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ABSTRACT: Periodic photonic lattices constitute a fundamental pillar of physics supporting a plethora of scientific concepts and
applications. The advent of metamaterials and metastructures is grounded in a deep understanding of their properties. Based on
Rytov’s original 1956 formulation, it is well-known that a photonic lattice with deep subwavelength periodicity can be approximated
with a homogeneous space having an effective refractive index. Whereas the attendant effective medium theory (EMT) commonly
used in the literature is based on the zeroth root, Rytov’s closed-form transcendental equations possess, in principle, an infinite
number of roots. Thus far, these higher-order solutions have been totally ignored; even Rytov himself discarded them and proceeded
to approximate solutions for the deep-subwavelength regime. In spite of the fact that Rytov’s EMT models an infinite half-space
lattice, it is highly relevant to modeling practical thin-film periodic structures with a finite thickness as we show. Therefore, here, we
establish a theoretical framework to systematically describe subwavelength resonance behavior and to predict the optical response of
resonant photonic lattices using the full Rytov solutions. Expeditious results are obtained because of the semianalytical formulation
with direct, new physical insights available for resonant lattice properties. We show that the full Rytov formulation implicitly contains
refractive-index solutions pertaining directly to evanescent waves that drive the laterally propagating Bloch modes foundational to
resonant lattice properties. In fact, the resonant reradiated Bloch modes experience wavelength-dependent refractive indices that are
solutions of Rytov’s expressions. This insight is useful in modeling guided-mode resonant devices including wideband reflectors,
bandpass filters, and polarizers. For example, the Rytov indices define directly the bandwidth of the resonant reflector and the extent
of the bandpass filter sidebands as verified with rigorous simulations. As an additional result, we define a clear transition point
between the resonance subwavelength region and the deep-subwavelength region with an analytic formula provided in a special case.

KEYWORDS: effective medium theory, periodic subwavelength metasurfaces, wideband reflector, bandpass filter, polarizer,
waveguide modes

Periodic photonic lattices, known as diffraction gratings for
100 years and diffractive optical elements for decades,

have a venerable history.1−5 With major discoveries in optical
physics deriving from their deployment, periodic structures
enable wide application fields, including spectroscopy, laser
technology, and sensors. Imbuing the lattice with waveguiding
capability offers yet another set of functionalities grounded in
resonance effects due to excitation of lateral leaky Bloch
modes.6−14 In the recent past, periodic photonic lattices are
often referred to as “metasurfaces” or “metamaterials” in which
periodically aligned wavelength-scale features enable manipu-
lation of an incoming electromagnetic waves in a desired
manner.15−19 Resonant lattices offer novel properties and light-

wave control in compact format potentially replacing and
complementing conventional optical devices.
Extensive theoretical and experimental studies have been

conducted to realize resonant and nonresonant periodic
structures in materials systems pertinent to the various spectral
regions. Whereas various wavelength (λ) to periodicity (Λ)
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ratios can be deployed, working in the subwavelength regime
offers a particularly efficient optical response. Transition from
the nonsubwavelength to the subwavelength regime occurs at
the Rayleigh wavelength (λR).

2 For wavelength values longer
than λR, all higher diffraction orders are eliminated and only
the zero orders propagate in the cover and substrate media. In
the subwavelength regime, one can define two main regions.
These are the deep-subwavelength region where the wave-
length is much larger than the period, showing thin-film effects
on account of a high degree of homogenization, and the
resonant subwavelength region where the wavelength-scale
periodicity triggers guided-mode, or leaky-mode, resonance
effects. These regions are shown schematically in Figure 1a.
While the Rayleigh wavelength is known by λR = nSΛ, there
exists no definition for this transition wavelength that we refer
to as a cutoff wavelength (λc); here, we propose a definition for
this value
Since the seminal work by Rytov in 1956, the effective

