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Abstract

Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway
motion of organic reactions. However, due to the large amount of information associated with trajectories,
quantitative analysis of the dynamic origin of selectivity is complex. For the electrocyclic ring opening of
the cyclopropyl radical, more than 4000 trajectories were run showing that the allyl radicals are formed
through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC
motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories
were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a
random forest model enabled quantitative and qualitative assessment of transition-state trajectory features
controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two
key vibrational modes where their directional combination provides prediction of IRC versus non-IRC

motion.



Introduction
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For many addition,!? substitution, pericyclic,”®  rearrangement,” and
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radical'® organic reactions it has been established that transition state and other statistical theories

sometimes do not provide adequate quantitative or qualitative treatment of reaction selectivity,?>*
especially when there is post-transition state valley-ride inflection point.?**>¢ In many of these cases,
quasiclassical direct dynamics trajectories descending from the transition state provide quantitative

treatment of the nonstatistical selectivity,?’*%%

capturing either non-minimum energy pathway/non-
intrinsic reaction coordinate (non-IRC) motion or incomplete intramolecular vibrational redistribution
(IVR).3®

While these organic reactions display dynamic selectivity, the origin of selectivity is generally not
quantitatively analyzed due to the necessity of comparing hundreds or thousands of trajectories that each
have a different starting vibrational-sampled atomic velocity configuration and structure as well as being
propagated along a complex multi-dimensional energy landscape. Recently, there has been interest in
developing qualitative protocols to predict dynamical reaction selectivity using only a few key points on an
energy landscape or transition-state partial bond lengths,*'*? and this type of approach was broadly
introduced by Carpenter several years ago.** Truhlar has also proposed a quantitative method for assessment
of nonstatistical effects without requiring trajectories.* While these approaches may speed up analysis,
they neither provide direct analysis of trajectory selectivity nor quantitative assessment of the dynamic
origin of selectivity.

Because of the large amount of information associated with quasiclassical direct dynamics
simulations, machine learning is potentially well suited for quantitative and qualitative analysis. While
machine learning has emerged as a popular tool in chemistry, most uses have focused on regression analysis
to predict properties, such as reactivity.3> Machine learning can also be used for classification, but this has
been significantly less explored. Previously, we used classification-based machine learning to analyze and

predict the outcome of quasiclassical trajectories for the thermal deazetization of 2,3-

diazabicyclo[2.2.1]hept-2-ene,*® which results in either the exo bicyclo product or a diradical intermediate.



Due to the relative complexity of this reaction, and chaotic trajectory behavior, supervised classification
algorithms only provided poor (~60%) classification accuracy based on transition-state vibrational quanta
and energy features, and only ~70% classification accuracy based on transition-state atomic velocities and
atomic positions. Significantly better accuracy was only achieved (85-95%) using features from later
trajectory time steps, and feature importance analysis showed the key predictive feature is the methylene
bridge out-of-plane bending.

Based on what we learned from our classification analysis of deazetization trajectories, we wanted
to identify and analyze a reaction where machine learning can provide quantitative classification accuracy
at the transition state to enable analysis of dynamic selectivity based on transition-state vibrational mode
features that provide a clear physical understanding. We chose to analyze the ring opening of cyclopropyl
radical to allyl radical (Scheme 1) because: i) This ring opening is directly related to experimental

cyclopropyl radical ring openings?®”-8-3940

and is an example within the general pericyclic electrocyclization
reaction class. ii) This reaction has only three heavy atoms and we could calculate thousands of DFT direct
dynamics trajectories. This was important because we worried that the relatively low number of trajectories
was a possible reason for the poor machine-learning classification of the deazetization reaction. iii) Most
important, despite a disrotatory ring opening IRC route, Hase previously reported 120 reactive direct
dynamics trajectories that showed only a relatively small preference (57%) for disrotatory ring opening
compared to conrotatory non-IRC motion (43%, Scheme la, compare red and blue dotted arrows).*!
Therefore, this system provides an opportunity to analyze IRC versus non-IRC motion due to dynamic
reaction pathway branching that can only generally be understood to result from the post-transition state
valley-ridge inflection point,**##45 which creates in a dividing ridge separating disrotatory and

