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We introduce and study a new family of g-translation-invariant determinantal point
processes on the two-sided g-lattice. We prove that these processes are limits of the
g—zw measures, which arise in the g-deformation of harmonic analysis on U(co), and
express their correlation kernels in terms of Jacobi theta functions. As an application,
we show that the g—zw measures are diffuse. Our results also hint at a link between the

two-sided g-lattice and rows/columns of Young diagrams.

1 Introduction
1.1 Preface

The subject of this paper is the study of a family of “tail processes” associated to certain
random point processes of representation-theoretic origin. All the point processes in
this article are determinantal and thus our study will focus on their correlation kernels.

Recall that a random point process on a locally compact space X is defined

by a probability measure on the space Conf(X) of locally finite point configurations.
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2 C. Cuenca et al.

Informally, its associated tail process describes the random point configuration near
infinity. A simple example is provided by the well-known family of Poisson-Dirichlet
distributions PD(t), T > 0, which describe asymptotics of random ranked relative
frequencies in various contexts, see [21, 28] and references therein. In this case, the
space is X = (0,1]. Locally finite point configurations accumulate near 0, which is
excluded from X and plays the role of the boundary point at infinity. Under the change
of variables x = e™¢, the interval (0, 1] is transformed into [0, +00), so that the boundary
point is transferred to +oo. Here the tail processes turn out to be stationary Poisson
processes; they arise in the limit transition when we set t = A + s and take the limit
A — +o0.

Another example comes from the problem of harmonic analysis on the infinite
symmetric group, [8, 9]. That problem leads to a two-parameter family of measures
on Conf(R \ {0}), called the z-measures (the two parameters are usually labeled z, 7/,
hence the terminology). Again, we are interested in the behavior of random point
configurations near the origin. Notice that there is an important difference with the
previous example, namely that points on X can approximate the point O from the right
and from the left. As explained in [8], see also [25], the tail process of a z-measure lives
on the space Conf(R L R)—where R U R is the disjoint union of two copies of the real
line—and is stationary in the sense that it is invariant with respect to simultaneous
shifts on both of the lines.

Both the z-measures and their tail processes belong to the class of determi-
nantal measures. A detailed discussion of this notion can be found in [33]; here we
only point out that a determinantal measure on Conf(X) is uniquely determined by a
complex-valued function on X x X called a correlation kernel.

In the case of the tail process of a z-measure, the correlation kernel can be
treated as a certain stationary 2 x 2 matrix kernel on R. It is expressed through
trigonometric functions and we call it the matrix trigonometric kernel.

The matrix trigonometric kernel has some resemblance with the famous sine
kernel from random matrix theory. Like the sine kernel, the matrix trigonometric kernel
possesses a universality property; it serves as the tail kernel for not only the z—
measures, but also for other determinantal measures of representation-theoretic origin,
see [11]. Those other measures arise in the context of harmonic analysis on infinite-
dimensional classical Lie groups: unitary, orthogonal, and symplectic, see [10] for the
unitary picture and [14] for the orthogonal and symplectic pictures.

As shown in [20], the problem of harmonic analysis on the infinite-dimensional

unitary group admits a kind of quantization, which leads to a new family of
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The Elliptic Tail Kernel 3

determinantal point processes. These processes live on a two-sided g-lattice—a
countable subset of R \ {0} accumulating near 0 from both sides (see below). We use
the name g—zw measures for these objects, as the analogous measures in the g = 1 case
are called the zw measures (they depend on four parameters usually labeled z, 2/, w, w’).
The study of the tail processes of the g—zw measures is the central topic of this text.
In this direction, we discover a two-parameter family of g-translation-invariant kernels
on the two-sided g-lattice. They are expressed in terms of theta functions. We believe
that these kernels are fundamental objects in the realm of determinantal processes on
the two-sided g-lattice.

The question of quantizations of constructions in asymptotic representation
theory has led to an extensive theory in recent years. In particular, Gorin [19] inves-
tigated the g-versions of the extreme characters of the infinite-dimensional unitary
group, [15] produced such results for the infinite-dimensional orthogonal and symplec-
tic groups, [13] added Macdonald’'s parameter ¢ to the theory, [5] studied the related
Markov processes, and [30, 31] linked the extreme g-characters to representations of
inductive limits of compact quantum groups.

There have also been a few combinatorial developments related to the g—zw
measures: in [26], the associated Markov processes and splines were investigated; in
[16, 27], the g—zw measures motivated the construction of new families of orthogonal
symmetric functions. In spite of these efforts, and in contrast to the g = 1 case [10], the
representation-theoretic meaning of the g—zw measures is not fully understood at this
moment. In particular, we do not know the proper role of the two-sided g-lattice in the
representation-theoretic picture.

The study of the tail processes of g—zw measures is, thus, also motivated by the
attempt to better understand the g—zw measures themselves. We partially accomplish
that goal—along the path we show that the g—zw measures are diffuse. Furthermore,
while investigating a ¢ — 1 limit of the tail processes, we manage to link the mysterious

two-sided g-lattice to separate encodings of rows and columns of Young diagrams.

1.2 The measures M%A:v 3

The two-sided g-lattice mentioned above has the form

Ci={...c.qgt e, q.  Jul.0.q0.0,.9

where {, > 0 > ¢_ and g € (0,1) are fixed parameters. The determinantal processes

investigated in [20] are given by certain probability measures M*#7*® on the space of
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4 C. Cuenca et al.

point configurations Conf(£). Here («, 8, ¥, 5) is a quadruple of complex numbers subject
to some constraints. We continue to use the name g—zw measure for M*#7?, although
the origin of the name might not be transparent in our present notation. The measure

MePv38 ig defined as the N — oo limit of the measures

N

wpd L (x5 9 (BX ) o
My (X)_ZNH('X‘l(J/ql—in;q)oo(aql—in;q)oo [T oy

i=1 1<i<j<N

on N-particle configurations X = {x;,...,xy} on £. Here Zy is an explicit normalization
constant and (u; @), = [[720(1 — ug’) is the infinite g-Pochhammer symbol.

The g-zw measure M%#7? possesses a reflection symmetry property; the
transposition of the positive and negative parts of the two-sided g-lattice (together
with the changes ¢, — —¢_and ¢ — —¢,) is equivalent to changing the signs of the
parameters «, 8, ¥, 8. We shall later see that a similar property holds for the tail process,
but that the symmetry is destroyed in the limit transition g — 1.

There exists a function K*#7?(x,y) on £ x £ such that foranyn =1,2,..., and

any given n-element set {x;,...,x,} of £, one has

Prob ({x;,...,x,} C M*P73_ random subset of g) = lg?‘in [K“'ﬂ'y"s(xi,xj)] .

This means that M*#7? is a determinantal measure and K*#74(x,y) serves as its
correlation kernel. An explicit expression for the kernel K*#74(x,y) was obtained in
[20]; we reproduce it below, see (2.1). The formula involves g-factorials, theta functions,
and the basic hypergeometric function ,¢; (a g-version of Gauss' hypergeometric
function). We call K*#74(x, y) the basic hypergeometric kernel.

The reader is referred to [20] for more detailed information about the measures
M*#P 74 and their connection to the problem of harmonic analysis on the infinite-
dimensional unitary group. Several other kernels of representation-theoretic origin are
known in the literature, see [8-11, 14]. They involve various hypergeometric functions

(up to 4F3), but not g-hypergeometric ones.

1.3 Summary of results

1.3.1 The tail process
Note that the g-lattice £ is invariant under the homotheties T*! : x — g*!x. Given a

probability measure M on Conf(£), define the transformed measure T-*M by

(T~*M)(A4) := M(¢*A), A C Conf(£), keZ.
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The Elliptic Tail Kernel 5

The next result describes the tail processes of the g—zw measures, namely the
behavior of a random point configuration of £ (distributed according to the g—zw

measure M%# %) near the origin.

Theorem 1.1. [see Theorem 4.1 below] As k — +o0, the measures T~ ¥M*#7 4 weakly
converge to a probability measure M”*®, which depends on y and § only. The measure

M7 is determinantal and a correlation kernel K7+ (x, y) for it is given in (3.4).

The kernel K”(x,y) is expressed in terms of theta functions, and we call it
the elliptic tail kernel. By its very definition, the measure M”* is stationary, that is,
it is invariant under the transformations T*!. After a simple gauge transformation,
which does not affect the measure M”*, the kernel K¥* becomes stationary too—see
Proposition 3.3.

The measures M?*® are responsible for the limit behavior of the random
configuration near the origin. The proof of Theorem 1.1 relies on the analysis of the
asymptotics of the basic hypergeometric kernel K*#74(x,y) at (0,0) € £2.

The reader might ask why we associate our tail processes exclusively with the
asymptotics at 0 and do not examine the limit behavior of random configurations at
infinity; the reason is that the configurations are almost surely bounded away from

+o00, so that 0 is the only accumulation point (see [20]).

1.3.2 Absence of atoms

Recall that a measure is said to be diffuse if it has no atoms.
Theorem 1.2. [see Theorem 5.3 below] The measures M%#7? are diffuse.

This result is deduced from the existence of the tail process and a simple general
criterion to determine whether a determinantal measure is diffuse, which is of some

independent interest.

1.3.3 The projection property.

A kernel on a discrete space X is said to be a projection kernel if it corresponds
to a projection operator on the Hilbert space ¢?(X) (i.e., the operator of orthogonal
projection onto a subspace). With a suitable modification, the definition can be extended
to nondiscrete spaces too. In many concrete examples of determinantal processes, the

correlation kernels turn out to be projection kernels. The projection property seems to
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6 C. Cuenca et al.

be extremely important: many strong results about determinantal processes rely on it,

see for example, [12, 23].

Theorem 1.3. [see Theorem 6.1 below] The elliptic tail kernel KV9(x, y),Xx,y € £ isa

projection kernel.

