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We construct a categorification of the maximal commutative 
subalgebra of the type A Hecke algebra. Specifically, we 
propose a monoidal functor from the (symmetric) monoidal 
category of coherent sheaves on the flag Hilbert scheme to 
the (non-symmetric) monoidal category of Soergel bimodules. 
The adjoint of this functor allows one to match the Hochschild 
homology of any braid with the Euler characteristic of a 
sheaf on the flag Hilbert scheme. The categorified Jones-
Wenzl projectors studied by Abel, Elias and Hogancamp 
are idempotents in the category of Soergel bimodules, and 
they correspond to the renormalized Koszul complexes of 
the torus fixed points on the flag Hilbert scheme. As a 
consequence, we conjecture that the endomorphism algebras 
of the categorified projectors correspond to the dg algebras 
of functions on affine charts of the flag Hilbert schemes. 
We define a family of differentials dN on these dg algebras 
and conjecture that their homology matches that of the gl
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projectors, generalizing earlier conjectures of the first and 
third authors with Oblomkov and Shende.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. It has been slightly more than ten years since Khovanov and Rozansky defined a 

triply-graded homology theory HHH categorifying the HOMFLY-PT polynomial [49]. We 

have learned a lot about the structure of this invariant in the intervening time, but there 

is much that remains mysterious. In [32], the first author conjectured a relation between 

HHH of the (n, n + 1) torus knot and the q, t-Catalan numbers studied by Haiman and 

Garsia [31,41]. A key feature of this conjecture is that it relates HHH(T (n, n + 1)) to the 

cohomology of a particular sheaf on the Hilbert scheme of n points in C2. This idea was 

developed further in [39], and later in [37], which identified the sheaves which should 

correspond to arbitrary torus knots T (m, n). This paper grew out of our attempts to 

understand whether HHH of any closed n-strand braid in the solid torus can be described 

as the cohomology of some element of the derived category of coherent sheaves on the 

Hilbert scheme.

We conjecture that this is indeed the case (Conjecture 1.1 below). More importantly, 

we introduce a mechanism which we hope can be used to prove it. Two ideas play an im-

portant role in our construction. The first (already present in [37]) is that one should use 

the flag Hilbert scheme rather than the usual Hilbert scheme. The second is the notion 

of categorical diagonalization introduced by Elias and Hogancamp in [26]. In Theo-

rem 1.7, we give a geometric characterization of categorical diagonalization in terms of 

the bounded derived category of sheaves on projective spaces. Using this formulation, we 

show that Conjecture 1.1 would follow from some very specific facts about the Rouquier 

complex of certain braids. Finally, as an application of our ideas, we describe how the 

homology of colored Jones-Wenzl projectors is related to the local rings at fixed points 

of the natural torus action on the flag Hilbert scheme.

1.2. Recall the Hecke algebra Hn of type An, whose objects can be perceived as 

isotopy classes of braids on n strands modulo the relation:

(
σk − q

1
2

)(
σk + q− 1

2

)
= 0

where σk denotes a single crossing between the k and (k + 1)–th strands. The product in 

the Hecke algebra corresponds to stacking braids on top of each other, from which the 

non-commutativity of Hn is manifest. Ocneanu [30,46] constructed a collection of linear 

maps:
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χ :
∞�

n=0

Hn → C(a, q) (1.1)

which is uniquely determined by the fact that ∀ σ, σ′ ∈ Hn we have χ(σσ′) = χ(σ′σ), 

and:

χ(i(σ)) = χ(σ) · 1 − a

q
1
2 − q− 1

2

, χ(i(σ)σn) = χ(σ), χ(i(σ)σ−1
n ) = χ(σ) · a (1.2)

where i(σ) ∈ Hn+1 is the braid obtained by adding a single free strand to the right of σ. 

Jones ([46], [30]) showed that the map (1.1) is an invariant of the closure σ of the braid:

HOMFLY–PT(σ) = χ(σ) (1.3)

which in fact coincides with the well-known HOMFLY-PT knot invariant. The map χ

factors through a maximal commutative subalgebra Cn:

Cn
ι∗

↪→ Hn
ι∗−→ Cn by which we mean that χ : Hn

ι∗−→ Cn

∫
−→ C(a, q) (1.4)

for some linear map 
∫

that will be explained later. As a vector space, the commutative 

algebra Cn is spanned by the Jones-Wenzl projectors to irreducible subrepresentations of 

the regular representation of Hn. As such, dim Cn equals the number of standard Young 

tableaux of size n, while dim Hn = n!. Alternatively, one can describe Cn in terms of the

twists:

FTk = (σ1 · · ·σk−1)k (1.5)

for all k ∈ {1, ..., n}. Note that FT1 = 1, while FTn is central in the braid group. The 

fact that FT1, ..., FTn generate a maximal commutative algebra (precisely our Cn) is 

well-known (e.g. [65,51]).

