω}.

As X = X0 � X1 and
∑

x∈X ρ∗
1(x) = ∞, then

∑
x∈X0 ρ∗

1(x) = ∞, or
∑

x∈X1 ρ∗
1(x) = ∞

(or both). Examine first the case when
∑

x∈X1 ρ∗
1(x) = ∞. Then let X′ := X1 and

M ′ be the pushforward of M under the projection � → �′ defined above. We have

M({ω}) ≤ M ′({ω′}), where ω′ = X′, so it suffices to prove M ′({ω′}) = 0. This reduces

the statement to the case ω = X above.

Now examine the case when
∑

x∈X0 ρ∗
1(x) = ∞. Let X′ := X0 and, again, let M ′

be the pushforward of M under the projection � → �′; we are now reduced to the case

ω = ∅. Then we can perform the particle-hole involution and use the invariance of ρ∗
1 to

reduce the desired statement to the known case ω = X.

2. Next, we assume that
∑

x∈X ρ∗
1(x) < ∞ and prove that M is purely atomic. We

have X = X0 � X1, where

X0 := {x ∈ X : ρ1(x) ≤ 1
2 }, X1 := {x ∈ X : ρ1(x) > 1

2 }.

For ω ∈ �, let ω�X1 denote the symmetric difference of ω and X1. We set

�∗ := {ω ∈ � : |ω�X1| < ∞}

and note that �∗ is a countable subset of �. We are going to show thatM is concentrated

on �∗, which will imply thatM is purely atomic. To do this, we treat ω ∈ � as the random

element distributed according to M. For x ∈ X0, let Ex be the event that x ∈ ω, whereas

if x ∈ X1, let Ex be the event that x /∈ ω. Then ω ∈ �∗ precisely means that only finitely

many events Ex occur.

On the other hand, the probability of Ex is ρ∗
1(x). Thus, the sum of all these

probabilities is finite. Applying the Borel–Cantelli lemma, we obtain that ω ∈ �∗ with

probability 1, which is equivalent to the desired claim. �
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24 C. Cuenca et al.

5.2 The q–zw measures are diffuse

Theorem 5.3. Let (α,β, γ , δ) ∈ C
4 be any quadruple of admissible parameters. The

corresponding q–zw measure is diffuse.

Proof. We claim that 0 < Kγ ,δ(ζ+, ζ+) < 1, and similarly for Kγ ,δ(ζ−, ζ−). Before

proving the claim, let us deduce Theorem 5.3 from it. Theorem 4.1 shows Kα,β,γ ,δ(x, x) →
Kγ ,δ(ζ±, ζ±), as x → 0± in L; thus, the density ρ

α,β,γ ,δ
1 (x) = Kα,β,γ ,δ(x, x), when |x| is small,

is uniformly bounded away from 0 and 1. Consequently, Theorem 5.1 shows thatMα,β,γ ,δ

is diffuse.

Next let us prove the claim. Since Kγ ,δ(ζ+, ζ+) and Kγ ,δ(ζ−, ζ−) are probabilities,

then the claim would be contradicted if and only if {Kγ ,δ(ζ+, ζ+),Kγ ,δ(ζ−, ζ−)} ∩ {0, 1} �= ∅.
Let us focus on proving Kγ ,δ(ζ+, ζ+) �= 1, as the proof of the other three statements is the

same. Assume Kγ ,δ(ζ+, ζ+) = 1. Then Mγ ,δ—almost surely, a random point configuration

contains ζ+. Since Mγ ,δ is stationary, a random configuration contains all points to

the right of the origin and so all the corresponding correlation functions equal 1, in

particular

det

⎛⎝ Kγ ,δ(ζ+qm, ζ+qm) Kγ ,δ(ζ+qm, ζ+qn)

Kγ ,δ(ζ+qn, ζ+qm) Kγ ,δ(ζ+qn, ζ+qn)

⎞⎠ = 1,wheneverm �= n.

The matrix above is symmetric and its diagonal entries are equal to 1; therefore,

Kγ ,δ(ζ+qm, ζ+qn) = Kγ ,δ(ζ+qn, ζ+qm) = 0.

Apply the previous equation to (m,n) = (2, 0); Lemma 3.4 gives

Kγ ,δ(ζ+q2, ζ+) = C(γ , δ) × γ /δ − δ/γ

q − q−1 = 0. (5.1)

One verifies that for any admissible pair (γ , δ) with γ �= δ, one has C(γ , δ) �= 0 and

γ /δ − δ/γ �= 0. Thus, we have reached a contradiction. In the special case γ = δ, we need

the formulas at the end of Section 3.4 (see (3.11)); then equation (5.1) becomes

Kγ ,γ (ζ+q2, ζ+) = 2

ζ+γ (q − q−1)
· θq(γ ζ−, γ ζ+)2

θq(ζ−/ζ+, γ 2ζ−ζ+) · (q;q)4∞
= 0.

This implies that γ ∈ ζ−1− qZ or γ ∈ ζ−1+ qZ, which again is impossible. �
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6 The Projection Property of the Elliptic Tail Kernel

6.1 The projection property

Let (γ , δ) be an admissible pair and let Kγ ,δ be the operator on 	2(L) with kernel

Kγ ,δ(x, y), that is,

(Kγ ,δf )(x) :=
∑
y∈L

Kγ ,δ(x, y)f (y), f ∈ 	2(L), x ∈ L.

The main theorem of this section is the following.

Theorem 6.1. The operator Kγ ,δ on 	2(L) is a projection operator, that is, Kγ ,δ =
(Kγ ,δ)∗ = (Kγ ,δ)2.

In this section, it will be more convenient to use the gauge-transformed kernel

K̃γ ,δ(x, y) = ε(x)ε(y)Kγ ,δ(x, y) defined in (3.8) because of the q-translation-invariance

property K̃γ ,δ(qx, qy) = K̃γ ,δ(x, y) of Proposition 3.3. Clearly, the corresponding operator

K̃γ ,δ is a projection operator if and only if Kγ ,δ is a projection operator.

