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the responses to 0-24 h of sleep deprivation can be approximated by a one-dimensional,
discontinuous map computed from a physiologically-based ordinary differential equation

3M:CC60 model for human sleep-wake regulation. The map relates the circadian phase of sleep on-
92B25 set to the circadian phase of the previous sleep onset and reproduces sleep patterns seen

in experimental data for the timing and duration of recovery sleep when sleep onset oc-
KEyWO_def ] curs 8 or 20 h after the usual sleep onset. In addition, the durations of recovery sleep
One-dimensional maps predicted by the map for sleep deprivations of 0 to 24 h are consistent with numerical
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simulations of recovery sleep using the full (nonautonomous, 8-dimensional) model. Our
results demonstrate that the circadian phase of sleep onset affects the duration of recovery
sleep more strongly than the homeostatic sleep drive for most durations of sleep depriva-
tion. In addition, the map establishes a lower bound for the length of recovery sleep. As
a result, the map provides a computationally-efficient way of incorporating sleep dynam-
ics into new technologies that allow users to predict the effects of sleep deprivation and
identify optimal sleep schedules.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The primary processes dictating the timing and duration of sleep and wake episodes are the circadian (i.e., approximately
24-hour) rhythm and the homeostatic sleep drive (i.e., the need for sleep that increases with time awake). Under typical
adult human sleep-wake schedules, these two processes work together to promote consolidated waking during the day and
consolidated sleep during the night. However, when sleep schedules are disrupted, for example due to sleep deprivation,
these processes may compete and affect the timing and duration of sleep episodes. For example, recovery sleep following
sleep deprivation may be shorter or longer than habitual sleep duration depending on the circadian phase (time of day) of
the onset of recovery sleep [1]. Furthermore, while nocturnal sleep typically includes both rapid eye movement (REM) and
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Fig. 1. Model schematic. The physiologically-based model [20] for human sleep incorporates equations for the average firing rate of the neuronal popula-
tions promoting states of Wake, NREM and REM sleep, and the SCN (boxes; NE, GABA, and ACh indicate the primary neurotransmitters for each population),
the homeostatic sleep drive (H, orange triangle), and the circadian clock oscillator (C, yellow triangle). Excitatory (inhibitory) effects of neurotransmitter-
mediated projections among populations are indicated by arrows (circles). To simulate sleep deprivation, we impose a wake-promoting input (black) that
is excitatory to the wake population and inhibitory to the NREM sleep population. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

non-REM (NREM) sleep states, with cyclic alternation between the two states over the course of the night, sleep deprivation
may affect the duration and timing of both NREM and REM sleep [2].

Mathematical models of sleep-wake regulation have been previously used to understand and predict changes in sleep not
only after sleep deprivation but also as a result of other perturbations including shift work, travel across time zones, sleep
disorders such as narcolepsy, and pharmacological interventions [3-7]. While the classic two-process model [8,9] accounts
for sleep deprivation by considering interactions between the homeostatic sleep drive (Process S) and the circadian rhythm
(Process C) [3,10], more recent physiologically-based models consider the effects of extended wakefulness on connections
between neuronal populations that govern sleep-wake dynamics [11-14]. In previous work, we used a physiologically-based
model that includes wake and both NREM and REM sleep states, as well as the circadian rhythm, to investigate the variation
of sleep deprivation responses in individuals with different habitual sleep durations (e.g., long and short sleepers) [15].

Previously, it has been shown that the solutions to the two-process model can be represented with a one-dimensional
circle map that establishes the relationship between the circadian phases of two consecutive sleep onsets [16-19]. These
maps feature discontinuities (e.g., vertical gaps) caused by competition between the circadian rhythm and the homeostatic
sleep drive in determining sleep and wake durations. We have shown that the solutions to our physiologically-based sleep-
wake network model [20] can be represented by a numerically-computed, one-dimensional map [21]. In addition to the
gaps found in maps for models that describe only wake and sleep states, this map exhibits multiple gaps with distinct
branches of the map corresponding to sleep episodes with different numbers of REM bouts. Here, we apply this map [21] to
predict responses to sleep deprivation and validate these results with both experimental data and numerical simulations of
the model [20] that incorporate behaviorally-appropriate light schedules.