refractive indices of subwavelength gratings can be calculated
for both transverse electric (TE) and transverse magnetic
(TM) polarization states.20 His effective-medium theory
(EMT) applies to an infinite periodic halfspace. Treating
continuity and periodicity of the electromagnetic fields at
boundaries between constituent materials in a unit cell results
in polarization-dependent transcendental equations. Employ-
ing a series expansion for the tangent term in the tran-
scendental equations returns the well-known zero-order,
second-order, or higher-order approximate solutions for
effective refractive indices. Applying EMT based on the
approximated Rytov formulation, one can replace a sub-
wavelength grating by an equivalent homogeneous film with

corresponding effective refractive indices for each polarization.
This process is noted schematically in Figures 1b,c. The
thickness of the homogeneous film is identical to the grating
thickness. In the deep subwavelength, or quasi-static, limit λ/Λ
→ ∞, the zero-order effective refractive indices result in a
reliable solution in terms of equivalent reflection, transmission,
and phase calculations. Notably, in 1986, Gaylord et al.
implemented zero-order EMT to approximate subwavelength
gratings with a single homogeneous layer in order to design an
antireflection coating at normal incidence.21 In a related work,
Ono et al. approximated a sinusoidal ultrahigh spatial
frequency grating by several rectangular grating layers with
different fill factors to design an antireflection structure.22 They
calculated the refractive index of each rectangular layer using
the zero-order approximation. However, the zero-order
approximation fails for wavelengths outside the deep
subwavelength regime. Therefore, as the value of λ/Λ
approaches the resonant subwavelength regime (i.e., λ ∼ Λ)
higher-order approximations must be used. Thus, Richter et al.
used second-order EMT to design and study optical elements
with a form birefringent structure.23 Moreover, Raguin and
Morris utilized second-order EMT to design antireflection
surfaces in the infrared (IR) electromagnetic bands.24

All previous EMT studies21−29 based on Rytov’s formula-
tion,20 with either exact or approximated solutions, have
reported only one effective refractive index for each wave-
length, as depicted in Figure 1d. In contrast, here, we report
that solving the exact transcendental equation in the resonant
subwavelength regime can result in several effective refractive
indices for a single wavelength. Mathematically, since tan(x)
has an infinite sets of roots, this may not come as a surprise.

Figure 1. Schematics illustrating (a) the diffraction regimes pertaining to Rytov’s solutions, (b) the general rectangular grating model, (c)
equivalent thin-film EMT model, (d) the zeroth-root Rytov solution basic to all past EMT models, and (e) calculated effective refractive indices
presented in this study based on the exact Rytov formalism.
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What is surprising is that these roots are highly applicable to
practical problems modeling photonic lattices with finite
thickness, namely, metasurfaces and metameterials, as we
show in detail in the remainder of the paper. These higher-
order solutions have been completely ignored thus far to our
knowledge. Even Rytov himself paid no attention to them and
proceeded to derive simplified approximate expressions based
on the zeroth root.20 In his case, this is understandable, as
resonant photonic lattices were not known at that time.
Henceforth, we establish our theoretical framework to

systematically describe subwavelength resonance behavior
and predict the optical response of resonant photonic lattices
using the full Rytov solutions. Expeditious results are obtained
because of Rytov’s semianalytical formulation with direct, new
physical insights available for resonant lattice properties. To
prove the correctness of the proposed approach, we compare
our semianalytical results with rigorously computed results and
show excellent agreement between them. Our solutions, based
on the exact symmetric Rytov problem, are previewed
schematically in Figure 1e. Most importantly, we show here
that the higher Rytov solutions nm

EMT correspond exactly to
reradiated fields generated by higher-order evanescent
diffracted waves represented as Sm, m = ±1, ±2, ..., driving
the resonance process.30−32

■ RYTOV REFRACTIVE INDICES AND THEIR
INTERPRETATION

We first review the Rytov formalism20 for TE polarization,
where the electric-field vector is parallel to the grating lines.
The full formula for a rectangular grating structure with infinite
thickness is derived by considering the continuity of the
electric and magnetic fields at boundaries between the ridges
and grooves. There results a transcendental equation given by