conrotatory formed allyl radicals.**
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Scheme 1. a) Energy landscape for cyclopropyl radical ring opening to allyl radical. The IRC pathway ring-
opening transition state leads to the disrotatory formed allyl radical. The red dotted arrow represents
trajectory motion along the IRC pathway. The blue dotted arrow represents trajectory motion that leads
from the ring opening transition state to the allyl radical by conrotatory non-IRC motion. b) Outline of
workflow that involves running and classifying quasiclassical direct dynamics trajectories, extracting
trajectory descriptors at the transition state (e.g. vibrational mode quanta and atomic velocities),
quantitively using supervised machine learning to classify trajectories based on transition-state features,
and performing a feature importance analysis.

Here we report unrestricted M06-2X DFT quasiclassical direct dynamics trajectories of the
cyclopropyl radical ring opening. More than 4000 trajectories were run showing that the allyl radicals are

formed through a mixture of disrotatory IRC motion as well as conrotatory non-IRC motion, and the DFT

ratio is very similar to the previous CASSCF ratio reported.*! Geometric, vibrational mode, and atomic



velocity transition-state features from these trajectories were used for supervised machine learning analysis
with classification algorithms (see workflow in Scheme 2b). Classification accuracy well above 80% was
achieved with popular algorithms, which enabled quantitative and qualitative assessment of transition-state
trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed
that there are two key vibrational modes where their directional combination provides prediction and
possible physical control of IRC versus non-IRC motion. This analysis also showed that a subset of
trajectories is nearly impossible for machine learning to classify, which are disproportionately conrotatory

trajectories.

Results and Discussion
Structure and trajectory details

All energies, optimized structures, and trajectories were calculated with unrestricted M06-2X/6-
31G**.* All structures have unrestricted SCF solutions with <S?> values close to 0.75 indicating very little
spin contamination. Vibrational frequencies were computed to ensure the allyl radical ring opening
transition-state, TS1, had only one imaginary frequency corresponding to the reaction coordinate and that
the reactant and product had no imaginary frequencies.

Trajectories* were initialized and propagated from TS1 in Gaussian 16.°° Initialization of the
trajectories was done using local mode and thermal sampling at 447 K, which includes zero-point energy
(ZPE). Figure 1 shows an overlay and geometrical histograms of the starting positions for the 4149
trajectories. Trajectories were propagated in both forward and reverse directions for about 1200 fs in mass-
weighted Cartesian velocities with an approximate step of 0.25 fs. In this procedure, the trajectory ensemble
is initiated as a combination of kinetic and potential energy, which provides the ability to analyze both

atomic velocities/momenta and geometry features using machine learning.
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Figure 1. Top left: Overlay of trajectory starting geometries. Top right: Overlay of disrotatory (red) and
conrotatory (blue) trajectory starting geometries. Bottom: For all trajectories, histograms of starting H6-
C1-C2-C3 dihedral angles (in degrees) and C1-C3 bond lengths (A).
Transition state, IRC pathway, and quasiclassical trajectories

Our M06-2X transition state for cyclopropyl radical ring opening, TS1 (qualitatively shown in
Scheme 1a), is geometrically extremely similar to previously reported transition states based on CASSCF
and DFT methods. In this unsymmetrical transition state, the breaking C-C bond is severely stretched and
diradical like (1.99 A) and there is significant twisting of one methylene group, but very little twisting of
the second methylene group. Importantly, we have previously shown that UM06-2X provides an accurate
treatment of diradicals.>!

As expected from inspection of the TS1 geometry and previous qualitative and semiempirical

52:53:5455,5657.58.39.60 Oljvella’s early calculations showed the IRC route, which has infinitesimal

analyses,
velocity, from TS1 descending to the allyl radical occurs through to very asynchronous rotation of the two

methylene groups.®! Along the IRC pathway, one methylene group rotates first followed by lagged rotation

of the second methylene group to complete the planar allylic system. This highly asynchronous rotation of



methylene groups was interpreted by Olivella as meaning that TS1 is a common transition state for
disrotatory and conrotatory formed allyl radicals. However, because of the unsymmetrical transition state,
Carpenter’s B3LYP calculations confirmed that the IRC connection occurs between TS1 and the disrotatory
formed allyl radical.®* Similarly, using ab initio methods, Liu also showed that the IRC connects TS1 to
the allyl radical through disrotatory ring motion.®* We also confirmed that the UM06-2X IRC connects TS1
with disrotatory ring opening motion. However, consistent with Olivella’s initial suggestion, there is a
valley-ridge inflection very close to, but not along the IRC pathway.