1.3. The Hecke algebra admits a well-known categorification, namely the monoidal 

category:

(SBimn,⊗R) � K0(SBimn) = Hn

of certain bimodules over R = C[x1, ..., xn] called Soergel bimodules (see [72], [71]). This 

category admits three gradings:

• The internal grading given by considering graded bimodules with respect to deg xi =

1. We write q for the variable that keeps track of this grading.

• The homological grading that arises from chain complexes in the homotopy category 

Kb(SBimn). We write s for the variable that keeps track of this grading.
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• The Hochschild grading that appears when considering Db(SBimn), namely the clo-

sure of SBimn in Db(R–mod–R). We write a for the corresponding variable.

Khovanov ([47]) used the above structure to construct the functor:

HHH : Kb(SBimn) −→ triply graded vector spaces (1.6)

such that:

the Poincaré polynomial of HHH(σ) =
∞∑

i,j,k=0

qisjak · dim HHH(σ)i,j,k

only depends on σ and specializes to (1.3) when we substitute s �→ −1 and a �→ −a. We 

denote HHH0 =
⊕

i,j HHH(σ)i,j,0 — colloquially this is referred to as the “bottom row” 

of HHH.

One of the main goals of this paper is to construct a geometric version of the functor 

(1.6), by categorifying the maximal commutative subalgebra Cn and the maps of (1.4). 

The natural place to look is the category of coherent sheaves on an algebraic space. 

In our case, the appropriate choice will be the flag Hilbert scheme FHilbn(C) which 

parametrizes full flags of ideals:

In ⊂ ... ⊂ I1 ⊂ I0 = C[x, y]

such that each successive inclusion has colength 1 and is supported on the line {y = 0}. 

For every k ∈ {1, ..., n}, there is a tautological rank k vector bundle:

Tk on FHilbn(C), Tk|In⊂...⊂I1⊂I0
= C[x, y]/Ik (1.7)

which is naturally equivariant with respect to the action:

C
∗ × C

∗ � FHilbn(C) with equivariant parameters q and t

that is induced by the standard action C∗ ×C
∗ � C ×C. These parameters are related 

to the gradings on the category of Soergel bimodules via:

s = −√
qt (1.8)

In Subsection 2.7 we will introduce a certain dg version of the flag Hilbert scheme, de-

noted by FHilbdg
n (C), which is rigorously speaking a sheaf of dg algebras over FHilbn(C). 

We will use the notation K(C) = K−(C) and D(C) = D−(C) for the homotopy and the 

derived category of bounded above complexes in a category C. Our main conjecture is 

the following:
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Conjecture 1.1. There exists a pair of adjoint functors which preserve the q and t grad-

ings:

K(SBimn)
ι∗−�===�−
ι∗

D
(

CohC∗×C∗

(
FHilbdg

n (C)
))

(1.9)

where ι∗ is monoidal and fully faithful. Furthermore, we have:

FTk
ι∗

−�===�−
ι∗

(det Tk) ⊗OFHilbdg
n (C) (1.10)

for all k ∈ {1, ..., n}. Moreover, the map HHH0 of (1.6) factors as:

HHH0 : Kb(SBimn)
ι∗−→ D

(
CohC∗×C∗

(
FHilbdg

n (C)
)) ∫

−→ bigraded vector spaces

(1.11)

where 
∫

refers to the derived push-forward map from FHilbdg
n (C) to a point (i.e. the 

functor which associates to a coherent sheaf on FHilbdg
n (C) its equivariant sheaf coho-

mology).

Remark 1.2. We expect that ι∗ sends bounded complexes to bounded. However, ι∗ may 

send bounded complexes to unbounded ones, see Conjecture 3.32 for concrete exam-

ples. Therefore we prefer to work with bounded from above, but potentially unbounded 

complexes on both sides of (1.9).

Remark 1.3. Strictly speaking, the map 
∫

in (1.11) factors through triply graded vector 

spaces: D (CohC∗×C∗ (p)) has two equivariant gradings and a homological grading. The 

double grading on HHH0 is a linear combination of these three gradings.

To account for the a grading in (1.9) and (1.11), we conjecture that one can lift the 

setup of Conjecture 1.1 to functors:

K(Db(SBimn))
ι̃∗−�===�−
ι̃∗

D
(

CohC∗×C∗

(
TotFHilbdg

n (C)Tn[1]
))

(1.12)

which preserve the q, t and a gradings, defined by:

ι̃∗(σ) = ι∗(σ) ⊗ ∧•T ∨
n (1.13)

where a keeps track of the exterior degree in the right hand side. Here Tot denotes the 

total space of a (shifted) vector bundle, viewed as a dg scheme. The structure sheaf 

of this dg algebra is given by the sheaf of dg algebras ∧•T ∨
n on FHilbdg

n (C), with zero 

differential. See Remark 3.4 for more details on K(Db(SBimn)). The equation (1.11)

upgrades to

HHH : Kb(SBimn)
ι̃∗−→ D

(
CohC∗×C∗

(
TotFHilbdg

n (C)Tn[1]
)) ∫

−→ 3-graded vector spaces

(1.14)
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As with (1.11), the map in (1.14) can be factors through quadruply graded vector 

spaces. Since ∧•T ∨
n is a sheaf of algebras on FHilbdg

n (C), the category in the right hand 

side of (1.12) has a natural monoidal structure, and we expect that ι̃∗ is monoidal.