One may ask whether the basic hypergeometric kernel K*#79(x,y) is a
projection kernel too. We believe that this is true, based on computer experiments—
one plausible approach to prove it is to show that certain orthogonal elements of ¢£2(£)
form a basis of the range of the projection and that K*#7 can be expressed in terms
of them, see [23, Rem. 5.8]. However, even if we knew that K*#79(x,y) is a projection
kernel, Theorem 1.1 does not imply that K?(x,y) is also a projection kernel, because
the projection property is not necessarily preserved under weak limits. In particular,
the basis elements §, of [20, Rem. 5.8] do not seem to have any obvious limit in the
regime of Theorem 1.1. Thus, we had to find a different approach.

The plan of our proof of Theorem 1.3 is as follows. Using a natural identification
of £ with Z U Z one can treat K?(x,y) as a kernel on Z with values in 2 x 2 matrices.
After a simple gauge transformation, that kernel becomes translation-invariant, so the
Fourier transform of the gauge-transformed operator corresponds to an operator on the
Hilbert space L?(T; C?) (C?-valued functions on the unit circle) given by multiplication
by a 2 x 2 matrix-valued function. Then we check that the values of this function are
projection matrices. The idea is simple, but its realization required a lot of laborious

computations with elliptic functions.

1.3.4 Degeneration to the matrix trigonometric kernel

The particle/hole involution on Z is the involutive map Conf(Z) — Conf(Z) defined as
X +— Z\ X (cf. [7, Appendix, §A.3]). Given a measure M on Conf(Z U Z), let M stand for
the pushforward of M under the particle/hole involution on the 1st copy of Z. Let us call
it the partial particle/hole involution. As above, identify the two-sided g-lattice £ with
ZUZ (the positive part of £ is identified with the 1st copy of Z and the negative part of £
with the 2nd copy), which makes it possible to apply the partial particle/hole involution

to the measure M?. Let us denote the resulting measure by M7,

Theorem 1.4. [see Theorem 7.1 below] Rescale the lattice Z by a factor of In (1/q), so

that in the limit ¢ — 1~ it becomes the real line R. In the limit regime

(=—q, =g, y=q"%, §=¢"%, g1,
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The Elliptic Tail Kernel 7

where 3_,3, (resp. ¢,0) are fixed real (resp. complex) parameters satisfying certain
constraints, the point process given by the measure MrA weakly converges to the tail

process of the z-measure with appropriately chosen parameters.

Note that the limit transition in question does not exist for the measures M";
the reason is that the density of particles on the 1st copy of Z tends to 1.

As pointed out in the preface, the tail process of a z-measure has the matrix
trigonometric kernel as a correlation kernel. Note that the matrix trigonometric kernel
is not a projection kernel and is not even symmetric. However, it possesses a different
symmetry property, called J-symmetry, see [8, 9]. The origin of the J-symmetry property
is just the partial particle/hole involution (see [25])—this explains why we have replaced
M"? by M?3. In the context of z-measures, the involution is a natural operation,
whose origin is the parameterization of Young diagrams (i.e., labels of irreducible
representations of symmetric groups) via their rows and columns. The particle/hole
involution then becomes the transposition of the diagram interchanging rows and
columns.

Simultaneously, the positive and negative semi-axes for the z-measures and two
copies of R for their tail processes correspond precisely to the rows and columns of the
Young diagrams; as explained in [8], the particles on the positive semi-axis encode rows
and the particles on the negative semi-axis encode columns. Together with Theorem 1.4
this creates a connection between the positive and negative parts of the two-sided g-
lattice on one side and rows and columns of the Young diagrams on the other side.
Hence, one might expect a relation between the two-sided g-lattice and some separate
quantizations for the rows and columns of Young diagrams, parameterizing irreducible

representations. We hope to further develop this point of view in future publications.

1.3.5 Degeneration to the discrete sine process
The discrete sine process is a stationary determinantal process on Z, depending on a

parameter ¢ € (0, ). It is given by the correlation kernel

sin(¢(m-n))
== ifm#n
) o r(m—n) ' '
Keine(m,n) :=

ERSS

, if m = n.

Note that K¢

sine
limit of the Plancherel measure on partitions in [7]. It also possesses some universality

(m,n) is a projection kernel. The discrete sine process 1st appeared as a

property, see [1, 24].
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8 C. Cuenca et al.

Theorem 1.5. [see Theorem 8.1 below] Let ¢ € (0,7) and a € R\ {0} be arbitrary
parameters. As g — 17, the two-sided g-lattice £ fills the entire real line. Zooming in

near a, the point process M?*® converges weakly to a discrete sine process in the regime

In§ —Iny

, — 1.
2 ¢ 4

Moreover, the parameter of such discrete sine process depends only on the sign of a; if

a > 0, the parameter is 7 — ¢ and if @ < 0, the parameter is ¢.

Finally, let us mention that in all the proofs of this article, we ignore the case
8 = y. The reason is that this case requires special attention, but the proofs go through,

either by employing the formulas at the end of Section 3.4 or by analytic continuation.

1.4 Organization of the article

In Sections 2 and 3, we introduce the basic hypergeometric kernel and the elliptic tail
kernel, respectively. In Section 4 we prove Theorem 1.1 on the limit from the former
kernel to the latter one. In Sections 5 and 6, we prove Theorems 1.2 and 1.3, respectively.
The continuous limit of the elliptic tail kernel, as in Theorem 1.4, is discussed in
Section 7. The discrete limit of Theorem 1.5 occupies Section 8. Finally, in Appendix A,
we recall Jacobi's imaginary transformation and apply it to deduce some technical

estimates.

2 g-zw Measures and the Basic Hypergeometric Kernel

We review some definitions and results from [20].
Fix parameters g € (0,1) and ¢, > 0 > ¢_ for the rest of the paper. Define the

two-sided g-lattice

e:=¢q"ueq"={.. 0 gVt q. Jul.. . ;ql.,0q ")

Definition 2.1. We say that (x,y) € C? is an admissible pair if one of the following
holds:
e y=Xx¢€ C\R (principal series), or
o ('™ <x,y <¢Z'q™*! for some m € Z, or ¢ g™ < x,y < ¢ 'q" for some
n € Z (complementary series).

Note that xy € R whenever (x, y) is an admissible pair.
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The Elliptic Tail Kernel 9

We also say that («, 8,y,8) € C* is an admissible quadruple if both («, ) and
(y,8) are admissible pairs, and additionally o8 < g®y$.

The g-zw measures M*#7% are probability measures on the space of point
configurations Conf(£) that depend on admissible quadruples of parameters («, 8, y, 3).

Equivalently, they are point processes on £ [17]. It is known that M*#7% (just like any

point process on a discrete space) is determined by the sequence {,af‘,"s’y"3 (CTRRI &y} M)
of correlation functions:
pﬁ'ﬂ’y’a(xl,...,xn) := Prob ({x,...,x,} C MYPY4_ random subset of L), xq,....%x, € L.

In [20, Thm. 5.2], for each admissible quadruple («, 8, y,8), the g-zw measure

M*Pv4 is defined as the unique point process on £ whose correlation functions are

given by
,of{’ﬂ’y’a(xl, ...,x,) = det [K"'ﬂ'y"s(xi,xj)], n>1,
1<ij<n
where x;,...,x, € £ are pairwise disjoint, and

$1&X)To¥) —F1(MFex)
X—y '

KBV (x,y) = e, B,v,8)

x,yek, (2.1)

the constant is

(% o )
eq()/f_,y§+/5§_,3§+) ) )/(Slq'}/glq 00

et 2.2
o C-G(g— 54() (ﬁféﬁ ) (2.2
+ “q §+IV 54 )/'(S'V'B'q'q’q N
and the functions §,(x), §; (x) on £ are
Bg" ¢~ -1
rPY 4. q q
3" (X) = |X|%(_X)l—r( Y ’(SX,q)OO . d) s , ﬁ_X ,qu_l r_o 1
r T Qq(X)/,XS) w. 2¥1 q_r y , =0,1.
yé 4 00 8x
(2.3)

(In [20], there was a sign mistake in the correlation kernel—the version here is correct.)

Above we used traditional g-calculus notation [18] for the g-Pochhammer symbols, theta
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10 C. Cuenca et al.
functions, and g-hypergeometric functions:

o0
@ Qoo = [[A =24 @11 2 Do = (21 Do+ Eyi Do
i=1

eq(z) = (Z' Q/Zr q)oo' eq(zl’ tet 'Zm) = eq(zl) o eq(zm)l

1_alql 1)(1_a2ql 1)
)_1+Zz 2l e

a, as

b

2p1(aq,a. b 2) = 2¢1(

A few remarks are in order:

1. The g-Pochhammer symbol (z; g),, is an entire function of z, whose set of
zeroes is g%<0. Likewise, the theta function 64(2) is holomorphic on C* = C \ {0} and
its zeroes are the points of qZ. It follows that the denominator of €(«, 8, y,8) does not
vanish: ¢_/¢,,y8¢.¢, < 0,80 ¢_/¢,,v8¢ ¢, ¢ q%, whereas if a/y € g”<°, then af <
q*y$ is impossible (similarly for the other fractions «/8, 8/y, /). Also, the denominator

[64(xy, x8) - (@Bq* %/ (y3); @) Of Fr(x) is nonzero for x ¢ y~'q” Us~'q”, in particular
forx € £.

2. The g-hypergeometric function ,¢,(a;,a,;b | z) is analytic on the unit disk
|z| < 1. As a function of z—denote F(2) := ,¢,(a;,a,; b | z)—it satisfies the g-difference

equation (see e.g., the survey [22])
(b — alazqz)F(qzz) + (=b—q+ (a; +a,)q2)F(qz) + q(1 — 2)F(z) =0, |z| < 1. (2.5)

This implies that the value of F(z) can be obtained as a linear combination of F(gz)
and F(q®z). The expressions for the coefficients of the linear combination are rational
functions with, at most, simple poles at z = 1. Consequently the g-hypergeometric
function can be analytically continued to a meromorphic function with simple poles at
the points 1, q_l, q_z, .... The analytic continuation will also be denoted by ,¢,(a;,a,; b |
z). The meromorphicity of the g-hypergeometric function is not present when g = 1—in
that case, the hypergeometric function ,F; (a,, a,; b | 2) is often defined only on C\[1, c0).