The valley-ridge inflection point very close to the IRC pathway, combined with the steep energy
drop from the transition state to the allyl radical (>50 kcal/mol), suggests the possibility of significant non-
IRC motion. Indeed, Hase reported 120 reactive CASSCF quasiclassical trajectories where 68/120 (57%)
followed disrotatory IRC motion and 52/120 (43%) followed non-IRC conrotatory motion to the allyl
radical. In these trajectories there was about 30-50 fs delay between rotation of each methylene group.
Somewhat germane to this work, Hase suggested that a larger reaction coordinate translational energy can
favor disrotatory motion. Mann showed through DFT/MM quasiclassical trajectories that only at very high
condensed phase density does the solvent environment significantly impact the disrotatory versus
conrotatory motion,**%* but it does inhibit rotations of the methylene groups after allyl radical formation.
Kramer, Carpenter, and Wiggins also examined the dynamics of cyclopropyl radical ring opening using a
reduced dimensional potential-energy surface containing the valley-ridge inflection point.®® They found
that the “decision” between disrotatory or conrotatory mechanisms occurs upon passage over the ridge
structure on the potential surface. Additionally, they found that large amplitude motions of the allyl
structure, such as the wag of the perpendicular methylene group and local mode bending of the
perpendicular methylene hydrogens are important to pathway control.

Using UMO06-2X, we completed 4149 fully connected reactive trajectories starting from TS1.
Figure 2 provides snapshots for representative disrotatory and conrotatory trajectories. The example
disrotatory trajectory is consistent with IRC motion. The methylene group labeled with H7 has significant

motion prior to motion of the methylene group labeled with H6. This latter methylene group does not begin



twisting motion until about 20 fs beyond the transition state. In the example conrotatory trajectory, similar
to the disrotatory trajectory, the H7 methylene twists clockwise into the plane of the carbon atoms well
before twisting of the H6 methylene group. From the transition state, the allyl radical was generally formed

between 50-100 fs.
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Figure 2. Top: Snapshots of an example disrotatory trajectory beginning from TS1. Bottom: Snapshots of
an example conrotatory trajectory beginning from TS1.

2323/4149 (56%) trajectories led to the allyl radial through disrotatory motion and 1826/4149
(44%) trajectories led to the allyl radical through non-IRC conrotatory motion. The disrotatory:conrotatory
ratio of 1.3:1 is nearly identical to Hase’s ratio obtained with CASSCF(3,3)/6-31G* trajectories, which
indicates that UM06-2X method is capable of capturing the key determining forces on the energy landscape.

To confirm that this ratio is not initiation or propagation algorithm dependent, we also initiated and



propagated 979 trajectories with our DynSuite program,*® which provides quasiclassical initiation with only
atomic velocities (i.e. no geometric displacement) and Verlet integration. For these trajectories, 560 (57%)
resulted in disrotatory motion and 419 (43%) resulted in conrotatory motion.

To visualize the disrotatory and conrotatory classes of trajectories, Figure 3 plots trajectory steps
versus the H6-C1-C2-C3 dihedral angle. The red disrotatory trajectories show a decrease in the H6-C1-C2-
C3 dihedral angle while the blue conrotatory trajectories shows an increase in this dihedral angle. This plot
shows that by about 100 fs most trajectories have clearly separated into disrotatory and conrotatory motion.
While this plot shows a simple classification method at and beyond 100 fs from the transition state until

about 50 fs this single geometric value cannot easily distinguish between these two classes of trajectories.
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Figure 3. Plot of trajectory steps (fs) versus H6-C1-C2-C3 dihedral angle (in degrees). Red trajectories
are classified as disrotatory motion and blue trajectories are classified as conrotatory motion.
Machine learning analysis

While dynamic selectivity of organic reactions has been recognized for several decades, and
trajectory studies have been carried out ranging from parameterized semi-empirical methods to more
modern DFT-based quasiclassical trajectories, the interpretation and analysis of trajectory results has

typically been highly qualitative and not based on fundamental quantities, such as vibrational mode quanta



and directionality. This is because in a typical reaction the combination of vibrational modes, excitation
quanta, and directionality results in an extraordinarily large number of starting trajectory configurations.

