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ABSTRACT

Experimentally, the thermal gas-phase deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene (1)
results in N> loss and formation of bicyclo products 3 (exo) and 4 (endo) in a nonstatistical ratio
with preference for the exo product. Here we report unrestricted M06-2X quasiclassical trajectories
initialized from the concerted N> ejection transition state that were able to replicate the
experimental preference to form 3. We found that the 3:4 ratio results from the relative amounts
of very fast (ballistic) exo-type trajectories versus trajectories that lead to the 1,3-diradical

intermediate 2. These quasiclassical trajectories provided a set of transition-state vibrational,



velocity, momenta, and geometric features for machine learning analysis. A selection of popular
supervised classification algorithms (e.g. Random Forest) provided poor prediction of trajectory
outcomes based on only transition-state vibrational quanta and energy features. However, these
machine learning models provided more accurate predictions using atomic velocities and atomic
positions, attaining ~70% accuracy using initial conditions, and between 85-95% accuracy at later
reaction time steps. This increased accuracy allowed feature importance analysis to reveal that at
the later time analysis the methylene bridge out-of-plane bending is correlated with trajectory
outcomes as either formation of the exo product or towards the diradical intermediate. Possible
reasons for the struggle of machine learning algorithms to classify trajectories based on transition-
state features is the heavily overlapping feature values, finite, but very large possible vibrational
mode combinations, and the possibility of chaos as trajectories propagate. We examined chaos by
comparing a set of nearly identical trajectories that differed by only a very small scaling of the

kinetic energies resulting from the transition-state reaction coordinate.



Introduction

Several organic reactions have been discovered that show dynamical reaction

1.23456789.101L12 Bor many of these reactions, transition-state and RRKM statistical

selectivity.
theories do not provide adequate quantitative or qualitative modeling of selectivity. One approach
to understanding dynamical selectivity effects is to use quasiclassical direct dynamics simulations
that provide timing of geometry changes and lifetimes of structures during reactive

13.14.15.16,17.18,19.20.21.22 a]lowing selectivity modeling beyond statistical theories through

trajectories,
revealing non-minimum energy pathway (non-IRC) motion or incomplete intramolecular

vibrational redistribution (IVR).23-24.25-26

While quasiclassical trajectories model and rationalize nonstatistical dynamical reaction
effects, understanding and predicting the outcome of deterministic trajectories based on initial
conditions is nontrivial due to highly complex multi-dimensional energy landscapes with forces at
the transition state and forces along the descent to intermediates or products.?’-*%* This difficulty
of predicting the outcome of a trajectory can inhibit quantitative analysis of qualitative chemical
theories proposed to control reaction selectivity. Therefore, in this work, we set out to determine
if popular machine learning algorithms could predict quasiclassical trajectory outcomes using
vibrational, velocity, and geometric features. Related to our work, previously, Vacher and co-
workers successfully used Bayesian neural networks to predict the outcome of ab initio molecular

dynamics simulations for the timescale of 1,2-dioxetane decomposition.*

For several reasons we chose to examine the thermal deazitization of 2,3-
diazabicyclo[2.2.1]hept-2-ene (1, Scheme 1). First, experiments showed that N> loss results in

bicyclo products 3 and 4 with a nonstatistical preference for the exo product in a 4.7:1 £ 0.9



(exo:endo) ratio.>!? The statistical ratio would be 1:1 if the intervening 1,3-singlet diradical
intermediate 2 were to undergo complete IVR prior to C-C bond formation. Second, several
qualitative theories for the origin of selectivity have been proposed, beginning with Roth and
Martin,*!*? Allred and Smith,* and culminating with Carpenter’s in-depth description that the
nonstatistical exo:endo ratio results from a relatively low barrier (~2 kcal/mol) for transition state
TS2 (endo-TS2 and exo-TS2, see Scheme 1) that results in C-C bond formation without IVR 3433
More specifically, Carpenter’s description focused on the out-of-plane bending motion of the
methylene (CH2) bridge group that leads to the unexpected excess of exo product 3, and this
rationale was qualitatively supported by classical trajectory analysis and experiments in
supercritical propane.*® Third, density functional theory (DFT) quasiclassical trajectories have not

been reported.
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Scheme 1. a) Outline of static DFT energy surface for the thermal deazetization of 1. Enthalpies
and Gibbs energies reported in kcal/mol. TS1 is a symmetrical, concerted transition state with
simultaneous cleavage of both C-N bonds. Diradical 2 can lead to either exo-TS2 or endo-TS2.
The blue dotted arrow represents the possibility of trajectories leading to diradical intermediate 2
with subsequent IVR. The red dotted arrow represents the idea of a ballistic trajectory leading
directly from TS1 to the bicyclo product 3. b) Snapshot depiction of Carpenter’s proposal that non-
IVR, out-of-plane methylene bending results in dynamical access to exo product 3 from TS1.343