3. The previous remark implies that (z;q),, - 2¢;(a;,a,;b | z) is an entire
function of z. As a function of b, the g-hypergeometric function ,¢,(a;,a,; b | 2) is also
meromorphic with simple poles at the points of g%<0 and therefore (b; Qoo 201(ay, a4, b |
z) is an entire function of b. Both these points imply that (b,z; q), - 2¢,(ay,a4; b | 2) is
an entire function on b and z. As a result (see also the 1st remark), the right-hand side
of (2.3) is well defined whenever x ¢ y ~1g% U §~1q” U {0}, that is, the function F,(x) of x
can be continued from £ to C\ (y g% Us~1q% U {0}).
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The Elliptic Tail Kernel 11

4. When x = y, we make sense of (2.1) by using L'Hoépital’s rule:

KoPY3(x, %) = €(a, B,7,8) - Fr0FoX) — F10Fx), x€ L,

where §. is the derivative of §, (when §, is now seen as a function on C\ (y "}qZUs1q%U
{o}).

5. From the 1st and 3rd remarks above, the functions F,(x), 7; (x) admit analytic
continuations to the domains D, := C, \ (y"!q* Us~'q%), where C, := {z € C: +%z > 0}
(replace /[x[ by (£x)'/2, for x € D,). The previous remark and Cauchy's integral formula

then show

Ka,ﬁ,y,5 ,
K“'ﬁ'V'S(X, X) :7{ ﬁdz, xe g, (2.6)

|z—x|=€ z—X

for a sufficiently small € > 0 (depending on x). If we let D := D, UuD_ = C\(y ~1q?Us~1qU
{Mz = 0}), then K*#7?(x,y) admits an analytic continuation to the domain (x,y) € D?.
The point processes M*#7% on € (or the corresponding probability measures
on the space of point configurations on £) are called the g—zw measures. They are
determinantal point processes with correlation kernels K*#74(x, y). We call K*#V 9 (x, y)

the basic hypergeometric kernel.
3 The Elliptic Tail Kernel

3.1 Theta functions

One of the basic properties of the theta function 6,(2) = (z,q/z q) is the quasi-
periodicity

nn-1)

Gq(q”z) =(-1)"q "z z‘"eq(z), nez, (3.1)

which we often use without mention. They also satisfy the following fundamental

identity.

Lemma 3.1. Forany X,Y,Z W e C*,

Z
=3 @XY, Y/X, gZW, W/2). (3.2)
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12 C. Cuenca et al.

Proof. This is known as the three-term relation due to Weierstrass, see for example,
[29, (1.12)]. The formula in this reference is seen to be equivalent to (2) by use of the
identities (3.1) and 64(2) = 0,4(q/2). |

3.2 Definition of the elliptic tail kernel

For any admissible pair (y, ) € C?, as in Definition 2.1, let

6 — 06,9 5 —
C=C(y,d) := art y;* 00 5( y 2 . (3.3)
; . 9 (__I V‘S;_é‘ ) )’8 ° <_I /49,9 )
+ 7q §+ + % S 4.9: 9 -
The elliptic tail kernel associated to (y, ) is the function on £ x £ given by
P — P
K74 (x,y) = C- (x)Q(y) — Q(x) (Y)’ xyed, (3.4)
X—-y
where
0 (x8) 0 (xy)
P(x) = /x| —E——, Q(x):= \/|X|#, xe g (3.5)
[64(xy, x8) [04(xy , X8)
When x = y, the kernel is given by L'Ho6pital's rule:
K"%(x,x) = C- (P (x)Q(x) — Q' (x)P(x)), x¢€ L. (3.6)

The formulas in (3.5) give analytic continuations for the functions P(x), Q(x) to the
domains D, := C, \ (y 'q? Us1g?), where C,. = {z € C : £%z > 0} (replace /x|
by (zx)V/2ifx e D,). Let D:=D, UD_=C\ (y 1q? Us"1¢Z U {%z = 0}). Note that £ C D

because (y,§) is an admissible pair. Thus, (3.6) implies

K74(z,
K7 (x, %) =% K@%, xee, (3.7)
|z—x|=€ zZ—X

for a sufficiently small ¢ > 0 (depending on x). It follows that K?*(x,y) admits an

analytic continuation to D?.
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The Elliptic Tail Kernel 13

Remark 3.2. Another determinantal point process whose correlation kernel is
expressed through theta-functions was introduced in [34], see equations (1.25) and
(1.26) there. The key difference is that the kernel of [34] is a function of a continuous
argument and the configurations of the process are subsets of R, while our kernel is
a function of a discrete argument, and our configurations are subsets of the g-lattice.
One can draw here a vague analogy with the theory of orthogonal polynomials, where
same hypergeometric functions can be linked to polynomials both on continuous and on
discrete orthogonality sets. For instance, specializations of the hypergeometric function
3F, give rise both to Hahn polynomials (whose orthogonality set is a segment in Z) and

continuous Hahn polynomials (whose orthogonality set is R).

3.3 The g-translation-invariance property

Let € : £ — {+1,—1} be defined by e(x) := 1if x = ¢, g™, and €(x) := (-D" if x = ¢_q".

Consider the gauge-transformed kernel
K7 (x,y) = e@e(y) 'K’ (x,y) = €@K (x,y). (3.8)

Proposition 3.3. The kernel K?? is g-translation-invariant, that is, K¥?(gx,qy) =

KY#(x,y), for any x,y € £.
Proof. From the definitions (3.4) and (3.8), we can write

R (x,y) = C- P(X)O(Y;:;)(X)P(Y)' xyed,

where
0, (xd) 0y(xy)

[0y, x8) [0 (xy, x8)’

The quasi-periodicity property of the theta functions shows

P(x) := e(x)/|x] Q(x) := e(x)\/|x] xe L.

Vards x| Vars

Blax) = — M e(@e Y50, Ggx = —He@en Y 8m), xe .
X ) X V4

If x > 0, then e(x) = e(gx) = 1, so P(gx) = —(/qy3/8)P(x) and Q(gx) = —(/qy38/y)Q(x). If
x < 0, then e(gx) = —e(x), so again P(gx) = —(y/qy3/8)P(x) and Q(gx) = —(\/q73/y)Q(x).
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14 C. Cuenca et al.

It follows that K¥%(gx,qy) = K" (x,y) whenever x # y are points in £. It remains to
prove the equality when x = y is a point in £.

Similarly as above, one has K?(gx, qy) = K¥(x,y) whenever x # y are points in
£ of the same sign (note that this equality is for k¥ and not K?*%). Since K7 (x, y) admits
an analytic continuation to the g-invariant domain D% uD? C D? and both D_, D, are
path-connected, then also K8 (gx,gx) = KY3(x,x),forallx e D = D,uD_, in particular
for all x € £. Hence, K% (gx, gx) = K" (gx,qx) = K?%(x,x) = K¥*(x,x), forallx e £. W

3.4 Simplified formulas for the elliptic tail kernel

We simplify K% (x,y) when x = ¢, q™, y = {,q", for m,n € Z. The next two lemmas are
simple consequences of the quasi-periodicity property of the theta function; we omit
their proofs. Recall that C = C(y, §) was defined in (3.3).

Lemma 3.4. For any integers m # n,

ymen ynsm
K76, g™, ¢, q") = Oy DT (ram
+L g
yrsm ymsn
KV'S({ qm ¢ qn) —Cx (v V(g)m-i-n (v yg)mﬂ—n‘
=

Lemma 3.5. Foranym,n € Z,

K" (¢,.q" ¢_q") =K"*(¢_q",¢,.q™)
CED™yd y"0,(C_y, £48) — V”S"‘Oq(cﬁ,gy).

m—-n

N R NN N S AL [ L ey

Lemma 3.6. Foranym € Z,

6,(8¢,) ACZeY
K9 m my — gV ’ =C 1) -+ < hs ’ (3.9
497, 64q™) 48y §+[ 9q(5§+) ygq(y§+)
0’ 0! (8
K" _q" e q™ =K ,¢) = Cg“[ ARG é“_)]- (3.10)

"o,re0) V6,060
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The Elliptic Tail Kernel 15

Proof. Proposition 3.3 proves the 1st equalities in (3.9) and (3.10). Let us prove the 2nd
equality in (3.9); the proof of the 2nd equality in (3.10) is similar and we omit it.
At the points (x,x) € £2 of the diagonal, the elliptic tail kernel is

K7 (x,%) = C- (QX)P(x) — P(x)Q' (x)),

where P(x) := /|X|9q(x8,xy)/9q(xy), Qx) = /|X|9q(xy,x8)/9q(x8). Then P(X)2 =

Qq (x98)

. When x > 0, we can take derivatives and obtain
Oq(xy)

|x]

ieq(xa) 0q(x8) _Xéeq(xy)eé(xa) - yeq(XS)Q(’I(Xy) 0q(x8)
dx O (xy)  Og(xy) fq(xy)? Og(xy)’

2P(x)P'(x) = x

Multiply by Q(x)/(2P(x)) = Hq(Xy) / (29q (x8)) to get

80 0! (x8) — y6,(x8)6!
000P ) Z%HX (X0 (x8) — y0,(x8)0; (xy) +1];

Oy (xy, x8)
similarly P(x)Q’(x) is given by the same formula with the swap y < §. Hence,

80,(xy)6}(x8) — y0,(x8)0}(xy)
64(xv, x8)

K¢, ¢.) =C-(QEP (L) — PE)Q' () = Cx -

x=4!

which proves (3.9). ]

Finally, we comment on the elliptic tail kernel with parameters § = y € R

(part of the complementary series). In the limit § — y, we have

G-y B 1 N 1
v8-(8/v. /8 Qe (¥ —8) @87, qv/8 D (¥ —8) - (G PE
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16 C. Cuenca et al.

and

9q(X3)9q(YV) - 9q(XJ/)9q(Y3)
y —3§

— Y8,(x0)8,(7y) — X6, (xy)8, (V).

