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1  |  INTRODUC TION

Life-history theory predicts that because organisms must balance in-
vestment in reproduction against self-maintenance, greater reproduc-
tive investment will accelerate the rate of senescence (Harshman & 
Zera, 2007; Roff, 2002; Stearns, 1992). Although the “cost of repro-
duction” is considered a cornerstone of life-history theory, empirical 
studies have produced mixed results (Santos & Nakagawa, 2012), and 
several factors could contribute to discrepancies among studies. For 

example, individuals often vary in their ability to acquire resources to 
allocate to reproduction and self-maintenance, which can mask life-
history trade-offs in nonexperimental studies (Reznick et al., 2000; Van 
Noordwijk & Dejong, 1986). Furthermore, studies are often conducted 
over a single year, and when the costs are paid over longer times-
cales, they may go undetected (Boonekamp et al., 2014). Importantly, 
the mechanisms involved in mediating these long-term costs remain 
poorly understood (Boonekamp, Salomons, et al., 2014; Harshman & 
Zera, 2007), particularly in free-living populations (Monaghan et al., 
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Abstract
Reproductive investment often comes at a cost to longevity, but the mechanisms 
that underlie these long-term effects are not well understood. In male vertebrates, 
elevated testosterone has been shown to increase reproductive success, but simul-
taneously to decrease survival. One factor that may contribute to or serve as a bio-
marker of these long-term effects of testosterone on longevity is telomeres, which 
are often positively related to lifespan and have been shown to shorten in response 
to reproduction. In this longitudinal study, we measured the effects of experimentally 
elevated testosterone on telomere shortening in free-living, male dark-eyed juncos 
(Junco hyemalis carolinensis), a system in which the experimental elevation of testos-
terone has previously been shown to increase reproductive success and reduce sur-
vival. We found a small, significant effect of testosterone treatment on telomeres, 
with testosterone-treated males exhibiting significantly greater telomere shortening 
with age than controls. These results are consistent with the hypothesis that increased 
telomere shortening may be a long-term cost of elevated testosterone exposure. As 
both testosterone and telomeres are conserved physiological mechanisms, our results 
suggest that their interaction may apply broadly to the long-term costs of reproduc-
tion in male vertebrates.
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2008; Nussey et al., 2013). Addressing this knowledge gap is import-
ant for predicting the evolution of life-history trade-offs, but requires 
longitudinal experimental studies (Boonekamp, Salomons, et al., 2014; 
Monaghan et al., 2008; Nussey et al., 2013).

Hormones often have pleiotropic effects on suites of traits and 
underlie life-history trade-offs (Cohen et al., 2012; Ketterson & 
Nolan, 1999; Ricklefs & Wikelski, 2002; Zera & Harshman, 2001). 
In male vertebrates, the sex steroid testosterone influences repro-
ductive function by stimulating the development of secondary sex-
ual traits, sperm production and mating behaviours (Nelson, 2011). 
Variation in the seasonal pattern of testosterone secretion is as-
sociated with broad-scale differences in life-history strategies and 
has been implicated in underlying the trade-off between reproduc-
tion and survival (Hau, 2007; Ketterson & Nolan, 1992; Mills et al., 
2009; Wingfield et al., 2001). For example, across bird species, peak 
testosterone levels during the breeding season tend to be lower in 
tropical species, which are also often characterized by lower annual 
reproductive output and longer lifespans than birds that breed at 
temperate latitudes (Goymann et al., 2004). In some species, experi-
mentally elevated testosterone also increases reproductive success, 
but simultaneously decreases survival (Mills et al., 2009; Reed et al., 
2006), but this pattern is not universal (Khaw et al., 2007; Taff & 
Freeman-Gallant, 2014). Regardless, the mechanisms that mediate 
associations between testosterone and reduced longevity are not 
well understood.