Let us consider the 2 × 2 matrix-valued kernel K(m,n) = Kγ ,δ(m,n) on Z,

given by

K(m,n) :=
⎛⎝K̃γ ,δ(ζ+qm, ζ+qn) K̃γ ,δ(ζ+qm, ζ−qn)

K̃γ ,δ(ζ−qm, ζ+qn) K̃γ ,δ(ζ−qm, ζ−qn)

⎞⎠ , m,n ∈ Z.

The space 	2(Z;C2) (Hilbert space of C
2-valued, square-summable sequences) can be

naturally identified with 	2(L)—under this identification, K̃γ ,δ becomes the operator

with kernel K(m,n). We go a step further. Proposition 3.3 implies the translation-

invariance property: K(m,n) = K(m + 1,n + 1). This suggests to look at the Fourier

transform K̂ = K̂
γ ,δ

of the function K(m, 0), m ∈ Z. By definition, K̂ is a 2π-periodic

function on R, which is 2 × 2 matrix-valued and given by

K̂(η) :=
⎛⎝K̂+,+(η) K̂+,−(η)

K̂−,+(η) K̂−,−(η)

⎞⎠ , η ∈ R, (6.1)

K̂ε1,ε2(η) :=
∑
m∈Z

eiηmK̃γ ,δ(ζε1
qm, ζε2

), ε1, ε2 ∈ {+,−}. (6.2)

The important point for us is the following lemma, whose proof essentially

follows by definition of the Fourier transform.
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Lemma 6.2. A translation-invariant operator K on 	2(Z;C2) is a projection operator if

and only if its Fourier transform K̂(η) is a projection matrix, for any η ∈ R.

In view of Lemma 6.2, a proof of Theorem 6.1 will be furnished by the verifica-

tion that K̂(η) is a projection matrix, for any η ∈ R. The latter will be a consequence of

the following proposition, whose proof is given in Section 6.3, after some preparations.

Proposition 6.3. For any η ∈ R, the Fourier transform K̂(η), defined by (6.1) and (6.2),

is given by

K̂+,+(η) = q · θq(γ ζ−, δζ−)

γ δζ 2+ · θq(ζ−/ζ+, γ δζ−ζ+)

θq(−eiηζ+
√

γ δ/q,−e−iηζ+
√

γ δ/q)

θq(−eiη
√
qγ δ/γ ,−eiη

√
qγ δ/δ)

, (6.3)

K̂+,−(η) = −
q
√

θq(γ ζ−, δζ−, γ ζ+, δζ+)

γ δζ+
√|ζ−ζ+| · θq(ζ−/ζ+, γ δζ−ζ+)

θq(−eiηζ+
√

γ δ/q,−e−iηζ−
√

γ δ/q)

θq(−eiη
√
qγ δ/γ ,−eiη

√
qγ δ/δ)

, (6.4)

K̂−,+(η) = −
q
√

θq(γ ζ−, δζ−, γ ζ+, δζ+)

γ δζ+
√|ζ−ζ+| · θq(ζ−/ζ+, γ δζ−ζ+)

θq(−eiηζ−
√

γ δ/q,−e−iηζ+
√

γ δ/q)

θq(−eiη
√
qγ δ/γ ,−eiη

√
qγ δ/δ)

, (6.5)

K̂−,−(η) = q · θq(γ ζ+, δζ+)

γ δ|ζ−ζ+| · θq(ζ−/ζ+, γ δζ−ζ+)

θq(−eiηζ−
√

γ δ/q,−e−iηζ−
√

γ δ/q)

θq(−eiη
√
qγ δ/γ ,−eiη

√
qγ δ/δ)

. (6.6)

Remark 6.4. For an admissible pair (γ , δ), we have that γ δ, θq(γ ζ−, δζ−) and θq(γ ζ+, δζ+)

are all positive. For the formulas above,
√

θq(γ ζ−, δζ−, γ ζ+, δζ+) and
√

γ δ are the positive

square roots.

Proof of Theorem 6.1. We show that K̂(η) is a rank 1 projection matrix. For that, we

prove three statements: (1) K̂(η) is Hermitian, (2) det K̂(η) = 0, and (3) tr K̂(η) = 1.

The 1st statement is equivalent to the equalities

K̂+,+(η)
?= K̂+,+(η), K̂−,−(η)

?= K̂−,−(η), K̂+,−(η)
?= K̂−,+(η). (6.7)

If (γ , δ) belongs to the principal series, then (γ , δ) = (δ, γ ), whereas if (γ , δ)

belongs to the complementary series, then (γ , δ) = (γ , δ). Together with the obvious

θq(x) = θq(x), one can easily verify all three identities in (6.7) for pairs in both the

principal and complementary series.

The 2nd statement follows from (6.3)–(6.6) in a straightforward manner.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa038/5775498 by guest on 07 June 2021



The Elliptic Tail Kernel 27

For the 3rd statement, we need to show

ζ+θq(γ ζ+, δζ+,−eiηζ−
√

γ δ/q,−e−iηζ−
√

γ δ/q)

− ζ−θq(γ ζ−, δζ−,−eiηζ+
√

γ δ/q,−e−iηζ+
√

γ δ/q)

?= −γ δζ−ζ 2+
q

· θq(ζ−/ζ+, γ δζ−ζ+,−eiη
√
qγ δ/γ ,−eiη

√
qδγ /δ).