Here, we report that unrestricted M06-2X quasiclassical trajectories initialized from TS1
were able to replicate the experimental nonstatistical preference for forming exo 3 in excess to
endo 4. We found that most trajectories resulted in intermediate 2 prior to the formation of either
bicyclo product, and therefore the 3:4 ratio results from the relative amounts of ballistic-type
trajectories (red arrow in Scheme 1a) versus trajectories that lead to 2 (blue arrow in Scheme 1a).
These quasiclassical trajectories provided a set of transition-state vibrational, velocity, and

geometric features for machine learning analysis. A selection of popular supervised classification



algorithms (Random Forest, MultiLayer Perceptron, Stochastic Gradient Descent, and Logistic
Regression Classifier) provided only moderate accuracy for prediction of trajectory outcomes
based on transition-state (or near transition state) vibrational, velocity, and geometric features,
which is likely due to heavily overlapping feature values. However, these classification algorithms
provided significantly more accurate predictions using feature data at later time steps. We also
examined chaos by comparing a set of nearly identical trajectories that differed by only a very

small scaling of the kinetic energies.

Computational Methods

All structures were optimized with unrestricted M06-2X/6-31G** using Gaussian 09°7 or
Gaussian 16.%® TS1, 2, exo-TS2, and endo-TS2 have unrestricted SCF solutions lower in energy
than restricted solutions with <$?> values ranging from 0.6 for TS1 to 1.0 for 2. For one set of
trajectories, using our program DynSuite,* trajectories were initiated from TS1 by creating a
vibrationally averaged velocity distribution that includes zero-point energy (ZPE) at 413 K.
Vibrational motion associated with the transition-state structure imaginary frequency was assigned
a specific direction to progress towards one of the minima identified by intrinsic reaction
coordinate (IRC) analysis. Translational energy was added to this reaction coordinate mode using
a Boltzmann distribution, treating it as a vibrational mode with a frequency of 2 cm™. Each
trajectory was propagated using a Verlet integration algorithm with a one femtosecond (fs) time
step. Trajectories were run for 500-3000 fs. DynSuite trajectories were run in both forward and
reverse directions to confirm connected pathways. Energies and forces were calculated using

Gaussian 09°7 with unrestricted M06-2X/6-31G** with the keyword “guess=mix” at each step to



allow for a lower energy broken symmetry solution. Unrestricted DFT does have the possibility of
rough transitions between open-shell and closed-shell regions of the potential energy surface.*
For this reaction the rough region is likely to be very close to bicyclo product formation and thus

have minimal impact to trajectory selectivity.

A second set of quasiclassical trajectories were initialized and propagated in Gaussian 16
using the BOMD procedure. Initialization of trajectories was done using local mode and thermal
sampling at 413 K. Trajectories were propagated between 200-500 fs in mass-weighted Cartesian
velocities with an approximate average step of 0.25 fs. This second set of trajectories gave a nearly
identical exo:endo ratio to the DynSuite set of trajectories. The reason for this second set of
trajectories is that the sampling procedure provides a trajectory ensemble initiated as a combination
of kinetic and potential energy, which provides the ability to analyze transition-state geometry

features.

Results and Discussion

Quasiclassical Trajectory Results

N2 loss from 1 can occur through either stepwise cleavage of the two C-N bonds or through
a one-step concerted cleavage of both C-N bonds. While both mechanisms are plausible, accurate
wave function theory (CASPT?2) indicates that the concerted mechanism involving transition state
TS1 is ~5 kcal/mol lower in energy than the stepwise pathway.>® Interestingly, DFT generally does
not provide a transition state for the first C-N bond cleavage transition state in the stepwise
mechanism. Houk has provided an overview of previous quantum-mechanical calculations for

deazetization of 1, and reported a slightly unsymmetrical UB3LYP transition-state structure for



TS1.*! Because DFT does not provide the first stepwise transition state, and CASPT2 suggests a
concerted mechanism that is consistent with experiment, all quasiclassical trajectories were

initiated from TS1 (Figure 1, top).

