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ABSTRACT: A formal [3 + 3] cyclization reaction of diaziridines
and quinones has been developed offering 1,3,4-oxadiazinanes in
generally high yields (up to 96%). The reaction was catalyzed by
Sc(OTf); with a large substrate scope for both diaziridines and
quinones. The synergistic activation of 1,3-dipolar diaziridines and
the dipolar quinones was found to be essential to enable this

reaction.

eterocycles are important structural scaffolds present in

biologically active substances, natural products, and
pharmaceuticals. Heterocycles play a central role in drug
design." Roughly 75% of low-molecular-weight drugs contain
heterocycles. Heterocycles are also becoming an attractive
design factor in organic materials science. Significant efforts
have been devoted to developing new reactions to construct
five- and six-membered heterocycles containing one heter-
oatom such as oxygen or nitrogen.” In contrast, much less has
been done for heterocycles containing two or more
heteroatoms due to the limited availability of appropriate
substances to provide two or more heteroatoms in one
operation.” The synthesis of oxadiazinanes has only been
sporadically reported.* In particular, a catalytic methods to
access 1,3,4-oxadiazinanes remains elusive to our knowledge.
Nevertheless, the core 1,3,4-oxadiazinane structure has been
found in a number of bioactive compounds.*~° (See Figure S2
in the SL) A concise method to directly access 1,3,4-
oxadiazinane is desirable.

[3 + n] Annulation via 1,3-dipoles is a powerful tool to
construct various ring systems. In particular, [3 + 3]
cycloadditions can serve as a complementary strategy to
prepare six-membered heterocycles that are not accessible
through traditional [4 + 2] cycloadditions.” Currently, [3 + 3]
annulation is still in its infancy. Three-membered-ring 1,3-
dipoles such as cyclopropanes, oxiranes, and aziridines have
been effectively utilized in developing [3 + n] annulation
reactions.’ Diaziridines have attracted increasing attention as a
new class of three-membered-ring 1,3-dipoles in recent years.”
The C—N bond of diaziridines can be cleaved heterolytically
through thermolysis or in the presence of Lewis acid to give
azomethine imine, which could serve as a 1,3-dipole in
cycloaddition reactions.”*” Through C—N bond cleavage,
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Punniyamurthy and coworkers have developed an FeCl;-
catalyzed [3 + 3]-annulation of N-alkyl aziridines with bicyclic
diaziridines to give triazines (Scheme 1la).”" Ivanova and
Trushkov have also developed a formal [3 + 3]-annulation of
diaziridine with D—A cyclopropanes to afford perhydropyr-
idazines (Scheme 1b).”* [3 + 2] Cycloadditions of diaziridines
have been achieved with an activated double bond.”””*"" In
2020, the Feng group reported the first asymmetric reaction of
diaziridines with chalcones through [3 + 2] cyclization
(Scheme 1c).”® Very recently, Doyle and coworkers demon-
strated the feasibility of the selective cleavage of a N—N bond
through a formal [3 + 3] cycloaddition of diaziridines with
metalloenolcarbenes.”®

Despite these impressive achievements, the versatility of
diaziridines as 1,3-dipoles remains largely unexplored. We are
interested in developing new methods to construct ring
systems that contain two or more heteroatoms because these
heterocyclic rings are much less accessible. Taking advantage
of the unique feature of diaziridine that offers two nitrogen
atoms simultaneously, we decided to explore the possibility of
diaziridines with quinones. Quinones have displayed high
activity and multifunctionality in a number of organic
transformations.” A [3 + 3] cycloaddition reaction of
diaziridines with quinones represents a new reaction pattern
for both diaziridines and quinones. Herein we report a metal
Lewis-acid-catalyzed formal [3 + 3] cycloaddition of
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Scheme 1. Reaction of Diaziridines through C—N Bond
Cleavage
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diaziridines and quinones to afford tricyclic 1,3,4-oxadiazinanes
in high yields with large substrate scopes.

We started our investigation using diaziridine la and
quinone ester 2a (Table 1). When diaziridine 1a was mixed

Table 1. Optimization of the Reaction Conditions”

OH O
o o o o~
N-N o~ N:>
+ cat, T N
—_—
solvent
1a o 2a é
entry cat. solvent T (°C) yield (%
1 Sc(OTH), DCM -30 57
2 Y(OTf), DCM -30 trace
3 Cu(OTf), DCM -30 25
4 Sc(OTH), THF -30 46°
S Sc(OTf), toluene -30 70°
6 Sc(OTH), MeCN -30 77
7 Sc(OTf), MeCN —44 54¢
9? Sc(OTH), MeCN -25 91
10 Sc(OTf), MeCN -10 81

“Unless otherwise noted, the reactions were carried out with 1a (0.10
mmol) and 2a Sﬂ .10 mmol) with 10 mol % of catalyst in DCM (1.2$
mL) for 24 h. “Yield of isolated 3a, unless otherwise stated. “NMR
yield. “Stirred for 19 h.

