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We consider estimating a piecewise-constant image, or a

Correspondence radient-sparse signal on a general graph, from noisy linear
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Data Science, Yale University, New Haven, measurements. We propose and study an iterative algorithm
USA. to minimize a penalized least-squares objective, with a pen-
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sy alty given by the “Z,-norm” of the signal’s discrete graph

gradient. The method uses a non-convex variant of proximal
gradient descent, applying the alpha-expansion procedure
to approximate the proximal mapping in each iteration, and
using a geometric decay of the penalty parameter across itera-
tions to ensure convergence. Under a cut-restricted isometry
property for the measurement design, we prove global recov-
ery guarantees for the estimated signal. For standard Gaussian
designs, the required number of measurements is independent
of the graph structure, and improves upon worst-case guaran-
tees for total-variation (TV) compressed sensing on the 1-D
line and 2-D lattice graphs by polynomial and logarithmic
factors respectively. The method empirically yields lower
mean-squared recovery error compared with TV regulariza-
tion in regimes of moderate undersampling and moderate to
high signal-to-noise, for several examples of changepoint sig-

nals and gradient-sparse phantom images.

1 | INTRODUCTION

Consider an unknown signal X, € R? observed via n noisy linear measurements
y=Ax, +eecR"

We study the problem of estimating x,, under the assumption that its coordinates correspond to the p
vertices of a given graph G = (V, E), and x,, is gradient sparse. By this, we mean that
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1vxllo= D, 1{x,, #x,;) )

(ij) €E

is much smaller than the total number of edges |El. Special cases of interest include the 1-D line graph,
where variables have a sequential order and x, has a changepoint structure, and the 2-D lattice graph,
where coordinates of x, represent pixels of a piecewise-constant image.

This problem has been studied since early pioneering works in compressed sensing (Candes et al.,
2006a, b; Donoho, 2006). Among widely used approaches for estimating x, are those based on con-
straining or penalizing the total-variation (TV) semi-norm (Rudin et al., 1992), which may be defined
(anisotropically) for a general graph as

IVxlh = ¥ lxi=xl.

(ij) €E

These are examples of £ -analysis methods (Candes et al., 2011; Elad et al., 2007; Nam et al., 2013),
which regularize the £ -norm of a general linear transform of x rather than of its coefficients in an ortho-
normal basis. Related fused-lasso methods have been studied for different applications of regression and
prediction in Tibshirani et al. (2005), Rinaldo (2009), Tibshirani (2011) and Padilla et al. (2017). Other
graph-based regularization methods were studied in Krishnamuthy et al. (2013), Li et al. (2018) and Kim
and Gao (2019), and generalizations to trend-filtering methods that regularize higher-order discrete deriv-
atives of x were studied in Kim et al. (2009) and Wang et al. (2016).

The reconstruction error of TV regularization depends on the structure of the graph (Cai & Xu,
2015; Needell & Ward, 2013a, b). More generally, the error of £ -analysis methods with sparsify-
ing transform V depends on sparse conditioning properties of the pseudo-inverse V' (Candés et al.,
2011). For direct measurements A=I, these and related issues were discussed in Hiitter and Rigollet
(2016), Dalalyan et al. (2017) and Fan and Guan (2018), which showed in particular that TV regu-
larization may not achieve the same recovery guarantees as analogous ¢ -regularization methods on
certain graphs including the 1-D line. In this setting of A =1, different computational approaches also
exist to approximately minimize an £ ,-regularized objective on general graphs (Boykov et al., 1999;
Kleinberg & Tardos, 2002; Xu et al., 2011).

Motivated by this line of work, our current paper studies an alternative to TV regularization in the
more difficult setting of indirect linear measurements, where A # I. Our procedure is based similarly
on the idea of minimizing a possibly non-convex objective

Fx) =2y -Axl2+4 Y e(xx) )

(ij) €E

N

for an edge-associated cost function c. We will focus attention in this work on the specific choice of an
¢ regularizer

c(xpx) =1{x; #x;}, 3

which matches Equation (1), although the algorithm may be applied with more general choices of metric
edge cost. For the above £, edge cost, the resulting objective takes the form

1
Fx)y =31y — Ax |13 + Al Vxllo.
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For A =1, Fan and Guan (2018) analysed the alpha-expansion algorithm of Boykov et al. (1999)
for minimizing this objective, and showed that it can achieve statistically rate-optimal estimation guar-
antees. We review this method in Section 2. Its algorithmic idea is specific to A = I, where the objec-
tive (2) decomposes as a sum of terms involving only individual variables x; and pairs (x;, x;), and this
idea does not easily extend to indirect linear measurements. In this work, we instead study an approach
of applying this method to minimize F(x) using a non-convex and non-smooth variant of proximal

gradient descent: For parameters y € (0, 1) and 5 > 0, we iteratively compute x,,; from x; via

Ay <X —nAT(Ax, —y)
(3 2 M 1 2
Xy, Targ m1n§||x—ak+1||2+/1k Z c(x;, x;)
X e
(ij)EE
A1 < Ay

The update for x; ; is carried out approximately, using the alpha-expansion idea. We call this algorithm
ITALE, for ITerative ALpha Expansion.

There are two important differences between ITALE and standard proximal gradient methods for
convex problems (Beck & Teboulle, 2009; Parikh & Boyd, 2014). First, since the edge cost c(x;, xj)
is non-convex, the minimization problem for updating x;,  is also non-convex. That such an algorithm
should converge is not as evident as for proximal gradient methods applied with convex penalties.
Second, to ensure that the algorithm indeed converges, we must start with a large initialization for the
penalty A,,,, and geometrically decay this penalty across iterations. This is the case even if we were
only interested in one final tuning parameter A in the objective (2). This type of penalty decay was
studied previously in a convex setting by Xiao and Zhang (2013), but the purpose there was to improve
the convergence rate rather than to ensure convergence.

In practice, for y sufficiently close to 1, we directly interpret the sequence of ITALE iterates x,
as approximate minimizers of the objective function (2) for penalty parameters A = A, /# along a
regularization path. We comment more on this approach in Section 2. We select the iterate k using
cross-validation on the prediction error for y, and we use the final estimate RITALE _ X;.