κ α α κ α α+ + − =a a(1 )sin( )sin( b) 2 (1 cos( )cos( b)) 02
1 2 1 2

(1)

where α = −k n n( )H1 0
2

TE
EMT 2 , α = −k n n( )L2 0

2
TE
EMT 2 , k0 =

2π/λ0, κ = α1/α2, and nTE
EMT represent the effective refractive

index for the TE case. The parameters a and b are the widths
of the grating constituents with refractive indices nH and nL,
respectively. Based on this, one can define parameters F = a/Λ
and 1 − F = b/Λ as fill factors of each section in a unit cell, as
shown in Figure 2a. Since symmetric rectangular gratings are

considered in Rytov’s model, he extracted solutions from the
full formula, eq 1, that are pertinent to symmetric field
distributions inside the grating. Accordingly, eq 1 is reduced to
eq 2, which we reference here as the “exact” Rytov formulation
for TE polarization.
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Similarly, for TM polarization, where the magnetic-field vector
is parallel to the grating lines, there results
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Solving the exact Rytov equations, eqs 2 and 3, for nTE
EMT and

nTM
EMT delivers a set of effective refractive indices that depend on
the wavelength and the input design parameters. In principle,
due to the periodicity of tan(x), there exists an infinite number
of solutions; in practice, a few of the lowest-order solutions will
be useful. Except for n0

EMT, the effective refractive indices have
specific cutoff wavelengths. Knowing the cutoff wavelengths is
key to predicting the optical response as shown here. Working
at wavelengths longer than the Rayleigh wavelength, λR = nSΛ,
ensures zero-order propagation toward the cover and substrate
with all higher-order diffracted waves being evanescent. These
higher diffraction orders propagate in the periodic region
depending on the structural design and corresponding cutoff
values of λc

m.
In the periodic region, the fundamental coupled wave

expansion of the y-component of the electric field can be
written as33,34

∑= [− − ]E x z S z i k mK x( , ) ( ) exp ( ) )y
m

m
(4)

where Sm(z) are the amplitudes of the space-harmonic
components in the Fourier series expansion of the total field
in the periodic direction, k is the wave vector of a diffracted
wave, and K = 2π/Λ is the grating vector magnitude. Each
diffracted order possesses a wavevector (km) in the direction of
propagation which can be resolved into vertical and horizontal
components, as depicted in Figure 2b. Effective refractive
indices obtained by solving the Rytov equations pertain to the
vertical components of the diffracted orders belonging to km.
We have

β γ= +km m m
2 2 2

(5)

where βm = km sin θ, γm = km cos θ, km = k0nm(λ0), and k0 = 2π/
λ0. Defining Nm(λ0) = βm/k0 = nm(λ0) sin θ and nm

EMT(λ0) = γm/
k0 = nm(λ0) cos θ, a relation is obtained between the
component refractive indices of Figure 2b as

λ λ λ= +n N n( ( )) ( ( )) ( ( ))m m m0
2

0
2 EMT

0
2

(6)

Here, nm is the refractive index experienced by a diffracted
wave with wavevector km. In the geometry of a periodic
waveguide, Nm represents the lateral effective index seen by the
mth Bloch mode, whereas nm

EMT refers to the vertical effective
index seen by the resonant reradiated Bloch modes.
The objective of Figure 3 is to connect the Rytov model

with practical device geometry as applied in metamaterials
presently. Accordingly, Figure 3a shows an example grating
membrane structure enclosed by air and its reflection spectrum
mapped in wavelength versus grating thickness (dg). This

Figure 2. (a) Schematic of the half space grating model in Rytov’s
formulation with an infinite number of periods along the X direction.
(b) Wavevector of the mth diffracted order accompanied by its vertical
(Z direction) and horizontal (X direction) components.
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spectrum is computed with rigorous coupled-wave analysis
(RCWA).33,34 The corresponding half-space grating structure
used in the Rytov model is presented in Figure 3b. The
effective refractive indices nm

EMT obtained by solving the exact
Rytov eq 3 are shown in Figure 3c. The values of nm

EMT denote
vertical components of the refractive indices nm that quasi-
guided evanescent-wave diffraction orders see in the direction
of propagation in the periodic medium. These evanescent
diffraction orders excite lateral leaky Bloch modes that
generate the guided-mode resonance. Comparing the rigor-
ously computed resonance map in Figure 3a to Figure 3c
shows that no resonance occurs in the region where n1