Then, when § = y, the elliptic tail kernel can be simplified to

2 ) /
ran= M ()
z+-(q;q)§o-eq(f, yz;_;+) v Vo, o6

+

in the case x # y, and it is analytically continued according to L'Hoépital’s rule in the

casex =y.

4 Limit from the Basic Hypergeometric Kernel to the Elliptic Tail Kernel

This section is devoted to proving the following limit.

Theorem 4.1. For any x,y € £, we have
lim (sgn(x) sgn(y)K**7*(q"x,q"y) = K" (x,y),
M— o0

where K%#74 is defined by (2.1) and K7 is defined by (3.4).
Proof. We first transform the functions F,.(x) so that they are well suited for thex — 0
limit.

The Heine transformation formula for ,¢, (cf. [18, Sec. 1.4]) yields

A,B| N\ (B/Azq) C/B,z
2¢1( c ‘Z)_ (€2 Qu 2¢1( Az B)'

We use it with
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The Elliptic Tail Kernel 17

to get
Bq! Q_r_q ag! g L
I NG 75 7: 1) NN U V> S 5 px|Ba
Fr®) = [Ix] 0q(xy, x9) (=0 apq 2 201 q 14
2 4 ~ 8x
Iqufl ﬂqr71
(xat, XB; Q) o 1-r (q ) s q
V0,6, x0) )2 o oz |Bx
'z
Further, recall Watson's formula (see [18, (4.3.2)])
A, B (B,C/A,Az,q/Az; q) A, Ag/C
b, ‘Z _ / q/h q002 1 Cq/ABz
C (CIB/Arqu/Z/q)oo AQ/B

(A,C/B,Bz,q/Bz; q), ’ (B, Bq/C
2¥1

'Cq/ABz
(C,A/B,z,q/2;q) Bg/A

and apply it with

r—1 r—1 2r—2

PRl , g P4 , c - “Pa R
é % yé Bx

to get
_ (%o, XB; @)oo l—r 1
P00 = WG s Y e
Bx,——iq
12 00
ﬂqr—l aqr—l
( , :q) 0y (x89'7T) pat yv@¥ Tt
x |: Y Y o0 2¢1 by 4 o ax

) :
YA 8

+ {same expression after the swapy <« 8}]

In the formula above, do the change of variables x +— ¢"x (later we send

M — o0). The quasi-periodicity of the theta function implies

0,(Aq" %) = (—Ax) Mg MM=D/2g, (Ax),
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18 C. Cuenca et al.

thus
(@"xa, q™xB; q) My 1— 1

.F M — M 2] (— r .
(@7 x) \/Iq Xlq_M(M_l)(XZVS)_M'gq(XJ/,XS) (=xq™) (IBqMX Olﬂquz‘q)

4 yS r ~
r—1 o r—1 — —
(/3‘1_,Q_,-q) 0, (x8q") Bg! yq* "

><|: 14 14 00 q—M(M—l)/Z(_X(sql—r)—M2¢)1 § | a |agMx

) -
v ) 8

+ {same expression after the swapy <« 6}i|

= (- sgn(x))M/mMm G T D (i BT N
q ! M .
(ﬁq Y 'q)oo
r—-1 g1
(ﬁq - ;q) b (x3¢' ) iz B! ya*T
><|: v v -~ (—) 21 s . a |agMx

8 8 14
(y oo 8

+ {same expression after the swapy <« 8}]

For the correlation kernel, we only need 7, and ;. Let us analyze them more carefully,
keeping only the 1st term of the M — oo asymptotics (for F,, we also need 6,(xyq) =
(—xy)—leq(xy) and 6,(x8q) = (—xa)—leq(xa)):

M M, n.
Fo(@"x) = (— sgnioy™ [qux T4 d 3P Do ! .
Oq(xy, x8) . @B
ﬂq X, Z_’q
a“yd )

B «
_ _ —, = 0. (x5)
- pq! g’ (qu)ooq Y \M/2
) P O e
v e

+ {same expression after the swapy <« 8}:|,
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The Elliptic Tail Kernel 19

My aMxB: )

F1(@"x0) = (= sgn(x))M\/ x4 };aof }:Z;q)oo : af \

q\ XV (ﬁqMX, - q)

¥é )

* [ — 5\ (_) (1 + O(QM)) + {same expression after the swapy < 5}]
()
S
Then

KO3 @, qy) = (a7, ) - UL DT C D) =A@ T @)

qMx — g1y
a o B B
3 Q: 8 ;r E/ ;I gr q o u
- (ar,Bl Y ) ‘ (% O[,B é Y ) . (Sgn(X) Sgn(Y))
ys q?ys' vy 8" )
(@ xa, ¢"xB; @), 1 (@yo, ¢™yB; @) 1
x| |x] 5 S vl Sy e
q(XV 1 X8) (Ba"x;q) o 04y, ¥8) BaY: Do

. [(yl (1 ~ ,Bql)(l - aql)_ - (1 - ,Bql)(l - aql)) 0q(x8)6,(vy) — 0 (xy)0, (¥9)
) ) y 14 X—y

+0 (" (v /9™ + @(s/y)M1?) ]

(z a BB )
y' 3y s G-yrsg—ap)

~ c(a'ﬁ’yls) :

(@ a5y, ) ' y282g2
yS'qzyé'y'S' -

M |x| vl 0qx8)0g(yy) — 0g(xy)0,(yd)
x (sgn(x) sgn(y)) \/Qq(x%xa)\/gq(y%ya) Xy '

where we denoted A ~ B to mean limq%1 |A — B| = 0. Note that we used O(g™(y/8)M/? +
g (8/y)M/?) = o(1), as M — oo, which is a consequence of the fact that if (y,8) is an
admissible pair, then |g?y /8|, 1g%8/y| € (0, 1).

Plugging (2.2) into the estimate above gives

Oq(vs_,vEy,88_,88,) _ 1 (-
& e M2 L Yo
§+'9q (€+1y8§_§+) (q/ q)oo (y' (Slq)oo
y |x] lyl  0qx8)0a(yy) — 0g(xy)64(y3)
Qq(XerS) Qq(YV/YYS) X_Y

(sgn(x) sgn(y)MK*#73 (qMx, gMy) ~

’
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20 C. Cuenca et al.

and the expression above is exactly the right-hand side of (3.4). Thus, we have shown
the desired limit for any x # y in £. Recall that both kernels K*#74(x,y) and K¥*(x, y)
admit analytic continuations to D?, where D = C\ (y~'q% U§~1¢% U {fiz = 0}). Such
analytic continuations are given by (2.1) and (3.4) when x # y. Then the estimates above

actually show
lim (sgn(x) sgn(y))MK""ﬁ"’"S (qMX, ny) = K" (x, ),
M- 00

for any x # y in D, where sgn(x) := sgn(fix). Moreover, the limit is uniform for (x,y)
varying over compact subsets of D? \ {(z,z) : z € D}. Then the integral representations
(2.6) and (3.7) imply that the desired limit also holds for x = y. |

Remark 4.2. Notice that due to presence of the terms with both factors (%)M/Z

M2 . . .
and (%) in the asymptotic expansions of functions F,.(¢™x) deduced above, these
functions do not have any meaningful non-degenerate asymptotic behavior as M — oo.
Y

M/2
However, in the formula for K*#74(gMx, qMy) these factors (E)M/2 and (%) cancel

out leading to our limit theorem.

5 An Application: The Absence of Atoms in the g—zw Measures
5.1 A dichotomy for determinantal measures

Let X be a countable set and Q2 be the set of all subsets of X. Observe that any o €
Q can be interpreted as a {0, 1}-valued function on X if we identify a subset with its
indicator function. As a result, Q is in bijection with {0, 1}* and we can equip it with
the product topology, so that it becomes a compact space. Let P(2) denote the space of
Borel probability measures on Q. Any measure M € P(Q2) is uniquely determined by its

correlation functions p,, py, . ... Here
O Xy, Xy) =M{w e Q: {x,...,x,} C o)), n=12,...,

where x;,...,x, are pairwise distinct points of X. M is said to be a determinantal

measure if there exists a complex-valued function K(x,y) on X x X such that

Pp(Xy, .. Xy) = det[K(Xi,Xj)]{szl, n=1,2,....

In particular, p; (x) = K(x,x). Any such function is called a correlation kernel of M.
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The Elliptic Tail Kernel 21

Let ¢2(X) be the complex Hilbert space formed by complex-valued, square-
summable functions on X and {e, : x € X} be its natural orthonormal basis formed

by the delta functions. Given a bounded operator K on ¢?(X), we set
K(x,y) = (Key &),  xy€X,

and call K(x, y) the kernel of K.

Suppose that K is a positive contraction, meaning that K = K* and 0 < K < 1.
Then K gives rise to a determinantal measure MX e P(Q), see for example, [23, Sec. 8],
[32, Thm. 2.1]. Namely, the kernel of K serves as a correlation kernel for MK,

Recall that a measure is said to be diffuse if it has no atoms.

Theorem 5.1. Let M € P(2) be a determinantal measure defined by a positive

contraction on ¢2(X). Let p1 (%) be the 1st correlation function of M and set
p1 (%) :=min(p; (x), 1 — p; (x)).

Then the following dichotomy holds: M is either diffuse or purely atomic,

depending on whether the series >’ 4 pj (x) diverges or converges, respectively.