Despite F(x) being non-convex and non-smooth, we provide global recovery guarantees for ITALE.
For example, under exact gradient sparsity || VX, ||, = s,, if A consists of

n>slog(l+ |E|/s,) “4)

linear measurements with i.i.d. N (0, 1 /n) entries, then the ITALE iterate x, for the Z regularizer (3)
and a penalty value 4, < |[e]| g /s, satisfies, with high probability,

1%, — X112 < llell,- )

More generally, we provide recovery guarantees when A satisfies a certain cut-restricted isometry prop-
erty, described in Definition 1 below. Note that Equation (5) is the optimal worst-case error guarantee for
deterministic measurement errors e, which is the typical setting studied in the compressed sensing liter-
ature (Blumensath & Davies, 2009; Candes et al., 2006a, b; Needell & Tropp, 2009) and also the setting
that we study in this work.

Even for i.i.d. Gaussian design, we are not aware of previous polynomial-time algorithms which
provably achieve this guarantee for either the 1-D line or the 2-D lattice. In particular, connecting
with the previous discussion, similar existing results for TV regularization in noisy or noiseless set-
tings require n > s, (log| E|)? Gaussian measurements for the 2-D lattice and n > /| E|s,log|E|

~
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measurements for the 1-D line (Cai & Xu, 2015; Needell & Ward, 2013b). Applying thresholding or
¢ -regularization instead to a representation of X, in a spanning tree wavelet basis, as proposed and
studied in Padilla et al. (2017), would reduce this requirement for n to be optimal up to a logarithmic
factor. The requirement for n in ITALE is instead optimal up to a constant factor, for any bounded-de-
gree graph.

Figure 1 compares in simulation gITALE using the £ y-regularizer (3) with Y (globally) minimizing
the TV-regularized objective

1
FTV(x)=5||y—Ax||§+A||Vx||1- (6)

The example depicts a synthetic image of a human chest slice, previously generated by Gong et al. (2017)
using the XCAT digital phantom (Segars et al., 2010). The design A is an undersampled and reweighted
Fourier matrix, using a sampling scheme described in Section 3 and similar to that proposed in Krahmer
and Ward (2014) for TV-regularized compressed sensing. In a low-noise setting, a detailed comparison of
the recovered images reveals that gITALE provides a sharper reconstruction than %', As noise increases,
2" becomes blotchy, while gITALE begins to lose finer image details. Quantitative comparisons of recov-
ery error are provided in Section 4.2 and are favourable towards ITALE in lower noise regimes.

ITALE is similar to some methods oriented towards ¢ -regularized sparse regression and signal
recovery (Bertsimas et al., 2016; Tropp & Gilbert, 2007; Zhang, 2011), including notably the Iterative

Hard Thresholding (IHT) Blumensath and Davies (2009) and CoSaMP Needell and Tropp (2009)

methods in compressed sensing. We highlight here several differences:

1. For sparsity in an orthonormal basis, forward stepwise selection and orthogonal matching
pursuit provide greedy “Z,” approaches to variable selection, also with provable guarantees

FIGURE 1 Left: Original image slice from the XCAT digital phantom. Top row: {ITALE

from 20% undersampled
and reweighted Fourier measurements, in low noise (o = 4, left) and medium noise (o = 16, right) settings. Bottom
row: X' for the same measurements. The iterate k in ITALE and tuning parameter A for TV were both selected using
fivefold cross-validation on the squared prediction error for y
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(Elenberg et al., 2018; Tropp & Gilbert, 2007; Zhang, 2011). However, such methods do
not have direct analogues for gradient sparsity in graphs, as one cannot select a single edge
difference x; — x; to be non-zero without changing other edge differences.

2. IHT and CoSaMP enforce sparsity of X, , ; in each iteration by projecting to the s largest coordinates
of a; ., for user-specified s. In contrast, ITALE uses a Lagrangian form that penalizes (rather than
constrains) || VX, |- This is partly for computational reasons, as we are not aware of fast algo-
rithms that can directly perform such a projection step onto the (non-convex) set {x: || Vx||, < s}
for general graphs. This Lagrangian form complicates the theoretical convergence analysis, as it
requires establishing simultaneous control of the gradient sparsity || VX, ||, and the error || x, — X, ||,
in each iteration.

3. In contrast to general-purpose mixed-integer optimization procedures studied in Bertsimas et al.
(2016), each iterate of ITALE (and hence also the full algorithm, for a polynomial number of itera-
tions) is provably polynomial-time in the input size (n, p, |El) (Fan & Guan, 2018). On our personal
computer, for the p =360 x 270 = 97200 image of Figure 1, computing the 60 iterates constituting
a full ITALE solution path required about 20 min, using the optimized alpha-expansion code of
Boykov and Kolmogorov (2004).

While our theoretical focus is on £ -regularization, we expect that for certain regimes of under-
sampling and signal-to-noise, improved empirical recovery may be possible with edge costs ¢ (x;, x;)
interpolating between the £, and £, penalties. These are applicable in the ITALE algorithm and would
be interesting to investigate in future work.

2 | MODEL AND ALGORITHM

Let G = (V, E) be a given connected graph on the vertices V = {1, ..., p}, with undirected edge set E.
We assume throughout that p > 3. For a signal vector x, € R”, measurement matrix A € R"*?, and
measurement errors € € R”, we observe

y=Ax, +ecR". @)
Denote by V € { —1, 0, 1} IEIXP the discrete gradient matrix on the graph G, defined by
Vx=(x;—x; (i,j) €E) €RIFL,

Here, we may fix an arbitrary ordering of the vertex pair (i, j) for each edge. We study estimation of x,,
assuming that x, has (or is well approximated by a signal having) small exact gradient sparsity || VX, ||,

Our proposed algorithm is an iterative approach called ITALE, presented as Algorithm 1. It is
based around the idea of minimizing the objective (2). In this objective, the cost function c: R*? — R
must satisfy the metric properties

c(x,y)=c(y,x) 20, c(x,x)=0x=0, c(xz)<clxy)+c(y,2), (8)

but is otherwise general. Importantly, ¢ may be non-smooth and non-convex. The algorithm alternates
between constructing a surrogate signal a,_ | in line 3, denoising this surrogate signal in line 4, and geo-
metrically decaying the penalty parameter A, used for the denoiser in line 5. We discuss these steps in
more detail below.
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The surrogate signal a,, that is computed in line 3 may be written as

a,,1=x,—nA"(Ax,—y)
=x,+- nATA)(xk -x,)+ nATe.