By the quasi-periodicity (−γ δζ−ζ+/q) · θq(γ δζ−ζ+) = θq(γ δζ−ζ+/q), the equality above

becomes

θq(ζ−/ζ+, γ δζ−ζ+/q,−eiη
√
qγ δ/γ ,−eiη

√
qγ δ/δ)

− θq(γ ζ+, δζ+,−eiηζ−
√

γ δ/q,−e−iηζ−
√

γ δ/q)

?= −ζ−
ζ+

· θq(γ ζ−, δζ−,−eiηζ+
√

γ δ/q,−e−iηζ+
√

γ δ/q). (6.8)

This is a special case of Lemma 3.1; upon setting X = eiη/
√
q, Y = −ζ+

√
γ δ/q, Z =

−ζ−
√

γ δ/q, and W = −√
γ δ/γ , equation (2) gives (8). �

6.2 Factorization of two-sided sums

The proof of Proposition 6.3 relies on two summation identities, which we now present.

In this section, p is a real number in (0, 1).

Lemma 6.5. Let a ∈ C be such that p < |a| < p−1. Then

+∞∑
m=−∞

am

zpm + z−1p−m = −z ·
θp2(−apz2)θ ′

p2
(1)

θp2(−z2)θp2(ap)
, z ∈ C

∗. (6.9)

Proof. The equality can be deduced from Ramanujan’s 1ψ1-identity, as explained in [4,

Rem. 2.4]. Yet another proof is given in [3, Sec. 4]. �

Lemma 6.6.

∑
m∈Z\{0}

zm

p−m − pm = −pz ·
θ ′
p2

(pz)

θp2(pz)
, p < |z| < p−1. (6.10)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa038/5775498 by guest on 07 June 2021



28 C. Cuenca et al.

Proof. When m � 0, the m-th term in the sum is ∼ (zp)m; when m � 0, the m-th

term is ∼ −(z−1p)−m. Thus, the sum is absolutely convergent and defines an analytic

function on the domain {z ∈ C : |zp|, |z−1p| < 1} = {z ∈ C : p < |z| < p−1}.
Let Hp(z) and Fp,a(z) denote the left-hand sides of (6.10) and (6.9), respectively.

Notice that

Hp(z) = −i
{
Fp,z(y) − 1

y + y−1

}∣∣∣∣ y=i = −i
{
Fp,z(iy) − i

y

1 − y2

}∣∣∣∣ y=1.

From Lemma 6.5, we have

Hp(z) = −y

{
θp2(pzy

2)θ ′
p2

(1)

θp2(y
2)θp2(pz)

+ 1

1 − y2

}∣∣∣∣∣ y=1 =
{

θp2(pzy)(p2;p2)2∞
θp2(y)θp2(pz)

− 1

1 − y

}∣∣∣∣∣ y=1. (6.11)

Note that f (y) := θp2(y)/(1 − y) = (p2y,p2/y;p2)∞ is analytic on C
∗. Also let

g(y) := θp2(pzy), so (6.11) becomes

Hp(z) = 1

y − 1

{
−g(y)(p2;p2)2∞

f (y)θp2(pz)
+ 1

}∣∣∣∣∣ y=1 = (f ′(1)g(1) − g′(1)f (1))(p2;p2)2∞
f (1)2θp2(pz)

. (6.12)

Take derivatives to f (y) = f (1/y) to obtain f ′(y) = −y−2f ′(1/y), in particular f ′(1) = 0.

Furthermore, f (1) = (p2;p2)2∞ and g′(1) = pzθ ′
p2

(pz). Plugging these values into (6.12)

yields (6.10). �

6.3 Fourier transform of the elliptic tail kernel: proof of Proposition 6.3

Recall the constant C = C(γ , δ) defined in (3.3).

Lemma 6.7. For any η ∈ R, the Fourier transform K̂(η) is given by

K̂+,+(η) = C

{
δζ+

θ ′
q(δζ+)

θq(δζ+)
− γ ζ+

θ ′
q(γ ζ+)

θq(γ ζ+)
(6.13)

+ eiη
√
qγ δ

γ
· θ ′

q(−eiη
√
qγ δ/γ )

θq(−eiη
√
qγ δ/γ )

− eiη
√
qγ δ

δ
· θ ′

q(−eiη
√
qγ δ/δ)

θq(−eiη
√
qγ δ/δ)

}
,

K̂+,−(η) = C
√|ζ+/ζ−|√

θq(γ ζ+, δζ+, γ ζ−, δζ−)

θ ′
q(1)

θq(ζ+/ζ−)
(6.14)
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×
{

θq(γ ζ+, δζ−, eiη|ζ+/ζ−|√qγ δ/γ )

θq(−eiη
√
qγ δ/γ )

− θq(δζ+, γ ζ−, eiη|ζ+/ζ−|√qγ δ/δ)

θq(−eiη
√
qγ δ/δ)

}
,

K̂−,+(η) = C
√|ζ−/ζ+|√

θq(γ ζ+, δζ+, γ ζ−, δζ−)

θ ′
q(1)

θq(ζ−/ζ+)
(6.15)

×
{

θq(γ ζ+, δζ−, eiη|ζ−/ζ+|√qγ δ/δ)

θq(−eiη
√
qγ δ/δ)

− θq(δζ+, γ ζ−, eiη|ζ−/ζ+|√qγ δ/γ )

θq(−eiη
√
qγ δ/γ )

}
,

K̂−,−(η) = C

{
γ ζ−

θ ′
q(γ ζ−)

θq(γ ζ−)
− δζ−

θ ′
q(δζ−)

θq(δζ−)
(6.16)

+ eiη
√
qγ δ

δ
· θ ′

q(−eiη
√
qγ δ/δ)

θq(−eiη
√
qγ δ/δ)

− eiη
√
qγ δ

γ
· θ ′

q(−eiη
√
qγ δ/γ )

θq(−eiη
√
qδ/γ )

}
.

Proof. For x ∈ Z \ {0}, Lemma 3.4 gives

K+,+(x, 0) = C(−1)x · (
√

γ δ/γ )x − (
√

γ δ/δ)x

q−x/2 − qx/2 , (6.17)

K−,−(x, 0) = C(−1)x · (
√

γ δ/δ)x − (
√

γ δ/γ )x

q−x/2 − qx/2 . (6.18)

From Lemma 3.6 and (6.17),

K̂+,+(η) = Cζ+

{
δ
θ ′
q(δζ+)

θq(δζ+)
− γ

θ ′
q(γ ζ+)

θq(γ ζ+)

}
+ C ·

∑
x∈Z\{0}

eiηx · (
√

γ δ/γ )x − (
√

γ δ/δ)x

q−x/2 − qx/2 .