Machine learning provides a possible approach to analyze the importance of the very large number
of features impacting the outcomes of trajectories.®”%® Specifically, we wanted to perform classification
prediction based on transition-state features. After running 4149 trajectories, we extracted 85 transition-
state features, based on vibrational mode quanta, atomic velocities, and geometries. More specifically, the
features extracted were bond lengths, bond angles, dihedral angles, directional atomic velocity components,
vibrational mode mass-weighted velocities, and mass-weighted atomic displacements. These features were
chosen as machine learning inputs because vibrational and atomic velocity sampling differentiate individual
trajectories of the ensemble. X, y, and z component atomic velocities rather than component momenta were
used because we earlier showed that momenta are a relative mass scalar and give identical machine learning
results to velocities.*®

During each machine learning analysis an equal number of disrotatory and conrotatory trajectories
was maintained in the data set by random sampling and iteration, which results in a baseline accuracy of
50%. A 20-fold cross validation was used at each iteration to determine the classification accuracy of each
model. This is done by dividing the sampled data set into 20-equally sized subsets, training the model on
19 of these, and then evaluating the predictive accuracy using the withheld subset. This was performed 20
times with a different subset withheld at each iteration. The reported accuracy of each model is the mean
accuracy of all iterations where the accuracy is defined as the number of correct predictions divided by the
total predictions.

The Scikit-Learn Python Library was used to set up and train classifiers. Source code detailing our
machine learning workflow can be found in the Supplementary Information (SI). Seven supervised machine
learning classification algorithms were selected: random forest, multilayer perceptron, gaussian process
classifier, stochastic gradient descent, support vector machine, and logistic regression classifier (Figure 4).
As mentioned earlier, the accuracy for each model was evaluated using cross validation averaged across

sampling iterations. Random forest (accuracy: 81.9%) and logistic regression (accuracy: 80.5%) provided



the highest accuracy. K-nearest neighbor, multiLayer perceptron and stochastic gradient descent had
mediocre performance ranging from 69.2-71.6% and gaussian process classifier and support vector machine
both had very poor classification accuracy of 56.0%. The GridSearchCV method from the Scikit-Learn
library was used to perform hyperparameter optimization for the random forest model. This method tested
permutations of different parameters and used five-fold cross validation to determine the set of
hyperparameters that maximized classification accuracy. This optimized random forest model was then
applied to the data set for validation and showed statistically real, but only slight accuracy improvement to
82.9%. The more modern XGBoost algorithm showed the highest accuracy at 84.5%. The >80% accuracy
prediction using only transition-state features is a major improvement over our previous results for the
deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene that generally showed between 65-69% accuracy with
the best performing machine learning methods. More importantly, this greater than 80% accuracy provides
the possibility to quantitatively analyze features that contribute to the machine learning model and control

disrotatory versus conrotatory motion.
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Figure 4. Plot of classification accuracy of random forest (RF), optimized random forest (RF Opt), K-
nearest neighbour (KNN), multiLayer perceptron (MLP), gaussian process regression (GPR), stochastic
gradient descent (SGD), support vector machine (SVR) and logistic regression classifier (LRC). The
accuracy values from each machine learning model is the mean accuracy of all 20 data set iterations where
the accuracy is defined as the number of correct predictions divided by the total number of predictions.
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Before analyzing the importance of features contributing to the random forest machine learning

model, it is useful to make a few comments on why near 100% accuracy was not obtained. First, with >4000