This paper is organized as follows. In Section 2, we first review the equations of the 8-dimensional ordinary differential
equation model for human sleep-wake dynamics and then summarize the numerical computation of the map representing
the dynamics of the model in Section 2.2. In addition, we decompose the map and use it to compute the length of recovery
sleep following sleep deprivation. In Section 3, we present predictions obtained from the map for (i) the length and (NREM-
REM) composition of recovery sleep and (ii) the duration of recovery sleep from 0 to 24 h of sleep deprivation. Furthermore,
we compare these predictions with experimental data and numerical simulations of the full model. Finally, we discuss our
findings and their implications in Section 4.

2. Methods
2.1. Physiologically-based model for human sleep and wake dynamics

The sleep-wake regulatory network model [20] is based on current hypotheses for the interactions of hypothalamic and
brainstem neural populations that influence the behavioral state (see Fig. 1). The model includes connections among neu-
ronal populations that have been identified as promoting wake (W), non-REM (NREM) sleep, and REM (REM) sleep states,
a suprachiasmatic nucleus population (SCN) that propagates the intrinsic circadian rhythm (C) to the neuron populations,
and the homeostatic sleep drive variable (H) which modulates activity of the NREM population (Fig. 1). Four of the system
variables correspond to the mean firing rates (in Hz) of neuron populations active during wake, NREM sleep, REM sleep, and



S.H. Piltz, C. Athanasouli, C.G. Diniz Behn et al. Commun Nonlinear Sci Numer Simulat 96 (2021) 105686

of the SCN, F(t) (X =Wake, NREM, REM and SCN), with the rate of change of F; dictated by:

F — FXOO[Zigi,XI‘Zi(Oo (Fi)] — K ’ @21)

where Fx[-] is the firing rate response function, g; x is a non-dimensional weight parameter, R;,, is the neurotransmitter
release function, and 7y is the time scale at which F(t) evolves. When g; x > 0 (g;x < 0), the presynaptic neuronal popu-
lation Y (Y =Wake, NREM, REM and SCN) excites (inhibits) population X. The function Fy,[r]. which for X =Wake, NREM
and REM takes a weighted sum of neurotransmitter concentrations (released because of the activity in presynaptic neuronal
populations) as its argument, has a sigmoidal form and saturates for high levels of neurotransmitter r:

Ko (1 4 tanh{ (r — ) fox]). 22)

where Xmax is the maximum firing rate, ay is the sensitivity of the response, and By is the half-activation threshold of
population X. The neurotransmitter concentration released as a result of activity of the presynaptic neuronal population
depends on the mean firing rate of the presynaptic neuronal population F,. This dependency is determined by the steady
state neurotransmitter release function, R;,, (f) (i =NE, GABA, and ACh), for a presynaptic firing rate f as follows:

Riss (f) = tanh(f/y;) (2.3)

where y; is the sensitivity of the release. This represents a reduced version of the model [15,20] in which we make the
simplifying assumption of instantaneous neurotransmitter release by the presynaptic neuronal population, that is, Fx < R;.
This simplification reduces the dimensionality of the model and does not qualitatively affect model dynamics [22].

Circadian variation of the firing rate of the SCN population is driven by the circadian clock oscillator, C(t), which is the
only argument of the SCN firing rate response function Fseyoo[r] in Eq. (2.1). Biologically, C(t) can be considered as the 24-
hour rhythm observed in human circadian markers, such as body temperature. The dynamics of C(t) are described by the
human circadian clock model fitted to experimental data describing circadian responses to light [23,24]. Using published
parameter values [23,25], the model generates oscillations in C that drive the average firing rate of the SCN population, Fycy,
between 1 and 7 Hz [26]. Under regular conditions, we simulate a 14-hour:10-hour environmental light:dark cycle with light
intensity I = 5000:1 = 0 lux. In simulations of sleep deprivation (see Figs. 2, 4, and 5), we mimic the light environment used
in experimental sleep deprivation studies (e.g., [10]). That is, if the model’s state is “awake” during the environmental dark
period, I = 300 lux to represent indoor light intensity for light activity such as reading. By contrast, if the model is “asleep”
during the environmental light period, I = 100 lux to represent light penetrating the eyelids.