Then (6.13) follows from Lemma 6.6 with p = √
q. Note that we need the following

inequalities to apply Lemma 6.6:

q1/2 <

∣∣∣∣√γ δ

γ

∣∣∣∣ , ∣∣∣∣√γ δ

δ

∣∣∣∣ < q−1/2.

They are equivalent to |qγ /δ|, |qδ/γ | < 1, and these follow from the fact that (γ , δ) is an

admissible pair. Similarly, by using (6.18), we obtain (6.16).

On the other hand, for any x ∈ Z, Lemma 3.5 shows

K+,−(x, 0) = C(−1)x√
θq(γ ζ−, γ ζ+, δζ−, δζ+)

· θq(δζ+, γ ζ−)(
√

γ δ/δ)x − θq(δζ−, γ ζ+)(
√

γ δ/γ )x

|ζ+/ζ−|1/2qx/2 + |ζ−/ζ+|1/2q−x/2 ,

(6.19)
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K−,+(x, 0) = C(−1)x√
θq(γ ζ−, γ ζ+, δζ−, δζ+)

· θq(δζ+, γ ζ−)(
√

γ δ/γ )x − θq(δζ−, γ ζ+)(
√

γ δ/δ)x

|ζ−/ζ+|1/2qx/2 + |ζ+/ζ−|1/2q−x/2 .

(6.20)

Then (6.14) follows from (6.19) and Lemma 6.5 applied to p = √
q (the restrictions

of Lemma 6.5 are satisfied because (γ , δ) is an admissible pair). Similarly, (6.20)

gives (6.15). �

A proof of Proposition 6.3 will be furnished by the verification that the formulas

in (6.13)–(6.16) are equal to the formulas in (6.3)–(6.6).

We’ll need the equality

θ ′
q(1) = lim

x→1
(θq(x) − θq(1))/(x − 1) = lim

x→1
θq(x)/(x − 1) = lim

x→1
−(qx, q/x; q)∞ = −(q;q)2∞.

Together with (3.3), it follows that (6.14)
?= (6.4) is equivalent to

θq(γ ζ+, δζ−, eiη|ζ+/ζ−|√qγ δ/γ ,−eiη
√
qγ δ/δ)−θq(γ ζ−, δζ+, eiη|ζ+/ζ−|√qγ δ/δ,−eiη

√
qγ δ/γ )

?= q

δ|ζ−| · θq(qζ+/ζ−, qγ /δ,−eiηζ+
√

γ δ/q,−e−iηζ−
√

γ δ/q).

This identity is a particular case of Lemma 3.1 when we specialize the variables as

follows:

X = ieiη
√

|ζ+/qζ−|, Y = i
√

γ δ|ζ−ζ+|/q, Z = −i
√

|ζ+/ζ−|√γ δ/δ, W = −i
√

|ζ+/ζ−|√γ δ/γ .

One similarly shows (6.15) = (6.5).

It remains to prove (6.13)
?= (6.3) and (6.16)

?= (6.6). Both proofs are similar to

many proofs in the literature on identities between elliptic functions (see e.g., [29], [2,

Sec. 15] and references therein), so let us only give a proof sketch of the former equality

in the remainder of this section.

In both sides of the identity to prove, replace eiη, γ , δ, and
√

γ δ by z, c2,d2, and cd,

respectively. Denote the formula coming from (6.13) by f (z, c,d) and the one coming from

(6.3) by g(z, c,d). The advantage is that both f and g are now meromorphic functions on

(z, c,d) ∈ (C∗)3. We shall actually prove f (z, c,d) = g(z, c,d), for all values (z, c,d) ∈ (C∗)3

for which both sides are defined and not only in the case that (c2,d2) is an admissible

pair.
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From the quasi-periodicity of the theta function, one verifies that both f and

g, as functions of z, are (multiplicatively) periodic with period q, that is, f (qz, c,d) =
f (z, c,d) and g(qz, c,d) = g(z, c,d). One can also check that both f and g have only simple

poles at the points of the form − c
d · qm+ 1

2 or −d
c · qm+ 1

2 , for some m ∈ Z (in the special

case c = d, minor changes are needed in the argument). Moreover, their residues at these

poles are the same, for example,

Res
z=− c

√
q

d
f (z, c,d) = Res

z=− c
√
q

d
g(z, c,d)

= −c
√
q

d
· θq(c

2ζ−,d2ζ−, c2ζ+,d2ζ+)

ζ+ · θq(ζ−/ζ+, c2d2ζ−ζ+)
· (d2 − c2)

c2d2(c2/d2,d2/c2, q,q;q)∞
.

It follows that the difference f − g is analytic, as a function of z, on C
∗. Since it is

also periodic, then f − g is bounded on C
∗. Liouville’s theorem implies that f − g is

independent of z, so now it suffices to prove f (−1, c,d)
?= g(−1, c,d).

From the formula (3.3) for C(c2,d2), the equality f (−1, c,d)
?= g(−1, c,d) is

equivalent to

d2ζ+
θ ′
q(d

2ζ+)

θq(d
2ζ+)

− c2ζ+
θ ′
q(c

2ζ+)

θq(c
2ζ+)

+
√
qc

d

θ ′
q(

√
qc/d)

θq(
√
qc/d)

−
√
qd

c

θ ′
q(

√
qd/c)

θq(
√
qd/c)

?= q · (q;q)2∞
ζ+d2

θq(d
2/c2)θq(ζ+cd/

√
q)2

θq(c
2ζ+,d2ζ+)θq(

√
qd/c)2

.