EMT = 0.
Moreover, using eq 6 with values of nm

EMT obtained by the exact
Rytov formula, one can find the corresponding pairs of nm and
Nm satisfying the eigenvalue equation of the equivalent

homogeneous slab waveguide.9 Figure 3d depicts these values
as a function of wavelength for an equivalent waveguide having
a thickness of dg = 0.4 μm. It can be inferred from this figure
that the cutoff wavelength occurs when the refractive index of
the waveguide reaches nm = nair = 1 at which point the
waveguide vanishes. Thus, at the cutoff wavelength, the
refractive index contrast becomes zero such that no waveguide
mode can be supported. For the grating design of Figure 3a,
with dg = 0.4 μm, the resonance manifests as a reflection peak
at λRes = 1.251 μm, as shown in Figure 3e. At the resonance
wavelength, one can compute with RCWA the amplitudes of
the coupled diffracted orders and simulate the magnetic-field
distribution, as shown in Figures 3f and g, respectively. It is
clearly illustrated that the dominant contribution to the
internal modal field, whose cross-section is shown in Figure 3f,

Figure 3. (a) Schematic of a representative grating membrane and corresponding RCWA-based reflection map as a function of grating thickness
(dg) for TM-polarized incident light, (b) schematic of the half-space grating model, (c) calculated exact effective refractive indices, (d) wavelength
dependent effective refractive indices of waveguide (n1), horizontal component (N1), and vertical component (n1

EMT), based on eq 6, (e) simulated
reflectance spectrum of a grating with dg = 0.4 μm, (f) amplitude of the coupled diffracted orders at resonance wavelength of λRes = 1.251 μm, and
(g) distribution of total magnetic field in one period at the resonance wavelength of λRes = 1.251 μm showing TM0 mode shape. The grating
structure has constant parameters of Λ = 1 μm, F = 0.5, nH = 2, and nL = nc = ns = 1.
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is due to the evanescent diffraction orders with amplitudes S±1,
which is also completely consistent with the total magnetic-
field distribution illustrated in Figure 3g. Interestingly, this
point can be predicted and explained directly via Figure 3c; as
the resonance wavelength falls below the cutoff wavelength of
the first diffracted order (λc

1), we would expect the first
diffracted orders S±1(z) to be responsible for the resonance
because it is this order that experiences n1

EMT.

■ RYTOV SOLUTIONS FOR CUTOFF WAVELENGTHS
Knowing the values for the cutoff wavelengths is important to
distinguish the deep-subwavelength and resonant-subwave-
length regions. Moreover, the cutoff wavelengths define the
spectral location where a new evanescent diffraction order,
with attendant lateral Bloch-mode excitation, enters and begins
to participate in the resonance dynamics. The cutoff
wavelengths λc

m occur when the vertical effective refractive
index of diffraction order m vanishes (i.e., nm

EMT = 0). The
semianalytical Rytov formulas can be used to determine the
first and higher cutoff wavelengths for any one-dimensional
lattice. Therefore, plugging nTE

EMT = 0 into the exact Rytov
formulation, for example, eq 2 for TE polarization, yields
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In general, there is no analytical solution for this equation.
However, here we show that, for specific design parameters,
one can straightforwardly and analytically calculate the cutoff
wavelengths for each diffracted order. This works when the

arguments of the tangent functions on each side of eq 7
become identical

− =F n Fn(1 ) L H (8)

Once this condition is satisfied, eq 7 holds for values of the
tangent arguments equal to mπ/2 (m = 1, 2, 3, ...), which
results in closed-form, simple analytical solutions

λ = Λ
m

Fn
2m

c H (9)

giving the cutoff wavelength for each diffraction order. All
photonic lattices supporting guided-mode resonance admit at
least the first evanescent diffraction order. Thus, with m = 1,
we get λc

