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Understanding the interplay between charge and spin and its effects on transport is a ubiquitous challenge in
quantum many-body systems. In the Fermi-Hubbard model, this interplay is thought to give rise to magnetic
polarons, whose dynamics may explain emergent properties of quantum materials such as high-temperature
superconductivity. In this work, we use a cold-atom quantum simulator to directly observe the formation
dynamics and subsequent spreading of individualmagnetic polarons.Measuring the density- and spin-resolved
evolution of a single hole in a 2DHubbard insulatorwith short-range antiferromagnetic correlations reveals fast
initial delocalization and a dressing of the spin background, indicating polaron formation. At long times, we
find that dynamics are slowed downby the spin exchange time, and they are compatiblewith a polaronicmodel
with strong density and spin coupling. Our work enables the study of out-of-equilibrium emergent phenomena
in the Fermi-Hubbard model, one dopant at a time.
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I. INTRODUCTION

Interactions between charge carriers and magnetic exci-
tations can drastically alter the transport properties of a
many-body system. Prominent examples include the
Kondo effect, colossal magnetoresistance, and heavy-
fermion materials, where electrical resistivity is strongly
affected by electron scattering against magnetic impurities
and localized spins. In the two-dimensional Hubbard
model, the competition between charge delocalization,
related to the nearest-neighbor tunneling energy t, and
antiferromagnetism, set by the spin exchange energy J,
already results in intricate dynamics at the level of a single
charge excitation. This iconic problem has attracted exten-
sive theoretical attention [1–9] and can be reinterpreted as
the creation and dispersion of a magnetic polaron, a charge
carrier dressed by the magnetic background with renor-
malized properties. Because of their out-of-equilibrium

character, knowing both transient and long-time dynamical
properties of polarons is a fundamental step towards
elucidating intriguing transport phenomena seen in strongly
correlated materials.
Evidence for magnetic polarons in undoped cuprates has

been seen in the form of a renormalized hole dispersion
measured via photoemission experiments [10]. However,
an understanding of the transient behavior of a single
charge excitation is obscured in solid-state systems by the
presence of phonons and inherently fast electron dynam-
ics. Ultracold atoms offer a clean and tunable quantum
simulation platform where quantum dynamics can be
observed with a resolution finer than all relevant timescales
[11]. Quantum gas microscopy, in particular, gives access
to spin and density readout and manipulation at the
single-site level, thereby enabling demonstrations of one-
dimensional quantum walks [12,13] and, more recently,
the study of spin-charge deconfinement in one-dimen-
sional Hubbard chains [14]. Previous dynamical studies of
the doped 2D Fermi-Hubbard model have focused on
hydrodynamic bulk transport [15–17], and equilibrium
signatures of polaronic behavior have been seen in small
systems [18,19].
Nonetheless, observing the competition between

density and spin dynamics is experimentally challenging:
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It requires simultaneously achieving low temperatures for
the spin order to dramatically influence transport, and large
system sizes to probe the system’s evolution over long spin
exchange timescales. In this work, we study the density-
and spin-resolved dynamics of a single hole interacting
with a two-dimensional antiferromagnetic Mott insulator of
400 sites [Fig. 1(a)]. We first observe fast dressing of the
spin environment over the tunneling timescale, where
quantum interference between alternative hole paths plays
a large role. This fast process is followed by a slow
delocalization of the hole and a slow relaxation of the
spin background, which are key dynamical signatures of a
magnetic polaron. We quantitatively validate our under-
standing of the spin dynamics by comparing them to a
phenomenological model of the formation and departure of
a spin polaron.

II. EXAMINING A SINGLE DOPANT

We prepare the initial system of fermionic lithium-6 in a
half-filled 2D square lattice with Hubbard parameters

t=ℏ ¼ 2π × 744ð12Þ Hz and U=t ¼ 8.72ð28Þ [t=J ¼
2.18ð7Þ] [20] at a temperature of T=t ¼ 0.340ð19Þ and
with correlation length ξ ¼ 1.695ð11Þ (expressing lengths
in units of the lattice spacing a ¼ 569 nm and setting
kB ¼ 1 here and subsequently). Simultaneously, we project
repulsive light from two digital micromirror devices
(DMDs). The first DMD performs entropy redistribution
and removes residual harmonic confinement over a
rounded-square-shaped area of 31 sites in diameter
[21,22]. The second DMD acts to prevent the occupation
of selected sites while adiabatically loading the optical
lattice, resulting in pinned holes [Fig. 1(b)]. We release the
pinned holes by shutting off the light illuminating the
second DMD within 0.03ℏ=t; then, we allow the system
to evolve for a variable time τ. Finally, we freeze the
dynamics by rapidly increasing the lattice depth and
make a projective site-resolved measurement of either the
parity-projected (singles) density or a single spin state by
removing the other via a resonant spin-removal laser [23].