- ey e S e J -
7Tfs 88 fs 100fs

WWW

Transition 430 fs 440 fs
State \ |

Figure 1. Top: Concerted transition-state structure for N> loss. This structure provides atomic
number labeling as well as x-, y-, and z-axis definitions for velocities and atomic positions. Middle:
Example trajectory leading to exo product 3. Bottom: Example trajectory leading to intermediate
2 and then to endo product 4.



Using UMO06-2X, 714 DynSuite reactive trajectories were followed for ~500 fs in the
reverse direction towards 1 and between 500-3000 fs in the forward direction towards 3 or 4. In
the forward direction, two types of trajectories were found. The first type of trajectory was a
“ballistic” trajectory that showed rapid formation of the exo product 3, typically within ~200 fs.
No trajectories formed the endo product 4 within 200 fs. An example of the ballistic exo trajectory
is shown in the middle of Figure 1. These snapshots show that within ~30 fs N> has completely
disengaged from the hydrocarbon framework and the methylene bridge has already moved to
create a flat 1,3-diradical conformation. At ~70 fs the methylene bridge has moved to the exo
position and at 100 fs the new C-C bond is beginning to be formed. 230 of the 714 trajectories
were “ballistic” exo forming.

The second type of trajectory found involves formation of the 1,3-diradical intermediate.
Consistent with statistical expectations and the 1,3-diradical intermediate found on the energy
landscape shown in Scheme 1, the majority of trajectories resulted in the 1,3-diradical
intermediate. Because these types of trajectories likely have significant IVR, they can be
considered to ultimately evolve to an equal mixture of bicyclo products 3 and 4. Consistent with
this assertion, the few non-ballistic trajectories that formed products did so in a nearly 1:1 ratio of
exo to endo products. Also consistent with this idea, assuming that the 484 of 714 trajectories that
are not ballistic go on to an equal ratio of exo to endo products, our final 3:4 trajectory-based ratio
is approximately 2:1, which is consistent with the experimental exo preference.®! This 2:1 ratio is
also interesting since it is similar to Carpenter’s classical trajectory results using a stepwise
mechanism and semiempirical-based energy surface.’* In the future, it will be interesting to

compare these DFT results to trajectories based on highly correlated multi-reference methods.



Figure 1 shows an example of one of these trajectories that first results in the 1,3-diradical
intermediate and then progresses to the endo product. In this trajectory, which requires 500 fs
before C-C bond formation, N> loss also occurs rapidly. Different than the ballistic exo trajectory,
in this endo trajectory the methylene group bends only enough to result in a flat 1,3-diradical and
remains in this position for >400 fs before moving in the endo direction with rapid C-C bond
formation.

To visually display the two types of trajectories, ballistic exo and 1,3-diradical that evolve
to both exo and endo products, Figure 2 plots trajectory time versus relative change in C1-C7-C13-
H14 dihedral angle, which showcases the movement of the methylene bridge. Red trajectories are

ballistic exo at 200 fs and blue trajectories result in the 1,3-diradical intermediate at 200 fs.
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Figure 2. Plot of trajectory time (fs) versus C1-C7-C13-H14 dihedral angle (in degrees). Red
trajectories are classified as ballistic exo at 200 fs. Blue trajectories are classified as the 1,3-
diradical intermediate at 200 fs. The lower blue band of trajectories corresponds to endo products
formed after the intermediate. The upper blue band that overlaps the red band between 300-500 fs
shows the formation of exo products after the 1,3-diradical intermediate.
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Figure 2 illustrates that in all trajectories (ballistic exo and diradical) during the initial
descent down from TS1 for the first 100 fs there is a relatively large change in the bending of the
methylene bridge, and there is essentially no differentiation between the red and blue trajectories.
Finally, after 100 fs, this dihedral angle shows segregation into ballistic exo trajectories and 1,3-
diradical trajectories. For the ballistic exo trajectories, between 100-150 fs the C1-C7-C13-H14
dihedral angle increases by an additional approximately 35° and then remains at this structure due
to C-C bond formation that locks the methylene bridge in the exo position. To show how rapidly
C-C bond formation occurs in these ballistic exo trajectories, Figure 3 (top) plots each trajectory
time step versus C7-C9 distance. This plot shows that the majority of exo forming trajectories form
the C7-C9 bond between 100 and 175 fs. Figure 3 (bottom) also plots the amount of exo and endo
products formed versus time. At 100 fs only 1 trajectory has converged to form an exo product
and 127 converged on exo products by 130 fs.