This is a noisy version of the true signal x,,, with two sources of noise (I — nATA) (x;, — x,)and nATe.
Line 4 denoises this signal by applying the alpha-expansion graph cut procedure from Boykov et al. (1999)
to approximately solve the minimization problem

.1 5
glﬂg}zﬂx—aﬂl 15 + A Z c(x;,x;).
(ij) €EE

This sub-routine is denoted as AlphaExpansion(a,,;, 4, 6), and is described in Algorithm 2 for com-
pleteness. At a high level, the alpha-expansion method encodes the above objective function in the struc-
ture of an edge-weighted augmented graph, and iterates over global moves that swap the signal value on
a subset of vertices for a given new value, by finding a minimum graph cut. The original alpha-expansion
algorithm of Boykov et al. (1999) is in the setting of a discrete Potts model. To apply this to a continuous
signal domain, we restrict coordinate values of x to a discrete grid

67 = (k6:ke Z)

for a small user-specified parameter 6 > 0.

The geometric decay of A, in line 5 may be understood by examining the two sources of error
(I — 7ATA) (x;, — x,)and nATe in a,, ;. Assuming that I — nATA has a small operator norm when
restricted to gradient-sparse vectors, the first error term decays geometrically across iterations,
whereas the second error term is fixed in every iteration. When e # 0, this suggests choosing 4, to also
decay geometrically up to a final positive constant A, > 0, after which we may fix A, = 4, and run the
iterations to convergence. In this approach, the best choice for A, would depend on the size of 7A e,
and this may be set in practice using cross-validation.

We do not directly use this approach, because this requires a separate run for each different value
of A, to perform the cross-validation. Instead, Algorithm 1 performs only a single proximal gradient
step for each A, starting from a value 4,,,, > A, that oversmooths the surrogate signal and ending at
a value 4,;, < A, that undersmooths the surrogate signal (when e # 0). For y sufficiently close to 1,
we directly interpret each iterate X, as an approximate minimizer of the objective (2) for a different
penalty A = 4, /5. We apply cross-validation to select the iterate x, that represents the final estimate
QITALE, and this corresponds to selecting a penalty 4 in Equation (2). Thus, Algorithm 1 computes an
estimate for each tuning parameter along a regularization path, in a single pass of the proximal gradi-
ent descent. We find that this works well in practice and yields substantial savings in computational
cost, and our theoretical analysis will also be for the algorithm in this form.

Algorithm 1 Iterative Alpha Expansion

Input:y € R", A € R"*?, and parameters y € (0, 1), A > A > 0,andn, 6> 0.

max min
1: Initialize X, < 0,4, < A«
2:fork=0,1,2, ..., Kuntil Ay < A, do
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4: X3, < AlphaExpansion(a;,, 4, 6)
50 Ay < Ay
6: end for

Output:X,, ..., Xg

Algorithm 2 AlphaExpansion(a, 4, ) subroutine

Input:a € RP, cost function c: R? - R, parameters 4, § > 0.

1:Leta be the minimum and maximum values of a. Initialize X € R arbitrarily.

min> @max

2: loop

3: foreachz € 6Z N [a ]do

min> @max

4: Construct the following edge-weighted augmentation GZ’X of the graph G:

5: Introduce a source vertex s and a sink vertex ¢, connect s to each i € {1, ..., p} with weight
% (a; — z)? and connect t to each i € {1, ..., p} with weight% (a; — xi)z if x; # 2, or weight oo if
X, =2z

6 for each edge {i,j} € Edo

7: ifx; = X; then

8 Assign weight Ac (x;, z)to {i, j}.

9 else

10: Introduce a new vertex v, ;, and replace edge {, j} by the three edges { i, v;; }, {J, v;; }, and

{1, v;; }, with weights Ac (x;, 2), Ac(x;, 2), and Ac(x;, X;) respectively.
11: end if
12: end for

13:  Find the minimum s-t cut (S, 7) of GZ’X suchthats € Sandr € T.

14:  Foreachi € {1,...,p},update x; < zifi € T, and keep Xx; unchangedifi € S.
15: end for

16: If x was unchanged for each z above, then return x.

17: end loop

Output: x

We make a few additional remarks regarding parameter tuning in practice:

1. Using conservative choices for A,,,, (large), y (close to 1), and 6 (small) increases the total
runtime of the procedure, but does not degrade the quality of recovery. In our experiments,
we fix y = 0.9 and set 6 in each iteration to yield 300 grid values for 6Z N [ay. Gpgy]
in Algorithm 2.

2. We do not specify A, Instead, we monitor the gradient sparsity || Vx|, across iterations, and
terminate the algorithm when || Vx|, exceeds a certain fraction (e.g. 50%) of the total number of
edges |El.

3. The parameter # should be matched to the scaling and restricted isometry properties of the design
matrix A. For sub-Gaussian and Fourier designs scaled by 1 / \/ﬁ as in Propositions 1 and 2 below,
we setn = 1.

4. The mostimportant tuning parameter is the iterate k for which we take the final estimate RTALE = Xy

In our examples, we apply fivefold cross-validation on the mean-squared prediction error for y to
select k. Note that 57 should be rescaled by the number of training samples in each fold, for example,
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for fivefold cross-validation with training sample size 0.8n, we set 7 = 1/0.8 instead of # = 1 in the
cross-validation runs.

3 | RECOVERY GUARANTEES
We provide in this section theoretical guarantees on the recovery error || gITALE
{TALE = x, for a deterministic (non-adaptive) choice of iterate k. Throughout this section, ITALE is
assumed to be applied with the £, edge cost ¢(x;,x;) = 1{x; # x;}.

- x,|l,, where

3.1 | cRIP condition

Our primary assumption on the measurement design A will be the following version of a restricted
isometry property.