trajectories it is unlikely that addition of more trajectories would significantly increase accuracy. Stated
another way, the 4000 trajectories calculated in this work likely represents a reasonable statistically sampled
set for the complete set of possible trajectories, especially the most probable trajectories. Consistent with
this thinking, we also determined the accuracy for smaller subsets of trajectories. The optimized random
forest model was applied to datasets with 200, 400, 600, 800, 1000, and 1200 total trajectories. The accuracy
of the model was only ~70% with 200 trajectories and increased to ~84% accuracy for analysis of 800
trajectories. The precision of the random forest model increases as the number of trajectories analyzed was
increased. Second, inherent in classical trajectory propagation, although sampled using quasiclassical
method, is the possibility of chaos, which is the sensitivity of the outcome to initial conditions. In this
reaction, TS1 has a very elongated C-C bond and there is a ridge region that divides the allyl radical
structures, which potentially induces chaos. It is generally viewed that popular machine learning methods
struggle to accurately make predictions of chaotic systems. Last, there is also the possibility that some

trajectories are inherently difficult to classify due to indistinguishable feature values.

Machine learning feature importance

A significant advantage of decision forest ensemble learning for classification is that once a
relatively high accuracy model is obtained, features can be analyzed to determine which features are most
significant in classification. Random forest gave an accuracy prediction of ~83% which is sufficient for
feature importance analysis. The relative importance of features can be determined by random forest models
by replacing their values with random values and observing the change in root mean square error (RMSE).
If replacing feature values with a random value has little or no impact on the RMSE then the feature has
low importance in the model. Conversely, if there is a large change in the RMSE then the feature has a large
importance for prediction. Figure 5 plots the weights of the importance versus geometric, atomic velocity,
and vibrational mode features used in the random forest model. Strikingly, this plot of feature importance
clearly shows that vibrational mode 2 and vibrational mode 4 velocities are the critical features in

determining disrotatory and conrotatory trajectory outcomes. The weights of vibrational modes 2 and 4 to



the random forest model are many times greater than all other features. Mode 1 is the transition-state
reaction coordinate negative vibrational mode, and the kinetic energy from this motion is not highly
important. Importantly, the relative feature importance does not change if a smaller trajectory set is used
for analysis (see SI). As another confirmation that modes 2 and 4 are highly important features, removal of
these two features showed a decrease in model prediction accuracy, and as expected, velocities for atoms 6

and 8 become the most important feature. Removal of all velocity features results in a model with accuracy

of less than 60%.
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Figure 5. Classification model contributions/feature importance (weighted from 0.0 to 1.0) for the
optimized random forest model. Two-digit numbers refer to atom bond lengths, three-digit numbers refer
to angles, and four-digit numbers refer to dihedral angles. Atomic velocities are coded as: Atom# Xvel,
Atom# Yvel, and Atom# Zvel. Vibrational mode mass-weighted atomic displacements are coded as:
Mode#MWVD. Vibrational mode mass-weighted velocities are coded as: Mode#V. Vibrational mode 1 is
the transition-state structure negative vibrational mode.



Figure 6 displays vector representations of the motion associated with TS1 vibrational modes 2 and
4. Importantly, the velocities associated with modes 2 and 4 correspond to methylene pyramidalization and
twisting, which from a physical/chemical perspective are reasonably expected to impact disrotatory versus
conrotatory motion. Consistent with the importance of the velocities from these vibrational modes, the x
and y velocity components of hydrogens 6 and 8, are the most important velocity features in the data set,
although their importance is significantly less than the vibrational mode velocities. Vibrational mode
velocities are useful features because they encode both vibrational quanta/energy as well as direction. A
random forest model using only vibrational quanta provides very poor accuracy prediction, which

highlights the need to encode mode directionality.

(A)
Figure 6. Qualitative vector representation of TS1 (A) reaction coordinate motion, (B) vibrational mode 2,
and (C) vibrational mode 4.