III. SHORT-TIME DENSITY DYNAMICS

To obtain a density distribution of the hole location,
we average the singles density distribution at a given time τ.
We then subtract it from an average background obtained
without the hole. This process allows us to first cancel out
density fluctuations in the form of doublon-hole pairs,
which are imaged as empty sites, and, second, to remove
residual systematic offsets in the particle density that may
result from lattice inhomogeneities [21]. For an enhanced
data collection rate at times τ < ℏ=t, we simultaneously
study four holes arranged in a seven-site-wide square
pattern, instead of a single central hole [Fig. 1(b)]. The
density on the pinned sites initially ranges from 0.71(5)
to 0.921(27) without significantly affecting their adjacent
sites [21].
The resultant hole density distributions at short times are

shown in Fig. 2(a). Within half a tunneling period, the hole
tunnels to the four neighboring sites [τ ¼ 0.47ð1Þℏ=t]; its
subsequent propagation retains clear coherent features such
as the oscillation of the hole density on the sites adjacent to
the origin [maximal at τ ¼ 0.47ð2Þℏ=t], which sets it apart
from a classical diffusion process.
We can gain microscopic insights on the role of spin by

plotting the hole densities on the central site and its
diagonal sites, as shown in Fig. 2(b), at times shorter than
the spin superexchange timescale ℏ=J ¼ 2.18ð7Þℏ=t.
Within two tunneling periods, hole motion is affected by
the presence or absence of quantum interference effects
between the two paths leading to the same corner site but
possibly distinguishable spin backgrounds. To quantify this
effect, we show the predictions of three models that feature
different magnetic phases: a noninteracting quantum walk,
equivalent to the propagation of a hole in a spin-polarized
background; a quantum Monte Carlo (QMC) simulation on
a disordered spin background (T ¼ ∞, J ¼ 0) [24,25]; and

(a)

(b)

FIG. 1. Probing single-hole dynamics with a quantum gas
microscope. (a) We initialize a hole in the system by adiabatically
loading atoms into the lattice with a localized repulsive potential.
The potential is abruptly removed, allowing the hole to delocalize
at the bare tunneling rate t and displace spins along its path that
result in a local reversal of spin correlations compared to
equilibrium. The hole is therefore locally dressed by the spin
background, forming a magnetic polaron with a velocity ultimately
determined by J. (b) Left: average of experimental images before
hole release for one prepared hole. The apparent additional hole in
the upper right is caused by defects in the imaging path. Right:
average density of the atomic system before hole release, for one
hole and four holes (to enhance the data collection rate at short
evolution times). All analysis is done inside the denoted regions.
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a time-dependent density matrix renormalization group
(TD-DMRG) simulation of the t-J model with t=J ¼ 2
on an 18 × 4 system, initially in the antiferromagnetic
ground state [26]. All three models quantitatively describe
the experimental results during the first tunneling event
up to τ ≈ 0.5ℏ=t; a detailed comparison is presented in
Ref. [21]. Afterwards, the spinful simulations predict a
revival of the central density around τ ≈ 1.2ℏ=t, though
finite-size effects magnify this revival in the TD-DMRG
simulation. The amplitude of the oscillation in the diagonal
density is directly related to the indistinguishability of
spin backgrounds after two tunneling events ending at a
given site, as sketched in Figs. 2(c) and 2(d): Quantum
interference is maximal in a ferromagnet (free quantum
walk), reduced in an antiferromagnet (ground-state TD-
DMRG), and between these two extremes in a paramagnet

(infinite-temperature QMC). The suppressed diagonal
density seen experimentally at τ ≈ 1ℏ=t therefore hints at
the quantum statistical role of the antiferromagnetic back-
ground in the hole dynamics over short timescales.