1 = 2ΛFnH. This is a remarkable canonical result. From
eq 8, appropriate fill factors satisfying these solutions are F =
nL/(nL + nH). These values of F are, therefore, reasonable for
experimental realization. In the subwavelength regime, to
ensure that at least one resonance arises from the mth

diffraction order, the Rayleigh wavelength should be smaller
than the cutoff wavelength (i.e., λR < λc

m). This yields a
constraint F > ns/2nH for m = 1. Previously, Lalanne et al.
obtained a numerical solution for λc

1 and pointed out its
analogy with the Rayleigh wavelength.10 One significant point
in our solution is that the cutoff wavelengths are fixed and will
not change with changes in the refractive index of the cover
and substrate.
In this spirit, one can engineer the spectral response and the

number of diffracted orders at work by appropriately choosing
the values of λR and λc

m for grating design. For example, the

Figure 4. Grating design with parameters satisfying conditions for an analytic study. (a) Schematic of the half-space grating model, (b) graphical
solution of eq 7 to find the cutoff wavelengths of the diffracted waves in the grating region, (c) schematic of a grating membrane with finite
thickness, and (d) corresponding reflection map as a function of grating thickness (dg).
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grating design depicted in Figure 4a, having parameters F = 1/
3, Λ = 1 μm, nH = 2, and nL = 1, satisfies eq 8. Thus, the cutoff
wavelengths for each evanescent diffracted order can be
obtained analytically, as expressed in eq 9, which returns values
of λc

1 = 4/3 ∼ 1.33 μm and λc
2 = 2/3 ∼ 0.66 μm for the first two

orders. The Rayleigh wavelength of this design is λR = 1 μm,
which is smaller than the first-order cutoff wavelength λc

1 = 4/3
∼ 1.33 μm.
To validate the accuracy of our method, it is seen in Figure

4b that graphical solutions of eq 7 give the exact same values as
obtained analytically by eq 9. Figure 4c shows a schematic of a
grating membrane surrounded by air (nair = 1) with a finite
thickness of dg. For this design, the cutoff wavelengths shown
by dashed lines in Figure 4d, which is a RCWA-simulated

reflection map, are in full agreement with the analytical cutoff
values.

■ RELEVANCE OF RYTOV’S FORMULATION TO
RESONANCE DEVICE DESIGN

In this section, we show that the Rytov effective refractive
indices are directly applicable to design of periodic photonic
devices, including metamaterials and metasurfaces. Their
deployment fully supports prior explanations of resonance
device physics in terms of lateral leaky Bloch modes and
guided-mode resonance.30−32 Their existence and spectral
expressions are not consistent with resonance effects caused by
local modes, including Fabry−Perot resonance or Mie
scattering.35,36 Here, we treat example devices whose spectra

Figure 5. An example demonstrating the use of the Rytov indices for design of a wideband resonant reflector. (a) Schematic of the half-space
model. Calculated effective refractive indices using the Rytov formalism for (b) TM-polarization and (c) TE-polarization states. (d) A schematic of
a corresponding grating membrane with parameters Λ = 0.72 μm, F = 0.78, nH = 3.5, and nL = nair = 1. Simulated reflection maps in wavelength vs
grating thickness (dg), pertinent to normally incident (e) TM-polarized and (f) TE-polarized light. In the maps, the dark red color implies R0
approaching 1.
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and functionality are directly explainable using the Rytov
indices.

■ WIDEBAND RESONANT REFLECTOR

One particularly useful device is the wideband resonant
reflector in which nanopatterned design provides high
reflectivity approaching 100% over a wide wavelength
range.31,37 Numerous studies have addressed these compact,
often single-layer, reflectors both theoretically and experimen-
tally for various optical wavebands.10,32,36−40 Here, we apply
the Rytov indices to substantiate the physical basis for the
wideband reflection behavior. In this context, the half-space
grating structure with parameters shown in Figure 5a is
considered for the analysis. Corresponding roots of the exact
Rytov equations for both TM and TE polarization states are
found and the results are shown in Figures 5b and c,
respectively. Similar curves were obtained by Lalanne et al.10

using an RCWA-based numerical algorithm. For the TM case
shown in Figure 5b, there are two significant points to be
considered. The first one concerns the values of the cutoff
wavelengths for each guided diffracted order and the second
pertains to the shape of the index curves. For instance, it is
illustrated in Figure 5b that in the wavelength range of 1.25 to