Definition 1 Let « > 0, and let p: [0, c0) — [0, o) be any function satisfying p’ (s) > 0 and
p" (s) < Oforall s> 0. A matrix A € R"*? satisfies the (k, p)-cut-restricted isometry prop-
erty (cRIP) if, for every x € R” with||Vx||, > 1, we have

(1= 5= VoIVl ) Ixlly < HAXIL, < (14 x + Vo(TVXIQ) ) Il

This definition depends implicitly on the structure of the underlying graph G, via its discrete gra-
dient matrix V. Examples of the function p are given in the two propositions below.

This condition is stronger than the usual RIP condition in compressed sensing (Candés et al.,
20064, b); in two ways: First, Definition 1 requires quantitative control of ||Ax||, for all vectors
x € R?, rather than only those with sparsity ||Vx||, < s for some specified s. We use this in our
analysis to handle regularization of || Vx||, in Lagrangian (rather than constrained) form. Second,
approximate isometry is required for signals with small gradient sparsity || VX||,, rather than small
sparsity [|x||,. This requirement is similar to the D-RIP condition of Candés et al. (2011) for gen-
eral sparse analysis models, and is also related to the condition of Needell and Ward (2013b) that
AH ~!satisfies the usual RIP condition, where H ~! is the inverse Haar-wavelet transform on the
2-D lattice.

Despite this strengthening of the required RIP condition, the following shows that Definition 1
still holds for sub-Gaussian designs A. For a random vector a, we denote its sub-Gaussian norm as
lall,, = SUPyjuy,=15UPss k~'/2E[|uTa|*]!/k and say that a is sub-Gaussian if lall,, < K for a
constant K > 0.

Proposition 1 Let A € R"*P have i.i.d. rows ai/\/ﬁ, where Cov[a;] = X and ||a]|, < K.
Suppose that the largest and smallest eigenvalues of T satisfy ¢, (Z) < (1 + x)? and
Gmin(Z) > (1 — k)2 for a constant x € (0, 1). Then for any k > 0 and some constant C > 0
depending only on K, x,k, with probability at least 1 — |E| ~%, the matrix A satisfies (x, p)-
cRIP for the function

_ GCslog(1+ |E[/s)

n

p(s)
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Here, x depends on the condition number of the design covariance, and p(s) does not depend on
the structure of the graph other than its total number of edges. The proof is a standard union bound
argument, which we defer to Appendix B of the online supplementary material.

For large 2-D images, using Fourier measurements with matrix multiplication implemented by
an FFT can significantly reduce the runtime of Algorithm 1. As previously discussed in Lustig et al.
(2007), Needell and Ward (2013b) and Krahmer and Ward (2014), uniform random sampling of
Fourier coefficients may not be appropriate for reconstructing piecewise-constant images, as these
typically have larger coefficients in the lower Fourier frequencies. We instead study a non-uniform
sampling and reweighting scheme similar to that proposed in Krahmer and Ward (2014) for TV com-
pressed sensing, and show that Definition 1 also holds for this reweighted Fourier matrix.

For p = N,N, and N;, N, both powers of 2, let ¥ € CP*? be the 2-D discrete Fourier matrix on
the lattice graph G of size N; X N,, normalized such that FF7* = I. We define this as the Kronecker
product ¥ = F! ® F2 where F! € CM>*M s the 1-D discrete Fourier matrix with entries

s G- (k=1)
1 1 27i —

—_ 1

s

and F? € CM*M: is defined analogously. (Thus rows closer to N,/2 + 1 in F!' correspond
to higher frequency components.) Let 7?(*1',,') denote row (i, j) of F, where we index by pairs
(i,j) € {1,...,N;} x {1, ..., N, } corresponding to the Kronecker structure. We define a sampled
Fourier matrix as follows: Let v, be the probability mass functionon {1, ..., N, } given by

1
Co+min(i—1,N,—i+1)

v (i)

Cy> 1. ©9)

Define similarly Yo on{l,...,N,},and letv = v; X v,. For a given number of measurements 7, draw
.. PR
(15015 -5 (o d) ~ v, and set

oo/ Vi)
A= — :
\/Z F(Z‘jn)/ V V(in’jn)

e C"*r, (10)

Proposition 2 Let G be the 2-D lattice graph of size N; X N,, where N, N, are powers of 2 and
1/K < N, /N, < K fora constant K > 0. Set p = N,N, and let A be the matrix defined in (10).
Then for some constants C, t, > 0depending only on K, and for any t > t,, with probability at
least1 — ¢~ (logn) (logp)* _ p~', A satisfies the (, p)-cRIP with x = 0 and

1 8]
p(s) = Ctsw.
n

The proof follows closely the ideas of Rudelson and Vershynin (2008, Theorem 3.3), and we defer
this to Appendix B of the online supplementary material.

This proposition pertains to the complex analogue of Definition 1, where A, x are allowed to be
complex valued, and|| - ||, denotes the complex £,-norm. For a real-valued signal x, € R”, Algorithm
1 may be applied to§ = Ax, + e € C" by separating real and imaginary parts of § into a real vector
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y € R?. The corresponding A € R**? satisfies || Ax||2 = || Ax]|2, so the same cRIP condition
holds (in the real sense) for A.

3.2 | Recovery error bounds

To illustrate the idea of analysis, we first establish a result showing that ITALE can yield exact recov-
ery in a setting of no measurement noise. We require X, to be gradient sparse with coordinates belong-
ing exactly to 6Z, as the ITALE output has this latter property. Discretization error will be addressed
in our subsequent result.

Theorem 1 Suppose e=0 and x, € (6Z)P, and denote s, = max(||Vx,lly,1). Suppose \/E-A
satisfies (x, p)-cRIP, where k € [0, 4/3/2 — 1). Set t(x) =1 — 4k — 2k% € (0, 1] and
choose tuning parameters

(I=t(k) /D> <y <1, Apae > X, 12

For some constants C, ¢ > 0 depending only on , if p(s,) < c, then each iterate X, of Algorithm I
satisfies

1%, = X,y < CV Agays, - ¥*/ 2 (1D
In particular, X, = X, for all sufficiently large k.
Thus, in this noiseless setting, the iterates exhibit linear convergence to the true signal x,. The
required condition p(s,) < c translates into a requirement of
nzslog(l+[El/s,)
measurements for A having i.i.d. M (0, 1/n) entries, by Proposition 1, or
n% s, (logp)®loglogp

weighted Fourier measurements for the 2-D lattice graph, as defined in Proposition 2. For these designs,
(x, p)-cRIP holds for \/ﬁ -Awherex=0andn = 1.