From the definition of theta function, we deduce θq(z
2) = θq(z,−z,

√
qz,−√

qz) for z ∈ C
∗.

Then θq(d
2/c2) = θq(d/c,−d/c,

√
qd/c,−√

qd/c), so the desired identity becomes

d2ζ+
θ ′
q(d

2ζ+)

θq(d
2ζ+)

− c2ζ+
θ ′
q(c

2ζ+)

θq(c
2ζ+)

+
√
qc

d

θ ′
q(

√
qc/d)

θq(
√
qc/d)

−
√
qd

c

θ ′
q(

√
qd/c)

θq(
√
qd/c)

?= q · (q;q)2∞
ζ+d2 · θq(d/c,−d/c,−√

qd/c)θq(ζ+cd/
√
q)2

θq(c
2ζ+,d2ζ+,

√
qd/c)

. (6.21)

Let 	(c,d) and r(c,d) be the left- and right-hand side of (21), respectively. As before, one

verifies 	(qc,d) = 	(c,d) and r(qc,d) = r(c,d). Moreover, 	 and r are meromorphic func-

tions of c, with only simple poles exactly at points of the form ζ
−1/2
+ qm/2, −ζ

−1/2
+ qm/2,

dqm+ 1
2 , for some m ∈ Z. Also, the residues of both sides coincide at all the poles;
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for example, one verifies

Resc=d
√
q 	(c,d) = Resc=d

√
q r(c,d) = 2d

√
q.

Therefore, the difference 	(c,d) − r(c,d) is a constant independent of c, meaning that it

will suffice to prove 	(c,d) = r(c,d) for some value of c. Finally, verify 	(
√
q/(ζ+d),d) =

r(
√
q/(ζ+d),d) = 0.

7 Degeneration to the Matrix Trigonometric Kernel

In this section and the next we often use the variable

r = r(q) := − ln q > 0,

so that r → 0+ as q → 1−. We also use the material in Appendix A on estimates for theta

functions.

7.1 The matrix trigonometric kernel

Let c, d ∈ C be such that d = c ∈ C \R or m < c, d < m+ 1, for some m ∈ Z. Let Y := R �R

and, given u ∈ R, denote the corresponding elements of Y by u(1) or u(2) (depending on

the copy of the real line to which u belongs). The kernel Kc,d
q→1 on Y is defined by

Kc,d
q→1(u

(i), v(j)) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(πc) sin(πd)
π sin(π(c−d))

· sinh
(

(c−d)(u−v)
2

)
sinh( u−v

2 )
, if (i, j) = (1, 1) or (2, 2),

√
sin(πc) sin(πd)
π sin(π(c−d))

· sin(πc) exp
(

(c−d)(u−v)
2

)
−sin(πd) exp

(
(c−d)(v−u)

2

)
exp(u−v

2 )+exp( v−u
2 )

, if (i, j) = (1, 2),

√
sin(πc) sin(πd)
π sin(π(c−d))

· sin(πd) exp
(

(c−d)(u−v)
2

)
−sin(πc) exp

(
(c−d)(v−u)

2

)
exp(u−v

2 )+exp( v−u
2 )

, if (i, j) = (2, 1).

When (i, j) ∈ {(1, 1), (2, 2)} and u = v, we define the kernel by continuity, namely

sinh
(

(c−d)(u−v)
2

)
sinh

(u−v
2

)
∣∣∣∣∣∣ u=v = c − d.
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Note that the case c = d ∈ (m,m+ 1), for some m ∈ Z, is allowed, so one needs to correct

the definition of Kc,d
q→1 because it is given by the indeterminate ratio 0/0 in that case.

The correction is done by using L’Hôpital’s rule; see [11, Sec. 6] for more details.

The kernel Kc,d
q→1 will be called the matrix trigonometric kernel. It has appeared

previously in the literature, for example, it is called the tail kernel in [11]; it is shown

there that it arises as a limit of both the discrete hypergeometric kernel and the Gamma

kernel. (The parameters z, z′ in [11] are exactly c, d in our notation.)

To obtain Kc,d
q→1 as a limit of the elliptic tail kernel, we have to modify Kγ ,δ. Let

ν : L → {−1,+1} be ν(ζ−qm) = ν(ζ+qm) := (−1)m, and Kγ ,δ(x, y) := ν(x)ν(y)−1Kγ ,δ(x, y).

Then

K̂γ ,δ(x, y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δx,y − Kγ ,δ(x, y), if x = ζ+qm, y = ζ+qn,

−Kγ ,δ(x, y), if x = ζ−qm, y = ζ+qn,

Kγ ,δ(x, y), if y = ζ−qn.

This construction has a simple probabilistic meaning. Both kernels Kγ ,δ and Kγ ,δ

differ by a gauge transformation, so they define the same point process P on the two-

sided q-lattice L = ζ+qZ � ζ−qZ. The kernel K̂γ ,δ can also be shown to define a point

process P̂ on L. The processes P and P̂ are related by the particle-hole involution on the

positive part of the lattice ζ+qZ:

if X is P–distributed, then X �ζ+qZ is P̂–distributed.

For a proof, see [7, Appendix §A.3].

7.2 Limit to the matrix trigonometric kernel

Theorem 7.1. Assume that c, d ∈ C
2 satisfy either d = c ∈ C \ R or m < c, d < m + 1,

for some m ∈ Z; also, z−, z+ ∈ R are arbitrary. Then K̂γ ,δ degenerates to the matrix

trigonometric kernel Kc,d
q→1 in the following limit regime:

m = �(− ln q)−1u�, n = �(− ln q)−1v�,
ζ− = −qz− , ζ+ = qz+ , γ = qc−z+ , δ = qd−z+ , q → 1−.