We give the proof after a little preparation. We need the following elementary

lemma.

Lemma 5.2. If A =[A(,j)] is a matrix of finite size, A = A* > 0, then

det A < [ AG, D).

1

Proof of the lemma. Use induction on N, the size of A. Write A in the block form

corresponding to the partition N = (W — 1) 4+ 1:

A B
A= .
B* D
Assume first that A is nonsingular. Then A > 0, A is invertible, and we may write

det A =detA-(D—B*A!B).
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22 C. Cuenca et al.

Observe that D — B*A™'B < D, since A™! is positive-definite. Hence, det A <
det A - D, and we may apply induction.
If A is singular, then we apply the above argument to A4 + ¢1 with small ¢ > 0

and pass to the limit as ¢ — 0. [ |

We will also use the particle-hole involution w — ®°, where w° = X\ w. It
induces an involutive transformation M — M° of the space P(2). Note that if M = M¥,
where K is a positive contraction, then 1 — K is a positive contraction too, and we have
M° = M'~X, see [7, Appendix §A.3].

A trivial but important observation is that the particle-hole involution leaves the
function pj(x) invariant.

Finally, suppose that X’ is a subset of X and let Q' be the set of subsets
of X' equipped with the product topology (after identifying Q' with {0, 1}¥). The
correspondence w — wN X’ defines a projection @ — €’ and hence a map P(Q) — P(Q).
If M € P(Q) is a determinantal measure, then its pushforward M’ under that map is
a determinantal measure too, and if M = M¥X for a positive contraction, then M’ has a
similar form, with the positive contraction K’ on ¢?(X¥’) whose kernel is the restriction

of the kernel K(x,y) to X’ x X". In particular, the function pj is simply restricted to X’.

Proof of Theorem 5.1. 1. We assume that > 4 pj(x) = oo and prove that M is diffuse.
This means that M assigns mass 0 to any singleton {w}. We will first prove this for

w = X. For any n-point subset X = {x;,...,x,,} C X we have
M{X}) < pp(xq, ..., %,).

By Lemma 5.2,

pn(xy, . x) < [[ o) =[] 1.
i=1

xeX

Therefore, for any finite subset X C X%,

M(x) < [ o).

xeX

On the other hand, for any x € X,

pr(x) < 1 - pi(x).

120z aunp /0 uo 1senb AQ 8615/ /S/QE0RBUI/UIWISE0 L 0 | /I0p/3|01lB-00UBAPER/UIWI/WO0D dNo dlWapeae//:sdjjy Wol) papEojUMO(]



The Elliptic Tail Kernel 23

It follows that

M(x) < [Ja - pie)
xeX
for any finite X. Since > 4 pj(x) = oo, the right-hand side can be made arbitrarily
small with an appropriate choice of X. We conclude that M({X}) = 0, as desired.

Now let us consider the general case w € Q. Set
XO::{XG%:Xgéa)}, xli={xeX:xcw).

As ¥ = ¥%u %! and D xex PT(®¥) = 0o, then > o pj(x) = 00, O >, 41 p](X) = o0
(or both). Examine first the case when > _.1pf(x) = oo. Then let X' := x! and
M’ be the pushforward of M under the projection Q@ — Q' defined above. We have
M({o})) < M'({0'}), where o' = X/, so it suffices to prove M'({»'}) = 0. This reduces
the statement to the case w = X above.

Now examine the case when erxo p7(x) = oo. Let X' := x° and, again, let M’
be the pushforward of M under the projection Q@ — Q’; we are now reduced to the case
o = ). Then we can perform the particle-hole involution and use the invariance of pj to
reduce the desired statement to the known case w = X.

2. Next, we assume that > 4 pj(x) < oo and prove that M is purely atomic. We
have X = X, u X,, where

Xp={xeX:ip®=<1, X ={xeX:p® >3
For w € Q, let wAX, denote the symmetric difference of w and X;. We set
Q" = {we Q:|wrX| < oo}

and note that Q* is a countable subset of Q. We are going to show that M is concentrated
on Q*, which will imply that M is purely atomic. To do this, we treat w € Q as the random
element distributed according to M. For x € X, let E, be the event that x € w, whereas
if x € X, let E, be the event that x ¢ w. Then w € Q* precisely means that only finitely
many events E, occur.

On the other hand, the probability of E, is pj(x). Thus, the sum of all these
probabilities is finite. Applying the Borel-Cantelli lemma, we obtain that w € Q* with

probability 1, which is equivalent to the desired claim. |
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24 C. Cuenca et al.
5.2 The g—zw measures are diffuse

Theorem 5.3. Let (o,8,y,8) € C* be any quadruple of admissible parameters. The

corresponding g—zw measure is diffuse.

Proof. We claim that 0 < K”?(¢,,¢,) < 1, and similarly for K¥#(;_,¢_). Before
proving the claim, let us deduce Theorem 5.3 from it. Theorem 4.1 shows KBy (x x) —
K7?%(¢.,¢.), as x — 0% in £; thus, the density p‘f'ﬁ"/'a (x) = K¥Pv 4 (x, x), when |x| is small,
is uniformly bounded away from 0 and 1. Consequently, Theorem 5.1 shows that M®#:+
is diffuse.

Next let us prove the claim. Since KV'5(§+, ¢,) and KY®(¢_,¢_) are probabilities,
then the claim would be contradicted if and only if {K?(¢,,¢,), K¥?(¢_, )} N{0, 1} # @.
Let us focus on proving KV"S(§+, ¢y) # 1, as the proof of the other three statements is the
same. Assume K? (¢ +.¢)=1.Then M ¥4 __almost surely, a random point configuration
contains ¢, . Since M?? is stationary, a random configuration contains all points to
the right of the origin and so all the corresponding correlation functions equal 1, in

particular

K74, q™ ¢t q™ KV q™ ¢.q"™)
Ky'8(§+an §+qm) KV'6(§+qn/ §+qn)

det = 1, wheneverm # n.

The matrix above is symmetric and its diagonal entries are equal to 1; therefore,
K"°(¢.q™ ¢,.q" =K"°(¢,.q", ¢,.q™) = 0.

Apply the previous equation to (m,n) = (2,0); Lemma 3.4 gives

§—96
K'(2,q%¢,) = C(y,8) x % =0. (5.1)

One verifies that for any admissible pair (y,§) with y # §, one has C(y,8) # 0 and
y /8 —8/y # 0. Thus, we have reached a contradiction. In the special case y = §, we need

the formulas at the end of Section 3.4 (see (3.11)); then equation (5.1) becomes

2 0(vs_,vE)?
KV;)/ 2, = . 2 N =0
(¢+q%.¢4) Ly@—qh) 0,6 /6. v L) (@G

This implies that y € t~'¢% ory € gjqu, which again is impossible. |
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The Elliptic Tail Kernel 25
6 The Projection Property of the Elliptic Tail Kernel
6.1 The projection property

Let (y,8) be an admissible pair and let K¥*® be the operator on ¢?(£) with kernel
K43 (x,y), that is,

K x) = D K& f(y),  fel’(®), xeg

yel
The main theorem of this section is the following.

Theorem 6.1. The operator K’ on ¢?(£) is a projection operator, that is, K¥* =
(K70)* = (K7)2.

In this section, it will be more convenient to use the gauge-transformed kernel
K"3(x,y) = e(®)e(y)K??(x,y) defined in (3.8) because of the g-translation-invariance
property K¥(gx, qy) = K?*(x,y) of Proposition 3.3. Clearly, the corresponding operator
K is a projection operator if and only if K¥* is a projection operator.

Let us consider the 2 x 2 matrix-valued kernel &(m,n) = K"%(m,n) on Z,
given by

K73 q™ ¢,.q" K73(¢,.q™ ¢ qh)
Kim,n) = SEAEE G744 , m,neiz.

K73 _q™¢.qY K7 q™ ¢ qh
The space ¢%(Z; C?) (Hilbert space of C2-valued, square-summable sequences) can be
naturally identified with ¢?(£)—under this identification, K74 becomes the operator
with kernel R(m,n). We go a step further. Proposition 3.3 implies the translation-
invariance property: K(m,n) = K(m + 1,n + 1). This suggests to look at the Fourier
transform R = /ﬁy"s of the function £K(m,0), m € Z. By definition, Aisa 27 -periodic

function on R, which is 2 x 2 matrix-valued and given by

N R
oy = [T Fe-MY g 6.1)
R_ ) KR__(n)
ﬁel,ez(n) = Z einmkyla(gelqmr §52)l 61162 € {+, _}~ (62)
meZ

The important point for us is the following lemma, whose proof essentially

follows by definition of the Fourier transform.
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26 C. Cuenca et al.

Lemma 6.2. A translation-invariant operator £ on ¢2(Z; C?) is a projection operator if

and only if its Fourier transform ﬁ(n) is a projection matrix, for any n € R.

In view of Lemma 6.2, a proof of Theorem 6.1 will be furnished by the verifica-
tion that ﬁ(n) is a projection matrix, for any n € R. The latter will be a consequence of

the following proposition, whose proof is given in Section 6.3, after some preparations.

Proposition 6.3. For any 5 € R, the Fourier transform ﬁ(n), defined by (6.1) and (6.2),

is given by
S L0164 S B e, y8/q, —e ", v8/q) 63)
e y8r? 0,0/t 8¢ c,) Oy(—€/qys/y, —e/qy5/s) '
5 o a\J0g(re 86 YL 80 g (—eie, J73Tq,—e e JTOTa) o
B L T4 0465, 780 _L,) O (—€M /a3 ]y, —€/qys/o) '
_ 0J00(r 85 888 g (—eiis_ /77, —e e, VT Td)
ﬁ_,+(n) = - (65)

Y8LJIEE T 05/, 78 L) Og(—€/qy8/y, —e/qys/s)

A - q-0q(r¢,.88,) 0y(—€"¢_/y8/q, —e ¢ _/y5]q) 6.6
—= = YIS Lyl - 0g(6 /¢, v8E_5y) O,(—en/qyd/y, —e/qy5/s) '

Remark 6.4. For an admissible pair (y, §), we have that y§, 0q(v¢_,8¢) and 0q(v 8y, 884)

are all positive. For the formulas above, \/Hq(yg_, 8¢_,y¢,,8¢,) and \/y$ are the positive

square roots.