IV. LONG-TIME HOLE DELOCALIZATION

The previous experimental data focus on times smaller
than the spin exchange time ℏ=J, where the hole motion is
essentially driven by direct tunneling. Investigating dynam-
ics at longer times is challenging, as it requires resolving
hole densities inversely proportional to the square of its
distance to the origin. To mitigate statistical fluctuations in
the hole density at large distances, we fit the experimental
data in an analysis region containing most of the hole
density to a two-dimensional Gaussian distribution that
empirically match the hole distribution at longer times [21].
The delocalization dynamics is then quantitatively
described by the root-mean-square (rms) hole distance:

drms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

dx;dy

ðd2x þ d2yÞρd=
X

dx;dy

ρd

s

;

where ρd is the fitted hole density at coordinate
d ¼ ðdx; dyÞ relative to the initial hole position.
We plot the rms distance of the fitted distribution in

Fig. 3. At times τ < 1ℏ=t, we observe a fast linear growth
characteristic of a ballistic expansion. The data match the
analytical expression for a noninteracting quantum walk,
drms ¼ vτ with velocity v ¼ 2t=ℏ, confirming that the spin
background can be effectively neglected during the first
tunneling event. The delocalization then clearly slows after
τ ¼ 1ℏ=t; the hole eventually leaves our analysis region
of 11 sites in radius [Fig. 1(b)] at times greater than
τ ¼ 10ℏ=t [21].
We can qualitatively capture this slowdown with an

analytical model depending only on t, mapping hole
motion on a spinful background to a free quantum walk
on a Bethe lattice [25,27]. The model predicts a crossover
from ballistic to diffusive behavior, resulting from the
absence of quantum interference between paths leading
to the same hole position but different spin backgrounds
[24]. Its rms distance asymptotically follows a square-
root law drms ¼

ffiffiffiffiffiffiffiffiffi

4Dτ
p

with a diffusion constant D ≈
1.37DMIR ¼ 1.37ta2=ℏ close to the Mott-Ioffe-Regel
(MIR) limit, which was experimentally shown to be a
lower bound for diffusion at larger doping [16]. A similar
ballistic-to-diffusive crossover occurs in spin-1=2 QMC
simulations at infinite temperature, with a diffusion con-
stant increased by less than 10% compared to the Bethe
lattice case with effective infinite spin of the Bethe lattice,
due to enhanced quantum interference [25].
Though the Bethe-lattice model qualitatively predicts the

slowdown of the hole, its rms distance exceeds that of the
experiment at long times (with a chi-square value χ2 ¼ 47

(a)

(b) (c)

(d)

FIG. 2. Effect of quantum interference on short-time density
dynamics. (a) Symmetrized average hole densities at short times.
The hole initially delocalizes coherently, as indicated by density
oscillations on sites surrounding the origin. (b) Short-time
evolution of the hole density at the center (distance jdj ¼ 0)
and on the diagonally adjacent sites (jdj ¼ ffiffiffi

2
p

). We compare
experimental data to models featuring a ferromagnetic (non-
interacting quantum walk, dashed black line), disordered (non-
interacting, spin-1=2 QMC simulation at T ¼ ∞, dash-dotted red
line), or antiferromagnetic spin background (ground-state DMRG
simulation at t=J ¼ 2, dash-dotted green line). The diagonal
density shows a decreased oscillation amplitude compared to the
quantum walk and QMC simulations. This can be interpreted as a
manifestation of quantum interference between two nonequiva-
lent hole paths, maximal for a polarized spin background (c) and
reduced for an antiferromagnet (d). Here and in the following,
error bars indicate a one-sigma statistical uncertainty in the
plotted values.
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on the six experimental times τ > ℏ=t corresponding to
a p value of p ¼ 2 × 10−8). This deviation challenges the
assumption of tunneling being the only relevant energy
scale. To directly verify the role of the superexchange on
hole motion, we use a Feshbach resonance to double the
on-site interaction to U=t ¼ 17.2ð6Þ [t=J ¼ 4.30ð15Þ] at
fixed tunneling. We thereby halve the superexchange
energy J while slightly decreasing the temperature
T=t ¼ 0.241ð18Þ and increasing the correlation length
ξ ¼ 2.48ð25Þ. The experimental rms distance shown in
Fig. 3 agrees with the previous data at short times, apart
from small initial deviations due to a larger hole preparation
infidelity [21]. A linear fit for data at τ > 0.8ℏ=J indicates a
reduction of the long-time hole velocity for smaller J from
a value of 0.40ð10Þa=ðℏ=tÞ at U=t ¼ 8.72ð28Þ down to
0.15ð17Þa=ðℏ=tÞ at U=t ¼ 17.2ð6Þ. These results are con-
sistent with the expected decrease of the quasiparticle
bandwidth with spin exchange in the t-J model in the
strong-coupling limit t ≫ J [5], and are quantitatively
compatible with the numerical predictions in [6,28–31].
This agreement suggests that, at long times, the hole
becomes dressed by the magnetic background and forms
a magnetic polaron.