In contrast to the ballistic exo trajectories shown in red, all the blue trajectories in Figure 2
show that at about 100 fs there is an inflection point where the C1-C7-C13-H14 dihedral angle
rebounds back toward to the starting position from 100-200 fs. It is just beyond 200 fs that some
of the trajectories continue this rebound methylene motion and form the endo product 4, which
can be seen by the lower band of blue trajectories. Figure 2 also shows that a small fraction of
trajectories that have this rebound motion go onto form nearly equal amounts of endo and exo
products. For the 1,3-diradical trajectories shown in blue, the methylene group oscillates above
and below the ring plane for the remainder of the trajectory. For many trajectories this oscillation

continues for at least 3000 fs.

As another visualization of the two types of trajectories, Figure 4 plots trajectory time both

the relative change in C1-C7-C13-H14 dihedral angle and the formation of the C7-C9 bond.
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Similar to Figures 2 and 3, the red and blue trajectories are heavily overlapped until about 100 fs

when the two types of trajectories begin to diverge.
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Figure 3. Top: Plot of trajectory time versus forming C7-C9 distance (A). Red trajectories are
classified as ballistic exo at 200 fs. Blue trajectories are classified as the 1,3-diradical intermediate
at 200 fs. Bottom: Plot of product count versus trajectory time. Red line shows exo product count,
blue line shows endo product count, and black line show the total exo and endo count.
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Figure 4. Two perspectives for the plot of trajectory time (fs) versus C1-C7-C13-H14 dihedral
angle (in degrees) and C7-C9 distance (A). Red trajectories are classified as ballistic exo at 200 fs.
Blue trajectories are classified as the 1,3-diradical intermediate at 200 fs.

An second set of 439 quasiclassical trajectories were initialized and propagated in Gaussian
16. Different from the DynSuite trajectories where only a vibrationally averaged velocity
distribution was generated, these trajectories were initiated with both kinetic and potential
(distorted geometries) energy sampling. The geometry sampling is shown at the top left of Figure
5 where all starting atomic positions of trajectories are overlaid. In the top right of Figure 5 these
overlaid trajectories are color coded as red and blue for the exo and 1,3-diradical intermediate
trajectories, respectively. The bottom of Figure 5 shows the C1-C7-C13-H14 dihedral angle and

C-C distances distribution in these trajectories.

Similar to the DynSuite trajectories, we found ballistic trajectories that formed the exo

product 3 in ~200 fs. The remainder of the trajectories formed the 1,3-diradical intermediate, then
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subsequently formed both endo and exo products in approximately a 1:1 ratio or remained at the
intermediate. Following the same assertion that all trajectories that formed the 1,3-diradical
intermediate would form bicyclo products 3 and 4 in equal proportion, the trajectory ratio of 3:4
is 1.8:1, which is only slightly lower than the ratio found for the DynSuite trajectory set, but again,

consistent with the experimental exo preference.
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Figure 5. Top left: Overlay of starting geometries for trajectory set 2. Top right: Overlay of starting
geometries for trajectory set 2 with all atoms colored as red for ballistic exo trajectories and all
atoms colored blue for trajectories that lead to the 1,3-diradical intermediate. Bottom: Histograms
of starting C1-C7-C13-H14 dihedral angle (in degrees) and both C-N distances (A).

14



Machine Learning Analysis

For machine learning analysis purposes, of the DynSuite trajectories plotted in Figure 2,
were categorized as ballistic exo (called class 1) and the remaining were categorized as 1,3-
diradical sampling (called class 2). As discussed above, this classification was done at 200 fs.
Similarly, the second set of trajectories completely initialized and propagated in Gaussian t were
also classified in the same binary fashion. This classification provides a convenient data set to test
if common machine learning methods can predict trajectory outcomes using initial vibrational,
velocity, or geometric information. While there are many other possible features that could have
been used as input for machine learning analysis, vibrational and velocity features naturally
represent the result of atomic forces and provide connection to qualitative theories often used to
explain nonstatistical effects. Stated another way, this trajectory data set provides the possibility
to determine if machine learning methods can identify chemical concepts that provide a rationale
for nonstatistical effects.*?*** The use of machine learning models for analysis is necessary
because with 39 vibrational modes, and roughly 20 out of these 39 modes low in energy for
excitation with quanta beyond ZPE, there exists an extremely large amount of vibrational mode
combinations at the transition state. Also, it is unknown if one or significantly many vibrational

mode combinations are the origin of ballistic-exo class 1 trajectories.