3 μm, beyond the cutoff wavelength of the second order, only
n0
EMT and n1

EMT exist in the effective refractive index diagram.
Consequently, these two orders with m = 0 and m = 1 are
responsible for all important spectral properties. Furthermore,
it is seen that the slopes of the curves are almost identical with
both curves varying monotonically in a wide wavelength range
depicted by the gray region in Figure 5b. This is a key point to
achieve wideband reflector response as the wavelength-
dependent phase difference (Δφ) accumulated in the z
direction between these two orders at work is defined by Δφ
= (2π/λ0)(n0

EMT(λ0) − n1
EMT(λ0))dg, which is proportional to

the effective refractive-index difference of the first two orders
obtained by the exact Rytov expression. Therefore, our method
enables prediction as to whether to expect a wideband reflector
behavior from a one-dimensional grating structure, simply by
calculating effective refractive index graphs without performing
any rigorous numerical simulations. The closed-form Rytov
formulas might thus substantiate efficient design methods.
Applying this approach to Figure 5c, it is seen directly that no
wideband reflection response will arise out of this design for
TE polarization as the slopes of the two curves differ
significantly. To confirm our hypothesis, we performed
RCWA-based simulations for the structure shown in Figure

Figure 6. Rytov indices in bandpass filter analysis and design. The example filter works in TE polarization with parameters of Λ = 1 μm, F = 0.4, nH
= 4, nL = 8/3, and nair = 1. (a) Schematic of the Rytov half-space model and calculated effective refractive indices. (b) Schematic of the attendant
grating membrane with finite thickness and its simulated reflection map as a function of grating thickness (dg). (c) Bandpass filter response of the
device with grating thickness of dg = 0.51 μm. Inset in (c) shows the amplitudes of the coupling diffracted orders at the resonance wavelength of
λRes = 1.50542 μm. (d) Electric field distribution at resonance exhibiting a TE20 profile.
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5d. Simulated zero-order reflection maps of this grating design
for TM and TE cases are shown in Figure 5e and f,
respectively. These maps validate our predictions of wideband
reflection response occurring in TM polarization but no
wideband reflection response for the TE case. Wideband
reflectors are related to the regions with dark red colors in a
wide wavelength range. These appear in the TM map at some
specific grating thicknesses, dg, which provide an appropriate
phase difference (completely in phase) for high reflection since
Δφ ∝ dg. Explanation of wideband resonance reflection
applying the spectral phase pertinent to similar, albeit
numerically simulated, effective indices was first provided by
Lalanne et al.10

■ GUIDED-MODE RESONANT BANDPASS FILTER
Another important grating-based optical device is the sparse,
single-layer bandpass filter (BPF) exhibiting low transmission
sidebands and a high-efficiency narrow-band transmission
peak.41−44 Low transmission sidebands and a transmission
resonance peak correspond to a wideband high-reflection
background and a reflection resonance dip, respectively. To
study this device type, a half-space model and the
corresponding calculated Rytov refractive indices are shown
in Figure 6a. We chose the grating parameters to satisfy eq 8 to
analytically obtain the cutoff wavelengths. As in the explanation
of the wideband reflector, similarity in the slopes of the nEMT

curves enables an appropriate phase difference to obtain high
reflectivity at a specific device thickness.
Thus, we expect a wideband reflector response in the

wavelength range where Δn/λ0 is relatively constant. This
condition prevails in the gray region of the EMT graph of
Figure 6a. This figure is significantly different from Figure 5b in
that the gray region in Figure 5b contains only n0

EMT and n1
EMT,

whereas the gray region in Figure 6a encompasses n0
EMT, n1

EMT,
and n2

EMT. As n0
EMT and n1

EMT are responsible for a wideband
reflection background, bringing the second order n2

EMT to work
will manifest as a reflection dip resonance feature in the optical
spectrum because it exists within a region of total reflection.
Figure 6b shows a schematic of the membrane version of the
half-space grating design of Figure 6a and its reflection map as
a function of grating thickness. The reflection map agrees well
with the analytic solutions for the cutoff wavelengths and with
the number of orders at work experiencing n0