Elevated testosterone could decrease survival by increasing an-
nual mortality or the pace of senescence via several nonexclusive 
routes including increasing activity and exposure to predation risk, 
metabolic rate, stress exposure (Buchanan et al., 2001; Ketterson 
et al., 1991; Schoech et al., 1999), and oxidative damage (Alonso-
Alvarez et al., 2007, 2009), but see (Carlos Noguera et al., 2011; Taff 
& Freeman-Gallant, 2014) or reducing immune function (Grindstaff 
et al., 2001), but see (Roberts et al., 2004). One previously unex-
plored factor that could be part of this suite of mechanisms link-
ing elevated testosterone exposure to longevity and/or serve as a 
biomarker of the long-term costs of testosterone exposure is telo-
meres. Telomeres are highly conserved, repetitive, noncoding DNA 
sequences that form protective caps at chromosome ends that en-
hance genome integrity (Blackburn, 2005), but shorten during cell 
division and in response to stress (Boonekamp et al., 2014; Hau 
et al., 2015; Herborn et al., 2014; Nettle et al., 2013; Reichert & 
Stier, 2017; von Zglinicki, 2002). Telomeres limit cellular lifespan be-
cause once they become critically shortened, cells stop dividing and 
often have altered secretory profiles that can increase inflammation 
(Blackburn, 2005). Telomeres are also often predictive of longevity, 
with individuals with shorter telomeres and faster telomere loss 
having reduced lifespans (Asghar et al., 2015; Barrett et al., 2013; 
Cawthon et al., 2003; Fairlie et al., 2016; Heidinger et al., 2012; 
Wilbourn et al., 2018). There is also increasing evidence that meta-
bolically demanding activities that increase oxidative stress such as 
reproduction increase the rate of telomere loss (Bauch et al., 2013; 
Graham et al., 2019; Heidinger et al., 2012; Sudyka, 2019; Sudyka 
et al., 2014, 2019).

In this study, we tested the hypothesis that exposure to exper-
imentally elevated testosterone increases telomere loss in free-
living, male dark-eyed juncos (Junco hyemalis carolinensis). Previous 
research in this system has demonstrated that males exposed to 
experimentally elevated testosterone have higher reproductive 
success (Raouf et al., 1998), but lower survival (Reed et al., 2006), 
compared to controls with normal levels of testosterone. In this his-
torical, longitudinal study, males were given subcutaneous implants 
packed with crystalline testosterone that experimentally elevated 
testosterone to physiologically relevant levels or empty, control im-
plants. Implants remained in place throughout the breeding season 
and were removed at the end of the summer. If males were recap-
tured in subsequent years, they were blood sampled and implanted 
again with the same treatment. To test whether an experimental 
elevation of testosterone was associated with increased telomere 
shortening, we examined a subset of these historical samples col-
lected from known-age males that were resampled at least once. 
This allowed us to examine whether experimentally elevated tes-
tosterone was associated with greater testosterone shortening with 
age within individuals across years.

2  |  METHODS

2.1  |  Study system, experimental treatment and 
sample collection

Research was conducted on a free-living population of the Carolina 
subspecies of the dark-eyed junco (Junco hyemalis carolinensis), 
a socially monogamous songbird that breeds at the Mountain 
Lake Biological Station in Giles County, Virginia, USA (37°22′N, 
80°32′W); for a detailed description of the study site see (Ketterson 
& Nolan, 1992). As part of the long-term, ongoing research in this 
system, chicks in all of the nests that are found, and all of the re-
cently fledged juveniles that are caught each year are individually 
marked with U.S. Fish and Wildlife Service bands and hence are of 
known age.

Between 1993 and 2000, Ketterson and her colleagues con-
ducted a unique, longitudinal experimental manipulation of testos-
terone in breeding male juncos (Ketterson & Nolan, 1992). At the 
beginning of each breeding season, males were captured in mist-
nets and walk-in Potter traps. Upon capture, small blood samples 
were collected by venipuncture from the alar vein into heparinized 
capillary tubes and stored in Longmire's solution at 4°C until fro-
zen at −20°C until analyses. During this initial capture, males were 
grouped by age and capture site and randomly assigned to an ex-
perimentally elevated testosterone or control treatment. Males in 
the experimentally elevated testosterone group received two sub-
cutaneous, 10-mm-long silastic implants (Dow Corning; 1.47 mm i.d., 
1.96 mm o.d.) containing crystalline testosterone (Sigma Chemical); 
males in the control group received empty implants (Ketterson 
& Nolan, 1992; Ketterson et al., ,,,,1991, 1992; Klukowski et al., 
1997). Numerous studies in this system have established that this 



    |  3HEIDINGER et al.

experimental treatment effectively elevates testosterone and main-
tains it at peak, physiologically relevant levels throughout the breed-
ing season (Ketterson & Nolan, 1992; Ketterson et al., 1991, 1992; 
Klukowski et al., 1997). To examine the longitudinal influence of the 
testosterone treatment on telomeres, this study necessarily focused 
on a subset of birds from this larger experimental study that were 
of known age and, if treated in more than one year, received the 
same experimental treatment. Telomeres were measured in blood 
samples that were collected at the time of the first implantation and 
again when the birds were recaptured during subsequent breeding 
seasons (see statistical methods for details).