Activity of the NREM population is influenced by the homeostatic sleep drive, H(t), and the dynamics of H(t) reflect the
dynamics of the established marker of sleep homeostasis, the power of slow wave activity (SWA) (i.e., EEG power in the
range between 0.75 and 4.5 Hz) during slow wave sleep [27]. The dynamics of H(t) are given by the following equation

= Gma = H) 45, 6y - %H[QW Ryl (2.4)

FXoo[r] =

H

THw

where # is a Heaviside function', Hpax is the maximum % of the mean SWA, and ty,, and ty, are the time constants for the

exponential increase during wake and decrease during sleep in the power of the SWA, respectively. These three parameters

are specified based on experimental results of EEG recordings in humans [27]. We assume that the state of decrease (sleep)

or increase (wake) of the homeostatic sleep drive is governed by the mean firing rate of the wake population. That is, the

homeostatic sleep drive starts to increase (decrease), and the model is in wake (sleep) state, when Fy crosses its threshold

value 6y, from below (above). H influences the transitions between wake and sleep states through its modulation of the

excitability of the firing rate response function of the NREM population, Fyremosol-]- Specifically, a large H value decreases the
half-activation threshold as follows: Bnrem(H) = —0.0045H — byg.

We use values of model parameters identifed in previous work [15] where we computed an ensemble of about 20,000
parameter sets that were fit to replicate the baseline wake, REM and NREM sleep timing and durations experimentally
measured from humans exhibiting typical (and habitual) sleep behavior [28]. Results shown here were derived using a
parameter set corresponding to median values of the ensemble, with variability between the 25th and 75th percentile values
of the ensemble shown in Figs. 3, 4 and 6. For a complete list of the model equations and parameter values, see [15].

Time traces of the activity of the neuronal populations (top), H (middle), and C (bottom) for two example simulations
of sleep deprivation where sleep onset occurs 8 and 20 h past the usual sleep onset (indicated by a vertical dotted line)
are shown in Fig. 2, panels A and C, respectively. Because the homeostatic sleep drive and the circadian rhythm vary more
slowly than the transitions between states, we consider a fast-slow decomposition of the dynamics of the model by taking H
and C as fixed parameters [22]. This reveals a 3-dimensional surface of steady state solutions where the top (blue) manifold
indicates the stable steady “wake” state and the bottom (red) manifold indicates an unstable steady state associated with
the stable periodic solution representing NREM-REM cycling during the “sleep” state (Fig. 2B and D). The manifold in the
middle (gray) is the unstable steady state dividing the basins of attraction of the “wake” and “sleep” states, and the solid
black curves (where the blue and gray (gray and red) manifolds coalesce) denote saddle-node bifurcation points. When H

1 That is, H[z] =0 if z< 0 and H[z] =1 if z> 0.
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Fig. 2. Example model simulations for sleep deprivation of 8 and 20 h. A,C: Time traces of population firing rates (top), homeostatic sleep drive H
(middle) and circadian drive C (bottom) for four days with sleep deprivation of 8h (A) and 20h (C) from usual sleep onset occurring on the 2nd day
(usual sleep onset indicated with black arrows and vertical dotted line). Light intensity input to the circadian clock oscillator varies with simulated model
behavior (background colors in bottom panels, see also Section 2). B,D: Surface of steady state solutions revealed by a fast-slow decomposition of the
model when H and C are taken as fixed parameters. The top (blue) surface represents the stable wake state and the bottom (red) surface represents the
unstable solution surrounded by the stable periodic solution (e.g., see blue trajectory) exhibiting NREM-REM cycles. Trajectories for the full model when H
and C are allowed to vary show how the steady state “wake” and “sleep” manifolds influence solutions of the full model [blue trajectory shows the stable,
baseline sleep model solution while the purple (orange) trajectory is the model solution for 8 h (20 h) of sleep deprivation B (D)]. We indicate sleep onsets
on the trajectories with filled circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

and C vary, model solution trajectories traverse the stable “wake” and “sleep” manifolds with transitions between states
occurring as the trajectory passes over the curves of saddle node points (see the blue curve, where we indicate sleep onsets
with circles and the oscillations in the trajectory along the lower red manifold reflect the occurrence of REM sleep episodes).