EMT, n1
EMT, and

n2
EMT. The resonance feature predicted based on the existence
of the n2

EMT curve in the effective refractive index graph is
marked as TE20 in the reflection map of Figure 6b. Figure 6c
confirms a bandpass filter response having a wideband high
reflection background. At the reflection dip wavelength, the
inset in Figure 6c reveals that the second evanescent diffraction
order m = 2 is dominant, showing that a nonzero n2

EMT is key to
realizing a bandpass filter. The electric field distribution at the
resonance wavelength shown in Figure 6d furthermore
indicates TE20 response (fundamental mode excited by the
second evanescent order), consistent with our model. In
summary, the Rytov treatment of the resonant BPF is fully
consistent with, and supports, prior descriptions of BPF
physics.41,42,44

■ GUIDED-MODE RESONANCE POLARIZER
The linear resonant polarizer is the final device example
presented. In the past, it has been shown that ultracompact
polarizers with high extinction ratios are realizable with
resonant gratings.31,45,46 Treating here a known polarizer,46

the design schematic is shown in Figure 7a, displaying a small
fill factor (F = 0.1), with nH = 3.5, embedded in a medium with
a refractive index of 1.5 in a way that nL = nC = nS = 1.5 under

Figure 7. Rytov analysis of a sparse grating polarizer with parameters Λ = 0.86 μm, F = 0.1, nH = 3.5, and nL = 1.5 extracted from ref 46. (a)
Schematic of the design with finite grating thickness of dg, (b) RCWA-based λ−dg reflection map for TE and TM polarization states, (c) zero-order
reflectance (R0) spectra with dg = 0.54 μm, and (d) exact Rytov effective refractive index diagram for TE and TM cases.
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normal incidence. Figure 7b shows computed λ−dg reflection
maps for TE and TM polarization states. At the specific
thickness of the grating denoted by the dashed line, TE
polarization exhibits high reflection, while TM reflectance is
suppressed. Reflectance spectra for a grating with thickness dg
= 0.54 μm, as shown in Figure 7c, reveal a good polarizing
response in a wavelength range of 1.3−1.5 μm. To elucidate
the polarization behavior in the Rytov picture, we calculate TE
and TM Rytov indices, as presented in Figure 7d. Again, the
parallelism of the n0

EMT and n1
EMT curves in TE polarization

enables a wideband reflector response. In contrast, for TM
polarization in Figure 7d in the working range of the polarizer,
only n0

EMT exists. Consequently, we see that no guided-mode
resonance features will occur in the TM case consistent with
the simulated reflection map in Figure 7b.

■ APPLICATION TO METASURFACES WITH
MULTIPART UNIT CELLS

Multipart unit cell metasurfaces have emerged as a promising
platform to achieve exceptional properties not attainable with
conventional two-part unit cell metasurfaces. For example,
various novel functionalities can be obtained with four-part fill
factor gratings, such as previously reported applications,
including wideband antireflection,47 wideband reflection,31

large steering angle,48 and light-propelled spacecraft.49 With
reference to Figure 8, writing down the conditions of
continuity and periodicity of electric and magnetic fields for
four-part grating designs, we find the following determinant
expression:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

α α α α

α α α α

α κ α α α

κ α κ α α α

α α κ α κ α

α κ α κ α κ α

− −

− −

− −

− −

−

− −

=

a a a a

c c d d

b b b b

a a a a

c c d d

b b b b

det

cos( ) sin( ) cos( ) sin( ) 0 0

0 0 cos( ) cos( ) cos( ) sin( )

cos( ) sin( ) 0 0 cos( ) sin( )

sin( ) cos( ) sin( ) cos( ) 0 0

0 0 sin( ) cos( ) sin( ) cos( )

sin( ) cos( ) 0 0 sin( ) cos( )

0

1 1 2 2

2 2 1 1

2 2 1 1

1 1 2 2
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2 2 1 1 (10)