2.2  |  Telomere analyses

Telomeres were measured in red blood cells (RBCs), which are nu-
cleated in birds and well suited for longitudinal telomere analyses 
(Nussey et al., 2014). We extracted DNA from RBCs suspended in 
Longmire's buffer solution using Macherey-Nagel Whole Blood Kits 
(Macherey-Nagel) as per the manufacturer's instructions (Bauer 
et al., 2016). DNA quantity was measured using a Nanodrop 8000 
spectrophotometer (Thermo Scientific). DNA quality was verified by 
electrophoresis on a 2% agarose gel. There was no indication that 
storage time impacted the quality of these samples and telomere 
length was not significantly correlated with time spent in storage 
(i.e., the year of collection; r = .074, p = .240).

Relative telomere length was measured using quantitative poly-
merase chain reaction (qPCR) on an Mx3000P (Stratagene), follow-
ing the methods of (Cawthon, 2002) adapted for dark-eyed juncos 
(Bauer et al., 2016). We used glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) as the single copy control gene. We verified the 
suitability of GAPDH using a melt curve analysis, which indicated 
that the dissociation curve had a single peak at the expected melting 
temperature (Tm) of 82.0°C. In addition, the PCR product was run on 
a 2% agarose gel to confirm the amplification of a single product at 
the expected 98 bp.

Samples were randomized with respect to treatment across 
plates and all of the samples for an individual were run on the 
same plate. GAPDH and telomere reactions were run in triplicate 
on separate plates and the number of PCR cycles necessary to ac-
cumulate sufficient fluorescent signal to cross a threshold (Ct) was 
measured. Each 25-μl reaction contained 20 ng of DNA and either 
telomere or GAPDH primers at a 200/200 nm concentration mixed 
in 12.5 µl of perfeCTa SYBR green supermix Low ROX (Stratagene). 
We used the following primers to amplify the reactions: telomeres—
forward tel1b (5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGT
TTGGGTT-3′) and reverse tel2b (5′-GGCTTGCCTTACCCTTACCC
TTACCCTTACCCTTACCCT-3′) and zebra finch GAPDH—forward 
(5′-AACCAGCCAAGTACGATGACAT-3′) and reverse GAPDH 
(5′-CCATCAGCAGCAGCCTTCA-3′). The qPCR conditions were as 
follows: telomeres—10 min at 95°C, followed by 27 cycles of 15 s at 
95°C, 30 s at 58°C and 30 s at 72°C, finishing with 1 min at 95°C, 

30 s at 58°C and 30 s at 95°C and GAPDH—10 min at 95°C, followed 
by 40 cycles of 30 s at 95°C and 30 s at 60°C, finishing with 1 min at 
95°C, 30 s at 55°C and 30 s at 95°C.

Each plate also contained a dark-eyed junco reference sample that 
was used to create a five-point standard curve (40, 20, 10, 5, 2.5 ng) 
to ensure that all samples fell within the bounds of the standard 
curve and to measure reaction efficiencies. Average Ct values were 
used to calculate the relative telomere length (T/S ratio) according to 
the following formula: 2ΔΔCt, where ΔΔCt = (Ctelomere

t
− C

GAPDH
t

) ref-
erence sample − (Ctelomere

t
− C

GAPDH
t

) focal sample (Stratagene, 2007). 
All samples fell within the range of the standard curve. Reaction ef-
ficiencies were similar: GAPDH (mean ±1 SEM: 91.9 ± 0.81, range 
89.6%–94.9%) and telomere (mean ±1 SEM: 89.3 ± 0.58, range 85%–
94.2%). At the time of assay optimization, the repeatability of the 
T/S ratio (0.89, p < .001) was calculated by running 29 juncos from 
this long-term study in random well locations across two plates. 
The single Intraclass correlation coefficient (ICC) was 0.89, p < .001, 
95% confidence interval lower bound 0.77 and upper bound 0.95, as 
previously reported (Graham et al., 2019). The repeatability of the 
telomere Ct (0.93, p  <  .001) and GAPDH Ct (0.98, p  <  .001) tripli-
cates was calculated using all of the samples following the methods 
of (Dingemanse & Dochtermann, 2013).

2.3  |  Statistics

In total, we analysed telomeres (mean ± SEM T/S ratio 1.00 ± 0.0213) 
in 254 blood samples collected from n = 114 males (n = 50 with ex-
perimentally elevated testosterone and n = 64 controls). All individu-
als were resampled at least once, at least 1 year after implantation, 
and telomere length was significantly repeatable within individuals 
across years (0.257, p  <.01), calculated following the methods of 
(Dingemanse & Dochtermann, 2013).