Proof (Proof of Theorem 1) Denote

s =1IVXellos T =% — X,

As shown in Fan and Guan (2018, Lemma S2.1) (see also Boykov et al., 1999, Theorem 6.1), the output
X, of the sub-routine AlphaExpansion(a,,, 4;, 6) has the deterministic guarantee

1 . 1
St = 134 20V g < min (S 1% = a 113+ 2401Vl ). (12)

Applying this optimality condition (12) to compare X, withx,, = X; — I, we obtain

2 2
Xt = gy 15+ 24,850 < I1X — 1 —agyy |15 + 445, (13)
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Let S, be the partition of {1, ..., p} induced by the piecewise-constant structure of x,: Each element
of S, corresponds to a connected subgraph of G on which x, takes a constant value. Let S, S, sim-
ilarly be the partitions induced by X, X,, and denote by S the common refinement of S, S, S..
Defining the boundary

dS = { (i,j) € E: i,j belong to different elements of S},

observe that each edge (i, j) € dS must be such that at least one of x;, X, ;, or X, takes different values at
its two endpoints. Then

[0S| <5, + 5 + S5y (14)
Let P: R? — RP? be the orthogonal projection onto the subspace of signals taking a constant value

over each element of S, and let P!t =1 — P. Then X4 1> X Iy all belong to the range of P, so an or-
thogonal decomposition yields

2 2 1 2
X1 — i 5= 11X —Pag i 5+ 1PTa 4 15,

2 2 L 2

1% — 1 — g 5= 1% =1 =P 115+ IPTag, I

Applying this, the definition (in the noiseless setting e=0)
a,, =x, —7AT (Ax, —y) =x, —7A"Ar,,
and the condition Px, = x, to Equation (13), we obtain
X1 — X, + nPATAL |15 < [[7PATAT, — 1|15 + A (45, — 25.41)-
Applying the triangle inequality and X;,; — X; = I, — Iy,
( Iregllz - ||1'k—’7PATArk||2)2+ < v - nPATArk ||§ + A (45, = 2s40). (15

We derive from these two consequences: First, lower-bounding the left side by 0 and rearranging,

1
A < 5l = nPATAL |5 + 245, < IIrll5 + 1/nAPIZ, - | /nAr 13 +24s,.  (16)

The condition (14) and definition of P imply, for any u € RP, that||[V(Pu)||, < s, + s; + 54,1 The defi-
nition of r; implies || Vr ||, < s, + ;. Setting

T =K+Ap(s,+85,+51), Cpe=x+\p(s,+5;)

we deduce from the (x, p)-cRIP condition for \/ﬁ - A that

IVRAPIG, = sup  IVRAPUll; < (1420 VAR < (14 €0 a7)

ueRr:ul,=1

Note that since p(s) and v/ p(s) are both non-negative and concave by Definition 1, we have
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p' () < (p(s) —p(0))/s<p(s) /s,%[\/p(s)] < (Vo) =vp(0)) /s <+/p(s)/s.

The function

fi(s) = +x+p(s, +5,+5))2

is also increasing and concave, and by the above, its derivative at s = 0 satisfies

[0)<d/ (s, +5), de=2(1+Kk)\p(s,+5) +p(s,+5).

Thus ) )
(1+7)% =fi (5441) <[ (0) +£(0) =534y S (1 + )7 + sy /5. (18)

Applying this and Equation (17) to Equation (16), we get

A1 < (TH A+ 72 (A+E)7) lInell; + 24,
S(T+A+C) U+ desigr /5:) T3 +24;s,.

Rearranging gives

(A4 -0 +§k)2dk||rk||§/5*) S S (14 (1 +8)h - ||rk||§+2)~ks*- 19)

Second, applying the (k, p)-cRIP condition for \/ﬁ - A again, we have for every u € R”

luT(7PATAP—P)u|=[||y/7APu(|; - [|Pul/3|
<max(|1=(1=7)%, [1=(1+7)° DIIPull; = 2z, +7) I Pull3,

So||7PATAP — P|| op S 27 + TI%. Then, asr;, = Pry, we get from Equation (15) that

(Nl = 2z + T;%) el < Qe+ T;%)z Il xy ||§+ A (4s, = 25141).

Taking the square root and applying 4/x + y < \/; + \/_ ,
Ireeill, < (47 + 2712) el + / A(ds, —2s;10),

Applying the definitions of 7, and #(k),

4rk+21i S1—=t(k)+4(Q+x)\/p(s, + 5+ 5541) +2p(s, + 85, + S41)-

Thus

e ll, S [1—2(k) +4(1+x)\Vp (s, + s+ 8501) + 208, + 5+ 5p) ] - Il + /44,

(20)

We now claim by induction on & that, if p(s,) < ¢, for a sufficiently small constant ¢, > 0, then

44/ Aps,
G @n

s, < S, r <
T e lIrell,
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for every k. For k = 0, these are satisfied as s, = Oand Ay = A, > |12 5 = x5 2. Assume induc-
tively that these hold for k. Note that for any # > 1, non-negativity and concavity yield p(ts ) < tp(s,).
In particular, assuming Equation (21) and applying ¥ < \/m — land p(s,) < ¢y we get for small
enough ¢, that (1 + ¢;)? < 2. Then applying Equation (21) to Equation (19), we get for a constant
C = C(x) > 0 not depending on ¢, that

0
(1-Cy/co) Aksk+l<<( > 2) S,

Then for small enough ¢,

90

S -C —s,.
k+1 = ( \/_) P ( ) N2 Sy t (x) PRt
Applying Equation (21) and this bound to Equation (20), for sufficiently small ¢, we have

il < <1 - %t(K)> Irelly + V445, < <% - 1> VA4S,

Applying\//l_ = VA /7 £ Vi (1 - t(x) /4) ", we obtain from this
Iresilly £ 4V A, /1(x).

This completes the induction and establishes Equation (21) for every k.