During simulations of sleep deprivation (purple and orange curves in Fig. 2B and D, respectively), the trajectory contin-
ues to evolve along the “wake” manifold, close to the curve of saddle-node points instead of dropping to the “sleep” state
as occurs under typical sleep-wake conditions (black filled circles on blue trajectory in Fig. 2B and D). When sleep onset
eventually occurs (leftmost purple and orange filled circles in Fig. 2B and D), the trajectories exhibit different paths on the
“sleep” manifold than the baseline (blue) trajectory reflecting differences in sleep durations and timing. These perturbed
trajectories obtain higher than baseline values in H as H increases during the extended “wake” state of the model (Fig. 2A
and C, middle panels) and have slightly varied C values due to differences in light exposure (Fig. 2A and C, bottom pan-
els). Over the following few sleep-wake cycles, these trajectories approach the baseline trajectory for the stable sleep-wake
pattern (Fig. 2B and D).

2.2. One-dimensional maps and computing the length of sleep (wake) time

The dynamics of the sleep-wake model can be described by a one-dimensional map for successive circadian phases of
sleep onset. The map represents the relationship between the sleep onset at a given circadian phase on the nth sleep cycle
(consisting of one sleep and one wake episode) and the successive sleep onset, occurring on the n + 1st sleep cycle. The map
is computed numerically by simulating the model from initial conditions given by stable solutions of the neuronal popu-
lation equations near the sleep onset points (see black curve on the blue manifold in Fig. 2C and D) associated with each
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Fig. 3. One-dimensional maps representing the dynamics of the sleep-wake network model. A,B: Map &, gives the circadian phase of the n + 1st sleep
onset (¢n,1) on day (circadian cycle) i (bottom panel) or i+ 1 (top panel) as a function of the circadian phase of the nth sleep onset on day (circadian
cycle) i (¢). B: Cobwebbing of sleep onset phases during simulations of 8h (purple) and 20h (orange) of sleep deprivation as shown in Fig. 2. C: Map @
gives the circadian phase of the next wake onset [on day i (bottom) or i + 1 (top)] as a function of the circadian phase of the nth sleep onset ¢, on day i.
D: Map &, gives the circadian phase of the next sleep onset [¢,,1 on day i (bottom) or i + 1 (top)] as a function of the circadian phase of the wake onset
on day i. Phase 0/1 indicates the minimum of the circadian variable C. The black dots are map point values computed from the model using the median
values of the parameter ensemble for typical adult sleep-wake behavior and the gray bands indicate variability in the maps computed using parameter
values at the 25th and 75th percentile of the ensemble (for more details, see [15]). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4. Predicted durations of recovery sleep following 0-24 h of sleep deprivation. Comparison of the total sleep time (TST, A) and REM sleep time
(REMST, B) predicted by the map &g, for sleep onsets at circadian phases associated with 0 to 24h of sleep deprivation (SD) (i.e., sleep onset occurs 0-24h
after the usual (baseline) sleep onset) (black dots and gray shading) and model simulations of 0 to 24h of sleep deprivation (red crosses). The model
simulations are computed with median parameter values and the gray shading represents the 25th and 75th percentiles of the parameter ensemble (for
more details, see [15]). Experimentally-measured durations of recovery TST and REMST for Oh, ~ 8h and ~ 20h of sleep deprivation have been reported in
[28] (blue markers including + standard deviation for sleep onset phases and durations). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 5. Differences between predictions based on the map and model simulations. A,C: Difference in total sleep time (A) and REM sleep time (C) during
the first (R1, blue triangles), third (R3, red circles) and fifth (R5, yellow crosses) recovery sleep episodes following 0 to 24h of sleep deprivation predicted
by the map (TSTmap, REMSTnap) and by model simulations of sleep deprivation (TSTg,, REMSTgy,). B,D: Difference between usual (baseline) TST (TSTgy,
B) and (baseline) REMST (REMp,, D) in the first (R1, blue triangles), third (R3, red circles) and fifth (R5, yellow crosses) recovery sleep episodes following
0 to 24h of sleep deprivation predicted by model simulations (TST,,, REMST;, ). The x-axis indicates the sleep onset in 0-24h after the usual (baseline)
sleep onset (SD). For panels A and C, the usual sleep onset is considered as the sleep onset of the fixed point of the map ®g, while for panels C and D,
the usual sleep onset is that of the stable periodic solution in the model simulations. We note that because of the differences in light schedules, there is a
(negligible) difference between the circadian phase of the fixed point and that of the stable periodic solution. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