There were no significant differences between treatment groups 
in the age at first implantation (first breeding season: n = 45 testos-
terone males and n = 54 control males; later ages: n = 5 testosterone 
and n = 10 control; F1,112 = 0.037, p = .847); the number of times indi-
viduals were resampled and received implants (once: n = 42 testos-
terone and n = 55 control males; more than once: n = 9 control and 
n = 8 testosterone males; F1,112 = 0.614, p = .435); how much time 
elapsed (number of years) between sample collections (mean  ±1 
SEM: 1.56 ± 0.105 years; range = 1–8 years; F1,112 = 0.032, p = .858); 
or telomere length at the start of the experiment (i.e., at the time of 
first implantation; F1,102.28 = 0.590, p = .444). There was also no sig-
nificant effect of year on telomere length (F1,161.504 = 0.769, p = .382), 
and the number of individuals sampled from each treatment group 
did not significantly differ among years (Wald chi-square  =  0.921, 
p = .921). Thus, these variables were not considered in subsequent 
analyses.

To examine the potential influence of treatment on the change 
in telomere length with age, we used linear mixed models that in-
cluded all of the telomere samples collected for each individual. 
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Importantly, any change in telomere length with age could be due 
to both within- and among-individual effects and in this study, we 
were specifically interested in within-individual changes. Therefore, 
we separated the within- and among-individual effects, by using 
within-subject centring and partitioning age into two new variables, 
an average age variable and a delta age variable (van de Pol & Wright, 
2009). Average age is calculated as the average of all of the actual 
ages at which an individual's samples were collected and represents 
the among-individual effect of age. Whereas delta age is calculated 
as the actual age at the time each sample is collected minus the av-
erage age and represents only the within-individual effect of age 
(i.e., telomere shortening with age within individuals). For example, 
if an individual's actual ages at three sampling events were 1, 2 and 
3  years old, the average ages that would be recorded for each of 
these samples would be 2, and the delta ages that would be recorded 
for each of these samples would be −1, 0 and 1 respectively.

To test whether telomeres declined more across years within 
males that received testosterone than control implants, we ran a lin-
ear mixed model that included telomere length (all of the measure-
ments for each individual) as the dependent variable and treatment, 
delta age (the within-individual component of age), and an interac-
tion between treatment and delta age as fixed effects. Individual 
was included as a random effect to account for the fact that individ-
uals were sampled multiple times and plate was included as a fixed 
effect to control for any potential variation among plates (Table S1).

Variance structures were estimated using restricted maximum 
likelihood (REML) and all models had normal error structures. All 
statistical analyses were performed in IBM SPSS Statistics 23 (IBM 
Corp.).

3  |  RESULTS

There were no significant main effects of treatment (F1,97.089 = 1.930, 
p = .168; effect size −0.069 ± 0.0497 T/S ratio units per year) or delta 
age (F1,141.842 = 0.970, p = .326; effect size 0.0259 ± 0.0257 T/S ratio 
units per year) on telomeres. However, males exposed to experimen-
tally elevated testosterone experienced significantly more telomere 
shortening with age than males that received control implants (in-
dicated by a significant treatment × delta age interaction effect on 
telomeres: F1,139.26 = 5.681, p = .018; effect size −0.089 ± 0.0373 T/S 
ratio units per year; r = −.21 for testosterone males and r = .049 for 
control males; Figure 1).

One male was sampled over a relatively longer time span (i.e., he 
was first implanted and sampled when he was 1 year old and last sam-
pled when he was 9 years old), but if this individual is removed from 
the analysis, the treatment  ×  delta age interaction effect on telo-
meres remains significant and quantitively similar (F1,139.97 = 5.917, 
p  =  .016; effect size −0.103  ±  0.0426  T/S ratio units per year). 
There was also a significant effect of plate on telomere length 
(F13,124.053 = 2.395, p =  .007), but if plate is also removed from the 
analysis, the treatment × delta age interaction effect on telomeres 
remains significant and quantitatively similar (F1,137.469  =  6.158, 
p = .014; effect size −0.095 ± 0.0383 T/S ratio units per year).

4  |  DISCUSSION

Here we demonstrate that telomeres shorten more with age in males 
exposed to experimentally elevated testosterone than controls. 