(7.1)

In other words, identify L with X = Z � Z via ζ+qk 
→ k(1), ζ−q	 
→ 	(2), as before,

so that K̂γ ,δ becomes a function on X2. Then, in the regime (7.1), we have the pointwise
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limit

(− lnq)−1K̂γ ,δ
(
�(− ln q)−1u�(i), �(− ln q)−1v�(j)

)
→ Kc,d

q→1(u
(i), v(j)). (7.2)

Remark 7.2. In the limit regime (7.1), note that (γ , δ) is an admissible pair and γ , δ → 1,

as q → 1−. A similar result holds in the case γ = −qc−z− , δ = −qd−z− ; note that γ , δ → −1,

as q → 1−, in that case.

Proof of Theorem 7.1. We analyze (− lnq)−1K̂γ ,δ(m(i),n(j)), for i, j ∈ {1, 2}, m :=
�(− ln q)−1u�, n := �(− lnq)−1v�, using Lemmas 3.4 and 3.6. Throughout the proof, the

notation A ∼ B means limq→1− A/B = 1.

Step 1. First, estimate the constant C = C(γ , δ). Write it as

C = 1

ζ+γ
× θq(γ ζ−, γ ζ+, δζ−, δζ+)

θq(ζ−/ζ+, γ δζ−ζ+, δ/γ )
× 1

(q;q)2∞
. (7.3)

From Lemma A.3, we deduce

θq(ζ−γ ) ∼ e
π2
6r , θq(ζ−δ) ∼ e

π2
6r .

On the other hand, from Lemma A.2, we have

θq(ζ+γ ) ∼ −ie− π2
3r

(
eπci − e−πci

)
= 2e− π2

3r sin(πc),

θq(ζ+δ) ∼ −ie− π2
3r

(
eπdi − e−πdi

)
= 2e− π2

3r sin(πd).

An estimate for (q;q)∞ is in Lemma A.1. From Lemma A.3 again, we have

θq(ζ−/ζ+) ∼ e
π2
6r , θq(γ δζ−ζ+) ∼ e

π2
6r , θq(δ/γ ) ∼ −ie− π2

3r +π i(d−c).

Finally, plugging all these estimates into (7.3), we obtain

C ∼ r

π
· sin(πc) sin(πd)

sin(π(d − c))
. (7.4)

Step 2. We now estimate K̂γ ,δ(m(1),n(1)) and K̂γ ,δ(m(2),n(2)), for u �= v.

When u �= v, it is not hard to verify that, in our desired limit regime, we have

γmδn

(
√

γ δ)m+n − γ nδm

(
√

γ δ)m+n

q(m−n)/2 − q(n−m)/2
∼

exp
(

(c−d)(v−u)
2

)
− exp

(
(c−d)(u−v)

2

)
exp

(v−u
2

) − exp
(u−v

2

) =
sinh

(
(c−d)(u−v)

2

)
sinh

(u−v
2

) . (7.5)
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Use (7.4), (7.5), Lemma 3.4, and the definition of K̂γ ,δ to obtain

K̂γ ,δ
(
�(− lnq)−1u�(1), �(− ln q)−1v�(1)

)
∼ r sin(πc) sin(πd)

π sin(π(c − d))
·
sinh

(
(c−d)(u−v)

2

)
sinh

(u−v
2

) .

Multiplying the above estimate by (− lnq)−1 = r−1 proves (7.2) for i = j = 1 and u �= v.

Similarly, one can show (7.2) for i = j = 2 and u �= v.

Step 3. Next we estimate K̂γ ,δ(m(1),m(1)) and K̂γ ,δ(m(2),m(2)), for any u. We need

to estimate

ζ+

{
δ
θ ′
q(δζ+)

θq(δζ+)
− γ

θ ′
q(γ ζ+)

θq(γ ζ+)

}
= f ′

δ(1) − f ′
γ (1),

where fδ(x) := ln θq(δζ+x), fγ (x) := ln θq(γ ζ+x).

From Lemma A2, applied to z = ζ+γx, we have

θq(z) ∼ −ie− π2
3r − 2π2u2

r + 2π2u
r +iπu(1 − e− 4π2u

r ),whereu = − cr

2π i
+ lnx

2π i
.

This leads to

f ′
γ (1) = d

dx
ln θq(z)

∣∣∣∣ x=1 ∼ −c − π i

r
+ 1

2
− 2π i

r
· e−πci

eπci − e−πci
.

Similarly,

f ′
δ(1) ∼ −d + π i

r
+ 1

2
+ 2π i

r
· eπdi

e−πdi − eπdi
.

Therefore,

ζ+

{
δ
θ ′
q(δζ+)

θq(δζ+)
− γ

θ ′
q(γ ζ+)

θq(γ ζ+)

}
= f ′

δ(1) − f ′
γ (1)

∼ c − d + 2π i

r
+ 2π i

r

{
e−πci

eπci − e−πci
+ eπdi

e−πdi − eπdi

}
= c − d − π

r

sin(π(c − d))

sin(πc) sin(πd)
. (7.6)

Use (7.4), (6), Lemma 3.6, and the definition of K̂γ ,δ to get

K̂γ ,δ
(
�(− ln q)−1u�(1), �(− ln q)−1u�(1)

)
∼ 1 + r sin(πc) sin(πd)

π sin(π(c − d))

(
c − d − π sin(π(c − d))

r sin(πc) sin(πd)

)
= r sin(πc) sin(πd)

π sin(π(c − d))
· (c − d).
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Multiplying the above estimate by (− lnq)−1 = r−1 proves (7.2) for i = j = 1 (and any u).

One similarly shows (7.2) for i = j = 2, but using Lemma A.3 rather than Lemma A.2.

Step 4. Finally, we estimate K̂γ ,δ(m(1),n(2)) and K̂γ ,δ(m(2),n(1)). We need the

asymptotics of

θq(ζ−γ , ζ+δ)√
θq(ζ−γ , ζ−δ, ζ+γ , ζ+δ)

and
θq(ζ−δ, ζ+γ )√

θq(ζ−γ , ζ−δ, ζ+γ , ζ+δ)
.