value of C such that the auxiliary circadian variables are assumed to be on their stable solution. For a detailed description of
the algorithm, see [21]. When the model simulation is started from these (or nearby) initial values, the solution transitions
quickly to the sleep state and the time (and circadian phase) of the next sleep onset can be collected by continuing the
model simulation forward in time [21]. In order to maintain a consistent definition of circadian phase to compute the map,
during the numerical simulations of the model the light cycle is fixed to the environmental 14:10h L:D cycle (i.e., I = 500
(I = 0) lux during the light (L) (dark, D) period as in [21]). This fixed light schedule used for computing the map contrasts
with the behaviorally-gated light schedule used to simulate sleep deprivation in the full model where we mimic the light
exposure schedules during the experimental conditions (see Section 2).

The one-dimensional map, ®ss, gives the circadian phase for sleep onset on sleep cycle n+ 1, ¢,,1, as a function of the
circadian phase of sleep onset on sleep cycle n, ¢, (see Fig. 3A):

Pni1 = Pss(dn) - (2.5)

The n + 1st sleep onset may occur during the same circadian cycle as the nth sleep onset (day i in Fig. 3) or during the
following circadian cycle (day i+ 1). In this work, we decompose &g into two maps (Fig. 3C and D, respectively): (1) @y
which gives the circadian phase of wake onset as a function of the circadian phase of the preceding sleep onset and (2) ®ws
which gives the circadian phase of sleep onset as a function of the circadian phase of the preceding wake onset at sleep
cycle n. Thus,

¢n+1 = d)ss (¢'n) = (cbws o ¢sw)(¢n) = cbws[d)sw((pn)]- (2-6)

Decomposing the sleep onset-sleep onset map ®s; into a composition of @y and Py allows us to determine the length
of time asleep (awake) for a given sleep (wake) onset phase predicted by the map. Thus, if the phase of the next wake
(sleep) onset is above the y = x -line, the time spent asleep (awake) is (in hours)

AS =24(y —X). (2.7)
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Fig. 6. An example of long-lasting effects of acute sleep deprivation A: A model simulation for approximately 15h of sleep deprivation (asterisks)
generates an initial sleep onset near the region of the unstable fixed point of the map (black dots and gray shading). B: Similarly, simulation of the full
model predicts a long transient (of about 12 days) before returning to the baseline sleep solution. During this transient, sleep episodes are short (about 2.7
h less than baseline sleep) and desynchronized from the circadian rhythm with sleep onsets occurring in the afternoon and early evening (approximately
3:05 pm to 6:20 pm). Following the transient, sleep-wake behavior re-entrains to the circadian rhythm, and the timing and duration of baseline sleep are
re-established.

If a point is below the y = x -line, the time spent asleep (awake) is (in hours)
AS=24(1-x)+Yy. (2.8)

In what follows, we show that these predictions for the duration of recovery sleep obtained from the map are consistent
with both experimental data associated with 8- and 24-hours of sleep deprivation and our simulations of a range of sleep
deprivations from 0- to 24-hours in the full sleep-wake model which incorporates features of sleep deprivation such as
realistic patterns of light exposure and increases in homeostatic sleep drive above typical values (see Figs. 4 and 5).