Solving this equation results in a set of effective refractive index
values corresponding to the evanescent diffracted orders as
discussed above. Results pertaining to an example four-part fill
factor grating based on our theory are shown in Figure 8. A
wideband reflector response of the finite thickness grating on a
substrate under TE illumination is shown in Figure 8a. The

reflection map of the four-part structure as a function of the
thickness of the grating is illustrated in Figure 8b. The infinite
half-space design of the four-part period structure and
corresponding effective refractive indices are depicted in
Figure 8c and d, respectively. In complete agreement with
our previous explanation for the conventional two-part

Figure 8. Effective refractive index analysis of a four-part unit cell grating with TE-polarized incident wave. (a) Wideband reflection spectrum of the
four part grating on a substrate with Λ = 1 μm, F1 = 0.075, F2 = 0.275, F3 = 0.375, F4 = 0.275, nS = 1.48, nC = 1, nH = 3.48, nL = 1, and dg = 0.49 μm,
(b) wavelength vs grating thickness reflection map, (c) half-space model of the four-part structure, and (d) exact effective refractive indices for the
TE case.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c01244
ACS Photonics 2020, 7, 3177−3187

3185

https://pubs.acs.org/doi/10.1021/acsphotonics.0c01244?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01244?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01244?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.0c01244?fig=fig8&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c01244?ref=pdf


structure, the gray region in Figure 8 demonstrates near-
constant values for Δn/λ0 across the band, enabling the high
reflectivity in this wide wavelength range. Therefore, the
principles underlying our theory for two-part fill factor
resonant lattices based on the Rytov formulation are
equivalently applicable to the more complex four-part grating
design. Analogous formulations can be derived for the general
case of multipart unit cell structures with no restrictions on
symmetry.

■ CONCLUSIONS

In summary, we present Rytov refractive indices obtained by
solving the exact Rytov formulation initially derived in 1956. In
contradiction to past work, where effective medium theory
returns a single effective index for a given device, the full
formalism provides multiple solutions based on the multiple
roots inherent therein. We interpret these solutions as
pertaining directly to evanescent waves that drive the laterally
propagating Bloch modes foundational to lattice resonance.
The resonant reradiated Bloch modes experience wavelength-
dependent refractive indices that are solutions of Rytov’s
closed-form expressions. Moreover, the full set of Rytov indices
is directly applicable to design of periodic photonic devices,
including metamaterials and metasurfaces. Their manifestation
fully supports the diffractive-optics explanation of resonance
device physics in terms of lateral leaky Bloch modes and
guided-mode resonance. The cutoff wavelengths of the
evanescent diffraction orders define their spectral region of
dominance and interaction. The spectral slope of the Rytov
indices predicts spectral ranges across which the reradiated
Bloch modes will be in phase or out of phase. Thus, for
example, it is possible to predict whether to expect a wideband
reflector behavior from a one-dimensional grating structure
simply by calculating effective refractive index graphs without
performing any rigorous numerical simulations. The closed-
form Rytov formulas might thus substantiate efficient design
methods. The fact that the cutoff wavelengths are directly
embedded in the formulation enables definition of the dividing
line between the resonance subwavelength region and the
deep-subwavelength region based on the cutoff wavelength of
the first evanescent diffraction order. This important transition
point is always numerically available via the Rytov formulation.
In a special case, we find that the transition wavelength is given
by λc

1 = 2FnHΛ, which is directly comparable to the universal
Rayleigh wavelength λR = nSΛ that defines transition from the
nonsubwavelength to the subwavelength regime. We success-
fully apply the Rytov formalism to reliably describe the
behavior of various optical devices, such as wideband
reflectors, resonant bandpass filters, and guided-mode
resonance polarizers. Rigorous numerical results support all
of our explanations and predictions. Future studies might
investigate and extend the methods of this study to more
complex lattices such as those with multipart unit cells.
Additionally, since the fundamental properties of the elemental
1D lattices studied here transfer in large measure to
corresponding 2D lattices, extension of this work to 2D
periodic metasurfaces is of interest. The utility and precision
with which the simple Rytov formalism applies to resonant
photonic lattices, including metamaterials, is an important
discovery with potential to support future advances in the field.
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