For statistical significance, an equal number of class 1 and class 2 trajectories was
maintained within the data set by random sampling and iteration, which results in a baseline
accuracy of 50%. At each sampling iteration this gave a resulting data set of >400 trajectories with
an equal number of class 1 trajectories (>200) and randomly sampled class 2 trajectories. A 20-
fold cross validation was used at each iteration to accurately determine the classification accuracy

of each model. This entailed dividing the sampled data set into 20 equally-sized subsets, training
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the model on 19 of these, and then evaluating the predictive accuracy using the one subset that was
withheld (i.e. only withholding ~20 trajectories). This was iterated 20 times, with a different subset
not included at each iteration. The model’s accuracy is then reported as the mean accuracy of all
iterations (200 in total — 20 cross validation iterations for each of 10 random sampling iterations),
and is defined by correct predictions divided by total predictions.

The out-of-plane bending motion of the methylene bridge provides a rationale for the
excess formation of exo product 3. Consistent with this key vibrational mode controlling
selectivity, Carpenter and coworkers previously reported a histogram of the CASSCF(6,6)
vibrational energy transfer in 1,3-diradical 2 that showed that the lowest energy mode is the out-
of-plane bending motion and that it showed the largest excitation.*> Therefore, for the DynSuite
trajectory set, we evaluated thermal energies and vibrational quanta of each vibrational mode to
determine if these features alone at the beginning of the trajectory could enable accurate

classification.

With and without inclusion of zero-point energy (ZPE), for all machine learning algorithms
(see list below), vibrational energy alone, vibrational quanta alone, and vibrational energy and
quanta provided poor classification, yielding only marginal (<10%) improvement over the baseline
accuracy of 50%. This was surprising to us based on our initial assumption that only a few
vibrational mode patterns induce exo-ballistic trajectory outcomes. Stated another way, this
machine learning result, which can account for correlation of highly complex vibrational mode
combinations, suggests that a single vibrational mode excitation or just a few vibrational mode
patterns do not provide a direct mapping or correlation to make trajectory outcome predictions. In
retrospect this is perhaps not surprising given the approximately 27° possible directionality and

excitation combinations of 39 modes.
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To confirm that poor classification accuracy is not a failure of the machine learning
algorithms, but that class 1 and 2 trajectories are not significantly distinguishable at the transition
state due to a single or combination of vibrational modes, we examined the vibrational mode
excitation quanta. As an example of a single vibrational mode analysis, for mode 6, Figure 6
compares the percentage within each trajectory class with each type of vibrational quanta (ZPE,
first excited state, second excited state, and so on). Mode 6 was selected as the example because it
corresponds to out-of-plane motion of the methylene bridge group. Plots of the other vibrational
modes are given in the Supporting Information (SI). This plot visually shows, and based on a
statistical y* evaluation, that the frequency of excitation of mode 6 is statistically indistinguishable
between class 1 and class 2 trajectories. All other vibration modes also showed indistinguishable
excitation quanta patterns. Similarly, for our second trajectory set initiated with kinetic and
potential energy, there was not ability to distinguish between class 1 and 2 using mode 6

excitations.
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Figure 6. Plot of transition-state vibrational mode 6 excitation quanta for class 1 and class 2
trajectories.
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Because transition-state vibrational mode energies and excitation quanta did not provide
accurate trajectory classification, we expanded our feature set to include the atomic velocities that
were recorded in Cartesian vector components outlined at the top of Figure 1. We chose velocities
because these features naturally arise due to transition-state forces, and are directly the result of
vibrational modes and excitation, but more importantly velocities can be analyzed at time steps
after the transition state. Also, our DynSuite trajectories provide a vibrationally averaged velocity
distribution to begin each trajectory. Stated another way, all vibrational energy is added to the
transition-state structure as kinetic energy. Momenta can also be used, but for comparison across
trajectories, this amounts to a scalar multiplication of velocity features and results in nearly

identical results.