3. Results

The one-dimensional sleep onset-to-sleep onset map & (Fig. 3 A) represents the dynamics of the model for the sleep-
wake regulatory network (see Section 2.1). The stable periodic solution is indicated by the fixed point of &g (sleep onset
near 0.83 ~ at 11:58pm) corresponding to a typical human baseline sleep onset on the descending phase of the circadian
cycle. The map &g also has an unstable fixed point (near 0.54 ~ 4:58pm) with a slope slightly larger than 1. A distinctive
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feature of &g is the vertical discontinuity for initial sleep onsets occurring just past the circadian peak (0.5 < ¢, < 0.6). This
discontinuity reflects a large increase in the phase (time) of succeeding sleep onsets for only small differences in the phase
(time) of the initial sleep onsets [and is due to a tangency of the trajectory with the saddle-node bifurcation points of the
steady state solution surface (Fig. 2B and D)].

The map s also illustrates variations in the number of REM bouts per sleep episode depending on the circadian phase
of sleep onset, with cusps over the interval 0.6 < ¢, < 1 demarcating the regions of the map associated with different char-
acteristic numbers of REM bouts. For example, sleep onsets near the stable fixed point result in 4 REM bouts per sleep
episode while sleep onsets at earlier and later phases (and past the respective cusps) contain 5 and 3 REM bouts, respec-
tively. The decomposed maps Psw and Py lack fixed points but maintain features of &g (Fig. 3C, D), such as the vertical
discontinuity for wake onset phases in the interval (0.6,0.8) in ®s (Fig. 3D) (which indicates that the discontinuity in
®gs near ¢, = 0.5 is due to a discontinuous change in wake episode duration). The map s (Fig. 3C) contains cusps that
demarcate regions of ®gs associated with different numbers of REM bouts within the sleep episode.

Above all, ds can be used to approximate sleep-wake patterns of recovery sleep following sleep deprivation. As a result
of sleep deprivation, sleep onset occurs at different circadian phases (times) and the evolution of model trajectories back to
the stable sleep-wake solution represents recovery sleep and can be tracked on & by the usual cobwebbing technique. For
example, recovery from 8 and 20 h of sleep deprivation are indicated with cobwebbing in Fig. 3B where the asterisks show
the sleep onset phases computed from the sleep deprivation simulations shown in Fig. 2.

Predictions for the length of recovery sleep computed from ®gs (using Eqs. (2.7)-(2.8), Fig. 4) indicate that sleep episodes
starting 0-19 h after the usual sleep onset time result in shorter total and REM sleep durations compared to the baseline
sleep. For longer periods of sleep deprivation, the map predicts a sharp increase in the duration of recovery sleep. This
pattern agrees with results observed in human experimental data [1] and in simulations of the two-process model [3]. In
addition, recovery sleep durations computed from ®g are consistent with durations obtained from simulations of the full
model (compare black dots with red crosses in Fig. 4) despite the inability of the map to account for the increases in home-
ostatic sleep drive H accrued during the deprivation period or the altered light conditions during extended wakefulness.
Furthermore, both the map predictions and the sleep deprivation simulations for total sleep time and REM sleep time are
consistent with experimental data for recovery following 8 and 20 h of sleep deprivation [28] (see blue dots and error bars
in Fig. 4). The durations of total sleep and REM sleep during recovery show discrete jumps for increasing hours of sleep
deprivation due to changes in the number of REM bouts, with the shortest sleep episodes containing 3 REM bouts and the
longest sleep episodes containing 6 REM bouts.