The bound (11) follows from Equation (21), the definition of r,, and 4, = A,,,r* Since
X, X, € (6Z)P, for k large enough such that the right side of Equation (11) is less than 6%, we must
have x, = x,.

We now extend this result to a robust recovery guarantee in the presence of measurement and
discretization error. In this setting, ITALE is not guaranteed to converge to a global minimizer of the
non-convex objective (2). Instead, we provide a direct bound on the estimation error of a suitably
chosen ITALE iterate. The proof is an extension of the above argument, which we defer to Appendix
A of the online supplementary material.

Theorem 2 Suppose \/ﬁ - A satisfies (x, p)-cRIP, where k € [0, /3 /2 — 1). Choose tuning pa-
rameters y, A, as in Theorem 1. Then for some constants C, C', ¢ > 0 depending only on x,

the following holds: Letx € (8Z)? be any vector satisfying p(s) < c where s = max( || Vx||y, 1).
Let D be the maximum vertex degree of G, and define

E<x>=(1+\/Dp<s>)-(||x—x*||2 I \/_*”1)+\/_||e||z

Suppose A,

w > CE(X)2/s > Ay andletk,bethe lastiterate of Algorithm I where ;> CE(x)?/s.
Then X =

X, satisfies

| X=x,ll, < C"E(x).
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Here,x € (6Z)” is any deterministic vector that approximates X, and satisfies || Vx||, < s, and the
theorem should be interpreted for x being the best such approximation to x,. The quantity E£(x) above
is the combined measurement error and approximation error of X, by x. For any A scaled such that it
satisfies (k, p)-cRIP with # = 1, and for G with maximum degree D < 1, we get

Il %, —xl

7 L+ Jlell,. 22)

This guarantee is similar to those for compressed sensing of sparse signals in Candes et al. (2006b),
Needell and Tropp (2009) and Blumensath and Davies (2009). Note that, as in these works, we are assum-
ing a setting of deterministic and possibly adversarial measurement error e.

If x, has exact gradient sparsity || VX, ||, < s, then also x € (6Z)” obtained by entrywise round-

ing to 67 satisfies || Vx||, < s. Hence, applying Equation (22) with this x and choosing 6 < |le|l,/p
further ensures

I X-x.ll, S lIx,—x|l, +

Il %= x,ll, < llell,

that is, the discretization error is negligible in the above bound. It is clear that this is the rate-opti-
mal error bound for worst-case error e, as may be seen by taking e = A1 where 1 is the all-1’s vector.
The required number of measurements is the same as in Theorem 1 for the noiseless setting, which is
n 2 sJog(l + |E|/s,)forii.d. Gaussian designs. This is the claim (5) stated in Section 1.

When x, is not exactly gradient sparse, the error (22) depends also on the errors || x, —x||, and
|| x, —x]|, of the approximation by a gradient-sparse vector x. This dependence is similar to the guar-
antees of Needell and Ward (2013b) for TV regularization, although we note that Needell and Ward
(2013b) provided bounds in terms of Vx, — Vxrather than x, — x.

4 | SIMULATIONS

We compare gTALE using the £, edge cost (3) to e minimizing the TV-regularized objective (6),
for several signals on the 1-D and 2-D lattice graphs. We used software developed by Boykov and
Kolmogorov (2004), to implement the alpha-expansion sub-routine of Algorithm 2. For convenience,
we further made an R package ITALE to realize Algorithm 1. To minimize the TV-regularized objec-
tive (6), we used the generalized lasso path algorithm from Tibshirani (2011) in the 1-D examples and
the FISTA algorithm from Beck and Teboulle (2009) in the 2-D examples. All parameters were set as
described in Section 2 for ITALE.

4.1 | 1-D changepoint signals

We tested ITALE on two simulated signals for the linear chain graph, with different changepoint
structures: the ‘spike’ signal depicted in Figures 2 and 3, and the ‘wave’ signal depicted in Figures 4
and 5. The two signals both have p = 1000 vertices with s, = 9 break points. The spike signal consists
of short segments of length 10 with elevated mean, while the breaks of the wave signal are equally
spaced.

We sampled i.i.d. random Gaussian measurements A; ~ N (0, 1). The measurement error e was
generated as i.i.d. Gaussian noise ¢, ~ N (0, 62). To provide an intuitive understanding of the tested
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FIGURE 2 Left: True spike signal x, (black) and a depiction of x, + ATe /n (red) under low noise ¢ = 1 for i.i.d.

measurements A; ~ N (0, 1) with 15% undersampling. Middle and right: True signal (black), RITALE (green), and o

(blue) for one simulation
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FIGURE 3 Same setting as Figure 2, for noise level 6 = 6
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FIGURE 4 Left: True wave signal x, (black) and a depiction of x, + ATe /n (red) under low noise =1 for

i.i.d. measurements A; ~ A (0, 1) with 15% undersampling. Middle and right: True signal (black), RITALE (green), and

%" (blue) for one simulation

signal-to-noise, we plotx, + A'e/ninred in Figures 2-5, corresponding to two different tested noise
levels. Recall that ITALE denoises a;,; = x, + (I — ATA /n) (x, — x,) + A'e/n in each itera-
tion (corresponding to 7 = 1/n for this normalization of A), so that x, + A'e/n represents the noisy
signal in an ideal setting if X, = X, is a perfect estimate from the preceding iteration.

Tables 1 and 2 display the root-mean-squared estimation errors RMSE = 4/ || X — x, ||§ /p, for
undersampling ratio n/p from 10% to 50%, and a range of noise levels ¢ that yielded RMSE values