For the DynSuite trajectory set, we collected initial atomic velocities as well as velocities
at various time steps throughout each trajectory. Correction of velocities after time step 1 for
rotation does not significantly alter machine learning results. The Scikit-Learn Python library*®
was used to set up and train classifiers. Source code illustrating the creation, training, and use of
our classifiers can be found in the SI notebooks. We selected four common supervised machine
learning classification algorithms: Random Forest, MultiLayer Perceptron, Stochastic Gradient
Descent, and Logistic Regression Classifier. Accuracy for each model was evaluated using cross
validation, averaged across sampling iterations that was described earlier. With the inclusion of
the initial atomic velocities in the feature space the classifiers attained higher predictive accuracy.
The best performing model, Logistic Regression, provided 69.5% accuracy. All other models had
between 59-67% accuracy (Figure 7). For example, the popular random forest model gave
prediction accuracy of 66.8% and 67.1% before and after hyperparameter optimization. As

mentioned earlier, the use of momenta rather than velocities, does not provide higher prediction
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accuracy. For example, with random forest, the use of momenta gave prediction accuracy of 66.4%

before hyperparameter optimization.

While we were at first disappointed with this nearly 70% accuracy, in retrospect, to us, it
is actually remarkable given the amount of possible initial starting transition-state configurations
and similarity of class 1 and class 2 trajectories (see later pairplots), which is a testament to the

ability of the machine learning methods to find predictive correlation patterns.

The GridSearchCV method from the Scikit-Learn library was used to perform
hyperparameter optimization for these models. Hyperparameters are keyword options provided to
the model algorithm before learning begins. This method tested permutations of different
hyperparameters and used five-fold cross validation to determine the set of hyperparameters that
maximized model classification accuracy. The optimized hyperparameters returned from the grid
search were then used to fit new models on the training data for validation. All four machine
learning models showed slight improvement in their classification accuracy with hyperparameter

optimization (Figure 7).
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Figure 7. Classification accuracy of Random Forest, MultiLayer Perceptron, Stochastic Gradient
Descent, and Logistic Regression Classifier models before and after hyperparameter
optimization.

Since optimizing model hyperparameters only provided a marginal increase in
classification accuracy, we explored analysis of atomic velocities at time steps beyond the
transition state. We analyzed velocities at time steps 3, 10, 50, 100, 125, 130, 137, 150, 175, 200,
and 250 fs using the same data set construction and cross validation procedures described above.

Figure 8 plots the classification accuracy for Random Forest, MultiLayer Perceptron, Stochastic

Gradient Descent, and Logistic Regression Classifier models at these time steps.
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Figure 8. Classification accuracy of Random Forest, MultiLayer Perceptron, Stochastic Gradient
Descent, and Logistic Regression Classifier models versus trajectory time step (fs).

For two out of four models, predictive accuracy increases by 50 fs, although the increase
is only modest (~5%). However, after 100 fs, the accuracy increases significantly, and for all
models accuracy is near 75% at this time step. The maximum accuracy occurs at 130 fs for three
out of four models, and then decreases between this time step and 200 fs. At 130 fs, all four models
attain between 82% and 84% predictive accuracy. For the random forest model, this rises above

86% at time step 150.

This steady increase in accuracy from 50-130 fs is the result of class 1 and class 2
trajectories finally separating during this time span, which can be seen as the red and blue trajectory
line bands diverge in Figures 2 and 4. At this point, many trajectories approach exo product

formation. However, the approximately 85% accuracy is larger than the ratio of products that have
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a fully formed C7-C9 bond length. As previously mentioned, at 130 fs, 127 of the ballistic exo
trajectories have a C7-C9 bond length of <1.75 A (also see Figure 3). Prior to time step 130, these
trajectories are steadily approaching product formation and the overall velocity noise decreases,
as can be seen by the near-linear increase in classification accuracy during this period (Figure 6).
The decrease in accuracy after 130 fs is likely due to exo product formation and product IVR that
causes the trajectory atomic velocities to become chaotic, which results in noise for Class 1
prediction.

To understand the improved prediction accuracy from 0 to 130 fs, we used the Random
Forest model fit to the atomic velocities at time step 130 to analyze feature weightings assigned
by the permutation feature selection implicit in tree-based algorithms. These weightings show the
relative significance of each atomic velocity in predicting Class 1 versus Class 2 selectivity.
Figures 9 plots the x-, y-, and z-axis coordinate atomic velocity contributions to the classification
model. As defined in Figure 1, the z-axis coordinates of the atomic velocities correspond with the
reaction coordinate of the transition state with motion perpendicular to the plane of the developing