To further analyze the features identified as important to the random forest model, Figure 7 displays
density plots showing the distribution of feature values and color coding for disrotatory and conrotatory
trajectories. As expected, due to the smaller model contribution by the x and y components of the atom 6
and 8 velocities, there is significant overlap, but distinguishable peaks, of the red and blue distributions. In
contrast, for the TS1 velocities of vibrational modes 2 and 4 there is very clear separation of density
distributions. The red and blue peaks and significant sections of the shoulders are clearly separated.
However, there is some minor overlap of red and blue, which is consistent with less than perfect accuracy

attained by the random forest model.
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Figure 7. Density plots for the six most important transition-state features identified by the optimized
Random Forest model. The velocity features have significant overlap whereas the mode 2 and mode 4
velocities show clear peak separation.

The mode velocity distribution plots in Figure 7 also reveal the importance of directionality
associated with disrotatory versus conrotatory ring opening motion. For example, for mode 2 (labeled as
Mode2V), the highest density with positive direction values predicts disrotatory motion while the highest
density with negative values predicts conrotatory motion. Opposite to mode 2, mode 4 (labeled as Mode4V)
predicts conrotatory motion for the highest density with positive values and disrotatory motion with the
highest density of negative values. In a similar analysis, Figure 8 plots the relative percentage of disrotatory
and conrotatory trajectories versus the directionality and combination of vibrational mode 2 and 4
velocities. For example, when mode 2 and mode 4 both have positive directional values, there is about
60%:40% disrotatory trajectories to conrotatory non-IRC trajectories, which is close to the overall
disrotatory to conrotatory ratio. When mode 2 is negative and mode 4 is negative there is a minor shift from

disrotatory motion to conrotatory motion. Figure 8 also shows when mode 2 is positive and mode 4 is



negative there is a large preference for disrotatory motion and when mode 2 is negative and mode 4 is
positive there is a large preference for conrotatory motion. This suggests there is a matching and
antimatching impact from the directionality of modes 2 and 4. This is consistent with the vibrational vector
modes displayed in Figure 6 where mode 2 and 4 have opposite directionality for the hydrogen on the left-

hand methylene group.
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Figure 8. Relative percentages of disrotatory and conrotatory trajectories with directional combination of
vibrational mode 2 and 4 velocities. The total percentage for each comparison equals 100. Mode2 +, Mode
4 + refers to vibrational modes 2 and 4 both having positive directional velocity. Mode2 +, Mode 4 - refers
to vibrational mode 2 with positive directional velocity and mode 4 with negative vibrational mode velocity.
Mode?2 -, Mode 4 + refers to vibrational mode 2 with positive directional velocity and mode 4 with negative
vibrational mode velocity. Mode2 -, Mode 4 - refers to vibrational modes 2 and 4 both having negative
directional velocity. Importantly, the definition of positive and negative velocity is consistent for all
trajectories.

To confirm the relationship between mode 2 and mode 4 velocity directionality and trajectory
outcome, a small set of trajectories were run where the mode quanta and directionality were manually
controlled. For a specific trajectory starting configuration with identical reaction coordinate energy, the
velocity magnitude of modes 2 and 4 were increased from zero-point energy (ZPE) to two times and four
times ZPE in both the positive and negative. This resulted in 25 different trajectories for each starting

configuration. This was done for a conrotatory and disrotatory trajectory from each combination shown in

Figure 8.



The IRC disrotatory motion corresponds to a clockwise twisting of the H7 methylene group
followed by counterclockwise twisting of the H6 methylene group. Motion of mode 2 in the positive
direction and mode 4 in the negative direction both contribute to counterclockwise motion of the H6
methylene group, which both match the IRC motion. In contrast, mode 2 motion in the negative direction
and mode 4 motion in the positive direction should result in clockwise twisting of the H6 methylene group,
which should generally dimmish IRC and enhance conrotatory motion. Consistent with this analysis, for
the trajectories where we manually controlled mode quanta and directionality, when mode 4 is positive and
mode 2 is negative there was only conrotatory trajectory outcomes. When mode 2 is positive all trajectories,
except those where mode 4 is positive and two times or four times ZPE, resulted in disrotatory motion. This
could indicate that selectivity for conrotatory in Figure 8 with positive directions for modes 2 and 4 arises

because mode 4 is dominated by trajectories with only ZPE.