Proof of Theorem 6.1. We show that /.é(n) is a rank 1 projection matrix. For that, we
prove three statements: (1) R(y) is Hermitian, (2) det R(n) = 0, and (3) tr R(») = 1.

The 1st statement is equivalent to the equalities

= ?

ﬁ_|_,_|.(7])

?

o~ = 7?2 ~ = o~
R, R__(m=8__m), Ki_(m=K__ (). (6.7)

If (y,8) belongs to the principal series, then (¥,8) = (8,y), whereas if (y,$)
belongs to the complementary series, then (¥,8) = (y,8). Together with the obvious
64(x) = 6,(X), one can easily verify all three identities in (6.7) for pairs in both the
principal and complementary series.

The 2nd statement follows from (6.3)-(6.6) in a straightforward manner.
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The Elliptic Tail Kernel 27

For the 3rd statement, we need to show

,0,(ve, .88, —€"c_\/y8/q,—e e \/vs/q)
— 0 O,(ye_ 85, "¢, \Jys/q,—e M \/vé/g)

? 5§_§2 i i
Y 2 L0, /ey v8c L, —€"/qys )y, —€"\/qsy /5).

By the quasi-periodicity (—y8¢_¢,/q) - 0q(v8s_5,) = 6,(v8s_5,/q), the equality above

becomes

0q(C_/t1v8¢ ¢, /a,—€"/qys ]y, —€"\/qy5/8)
—0,(vt,, 80, —€MC_\Jy8/q,—e ¢ \/y5/q)

L bt e TR e e TR (6

+

This is a special case of Lemma 3.1; upon setting X = ei"/ﬁ, Y = —¢,/vd8/q, Z =
—¢_/v8/q, and W = —,/y§/y, equation (2) gives (8). |

6.2 Factorization of two-sided sums

The proof of Proposition 6.3 relies on two summation identities, which we now present.

In this section, p is a real number in (0, 1).

Lemma 6.5. Leta € C be such that p < |a| < p~!. Then

+00 am 0,2 (—apz?)6’, (1)
Z m o ,1py-m 5 P~ zecCn (6.9)
. Zp™ + 2z 'p 9pz (—z )sz (ap)

Proof. The equality can be deduced from Ramanujan'’s ; ¥, -identity, as explained in [4,

Rem. 2.4]. Yet another proof is given in [3, Sec. 4]. [
Lemma 6.6.
zm _ 91;2 (p2) .
Z om _pm — PZ g , p<lzl<p . (6.10)
meqoy P TP p2(P2)
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28 C. Cuenca et al.

Proof. When m > 0, the m-th term in the sum is ~ (zp)™; when m « 0, the m-th
term is ~ —(z~!p)~™. Thus, the sum is absolutely convergent and defines an analytic
function on the domain {z€ C : |zp|, |z 'p| <1} ={zeC:p < |z| < p~'}.

Let Hy(2) and F,q(2) denote the left-hand sides of (6.10) and (6.9), respectively.
Notice that

. 1 . , 4
Hp(z) =—1 [Fp,z(y) - W] y=i — 1 [Fp,z(ly) o ll _ y2 ]

From Lemma 6.5, we have

y=1-

H,(2) = -y (6.11)

y=1

2(pzy )9/2(1) 1
0,202 (p2) | 1— 72

oz @*pH% 1
UL 0,2 (n)0,2(p2) 1—y

Note that f(y) 1= 6,2(y)/(1 — y) = (p®y,p?/y:P*) is analytic on C*. Also let
9(y) := 0p2(pzy), so (6.11) becomes

_ Fg®) —g OF D) @*pH%,

@ = =t F(1)26,2(p2)

2.,2)\2
1 [_g(y)(p ipH% +1} (6.12)

y—1| fo,(p2)

Take derivatives to f(y) = f(1/y) to obtain f'(y) = —y~2f'(1/y), in particular f'(1) = 0.
Furthermore, f(1) = (p? p??2 and g'(1) = pz%2 (pz). Plugging these values into (6.12)
yields (6.10). [ |

6.3 Fourier transform of the elliptic tail kernel: proof of Proposition 6.3

Recall the constant C = C(y, §) defined in (3.3).

Lemma 6.7. For any 5 € R, the Fourier transform ﬁ(n) is given by

~ 0,(8¢,) Og(v&y)
R = ! 4 6.13
44+ I §+9 (8{ ) y§+9q()/§+) ( )
@78 eny/qys/y) IO e /qys/s)
v Oy(—e/qys/y) § Oq(—€/qy5/9)
_ c./ 0,1
R,_(n= /6| o (6.14)

\/Qq(V§+/ 8, vE_,88) 9q<§+/§_)
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The Elliptic Tail Kernel 29

5 ieq(m,8;_,ei"|c+/4_|¢qy8/y) ~ eq(8¢+,yc_,ei"|¢+/¢_|¢qy6/8)] ,

Oq(—e"\/qy5/y) bq(—€"/qy5/5)
. c/ 0,(1
CENOE 676 . 2 (6.15)
\/eq(yé--l,-r 8§+I V§_r5§_) q(;‘_/;-'i')
| Gatven e @Me /6 1VarS/8)  b(8ey vi €Ml /8 1Vars/y)
0,(—€/qy8/8) 0q(—€"/qys/y) ’
~ 0g(r2) 0(8¢_)
R =C 2 8¢ 1 6.16
)] iﬂ@q(yi_) 0,60 (6.16)
L Yars Og(—€"/qr8/5) V@3 | ACTENGIZ YD
8 Oy(—eny/qys/s) v Og(—einyaqsy) |
Proof. For x € Z\ {0}, Lemma 3.4 gives
x Wr8/v)* — (Jy8/8)*
ﬁ+'+(X, 0) = C(_l) . qfx/Z — qX/2 ’ (6.17)
R_00,0) = Gy, WY S Wy (6.18)
’ q X — qX

From Lemma 3.6 and (6.17),

0g(88,) 94<yc+>]+ . S e WY (rBO

R =C, 18
4,4+ o { Gq(3§+) 14 9q(y§+) q /2 — gx/2

xeZ\{0}

Then (6.13) follows from Lemma 6.6 with p = ,/q. Note that we need the following

inequalities to apply Lemma 6.6:

<q /2

They are equivalent to |qy /8|, 1g8/y| < 1, and these follow from the fact that (y, ) is an
admissible pair. Similarly, by using (6.18), we obtain (6.16).

On the other hand, for any x € Z, Lemma 3.5 shows

B C(-1)* 0488, vE)WY8/8)* —0,85_, ys)WY8/v)*
R, _(x,0)= : 1/2 ,x/2 1/2g—x/2 ’
\/eq(ygf,yg,s;f,aﬁ) 1S4 /E_1M2q*= +15_ /¢, 1M %q

(6.19)
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30 C. Cuenca et al.

R (x.0) = C(—1)%¥ .Oq(8§+,y§_)(«/y5/y)x—Gq(SC_,yg)(«/J/S/S)X
— X -X :
Joatre v 0e 05, € /5 TGS E 5 [P2q 72
(6.20)

Then (6.14) follows from (6.19) and Lemma 6.5 applied to p = ,/q (the restrictions
of Lemma 6.5 are satisfied because (y,d8) is an admissible pair). Similarly, (6.20)
gives (6.15). |

A proof of Proposition 6.3 will be furnished by the verification that the formulas
in (6.13)-(6.16) are equal to the formulas in (6.3)—(6.6).
We'll need the equality

64(1) = Lim (6,00 — 6,(1))/(x = 1) = lim 6,(x0)/(x — 1) = lim —(4x, 4/%; Do = ~(@; D

Together with (3.3), it follows that (6.14) L (6.4) is equivalent to

0q(vey. 8¢ €M, Jc | ays )y, —€M\/aqys/8)—0,(ve_, 8¢, €Me, /¢ |\ ay8/8,—€"/qys/y)
? . .
z % 04t /5 qr 18, €Mt \/78]q, —e e Jv5]q).
This identity is a particular case of Lemma 3.1 when we specialize the variables as

follows:

X =ie" [lc /qc |, Y =i, /y8lc_¢1/q, Z=—iJIt, /c_IVv8/8, W = —i[Ic, /¢ N vé/y.

One similarly shows (6.15) = (6.5).

It remains to prove (6.13) z (6.3) and (6.16) 2 (6.6). Both proofs are similar to
many proofs in the literature on identities between elliptic functions (see e.g., [29], [2,
Sec. 15] and references therein), so let us only give a proof sketch of the former equality
in the remainder of this section.

In both sides of the identity to prove, replace el v,8,and /y8 by z,¢?,d?, and cd,
respectively. Denote the formula coming from (6.13) by f(z, ¢, d) and the one coming from
(6.3) by g(z, ¢, d). The advantage is that both f and g are now meromorphic functions on
(z,c,d) € (C*)%. We shall actually prove f(z,c,d) = g(z, c, d), for all values (z, ¢, d) € (C*)3
for which both sides are defined and not only in the case that (c¢?, d?) is an admissible

pair.
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The Elliptic Tail Kernel 31

From the quasi-periodicity of the theta function, one verifies that both f and
g, as functions of z, are (multiplicatively) periodic with period g, that is, f(qz,c,d) =
f(z,c,d) and g(qgz,c,d) = g(z, c,d). One can also check that both f and g have only simple
poles at the points of the form —F - qm+% or —% . q”‘*%, for some m € Z (in the special
case ¢ = d, minor changes are needed in the argument). Moreover, their residues at these

poles are the same, for example,

ReS Cﬁf(z' C' d) = ReS C Q.g(zl Cl d)
Z:_T z:—T

_oyq Oyt d’t ey, dPey) @ —c%
d -0, /¢y, c?d?e gy)  c?d?(c?/d?,d?/c?,q,q; Q)

It follows that the difference f — g is analytic, as a function of z, on C*. Since it is
also periodic, then f — g is bounded on C*. Liouville's theorem implies that f — g is
independent of z, so now it suffices to prove f(—1,c, d) 2 g(—1,c,d).