1,3-diradical. The x-axis corresponds with the reaction coordinate direction of ring closure step.
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Figure 9. Classification model contributions for random forest plotted in relative feature
importance, weighted to 1.0, from Cartesian atomic velocities at time step 130 fs. 1X-15X, 1Y-
15Y, and 1Z-15Z are atomic velocities in the x-, y-, and z-coordinates as defined in Figure 1.
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Consistent with the reaction coordinate traversing TS2 for bicyclo product formation, the
top plot of Figure 9 reveals that the most influential parameters in the x-axis are the velocities of
the bond forming carbons C7 and C9. However, it is clear from the bottom two plots in Figure 9
that the y and z-axis velocities provide the most distinction of features for classification. The large
weighting of 7Y is related to the movement of the bond forming carbons. 13Z, 14Z, and 15Z
correspond to the methylene group that determines exo or endo product formation. Importantly,
identifying the importance of y and z velocities for atoms 13, 14, and 15 demonstrates that machine
learning, to a reasonable extent, can begin to identify important chemical groups that provide
correlative prediction. However, it is important to note that this is different than showing class 1
versus class 2 to be a simple mapping of the mode 6 bending vibrational excitation shown in Figure
6. We did not group the CH> atoms together as a single, mass-weighted parameter because the
classification algorithms used, such as the MultiLayer Perceptron, are capable of analyzing the
impact of highly correlated parameters.

To visualize the impact of carbon atoms 7, 9, and 13 velocities for prediction of class 1 and
class 2 trajectories, Figure 10 illustrates the distributions of the relevant vector components of
these atomic velocities. Figure 10a shows these velocities at the transition state, and Figure 10b at
130 fs. The plots along the diagonal show the distributions of the corresponding parameter in Class
1 and Class 2 trajectories. The off-diagonal plots show the parameter indicated at the left of the
row plotted along the y-axis, and the parameter indicated at the bottom of the column plotted along
the x-axis. From these plots, it can be seen that at the transition state the motion of the ring closure
and the methylene group is significantly less informative of trajectory outcome than at time step
130. At the transition state, Figure 10a, the distributions of Class 1 and Class 2 are heavily

overlapped, making it difficult to predict, even with machine learning algorithms, the result of a
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trajectory. This velocity analysis is highly consistent with Figures 2 and 4 that showed the heavily

overlapping methylene bridge position between the transition state and about 100 fs. A time step

130 (Figure 10b), however, the distribution of Class 1 atomic velocities substantially segregates

from that of Class 2, enabling distinction between the two classes. Again, this is also consistent

with Figures 2 and 4 that show separation of the methylene bridge position 100-130 fs.

a) Transition State Atomic Velocities by Class
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b) Timestep 130 Atomic Velocities by Class
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Figure 10. a) Pairplots showing the atomic velocity distributions at the transition state. b) Pairplots
showing the atomic velocity distributions at 130 fs.

With random forest we also analyzed the second trajectory set that was initialized and
propagated using Gaussian. This data set provided us with transition-state geometry features that
could be used for class prediction. We used X, y, and z component atomic positions of each
trajectory at time zero. We also included key two-atom distances, angles, and dihedral angles. The
two-atom distances were: C7-N11, C9-N12, C7-C9, N11-C13, and N12-C13. The angles included

were: C7-C13-C9, C7-N11-N12, and C9-N12-N11. The dihedrals included were: H14-C13-C7-
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H8, H15-C13-C7-HS8, H14-C13-C9-H10, H15-C13-C9-H10, C1-C7-C13-H14, C1-C7-C13-H15,
C4-C9-C13-H14, and C4-C9-C13-H15. In addition, we also harvested and analyzed the transition-
state velocities from this data set.

Interestingly, although not hyperparameter optimized, this second trajectory data set
resulted in a slightly boost in prediction performance with ~72% accuracy using atomic positions,
two-atom distances, angles, and dihedral angles. Using only position or only two-atom distances,
angles, and dihedral angles both gave ~71% classification accuracy. From his data set, the use of
the intial velocity features showed a decrease in accuracy compared to the DynSuite data set, likely
because only part of the total vibrational energy is initiated as kinetic energy.

Similar to the DynSuite data set and analysis of time steps beyond the transitions state,
analysis of this second trajectory set at later time steps showed an increase in accuracy. We note
that Gaussian does not propagate trajectories in a fixed unit time, and therefore, we used a very
small approximate time step ~0.25 fs. Between 0-50 fs the prediction accuracy remains at about
72% accuracy, but at 100 fs, using the two-atom distances, angles, and dihedral angles the accuracy

increases to 87% and goes up to 95% accuracy at ~130 fs.