V. SPIN DYNAMICS

The two-stage dynamics of the hole motion are also
visible in the spin correlations, whose fast evolution away

from equilibrium and slow return to it can be interpreted
as the formation and departure of a polaron, respectively.
We measure the sign-corrected spin correlation function
CrðdÞ ¼ ð−1Þdxþdy4ðhSzrSzrþdi − hSzrihSzrþdiÞ in an inde-
pendent data set starting with a single hole at the center
[21]. We plot a map of the correlations from the initial hole
location C0ðdÞ (as the hole becomes indistinguishable from
hole fluctuations once it starts moving) and averaged over
all spatial symmetries for select times; see Fig. 4(a). At
τ ¼ 0, these correlations are vanishing because of the
presence of the hole; within one tunneling time, the hole
hops to a neighboring site, and the correlations become
those of the exchanged neighboring spin [Fig. 4(b)]. This
swapping of correlations results in a reversal of the global
antiferromagnetic correlation pattern [light brown color in
Fig. 4(a)]: For instance, the negative sign of the diagonal
correlation C0(d ¼ ð1; 1Þ) at τ ¼ 0.467ð8Þℏ=t is at odds
with its value at long times, τ ¼ 23.4ð4Þℏ=t. Here, the
reversal of the antiferromagnetic pattern extends up to three
sites away from the center and is a dynamical analog to
the short-range polaronic behavior seen at equilibrium in
Ref. [19]. In contrast, we find that the nearest-neighbor
correlator does not exhibit the same sign-change effect
[light green squares at τ ¼ 0.467ð8Þℏ=t] as it results from a
mixture of diagonal correlations weakened by the presence
of the hole before the initial quench.
The swapping mechanism described in Fig. 4(b) sug-

gests a practical way to quantitatively predict the evolution

FIG. 3. Long-time slowdown of the hole propagation due to
superexchange. Root-mean-squared distance from the origin,
obtained from a Gaussian fit to the 2D hole density distribution.
The initial linear increase indicates a ballistic expansion com-
patible with a noninteracting quantum walk (dashed black line).
The hole slows down around τ ¼ 1ℏ=t, an effect qualitatively
predicted by an analytic model based on a free quantum walk in a
Bethe lattice (solid blue line). At later times, the hole is more
confined than the Bethe-lattice prediction. Increasing the inter-
action energy decreases the superexchange and the long-time
hole velocity, from 0.40ð10Þa=ðℏ=tÞ at U=t ¼ 8.72ð28Þ to
0.15ð17Þa=ðℏ=tÞ at U=t ¼ 17.2ð6Þ as obtained from linear fits
at τ ≥ 0.8ℏ=J.

(a)

(b)

FIG. 4. Reversal and recovery of antiferromagnetic correla-
tions. (a) Sign-corrected spin correlations C0ðdÞ from the initial
hole location (black circle) at select times, symmetrized across
reflections. Within one tunneling time, we observe antiferromag-
netic correlations but with the opposite sign (light brown), apart
from the nearest-neighbor correlator. The correct AFM pattern
(green) then slowly restores itself, although the correlations
have not fully equilibrated even at our longest measured times,
τ ¼ 23.4ð4Þ ℏ=t ¼ 10.7ð4Þ ℏ=J [21]. (b) The emergence of short-
time antiferromagnetic correlations with the opposite sign can be
understood in a classical Néel state. Initially, the hole swaps a
neighboring spin to the origin, producing reversed correlations at
the origin site. At later times, relaxation processes restore the
correct antiferromagnetism.
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of spin correlations resulting from fast hole dynamics. To
do so, we take experimental pictures at τ ¼ 0 and displace
spins according to the distribution of the hole trajectories
predicted by the analytical Bethe-lattice model [21]. In
Fig. 5(a), we compare the time evolution of the next-nearest
correlations to the center C0ðjdj ¼