F I G U R E  1  The relationship between delta age (longitudinal change in telomere length with age within individuals) and relative telomere 
length (T/S ratio) in male dark-eyed juncos (Junco hyemalis carolinensis) that received testosterone (red dots, line, and 95% confidence 
interval) or control (blue dots, line, and 95% confidence interval) implants. Males with testosterone implants experienced significantly more 
telomere loss across years than controls (indicated by a significant treatment × delta age interaction effect on telomeres: F1,139.26 = 5.681, 
p = .018; effect size: −0.089 ± 0.0373 T/S ratio units per year; r = −.21 for testosterone males and r = .049 for control males)

0.0

0.5

1.0

1.5

2.0

-4 -2 0 2 4 6
Delta age (within individual changes with age)

R
el

at
iv

e 
te

lo
m

er
e 

le
ng

th
 (T

/S
 ra

tio
)



    |  5HEIDINGER et al.

Previous research in this system has demonstrated that males with 
experimentally elevated testosterone benefit from higher reproduc-
tive success (Raouf et al., 1998), but also suffer from increased mortal-
ity (Reed et al., 2006). Furthermore, males with endogenously higher 
peak testosterone levels also have lower return rates (McGlothlin 
et al., 2010). In humans, other mammals and birds, longer-lived in-
dividuals often have longer telomeres (Asghar et al., 2015; Barrett 
et al., 2013; Bize et al., 2009; Cawthon et al., 2003; Fairlie et al., 2016; 
Heidinger et al., 2012). Thus, our findings are consistent with the idea 
that increased telomere shortening is one potential long-term cost of 
elevated testosterone that may be associated with reduced longevity.

The relationship between testosterone and telomeres may in-
dicate direct functional impacts of testosterone on lifespan, may 
be a biomarker of accumulated stress exposure incurred during re-
production (i.e., defending territories, displaying for females, etc.), 
or both and we are unable to distinguish between these two non-
exclusive possibilities. The effect of testosterone on telomeres is 
somewhat small, but our study design may have caused us to un-
derestimate it. To assess the influence of testosterone on telomere 
loss within individuals, we necessarily focused on a subset of birds 
that survived for at least 1 year after treatment. Annual survival 
of males in this population varies, but on average is around 50% 
(Nolan et al., 2020; Reed et al., 2006) and these “survivors” may 
have been of higher quality or in better condition, which could 
have made it more difficult to detect an effect of testosterone on 
telomeres. Regardless, an important implication of these results is 
that the effects of testosterone on telomeres accrue across years 
and such physiological costs would be missed in shorter term ex-
perimental manipulations.

There are many nonexclusive pathways through which elevated 
testosterone could accelerate telomere shortening. Testosterone 
may increase telomere loss by elevating stress exposure. Previous 
research in this system has found that males with experimentally el-
evated testosterone have increased glucocorticoid stress hormones 
(Ketterson et al., 1991) and a stronger stress response (Schoech et al., 
1999). In other organisms, there is evidence that elevated testoster-
one increases oxidative stress (Alonso-Alvarez et al., 2007, 2009) and 
that oxidative stress can accelerate telomere loss (Geiger et al., 2012; 
Reichert & Stier, 2017; Stier et al., 2015; Taff & Freeman-Gallant, 
2017), but this is not always the case (Boonekamp et al., 2017).

Elevated testosterone may also affect telomerase, an enzyme 
that can extend telomere length (Blackburn, 2005). In humans, telo-
merase is often down-regulated in somatic tissues soon after birth as 
an anticancer protection mechanism (Blackburn, 2005), but in some 
bird species it continues to be expressed in some tissues even into 
old age (Haussmann et al., 2007). Testosterone has also been shown 
to decrease telomerase expression both in vitro and in vivo (Culig 
et al., 2002; Meeker et al., 1996; Moehren et al., 2008; Teske et al., 
2002), but see (Bar et al., 2015). Interestingly, recent studies in can-
cer cells suggest that androgens may have direct effects on telomere 
stability, but whether this is also true in healthy cells is currently 
unknown (Zhou et al., 2013).

Although the effect of testosterone on telomeres has been lit-
tle studied, our results are consistent with a correlational study in 
humans, in which male children and adolescents with higher peak 
testosterone and a slower testosterone recovery following social 
stress had shorter telomeres (Drury et al., 2014). However, recent 
research in yellow-legged gull chicks suggests that these effects 
may vary across tissues, as exogenous testosterone negatively af-
fected telomeres in the liver, but not in the brain, heart (Parolini 
et al., 2018) or blood (Parolini et al., 2019). Given that both testos-
terone and telomeres are conserved mechanisms, a negative rela-
tionship between testosterone and telomeres may be widespread 
and could be indicative of increased biological ageing or form a 
part of the mechanistic pathway underlying the long-term costs of 
reproduction in male vertebrates. Future experimental studies will 
be necessary to determine the mechanisms through which testos-
terone impacts telomeres, whether these effects vary across life-
history stages and tissues, and the degree to which they impact 
longevity.
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