Chaos Analysis

While Figure 10 demonstrates that there is very little distinction of atomic velocities
between class 1 and class 2 trajectories at the transition state, and it is perhaps remarkable that
machine learning algorithms can achieve a correlative model to nearly 70% accuracy, it is possible
that the machine learning algorithms are inhibited from improved prediction with initial velocities
at the transition state due the large number of possible starting configurations. Additionally, it is

also possible that machine learning cannot have improved prediction because very small changes
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of these starting configurations result in different trajectory outcomes.*” One hallmark of a chaotic
system 1is that it shows significant sensitivity to small changes in initial conditions. In general, a
chaotic system is difficult for a machine learning classifier to accurately predict outcomes.*® From
a chemical standpoint, chaos is perhaps more likely for very flat and ridge shape potential energy
surface areas. To a certain extent, this chemical reaction has both, easily at the early time steps
with descent from transition state TS1. For example, along the Cs symmetrical pathway TS1
directly leads to a Cay transition state for carbon radical pyramidalization.*’ The directly connected
transition states require a potential energy surface bifurcation with a valley-ridge inflection point.
Also, the energy surface surrounding the 1,3-diradical intermediate, the transition state for C7 and
C9 pyramidalization, and TS2 is extremely flat.** This flat energy surface is also a possible reason
for why the velocity and geometry features are heavily overlapped between 0-100 fs.

In order to test the response of these quasiclassical trajectories to small perturbations in
initial conditions we ran 11 trajectories with identical velocities generated from all positive
vibrational normal modes. These 11 trajectories differed by a scaling of the kinetic energies
inserted into the transition-state vibrational mode, ranging from 0.9 and 1.1. Figure 11 plots the
root mean squared error (RMSE) of atomic position for each of these scaled trajectories relative to
the unscaled trajectory. This plot demonstrates that even with extremely small alterations to initial
conditions the trajectories deviate significantly within 200 fs and to a very large extent at 500 fs,
with RMSE values between 0.1 and 0.3. This suggests that the chaos of these quasiclassical
trajectories makes it inherently difficult for traditional machine learning algorithms to predict class

1 versus class 2 trajectories from initial conditions.
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Figure 11. Plot of atomic position RMSE versus time for ten trajectories that differ by scaling the
transition-state vibrational mode kinetic energy (KE).

Conclusions
For the diazabicyclo 1, UM06-2X quasiclassical trajectories were able to replicate the

experimental nonstatistical preference of the product 3 versus the endo product 4 starting at the
concerted N> ejection transition state TS1. The trajectories indicate that the 3:4 ratio result from
the relative amounts of ballistic exo-type trajectories versus trajectories that lead to the 1,3-
diradical intermediate 2, which lead to equal numbers of exo and endo products. These
quasiclassical trajectories provided a set of vibrational, velocity, and geometric features for

machine learning analysis with the goal of predicting exo versus 1,3-diradical outcomes.

Perhaps expected after visualization of the similarity of the trajectories at the transition
state and in the first 100 fs of the trajectories (Figures 2, 4, and 10), using supervised classification
algorithms to analyze vibrational mode energies only provided prediction of class 1 versus class 2

trajectories with approximately 60% accuracy. Additionally, Figure 6 showed that the frequency
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of transition-state excitation of mode 6, which is the methylene group bending mode, is statistically
indistinguishable between class 1 and class 2 trajectories. However, despite significant overlap of
class 1 and class 2 trajectories, the use of transition-state atomic velocities did provide nearly 70%
accuracy, and accuracy up to ~85% was achieved at 130 fs past the transition state. We also
analyzed a second set to trajectories with different starting atomic positions. This resulted in a
slight boost in prediction performance at the transition state with ~72% accuracy using atomic
positions, two-atom distances, angles, and dihedral angles. Also, at ~100 fs and ~130 fs the

accuracy is boosted to 87% and 95%, respectively.

As one possible reason for machine learning methods not providing higher prediction
accuracy based on transition-state features, we analyzed atomic position RMSE values from a
series of nearly identical trajectories that differed only by a scaling of the kinetic energies resulting
from the transition-state vibrational mode. This revealed significant chaos of the trajectories. We
are currently examining recurrent neural networks to see if they provide higher accuracy
classification prediction at very early time steps near the transition state. Also, we note that it is
possible that trajectories based on extremely accurate multi-reference methods might provide less

overlapping features at the transition state and lead to higher machine learning prediction accuracy.
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