A comparison between the map and sleep deprivation simulations shows that for the first recovery sleep episode (R1),
the sleep durations predicted by &g differ by less than an hour (half an hour) for total (REM) sleep time from the model
simulations for most sleep deprivation hours (see blue triangles in Fig. 5A and C). This suggests that the circadian effects
on the duration of total sleep and REM sleep during recovery that are represented by the map dominate other factors
contributing to the length of recovery sleep in the model. For most sleep deprivation hours, the map predictions agree
with the simulations by the fifth recovery episode (R5, see yellow circles in Fig. 5A and C). However, for sleep onsets that
occur 15-16 h past the usual sleep onset (i.e., during the afternoon and near the vertical gap of the map), the simulated
solutions have not returned to the baseline sleep by the fifth recovery episode. The discrepancy between the map and
model simulations is also larger for these (and nearby) sleep deprivation hours due to the large vertical gap in the map.
These long-lasting effects of sleep deprivations of 15-16 h can be explained by the unstable fixed point on the map as
illustrated in a representative sleep deprivation simulation where sleep onset phases remain in the region of the unstable
fixed point of the map for many iterations (see Fig. 6A). Similarly, recovery sleep episodes simulated with the full model
exhibit an approximately 12-day transient (during which sleep of about 4.3 h with 4 REM bouts occurs in the afternoon and
early evening) before returning to the baseline (see Fig. 6B).

4. Conclusions

In this work, we applied a one-dimensional map describing the dynamics of an 8-dimensional, physiologically-based,
ordinary differential equation model for human sleep-wake regulation to predict the effects of acute (i.e., one-time, less than
24-hour) sleep deprivation. The map reproduces patterns in the durations of recovery sleep observed in both experimental
data and simulations of sleep deprivation using the full model. In addition, the accuracy of the predictions computed from
the map suggests that the circadian rhythm and its influences are stronger than the effect of the homeostatic sleep drive on
the duration of recovery sleep.

Although the map is a simplification of the sleep-wake regulation model, it helps to explain sleep deprivation simulations
in three principal ways. First, the map describes the effects of circadian phase on the duration of recovery sleep and estab-
lishes a lower bound for recovery sleep durations. This is because the map does not account for additional aspects of sleep
deprivation that would increase the duration of recovery sleep (such as increased homeostatic sleep drive and prolonged
light exposure during sleep deprivation which are considered in the full sleep-wake model). Second, the map predicts that
the duration of sleep deprivation, and the resulting circadian phase of the sleep onset, can affect the time course of recov-
ery sleep over multiple days (which is consistent with simulation results using the full model). In particular, sleep onsets at
circadian phases near the large, vertical discontinuity of the map (i.e., when ¢, = 0.5 near the peak of the circadian rhythm)
result in a long recovery to baseline sleep. Finally, cobwebbing on the map can be used to estimate and illustrate the evolu-
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tion of sleep-wake behavior during recovery from sleep deprivation and return to the baseline sleep. Thus, the map provides
a computationally-efficient tool for predicting features of recovery sleep that follows sleep deprivation.

Both total sleep and REM sleep time are increasingly recognized as important for cognitive performance and physical
and mental health (e.g., [29-33]). This awareness has led to the development of multiple mobile applications and electronic
monitoring systems that track sleep and promote healthy sleep habits (e.g., [34,35]). Many of these programs rely on math-
ematical models to predict sleep durations and responses to disrupted sleep schedules. We propose that one-dimensional
maps can provide a computationally-efficient means to predict the effects of acute sleep deprivation. A map, such as the
one presented here, that predicts the timing and duration of total and REM sleep during recovery sleep, may be leveraged
to design optimal recovery strategies for individuals exposed to acute sleep deprivation. Moreover, these strategies may be
designed to account for constraints such as limited recovery sleep time or repeated sleep deprivations. Previously, map-
based approaches have been applied to represent entrainment of the circadian oscillator following perturbations such as
transmeridian travel [36,37]. Thus, computationally-efficient representations of sleep and circadian dynamics may be used
to simulate a range of sleep perturbation and recovery scenarios. However, inter-individual differences in baseline sleep may
also affect responses to sleep deprivation [15,38] and jet lag [39]. Therefore, future work is needed to identify the key pa-
rameters necessary for representing interindividual variability in sleep-wake responses and, thereby, enable the derivation
of maps that provide real-time, personalized predictions for recovery sleep.
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