Trajectories that are difficult to classify

With the less than 100% accuracy by the random forest model, we wondered if there were specific
trajectories that are inherently difficult to classify. To examine this issue, using an adaboost-type random
forest model, the entire data set was iterated over 100 times and at each iteration the data set was split in 10
equally sized subsets. The random forest model was trained on 8 of the subsets and predictions were made
for the individual trajectories of the remaining two data sets. The subsets used in the training and testing
sets were permuted and the process was repeated until each subset appeared in the testing set twice.
Therefore, after 100 iterations, each trajectory was classified 200 times. Table 1 reports the number of
disrotatory and conrotatory trajectories binned into accuracy categories of 0%, 1-20% 20-40% 40-70%, 70-
90%, 90-99%, and 100%. Stated another way, these bins display the percentage of accuracy a specific

trajectory was accurately predicted out of the 200 times it was evaluated.



Table 1. Number and accuracy of conrotatory and disrotatory trajectories correctly classified after 200
machine learning predictions.

Disrotato Conrotator Total Trajectories
Accuracy (%) . ry . ory (% of the total
Trajectories Trajectories ; .
trajectories)
0 58 189 247 (5.9%)
1-20 79 170 249 (6.0%)
20-40 70 86 156 (3.7%)
40-70 92 141 233 (5.6%)
70-90 121 146 267 (6.4%)
90-99 292 211 503 (12.1%)
100 1610 883 2493 (60.1%)

Expected from the overall >80% accuracy of the random forest model, the majority of trajectories
(60.1%) were classified correctly 100% of the time. Interestingly, 5.9% of trajectories were incorrectly
classified 200 times. The relative number of conrotatory trajectories in the 0% accuracy group is
approximately twice that of the 100% accuracy group. The higher accuracy groups generally have fewer
relative conrotatory trajectories. Importantly, while the high accuracy (90-99% and 100%) groups generally
have more disrotatory than conrotatory trajectories, they also contain a significantly larger proportion of
the total number of conrotatory trajectories in the entire trajectory data set. For example, in the 100% group,
there are 883 of the total conrotatory trajectories.

To demonstrate why the random forest model struggles to predict the trajectories in the 0% group,
Figure 9 shows mode 2 and mode 4 velocity density plots. Comparison of the top plots for 0% accuracy
versus the bottom plots for 100% accuracy shows that despite feature separation the values are completely
inverted in their directionality. For example, in the 100% accuracy predictions mode 2 velocities are
positive for disrotatory trajectories are negative for conrotatory trajectories. In the 0% accuracy group, the
disrotatory trajectories have negative velocities while the conrotatory trajectories have positive velocities.

For accuracies between 20-70% the majority of the red and blue densities are heavily overlapped.
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Figure 9. Density plots for mode 2 and mode 4 velocities for 0%, 20%, 40%, 70%, 90% and 100% accuracy
groupings.

Conclusions
Greater than 4000 M06-2X quasiclassical trajectories for the electrocyclic ring-opening of the

cyclopropyl radical provided a data set for machine learning classification of disrotatory versus conrotatory



ring opening motion. Using geometric, velocity, and vibrational features of the transition state, supervised
decision forest classification algorithms provided 83% prediction accuracy. This relatively high accuracy
enabled the quantitative assessment of feature importance to reveal that the velocities and direction of
transition-state vibrational mode 2 and mode 4 have significant influence on disrotatory versus conrotatory
motion. This is consistent with the vibrational vectors of modes 2 and 4 that have opposite directionality
for motion of one of the methylene groups. The ability of these two vibrational modes to be used as a
predictor of trajectory outcome, and physical origin of relative ring opening motion, was demonstrated by
manually controlling mode quanta and directionality for a set of trajectories. Despite the random forest
machine learning model providing relatively high accuracy for prediction of disrotatory versus conrotatory
motion, we found that nearly 250 trajectories (out of 4000) could never be classified correctly, and these
are disproportionately conrotatory trajectories. This is potentially the result of the random forest model too

strongly correlating prediction based on vibrational modes 2 and 4.

Supplementary Information

Example data sets and Jupyter notebooks with code for machine learning model training and

testing.
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