286 XU anp FAN

1- 1 T = 1 — "
0- 0- == e e— — — 0- gm— :H ~— ==l
-1 -1- -1
6 250 560 750 10.00 (.} ZéU 5(.}0 750 10.00 (.] 250 5(')0 750 10.00
@ Original ® Noisy @ Original ITALE @® Original @ TV
FIGURE 5 Same setting as Figure 4, for noise level 6 = 6
TABLE 1 RMSE for the 1-D spike signal, averaged over 20 simulations
nlp c=0 c=1 c=2 c=3 c=4 c=5 =06 c=17
10% ITALE 0.000 0.014 0.060 0.090 0.144 0.173 0.199 0.216
TV 0.000 0.047 0.092 0.129 0.160 0.189 0.213 0.228
15% ITALE 0.000 0.009 0.023 0.049 0.076 0.104 0.133 0.153
TV 0.000 0.030 0.060 0.088 0.114 0.136 0.158 0.175
20% ITALE 0.000 0.007 0.015 0.032 0.056 0.076 0.099 0.123
TV 0.000 0.022 0.045 0.067 0.089 0.109 0.128 0.146
30% ITALE 0.000 0.006 0.012 0.021 0.031 0.049 0.065 0.079
TV 0.000 0.017 0.035 0.052 0.070 0.087 0.104 0.120
40% ITALE 0.000 0.005 0.010 0.015 0.025 0.041 0.051 0.063
TV 0.000 0.014 0.028 0.043 0.057 0.071 0.085 0.098
50% ITALE 0.000 0.005 0.010 0.015 0.023 0.033 0.040 0.051
TV 0.000 0.013 0.026 0.038 0.051 0.064 0.075 0.088

TABLE 2 RMSE for the 1-D wave signal, averaged over 20 simulations

nip c=0 c=1 c=2 c=3 c=4 c=5 =6 c=17
10% ITALE 0.036 0.040 0.118 0.150 0.198 0.236 0.262 0.315
TV 0.000 0.032 0.064 0.093 0.120 0.143 0.168 0.189
15% ITALE 0.000 0.009 0.025 0.059 0.090 0.111 0.143 0.176
TV 0.000 0.023 0.046 0.068 0.089 0.109 0.127 0.144
20% ITALE 0.000 0.007 0.017 0.039 0.061 0.079 0.103 0.121
TV 0.000 0.019 0.037 0.056 0.074 0.092 0.108 0.124
30% ITALE 0.000 0.006 0.012 0.019 0.035 0.051 0.065 0.085
TV 0.000 0.014 0.028 0.042 0.056 0.070 0.084 0.097
40% ITALE 0.000 0.005 0.011 0.018 0.027 0.037 0.052 0.064
TV 0.000 0.012 0.024 0.037 0.049 0.061 0.073 0.085

50% ITALE 0.000 0.005 0.010 0.016 0.024 0.033 0.044 0.055
TV 0.000 0.011 0.022 0.033 0.043 0.054 0.065 0.075
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between O and roughly 0.2. Each reported error value is an average across 20 independent simula-
tions. In these results, the iterate k in ITALE and penalty parameter A in TV were both selected using
fivefold cross-validation. Best-achieved errors over all k and A are reported in Appendix C of the
online supplementary material, and suggest the same qualitative conclusions. Standard deviations of
the best-achieved errors are also reported in Appendix C; those for cross-validation are similar and
omitted for brevity.

In the spike example, ITALE yielded lower RMSE in all of the above settings of undersampling
and signal-to-noise. Figures 2 and 3 display one instance each of the resulting estimates RTAE and
RV at 15% undersampling, illustrating some of their differences and typical features. Under optimal
tuning, %" returns an undersmoothed estimate even in a low-noise setting where ITALE can often
correctly estimate the changepoint locations. With higher noise, ITALE begins to miss changepoints
and oversmooth.

In the wave example, with undersampling ranging between 15% and 50%, ITALE yielded lower
RMSE at most tested noise levels. Figures 4 and 5 depict two instances of the recovered signals at 15%
undersampling. For 10% undersampling, the component (I — ATA /n) (x;, — x,) of the effective
noise was sufficiently high such that ITALE often did not estimate the true changepoint structure, and
TV usually outperformed ITALE in this case. The standard deviations of RMSE reported in Appendix
C indicate that the ITALE estimates are a bit more variable than the TV estimates in all tested settings,
but particularly so in this 10% undersampling regime.

4.2 | 2-D phantom images

Next, we tested ITALE on three 2-D image examples, corresponding to piecewise-constant digital
phantom images of varying complexity: the Shepp—Logan digital phantom depicted in Figure 6, a
digital brain phantom from Fessler and Hero (1994) depicted in Figure 7, and the XCAT chest slice
from Gong et al. (2017) as previously depicted in Figure 1.

Each image x, was normalized to have pixel value in [0, 1]. We sampled a random Fourier design
matrix as specified in Equation (10), fixing the constant C, = 10 in the weight distribution (9) for
this design. This value of C yielded the best recovery across several tested values for both ITALE
and TV. The measurement error e was generated as i.i.d. Gaussian noise ¢, ~ N (0, 62), applied to
the measurements F(*}J)x* / \/v(ii J )Lbefore t%l\? 1/ \/ﬁ normalization. Tables 3, 4 and 5 display the
average RMSE of the estimates X and X ' across 20 independent simulations of e, with tuning
parameters selected by fivefold cross-validation. Best-achieved errors and standard deviations are
reported in Appendix C.

For the simpler Logan—Shepp and brain phantom images, which exhibit stronger gradient sparsity,
ITALE yielded lower RMSE in nearly all tested undersampling and signal-to-noise regimes. For the
XCAT chest phantom, with undersampling ranging between 15% and 50%, ITALE yielded lower
RMSE at a range of tested noise levels, and in particular for those settings of higher signal-to-noise.
With 10% undersampling for the XCAT phantom, ITALE was not able to recover some details of the
XCAT image even with no measurement noise, and RMSE was higher than TV at all tested noise
levels. Results of Appendix C indicate that this is partially due to sub-optimal selection of the tuning
parameter using fivefold cross-validation, caused by the further reduction of undersampling from 10%
to 8% in the size of the training data in each fold.