From the estimates of Step 1, we have

θq(ζ−δ, ζ+γ )√
θq(ζ−γ , ζ−δ, ζ+γ , ζ+δ)

∼ sin(πc)√
sin(πc) sin(πd)

,
θq(ζ−γ , ζ+δ)√

θq(ζ−γ , ζ−δ, ζ+γ , ζ+δ)
∼ sin(πd)√

sin(πc) sin(πd)
.

Finally, from the estimates above, together with (7.4) and Lemma 3.5, the desired (7.2) is

proved for i = 1, j = 2. The case i = 2, j = 1 is handled similarly. �

8 Degeneration to the Discrete Sine Kernel

8.1 The discrete sine kernel

Let φ ∈ (0,π) be arbitrary. The discrete sine kernel (associated to φ) on Z is

Kφ

sine(m,n) :=
⎧⎨⎩

sin(φ(m−n))
π(m−n)

, if m �= n,

φ
π
, if m = n.

The sine kernel is translation-invariant. It is the correlation kernel for the discrete sine

process on the lattice of integers, see for example, [6, 7].

8.2 Limit to the discrete sine kernel

Recall the gauge-transformed elliptic tail kernel K̃γ ,δ(x, y) defined in (3.8).

Theorem 8.1. Let ϕ ∈ (0,π) and s > 0 be fixed. The admissible pair (γ , δ) may vary, but

always satisfying γ = δ ∈ C \ R. In the limit regime

ln δ − ln γ

2i
= ϕ,

|m|, |n| → ∞, q → 1−, in such a way that m − n is fixed, and qm, qn → s, (8.1)
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one has the pointwise limits

K̃γ ,δ(ζ+qm, ζ+qn) → Kπ−ϕ

sine (m,n),

K̃γ ,δ(ζ−qm, ζ−qn) → Kϕ

sine(m,n).

Remark 8.2. When q → 1−, the lattice L approximates any point in the real line.

Theorem 8.1 is saying that near any point a ∈ R \ {0}, the point processes Mγ ,δ

associated to the kernels K̃γ ,δ (or equivalently, associated to the elliptic tail kernels

Kγ ,δ) weakly converge to a discrete sine process Pa. Moreover, the parameter of

Pa depends only on the sign of a; if a > 0, the parameter is π − ϕ, whereas if

a < 0, the parameter is ϕ. Observe that the discrete sine process associated to

π − ϕ is obtained from the one with parameter ϕ by the particle-hole involution

on Z.

Remark 8.3. One can show that, for any pairwise distinct a1, . . . ,ak ∈ R \ {0}, the
discrete sine processes Pa1 , . . . ,Pak (obtained as weak limits of the measures Mγ ,δ) are

independent.

Proof of Theorem 8.1. We analyze K̃γ ,δ(ζ+qm, ζ+qn) and K̃γ ,δ(ζ−qm, ζ−qn) using Lem-

mas 3.4 and 3.6. Throughout the proof, the notation A ∼ B means limq→1− A/B = 1.

Step 1. We first analyze C(γ , δ).

From Lemma A1, (q;q)−2∞ ∼ reπ2/3r

2π
. From Lemma A3, we obtain

θq(γ ζ−) ∼ e
π2
6r − 2π2

r (c+z−)2+iπ(c+z−), θq(γ ζ+) ∼ ie− π2
3r − 2π2

r (c+z+)2− 2π2
r (c+z+)+iπ(c+z+),

θq(δζ−) ∼ e
π2
6r − 2π2

r (d+z−)2+iπ(d+z−), θq(δζ+) ∼ −ie− π2
3r − 2π2

r (d+z+)2+ 2π2
r (d+z+)+iπ(d+z+),

θq(ζ−/ζ+) ∼ e
π2
6r − 2π2

r (z−−z+)2+iπ(z−−z+), θq(γ δζ−ζ+) ∼ e
π2
6r − 2π2

r (c+d+z−+z+)2+iπ(c+d+z−+z+),

θq(δ/γ ) ∼ −ie− π2
3r − 2π2

r (d−c)2+ 2π2
r (d−c)+iπ(d−c).

Putting everything together in the formula (7.3) for C = C(γ , δ) yields

C ∼ ri

2π
. (8.2)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa038/5775498 by guest on 07 June 2021



38 C. Cuenca et al.

Step 2. From the assumption (8.1), we have

(−1)m+n ×
γmδn

(
√

γ δ)m+n − γ nδm

(
√

γ δ)m+n

q(m−n)/2 − q(n−m)/2
= (−1)m+n · exp(ϕ(n − m)i) − exp(−ϕ(n − m)i)

r(n − m)

= (−1)n−m · 2i sin(ϕ(n − m))

r(n − m)
= 2i sin((ϕ − π)(m − n))

r(m − n)
. (8.3)

Combining this equality with the estimate (8.2) and Lemma 3.4, we have

K̃γ ,δ(ζ+qm, ζ+qn) ∼ −sin((ϕ − π)(m − n))

π(m − n)
= sin((π − ϕ)(m − n))

π(m − n)
, form �= n.

Similarly,

K̃γ ,δ(ζ−qm, ζ−qn) ∼ sin(ϕ(m − n))

π(m − n)
, form �= n.

Step 3. We still need to study the case m = n. Begin with the equality

ζ+

{
δ
θ ′
q(δζ+)

θq(δζ+)
− γ

θ ′
q(γ ζ+)

θq(γ ζ+)

}
= f ′

δ(1) − f ′
γ (1),

where we denoted fγ (w) := ln θq(γ ζ+w), fδ(w) := ln θq(δζ+w). From Lemma A.3, we have

ln θq(x) =
(

π2

6r
− 2π2u2

r
+ iπu

)
· (1 + o(1)),whereu = u(x) = ln(−x)

2π i
, |�u| <

1

2
.