From the formula (3.3) for C(c?,d?), the equality f(—1,c,d) 2 g(—1,c,d) is

equivalent to

L 66(dr)  , 84(c%,)  Jgebi(Jac/d)  Jqd 8,(y/ad/c)
+9q(d2;+)_c To,c2t) T d 0,(/gc/d) ¢ 6,(/qd/c)
2 q-(q; @2 0,(d%/c*)6,(¢,cd/Jq)*
T d? 9%, d%,)0,(/qd/c)?

From the definition of theta function, we deduce 0q (23 = t,(z, -2, 9z, —./qz) for z € C*.
Then 6,(d*/c?) = 6,(d/c,—d/c, /qd/c,—,/qd/c), so the desired identity becomes

, ba(d?ty)  , 0i(c*y)  Jqeby(Vac/d)  Jqd 05(/qd/c)
T0,(d%,) - §+9q(62§+) g 0,(yac/d) ¢ 6,(/qd/c)
2 q- (g% 0(d/c,—d/c,—qd/0)0 (¢, cd/VD*
¢, d? 6,(c?¢,,d%*c,, /qd/c)

(6.21)

Let £(c, d) and r(c, d) be the left- and right-hand side of (21), respectively. As before, one

verifies ¢(qc, d) = £(c,d) and r(qgc, d) = r(c, d). Moreover, £ and r are meromorphic func-
—-1/2 ;1/2qm/2

tions of ¢, with only simple poles exactly at points of the form ¢, qm?, —¢
dq””%, for some m € Z. Also, the residues of both sides coincide at all the poles;
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for example, one verifies

Res._q jg {(c,d) =Res._q 4 7(c,d) =2d./q.

Therefore, the difference ¢(c, d) — r(c, d) is a constant independent of ¢, meaning that it

will suffice to prove £(c,d) = r(c, d) for some value of c. Finally, verify £(,/q/(;, d),d) =
r(/q/(¢.d),d) = 0.
7 Degeneration to the Matrix Trigonometric Kernel

In this section and the next we often use the variable
r=r(q :=-1lng> 0,

so that r — 0" as g — 1~. We also use the material in Appendix A on estimates for theta
functions.
7.1 The matrix trigonometric kernel

Letc,0e Cbesuchthatdo =cce C\Rorm <c¢,0<m+1,forsomem e Z.LetQ :=RuUR
and, given u € R, denote the corresponding elements of 9 by u or u® (depending on

the copy of the real line to which u belongs). The kernel K;ﬂl on 2) is defined by

K;il(u(i>,vg)) =

[ i (=) (u-v)
sin(z¢) sin(zd) sinh (-2
7 sin(w (¢—0)) sinh(4%) '

if (i,j)) =(1,1) or (2,2),

S0y SIn(TY) sin(rc) exp(i(‘_a)z(u_vv—sin(na) exp(i(‘_a)z(v_u)) L
7sin(m(c—0)) exp (YY) +exp(5%) Af @) =1,2),

SinGr(e=0) exp (0 Fexp (557

i (c=d)(u-v) i (c=d)(v—u)
SI(r c) SIn(md) sin( ) exp(af)—sm(nc) exp(%) i i J) — .

When (i,j) € {(1,1),(2,2)} and u = v, we define the kernel by continuity, namely

sinh ((=2u=1))

sinh (4%) |*77
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The Elliptic Tail Kernel 33

Note that the case ¢ =0 € (m,m+ 1), for some m € 7Z, is allowed, so one needs to correct
the definition of K;f)l because it is given by the indeterminate ratio 0/0 in that case.
The correction is done by using L'Ho6pital's rule; see [11, Sec. 6] for more details.

The kernel K;ﬂl will be called the matrix trigonometric kernel. It has appeared
previously in the literature, for example, it is called the tail kernel in [11]; it is shown
there that it arises as a limit of both the discrete hypergeometric kernel and the Gamma
kernel. (The parameters z,z' in [11] are exactly ¢, ? in our notation.)

To obtain K;ﬂl as a limit of the elliptic tail kernel, we have to modify K?*. Let
v: & — {—1,+1} be v({_g™) = v(¢,.q™) = (-1)™, and K" *(x,y) = v(x)v(y) 'K (x, p).
Then

SX,y - KV'B(X,Y)r ifx = §+qm, y= Z+qn’
K" (x,y) = { —K79(x, y), ifx=¢.q" y=2¢,9"

K" (x,y), ify=¢_q"

This construction has a simple probabilistic meaning. Both kernels K”** and K"
differ by a gauge transformation, so they define the same point process P on the two-
sided g-lattice £ = §+qZ U ¢_g%. The kernel K¥* can also be shown to define a point
process P on £. The processes P and P are related by the particle-hole involution on the

positive part of the lattice §+qZ:
if X is P-distributed, then X A§+qZ is P—distributed.

For a proof, see [7, Appendix §A.3].

7.2 Limit to the matrix trigonometric kernel

Theorem 7.1. Assume that ¢,0 € C2 satisfy eitherdo =ce C\Rorm < ¢,0 < m+1,
for some m e Z; also, 3_,3, € R are arbitrary. Then K degenerates to the matrix

trigonometric kernel K ;ﬂl in the following limit regime:

m=|[(-lng'ul, n=(-Ing) v,
(7.1)

(=—q, (,=¢%, y=q"%, §=¢"%, q—>1".

In other words, identify € with X = ZUZ via ¢, g* — k™, ¢_g* > ¢, as before,

so that k7% becomes a function on X2. Then, in the regime (7.1), we have the pointwise
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limit

(~Ing 'R (-9~ 'ul?, (- Ing)~'v)?) > K52, @®, v). (7.2)

Remark 7.2. Inthelimitregime (7.1), note that (y,§) is an admissible pairand y,§ — 1,
as ¢ — 17. A similar result holds in the case y = —q*73-,68 = —qa_?’*; note that y,8 — —1,

as g — 17, in that case.

Proof of Theorem 7.1. We analyze (—Inq)~'K¥3(m®,n%), for i,j € {1,2}, m =
|(=Ing)~'u], n := |(~Ing)~'v], using Lemmas 3.4 and 3.6. Throughout the proof, the
notation A ~ Bmeans lim, ,,- A/B=1.
Step 1. First, estimate the constant C = C(y, §). Write it as
1 9q(V§_,V§+,5§_,3§+) 1

= X X .
§+J/ 6q(§-/§+r V5§_§+:5/V) (CL Q)go

From Lemma A.3, we deduce
2 x2
0q(C_y) ~eor, 0,(5_8) ~etr.
On the other hand, from Lemma A.2, we have
72 . . 2
6(¢sy) ~ —ie™ 5 (e — &™) = 267 sin(ro),

72 . . 72
04(¢,.8) ~ —ie” 3 (e”a’ — e‘”m) = 2e” ¥ sin(w?).
An estimate for (g; q), is in Lemma A.1. From Lemma A.3 again, we have
. e P L)
0,(6_/c,) ~e¥,  0,(y8_L,) ~eFr, 0,(5/y) ~ —ie” &m0,

Finally, plugging all these estimates into (7.3), we obtain

r sin(mwc)sin(md
C~ _. M (7.4)
b4 sin(mw (0 — ¢))
Step 2. We now estimate K74 (m®, n™) and K74 (m®@,n?), for u # v.

When u # v, it is not hard to verify that, in our desired limit regime, we have

msn nsm (c=0)(v=uw) (c=0)(u-v) : (c=0)(u-v)

QU= g " T exp () — oxp (57) sinh (%7)
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Use (7.4), (7.5), Lemma 3.4, and the definition of K¥* to obtain

. i s (c—0)(u—v)
rsin(re) sin(wd) sinh ( 2 )

7 sin(m (¢ — ?)) sinh (43%)

R (L=~ w)®, [(-Ing)~'v) ) ~

Multiplying the above estimate by (—Ilng)~! = r~! proves (7.2) fori =j = 1 and u # v.
Similarly, one can show (7.2) fori =j =2 and u # v.
Step 3. Next we estimate K7 (m®, m®) and K?4(m®, m®), for any u. We need

to estimate

9!](8;4,_) 9‘;(3/{+)
+19 -Y
6,00 0,0z

where f5(x) := lné)q(8§+x),fy (x):=1In 0q(y &1 %).
From Lemma A2, applied to z = {, yx, we have

} =f;() = £,(1),

12 _2n2u? 4 onlu 2y r Inx
0,(2) ~ —ie™ T T TERHITU(] _ o) whereu = LAy
q 2ri  2wi
This leads to
d 1 1 2ni e T
f(l)_ ne(z)xl’\’—C———FE—T'm.
Similarly,
' i 1 2mi el
fs( )N_D+T+E+T.eﬂrbi_enbi'
Therefore,

06,) _ 03(r¢.)
1°6,600 T o,rep)

2w 2ni el e ol 7 sin(r(c —0))
~e—0 4 —— =c—0- -
r eroi r sin(m¢) sin(0)

} =f3(1) = f, (1)

(7.6)

r el _ g—mci + e—Tol _

Use (7.4), (6), Lemma 3.6, and the definition of K79 to get

K9 (L(— Ing'u?, [(~In q)_luJ(l)) ~1+ rsin(ro sin(r) (c B sin(z(c — 2)) )

7 sin(m (¢ — 0)) rsin(mc) sin(w0)
_r sin(m¢) sin(70)
7 sin(w (¢ — 0))

- (c—0).
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Multiplying the above estimate by (—Ing)~! = r~! proves (7.2) fori = j = 1 (and any u).
One similarly shows (7.2) for i = j = 2, but using Lemma A.3 rather than Lemma A.2.
Step 4. Finally, we estimate K7*(m®,n®) and K*(m®,n®). We need the

asymptotics of

eq(g—yl §+8) and eq(é‘—sl é.J,»y)
VOgG v 68,8,y 8,8) [0y, C 8,5, y,5,9)

From the estimates of Step 1, we have

0q(¢-8,8,¥) sin(wc) 087,849 sin(wd)

JoaGvic o yc e V@S focy ¢ 8,6 y,¢0) V/SIEmOsnGmo)

Finally, from the estimates above, together with (7.4) and Lemma 3.5, the desired (7.2) is
proved fori =1, j = 2. The case i = 2,j = 1 is handled similarly. |

8 Degeneration to the Discrete Sine Kernel
8.1 The discrete sine kernel

Let ¢ € (0, ) be arbitrary. The discrete sine kernel (associated to ¢) on Z is

sin(¢ (m—n)) if
9 _ | T HmER
Ksine(m' n) =

, if m=n.