Examples of recovered signals RE and ™Y are depicted for the Shepp—Logan and brain phan-
toms in Figures 5 and 7, at 15% and 20% undersampling for two low-noise and medium-noise set-
tings. The qualitative comparisons are similar to those in the 1-D simulations, and to those previously
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FIGURE 6 Left: Original Shepp—Logan phantom. Top row: RITALE

from 15% undersampled and reweighted
Fourier measurements, in low noise (6=4, left) and medium noise (o = 16, right) settings. Bottom row: <™ for the

same measurements

FIGURE 7 Left: Original brain phantom. Top row: TE from 20% undersampled reweighted Fourier
measurements, in low noise (¢ = 16, left) and medium noise (¢ = 40, right) settings. Bottom row: R for the same
measurements
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TABLE 3 RMSE for the Shepp—Logan phantom, averaged over 20 simulations

nip c=0 c=4 c=8 c=12 c=16 =20 c=24 c=28
10% ITALE 0.001 0.006 0.012 0.018 0.028 0.036 0.051 0.071
TV 0.005 0.011 0.021 0.031 0.040 0.049 0.057 0.064
15% ITALE 0.000 0.003 0.011 0.013 0.018 0.028 0.034 0.042
TV 0.001 0.009 0.016 0.024 0.031 0.038 0.046 0.053
20% ITALE 0.000 0.002 0.009 0.012 0.014 0.024 0.028 0.034
TV 0.000 0.007 0.014 0.020 0.027 0.033 0.039 0.045
30% ITALE 0.000 0.002 0.006 0.011 0.013 0.015 0.021 0.028
TV 0.000 0.006 0.012 0.017 0.022 0.027 0.032 0.036
40% ITALE 0.000 0.001 0.005 0.010 0.012 0.013 0.015 0.021
TV 0.000 0.005 0.010 0.015 0.019 0.023 0.028 0.032
50% ITALE 0.000 0.001 0.004 0.008 0.011 0.013 0.014 0.017
TV 0.000 0.005 0.009 0.013 0.018 0.022 0.025 0.028

TABLE 4 RMSE for the brain phantom, averaged over 20 simulations

nlp c=0 c=8 c=16 c=24 c=32 =40 =48 6 =56
10% ITALE 0.003 0.002 0.011 0.027 0.044 0.062 0.081 0.097
TV 0.002 0.014 0.028 0.041 0.054 0.066 0.078 0.088
15% ITALE 0.000 0.001 0.007 0.018 0.030 0.044 0.059 0.073
TV 0.001 0.011 0.022 0.032 0.043 0.053 0.062 0.073
20% ITALE 0.000 0.001 0.005 0.011 0.025 0.035 0.047 0.060
TV 0.000 0.010 0.019 0.028 0.038 0.047 0.055 0.062
30% ITALE 0.000 0.001 0.003 0.008 0.015 0.026 0.033 0.043
TV 0.000 0.008 0.015 0.023 0.030 0.037 0.046 0.052
40% ITALE 0.000 0.001 0.002 0.006 0.010 0.020 0.026 0.034
TV 0.000 0.007 0.013 0.020 0.026 0.032 0.038 0.044
50% ITALE 0.000 0.000 0.002 0.004 0.008 0.014 0.022 0.028
TV 0.000 0.006 0.012 0.018 0.023 0.029 0.035 0.040

depicted for the XCAT chest slice in Figure 1: As measurement noise increases, ITALE begins to lose
finer details, while TV begins to yield an undersmoothed and blotchy image. These observations are
also similar to previous comparisons that have been made for algorithms oriented towards £, versus
TV regularization for direct measurements A =1, in Xu et al. (2011), Fan and Guan (2018) and Kim
and Gao (2019).

5 | CONCLUSION

We have studied recovery of piecewise-constant signals over arbitrary graphs from noisy linear meas-
urements. We have proposed an iterative algorithm, ITALE, to minimize an £ -edge-penalized least-
squares objective. Under a cut-restricted isometry property for the measurement design, we have
established global recovery guarantees for the estimated signal, in noisy and noiseless settings.
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TABLE 5 RMSE for the XCAT chest slice phantom, averaged over 20 simulations

nip c=0 c=4 c=8 c=12 c=16 c=20 c=24 c=28
10% ITALE 0.063 0.065 0.070 0.075 0.082 0.091 0.099 0.108
TV 0.009 0.019 0.032 0.043 0.053 0.061 0.068 0.073
15% ITALE 0.002 0.007 0.024 0.036 0.055 0.070 0.079 0.088
TV 0.005 0.014 0.024 0.034 0.042 0.050 0.057 0.063
20% ITALE 0.002 0.005 0.014 0.023 0.032 0.045 0.062 0.076
TV 0.002 0.011 0.020 0.028 0.036 0.043 0.050 0.055
30% ITALE 0.002 0.004 0.011 0.018 0.025 0.031 0.041 0.050
TV 0.002 0.008 0.016 0.023 0.030 0.036 0.042 0.047
40% ITALE 0.002 0.003 0.009 0.015 0.020 0.027 0.033 0.040
TV 0.001 0.007 0.014 0.020 0.026 0.031 0.036 0.042
50% ITALE 0.002 0.003 0.008 0.013 0.018 0.023 0.028 0.033
TV 0.001 0.006 0.012 0.018 0.023 0.028 0.033 0.037

In the field of compressed sensing, for signals exhibiting sparsity in an orthonormal basis, £-
regularization (Candes et al., 2006a, b; Donoho, 2006) and discrete iterative algorithms (Blumensath
& Davies, 2009; Needell & Tropp, 2009; Tropp & Gilbert, 2007) constitute two major approaches
for signal recovery. It has been observed that for recovering piecewise-constant signals, regularizing
the signal gradient in a sparse analysis framework can yield better empirical recovery than regular-
izing signal coefficients in such a basis. Whereas £ -regularization extends naturally to the sparse
analysis setting, iterative algorithms have received less attention. By applying the alpha-expansion
idea for MAP estimation in discrete Markov random fields, ITALE provides a computationally trac-
table approach for ‘iterative thresholding’ recovery of gradient-sparse signals, with provable recovery
guarantees.

In contrast to sparse signal recovery over an orthonormal basis, the comparison of ¢, versus ¢,
regularization for gradient-based sparsity is graph dependent. Using an £-based approach, we es-
tablish signal recovery guarantees on the 1-D and 2-D lattice graphs with numbers of measurements
optimal up to a constant factor, which were not previously available for TV regularization. This dif-
ference is closely connected to slow and fast rates of convergence for lasso and best-subset regression
for correlated regression designs (Bithlmann et al., 2013; Dalalyan et al., 2017, Zhang et al., 2014).
ITALE provides a polynomial-time approach for #-regularization in a special graph-based setting,
and we believe it is an interesting question whether similar algorithmic ideas may be applicable to
other classes of sparse regression problems.
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