ffiffiffi

2
p Þ with the predicted

evolution based on this model, shown as a purple-gray
band. It agrees with the experimental data at short times
only, indicating that local correlation swapping is an
accurate picture in that regime.
A more complete model for the hole dynamics is one

that considers the energy cost of correlation swapping,
which, at first, binds the hole to around its initial location
[32]. Spin exchange can then enable the restoration of
the disrupted spin background, leading to a polaron

delocalizing with a long-time velocity set by the super-
exchange energy. An example of such a model is
presented in Ref. [31], where the polaron is described
as a composite object formed by a holon and spinon
connected by a string of displaced correlations. We
include the spinon dynamics by shifting the experimental
pictures used in our model (and, therefore, the effective
hole origin) according to a ballistically propagating
spinon [21]. Including these dynamics results in an
accurate prediction of the long-time behavior of the spin
correlations, qualitatively capturing their slow return to
equilibrium [blue band in Fig. 5(a)]. Spin correlations
relax more slowly than the local density [inset of
Fig. 5(a)]—strikingly, equilibration in the spin sector
has not occurred even for the last measured time of τ ¼
23.4ð4Þℏ=t, although the hole itself has left the system.
The polaron model can also be benchmarked with spin

correlations measured across the entire Mott-insulating
region. We show in Fig. 5(b) the nearest-neighbor corre-
lations Crðjdj ¼ 1Þ averaged according to the bond dis-
tance to the center jrj (full data shown in Ref. [21]).
Strongly depleted correlations are initially observed around
the center due to the hole, before spreading towards larger
distances as the system relaxes. Since nearest-neighbor
correlations are directly proportional to the local magnetic
energy in the t-J approximation, this propagation indicates
that the hole imparts its kinetic energy to the entire spin
background while leaving the systems.
Including spinon-holon dynamics [solid lines in

Fig. 5(b)] compared to a bare Bethe-lattice model (dashed
lines) leads to good agreement with the experimental data
even at longer times, confirming the role of spin exchange
in the long-time dynamics. However, theory underestimates
nearest-neighbor correlations at short distances and short
times, τ ¼ 0.94 and 2.35ℏ=t, perhaps as a result of spin
relaxation mechanisms not captured in the model, such
as magnon emission. Furthermore, we note that the model
overestimates the rms distance of the hole measured
experimentally [21], possibly because it neglects spin
fluctuations that effectively lead to a disordered magnetic
background and inhibit hole motion.
In this work, we demonstrate the intricate linkage

between charge and spin dynamics in the two-dimensional
Fermi-Hubbard model and explore the formation and
motion of magnetic polarons. The size, coherence, and
control of this cold-atom quantum simulator are key to
benchmarking nonequilibrium theories of magnetic
polaron formation and numerical techniques away from
the linear-response regime. Our work could be extended to
investigate the interaction between multiple, deterministi-
cally created polarons and to study how magnetism
facilitates this interaction. This extension may enable the
microscopic observation of d-wave Cooper pairs and of
emergent phases such as stripe phases, pseudogap phases,
and ultimately d-wave superconducting phases.

(a)

(b)

FIG. 5. Comparison with a polaron model. (a) Sign-corrected
spin correlations between the initial hole location and its diagonal
neighbors [C0ðjdj ¼

ffiffiffi

2
p Þ] as a function of time. The short-time

dynamics are captured by a Bethe-lattice model considering only
charge motion (purple-gray band), while spin exchange must be
taken explicitly into account (here, as a polaron model, blue band)
to qualitatively describe the long-time relaxation of the correla-
tions towards their equilibrium values (blue dashed line). This
correlation relaxation is slower than the density relaxation
averaged on a 3 × 3 area around the center (inset). (b) Near-
est-neighbor correlations as a function of distance to the center
Crðjdj ¼ 1Þ. The slow spreading of the depleted correlations
towards the system edges is best captured by the polaron model
(blue) as opposed to the Bethe-lattice model (purple-gray).
Neither model quantitatively captures the short-time dynamics
at the center (jrj ¼ 0).
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