Sle

The sine kernel is translation-invariant. It is the correlation kernel for the discrete sine
process on the lattice of integers, see for example, [6, 7].
8.2 Limit to the discrete sine kernel

Recall the gauge-transformed elliptic tail kernel K¥(x, y) defined in (3.8).

Theorem 8.1. Letg € (0,7) and s > 0 be fixed. The admissible pair (y, §) may vary, but
always satisfying y = § € C \ R. In the limit regime

In§—Iny

2i ¢

m|,|n| - oo, g — 17, in such a way that m — n is fixed, and ¢, ¢" — s, (8.1)
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one has the pointwise limits

K¢, q™ ¢ g% — K ¥ (m, ),

sine

K7%(c_q™ ¢ q" — K% _(m,n).

sine

Remark 8.2. When g — 17, the lattice £ approximates any point in the real line.
Theorem 8.1 is saying that near any point a € R\ {0}, the point processes M"*
associated to the kernels K? (or equivalently, associated to the elliptic tail kernels
K7®) weakly converge to a discrete sine process P,. Moreover, the parameter of
P, depends only on the sign of a; if a > 0, the parameter is 7 — ¢, whereas if
a < 0, the parameter is ¢. Observe that the discrete sine process associated to
m — ¢ is obtained from the one with parameter ¢ by the particle-hole involution

on Z.

Remark 8.3. One can show that, for any pairwise distinct a,...,a; € R\ {0}, the

discrete sine processes P

a1 Pay (obtained as weak limits of the measures M?%) are

independent.

Proof of Theorem 8.1. We analyze K"?(¢, q™ ¢, q") and K"°(;_q™, ¢_q") using Lem-
mas 3.4 and 3.6. Throughout the proof, the notation A ~ B means lim A/B=1.

Step 1. We first analyze C(y, §).

< /31 .
reT. From Lemma A3, we obtain

q—1~

From Lemma Al, (q; Q)2 ~

72 22 2,7 72 2x2 2 2x2 ;
eq(yé._) ~e6r 7 (c+z-) +l7T(C+Z_)’ Oq(y§+) ~ ie— I r (c+zy)“— 7 (C+Z+)+I7T(C+Z+),
72 2n? 247 72 _ 2x2 2, 272 :
Qq@f,) ~ et (d+z-) +m(d+zf), Qq(5§+) ~ —je" T (d+z4)*+ 2= (d+Z+)+ln(d+z+),
72 272 247 72 272 2,7
Qq(é-_/é-_i_) ~ gbr T (Z-—24) +l77(Z—*Z+)I eq(y5§—§+) ~ etr — S (ctd+z_+z4) +ln(c+d+Zf+Z+),

6q(8/7) ~ e o2 A0+ B (d-o)tin(d—c)

Putting everything together in the formula (7.3) for C = C(y, §) yields

ri
C~—. (8.2)
2
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Step 2. From the assumption (8.1), we have

ymsn _ ynsm . i
(1™ oy~ (e (_1ymn exp(p(n — m)i) — exp(—p(n — m)i)
qm-m/2 _ gln—-m)/2 r(n —m)
_ . 2isin(p(n — m)) _ 2isin((¢ — m)(m — n))‘ 8.3)

r(n—m) r(m—n)

Combining this equality with the estimate (8.2) and Lemma 3.4, we have

_sin(lp —m)(m —n)) _ sin((x —¢)(m —n))

oy — py— ,form # n.

K7 (§+qm, §+qn) ~

Similarly,
=v.8 m n sin(gp(m — n))
K"%(_q" ¢ q") ~ ———— ,form # n.
T(m —n)

Step 3. We still need to study the case m = n. Begin with the equality

[Seg(m)  Olrey)
+

=fi(1) = (1),
X yeq(m)] A= £,

where we denoted fy(w) =1n O (v w), fs(w) :=1In 6,4(8¢, w). From Lemma A.3, we have

2 2.2
2rcu . In(—x 1
Iné (x) = T +iru) - (1 +o0(1)),whereu = u(x) = ( - ), [Ru| < =.
q 61 2ri 2
It will be convenient to use the notation
In Iné In|¢_ In
c:= —y,, di=—, z_:= |§, |, z, = i (8.4)
21 271 21 21

Use the previous estimate for x = y¢, w and u = ln(_zyTi*W) =c+z, + 1;‘7";’ + %; it yields

£ an’u du_H, du ar? ot +1nw+1 1 iy 1
w) ~ — —_— _— = z —_— 4 = i .
Y r dw & dw r T om0 2 2miw 2miw

Setting w = 1, we can simplify the formula to

o~ ohn + 1) 4 !
4 r T2 2

Similarly,
1

, 2wl 1
1) ~ — i —
S5 (D) - d+z, 5) T3
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and therefore

9/8 6/ . . . _
+[3 AT q()/CJr)]N@(d_C_l):Z:L(InB Iny 1):2z(<p 2]

f— y —
0,00,) ' 6,(rgy)

Combining this estimate with (8.2) and Lemma 3.6, we have
K" (¢ q™ ¢ g™ ~ T=9% for any m.
T

Similarly, we obtain

K" _qm ¢ q™ ~ % for any m.

A Jacobi's Imaginary Transformation
The 3rd Jacobi theta function [35] is the analytic function on C* defined by

032 Q) == D 2"q" * = (@, ~3Z —/A/Z Do = (@ D - Og(—/T2).

nez

(In contrast with the usual definition, we use the parameter g'/? and not g.) The 2nd

equality is Jacobi’s triple product identity (see [18]).

Letr = r(q) := —lnq > 0. Forz € C*, let u = lzn_nzl Then Jacobi’s imaginary
transformation is
1
2w\ 2 _2n2u2 an2y _i
03(z;q) = —) e “O3le 7 e ). (A.1)

”2
As g — 17, thenr — 07, and so e o ot Thus, in principle, limits of the
Jacobi theta function 65(z; g) when g — 1~ are related to the limits when g — 0*. This

relation allows us to prove the following estimates for g-Pochhammer symbols.

Lemma Al. Setqg=e", then

27'[ % 72
(@D = (7) e & (14 o0(1)),asr — 0T
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40 C. Cuenca et al.

Proof. The definition of 6;(z; g) gives (1 +ﬁz)_193 (z @) = (q,—9./92, —/q/Z; @) - Then

setz=— [ ; Jacobi's imaginary transformation yields

1
i i1 (22 _2x% (1 _riy2 272 | an?e  _an?
@, quTHG qe ZJTle;q)OO:(l_eZJTZE) l( = e~ (gte—gz) 0y (—e T ey
an2c

1
27\2 _222,1 iz 1—e’'r 2 4n2n | 4n? 4720 an?
= — e_”T(E+€_%) H (1—e" Tn)(l —e” R S — ”rn—%)'
r eZJTlE

Take the limit ¢ — 07 to get

3
[2m\2 7& 1_1iy2 4;1 n
(q:q>§o=—l(7) et XH(l
2 2 2 % 2
= (—”) ~B+E H (1—e )3 = (—”) e~ % (1 +o0(1)), asr — 0F,
r r
from which the result follows. | |

Lemma A2. Setg=e ".Forze C\R_gy setu=u(z) = IZI;TZZ Then

Oy(z) =i % "7 7 +i’”‘(1—e +0(1)),asr — 0.

The estimate is uniform for | argz| < # — ¢, where ¢ > 0 is arbitrary.

Proof. In terms of the Jacobi theta function, we have

Or(—2 ;
04(2) = b(2/VT 9 (A.2)
(@ Do
First assume —7 < argz < 0. Let v = ln(zi/lﬂ Inz— (1;1;1)/2+m =u+ 45+ %, so that

0 <%u < % Then, Jacobi's imaginary transformation and the definition of 65 give

2 z 2 i 2 2
05(—2//q; Q) = (—”) o G (ut g +3)? I1 (1 —e ) (1 - e4’£<u—">) (1 - ”“))
r

n=1

- (27”)2 e B D (1 _ o) (1 4 0(1)), asr — OF. (A.3)

From (A.2), (A.3), and Lemma Al, we obtain the desired result. The case 0 < argz < « is

analogous, and the statement about uniformity is evident. [ |
In(—z)

D=

Lemma A3. Setqg=e".Forze C\R,, setv =v(z) := so that —% < Nv <

Then

271

7'[2V2 .
EEEHTV (1 4 o(1)), asr — O

”2
Qq(z) =e6r
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The estimate is uniform for | arg z| > ¢, where € > 0 is arbitrary.

Proof. The proof is similar to that of Lemma A2. |
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