with quinone ester 2a in the presence of Sc(OTf); at —30 °C
in dichloromethane (DCM), a formal [3 + 3] reaction
occurred to generate tricyclic 1,3,4-oxadiazinane 3a in 57%
yield (entry 1). In sharp contrast, another rare-earth metal
Lewis acid Y(OTf); was able to yield only a trace amount of
product (entry 2). The use of a transition metal Cu(OTf),
decreased the yield significantly (entry 3). It appears that both
the acid strength and the coordination sphere of the metal
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Lewis acid played a role in determining the reactivity of this
reaction. We then decided to use Sc(OTf); as the catalyst to
screen solvents. The reaction carried out in THF gave a
moderate yield of 46% (entry 4). The nonpolar solvent toluene
increased the yield to 70% (entry S). Switching back to the
polar solvent MeCN further enhanced the yield to 77% (entry
6). The influence of temperature was also investigated.
Lowering the temperature to —44 °C decreased the yield to
54% (entry 7). On the contrary, increasing the temperature to
—25 °C significantly increased the yield to 91% (entry 9).
However, when temperature was further elevated to —10 °C,
the yield of the reaction declined again. We speculate that the
sensitivity of this reaction to temperature likely arises from the
susceptibility of quinone ester to decomposition in the
presence of a metal Lewis acid at higher temperature. The
structure of 3a was revealed by 'H and '*C NMR spectroscopy
along with COSY and NOESY 2D NMR spectroscopy. The X-
ray crystal structure of 3a was also resolved, further confirming
its structure (Scheme 2, CCDC 2060287).

s b
Scheme 2. Substrate Scope of Diaziridines™
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“Standard reaction conditions: 1 (0.1 mmol), 2a (0.1 mmol),
Sc(OTf); (10 mol %) at —25 °C in MeCN (1.25 mL). bIsolated yield.
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Using the optimized conditions (Table 1, entry 9), we
examined the substrate scope of diaziridine with quinone ester
2a (Scheme 2). Diaziridine 1 displayed a large substrate scope
with a variety of substituents on the phenyl ring. Both electron-
withdrawing groups including F, Cl, and Br and electron-
donating groups (OMe, CH;) at the para position gave the
desired benzo[e][1,3,4]oxadiazines in very good yields (3b—3f,
80—88%). A strongly electron-withdrawing nitro group at the
para position reduced the yield to 51% (3g). Substituents at
the meta position also showed high yields in generating
benzo[e][1,3,4]oxadiazines (3h and 3i, 80—93%), except for
3m bearing a nitro group at the meta position (34%). Whereas
meta-disubstituted diaziridine with a electron-donating me-
thoxy group produced 3n in 87% yield, meta-disubstituted
diaziridine with a slightly electron-withdrawing Cl led to a
decreased yield of 59% (30). 3,4-Dimethoxy substituted
diaziridine gave benzo[e][1,3,4]oxadiazine 3p in moderate
yield (70%). Ortho-substituted diaziridine with a strongly
electron-donating methoxy group produced the desired
benzo[e][1,3,4]oxadiazine 3q in high yield (91%). On the
contrary, ortho-substituted diaziridine with a strongly electron-
withdrawing nitro group generated 3q in 73% yield. Naphthyl-
substituted diaziridine also produced benzo[e][1,3,4]-
oxadiazine 3r in good yield (80%).

We also investigated the scope of quinones with diaziridine
la (Scheme 3). Quinone esters with a variety of different

Scheme 3. Substrate Scope of Quinones™”
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“Standard reaction conditions: la (0.1 mmol), 2 (0.1 mmol),
Sc(OTf); (10 mol %) at —25 °C in MeCN (1.25 mL). bIsolated yield.
“Reactions were carried out in 1.25 mL of DCM.

alkoxy groups successfully generated the desired benzo[e]-
[1,3,4]oxadiazines in very good to excellent yields (85—96%,
4a—4d and 4f—i), except for 4e (69%) and 4j (36%) bearing a
prop-2-yn-1-yloxy group and a naphthalen-2-ylmethoxy,
respectively. Quinone ketone also displayed good activity
toward diaziridine 1a, offering 4k in good yield (69%). On the
contrary, quinone amide showed only low activity toward this
reaction, giving 4i in 12% vyield. We also attempted this
reaction with unsubstituted quinone and chloroquinone;
unfortunately, no product was obtained. Quinone has been
known for a narrow substrate scope in the majority of the
previous works done on quinone esters. The achievement of
the [3 + 3] reaction with quinone ketone and quinone amide
demonstrated the broader scope of this reaction. A reaction of
1a and 2a on the 3.1 mmol scale was conducted to give 3a in
85% yield (see the SI), which confirmed the utility of this
reaction on a large scale.

On the basis of the reaction results, a mechanism has been
proposed for this formal [3 + 3] reaction (Scheme 4).

Scheme 4. Proposed Mechanism

Sca+ c3+
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N
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Mlchael type addition +
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Diaziridine 1 undergoes ring opening in the presence of
Sc(OTf); to give azomethine imine (Int-I). 1,3-Dipolar
azomethine imine Int-I then attacks quinone 2 through
Michael-type addition to give Int-IL. Our data indicate that the
activation of quinone 2 through chelation to the metal Lewis
acid is critical for the success of this reaction, as quinones
without a chelating site were not reactive toward this reaction.
We speculate that the coordination to Sc** illustrated in Int-IT
helps stabilize Int-II, facilitating the tautomerization of Int-II
to the enol form Int-III. The intramolecular nucleophilic
addition of the hydroxy group to the iminium bond led to the
ring-closure product Int-IV followed by proton transfer to give
the final benzo[e][1,3,4]oxadiazine.

In summary, we have developed a formal [3 + 3] reaction of
diaziridine and quinones through the C—N bond cleavage of
diaziridine, introducing a new reaction type for diaziridines.
Our study indicates that the synergistic activation of both the
dipolar substrate (diaziridine) and the dipolarophile (quinone)
with a metal Lewis acid catalyst, that is, Sc(OTf);, is essential
to enable this reaction, revealing a new set of reactivities of
both diaziridines and quinone. This reaction displayed a large
substrate scope for both diaziridines and quinones. The
synthetic method developed in this work provides a new

O OH Q
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synthetic route to access heterocycles containing three
heteroatoms, which is currently in high demand.
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