It will be convenient to use the notation

c := ln γ

2π i
, d := ln δ

2π i
, z− := ln |ζ−|

2π i
, z+ := ln ζ+

2π i
. (8.4)

Use the previous estimate for x = γ ζ+w and u = ln(−γ ζ+w)
2π i = c + z+ + lnw

2π i + 1
2 ; it yields

f ′
γ (w) ∼ −4π2u

r

du

dw
+ iπ

du

dw
= −4π2

r

(
c + z+ + lnw

2π i
+ 1

2

)(
1

2π iw

)
+ iπ

(
1

2π iw

)
.

Setting w = 1, we can simplify the formula to

f ′
γ (1) ∼ 2π i

r

(
c + z+ + 1

2

)
+ 1

2
.

Similarly,

f ′
δ(1) ∼ 2π i

r

(
d + z+ − 1

2

)
+ 1

2
,
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and therefore

ζ+

{
δ
θ ′
q(δζ+)

θq(δζ+)
− γ

θ ′
q(γ ζ+)

θq(γ ζ+)

}
∼ 2π i

r
(d − c − 1) = 2π i

r

(
ln δ

2π i
− ln γ

2π i
− 1

)
= 2i(ϕ − π)

r
.

Combining this estimate with (8.2) and Lemma 3.6, we have

K̃γ ,δ(ζ+qm, ζ+qm) ∼ π − ϕ

π
, for any m.

Similarly, we obtain

K̃γ ,δ(ζ−qm, ζ−qm) ∼ ϕ

π
, for any m.

�

A Jacobi’s Imaginary Transformation

The 3rd Jacobi theta function [35] is the analytic function on C
∗ defined by

θ3(z;q) :=
∑
n∈Z

znqn
2/2 = (q,−√

qz,−√
q/z;q)∞ = (q;q)∞ · θq(−

√
qz).

(In contrast with the usual definition, we use the parameter q1/2 and not q.) The 2nd

equality is Jacobi’s triple product identity (see [18]).

Let r = r(q) := − ln q > 0. For z ∈ C
∗, let u = ln z

2π i . Then Jacobi’s imaginary

transformation is

θ3(z;q) =
(
2π

r

) 1
2

e− 2π2u2
r · θ3

(
e

4π2u
r ; e− 4π2

r

)
. (A.1)

As q → 1−, then r → 0+, and so e− 4π2
r → 0+. Thus, in principle, limits of the

Jacobi theta function θ3(z;q) when q → 1− are related to the limits when q → 0+. This
relation allows us to prove the following estimates for q-Pochhammer symbols.

Lemma A1. Set q = e−r, then

(q;q)∞ =
(
2π

r

) 1
2

e− π2
6r (1 + o(1)), asr → 0+.
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Proof. The definition of θ3(z;q) gives (1+√
qz)−1θ3(z;q) = (q,−q

√
qz,−√

q/z;q)∞. Then

set z = − e2π iε√
q ; Jacobi’s imaginary transformation yields

(q,qe2π iε , qe−2π iε ; q)∞ = (1 − e2π iε)−1
(
2π

r

) 1
2

e− 2π2
r ( 12+ε− ri

4π
)2 · θ3

(
−e

2π2
r + 4π2ε

r ; e− 4π2
r

)

=
(
2π

r

) 1
2

e− 2π2
r ( 12+ε− ri

4π
)2 · 1 − e

4π2ε
r

1 − e2π iε
×

∞∏
n=1

(1 − e− 4π2n
r )(1 − e− 4π2n

r + 4π2ε
r )(1 − e− 4π2n

r − 4π2ε
r ).

Take the limit ε → 0+ to get

(q;q)3∞ = −i
(
2π

r

) 3
2

e− 2π2
r ( 12− ri

4π
)2 ×

∞∏
n=1

(1 − e− 4π2n
r )3

=
(
2π

r

) 3
2

e− π2
2r + r

8 ×
∞∏
n=1

(1 − e− 4π2n
r )3 =

(
2π

r

) 3
2

e− π2
2r (1 + o(1)), asr → 0+,

from which the result follows. �

Lemma A2. Set q = e−r. For z ∈ C \ R≤0, set u = u(z) := ln z
2π i . Then

θq(z) = ie− π2
3r − 2π2u2

r − 2π2u
r +iπu(1 − e

4π2u
r ) · (1 + o(1)), asr → 0+.

The estimate is uniform for | arg z| ≤ π − ε, where ε > 0 is arbitrary.

Proof. In terms of the Jacobi theta function, we have

θq(z) = θ3(−z/
√
q;q)

(q;q)∞
. (A.2)

First assume −π < arg z ≤ 0. Let v = ln (−z/
√
q)

2π i = ln z−(ln q)/2+π i
2π i = u + r

4π i + 1
2 , so that

0 ≤ �u < 1
2 . Then, Jacobi’s imaginary transformation and the definition of θ3 give

θ3(−z/
√
q; q) =

(
2π

r

) 1
2

e− 2π2
r (u+ r

4π i+ 1
2 )2

∞∏
n=1

(
1 − e− 4nπ2

r

)(
1 − e

4π2
r (u−n)

)(
1 − e

4π2
r (u−n+1)

)

=
(
2π

r

) 1
2

e− 2π2
r (u+ r

4π i+ 1
2 )2(1 − e

4π2u
r ) · (1 + o(1)), asr → 0+. (A.3)

From (A.2), (A.3), and Lemma A1, we obtain the desired result. The case 0 ≤ arg z < π is

analogous, and the statement about uniformity is evident. �

Lemma A3. Set q = e−r. For z ∈ C \ R≥0, set v = v(z) := ln(−z)
2π i so that −1

2 < �v < 1
2 .

Then

θq(z) = e
π2
6r − 2π2v2

r +iπv · (1 + o(1)), asr → 0+.
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The estimate is uniform for | arg z| ≥ ε, where ε > 0 is arbitrary.

Proof. The proof is similar to that of Lemma A2. �
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