1.4. Besides the fact that the category D(CohC∗×C∗(FHilbdg
n (C))) and the functors 

ι∗, ι∗ categorify (1.4), one of the main applications of Conjecture 1.1 is a geometric 

incarnation of Khovanov’s Hochschild homology functor. Indeed, since SBimn is a cate-

gorification of the Hecke algebra, to any braid σ one may associate a homonymous object 

σ ∈ Kb(SBimn) (see Section 3 for an overview). Therefore, we have:

HHH(σ) =

∫

FHilbdg
n (C)

B(σ) ⊗ ∧•T ∨
n where B(σ) := ι∗(σ) (1.15)

is the sheaf on the dg scheme FHilbdg
n (C) that our construction associates to the braid 

σ. We tensor with ∧•T ∨
n as in Remark 1.3 in order to pick up the a grading on HHH(σ)

(if we had not taken this tensor product, we would recover HHH(σ)|a=0). While it is 

difficult to describe at the moment the sheaves B(σ) for arbitrary braids σ, properties 

(1.10) and the projection formula (4.5) imply that:

B
(

n∏

k=1

FT
ak

k

)
=

n⊗

k=1

(det Tk)⊗ak

Therefore, (1.15) immediately implies the following Corollary for all products of twists:

Corollary 1.4. For all (a1, . . . , an) ∈ Z
n, let us consider the twist braid σ =

∏
k FT

ak

k . 

Assuming Conjecture 1.1, the HOMFLY-PT homology of the closure of σ is given by:

HHH(σ) =

∫

FHilbdg
n (C)

n⊗

k=1

(det Tk)⊗ak

⊗
∧•T ∨

n (1.16)

where the integral denotes the derived equivariant push-forward to a point.

When the ai are sufficiently positive, we expect that the higher cohomology of the 

sheaf appearing in the right-hand side of (1.16) should vanish. If this is the case, the 

right-hand side of (1.16) can be computed using the Thomason localization formula as 

in [37] to give:

HHH(σ) = (1 − q)−n
∑

T

n∏

i=1

zai+...+an

i (1 + az−1
i )

1 − z−1
i

∏

1≤i<j≤n

ζ

(
zi

zj

)
(1.17)

where the sum goes over all standard tableaux T of size n, the variable zi denotes the 

(q, t)–content of the box labeled i in each such tableau T , and:
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ζ(x) =
(1 − x)(1 − qtx)

(1 − qx)(1 − tx)
.

As in [37], several factors both in the numerator and the denominator of (1.17) vanish, 

all such factors should be ignored.

We will explain how to obtain (1.17) in Section 8, when we discuss the equivariant 

structure of the flag Hilbert scheme. In Section 3.14, we will explain how to amend 

Corollary 1.4 to account for torus knot braids rather than pure braids. Once we will do 

this, Corollary 1.4 gives a generalization of one of the main conjectures of [37] (which 

dealt with the case when σ is a torus knot braid).

1.5. Since HHH(σ) only depends on the closure σ, formula (1.15) might suggest 

that the coherent sheaf B(σ) actually only depends on σ. While this cannot be strictly 

speaking true (after all, B(σ) lives on FHilbdg
n (C) where n is the number of strands of 

the braid), we may consider the natural map from the flag Hilbert scheme to the usual 

Hilbert scheme of n points on C2:

FHilbdg
n (C)

ν−→ Hilbn

(In ⊂ ... ⊂ I0) �→ In (1.18)

The composition:

Kb(SBimn)
ι∗−→ D

(
CohC∗×C∗

(
FHilbdg

n (C)
))

ν∗−→ D (CohC∗×C∗ (Hilbn))

associates to a braid σ a complex of sheaves:

F(σ) = ν∗(B(σ)) (1.19)

We may tensor this complex with ∧•T ∨
n as in Remark 1.3 if we also wish to encode the 

a grading. This is the object we conjecture gives rise to the geometrization of (1.1).

Conjecture 1.5. The objects F(σ) satisfy the following properties:

F(σσ′) ∼= F(σ′σ) (1.20)

for all braids σ and σ′ on n strands, and:

F(i(σ)) = α (F(σ)) (1.21)

where:

α : D (CohC∗×C∗ (Hilbn)) −→ D (CohC∗×C∗ (Hilbn+1)) (1.22)

denotes the simple correspondence of Nakajima and Grojnowski (as in Subsection 3.12).
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For any braid σ, the Euler characteristic of F(σ) at t = 1
q coincides with χ(σ) of (1.1).

Remark 1.6. While the present paper was being written, Oblomkov and Rozansky [54]

independently gave an alternative construction of objects very similar to B(σ) and F(σ), 

although in a very different presentation. Specifically, their construction associates to any 

braid an object in the category of matrix factorizations, which descends to an object on 

the commuting variety. The authors then show that the corresponding object is actually 

supported on the Hilbert scheme. We strongly suspect that their objects coincide with 

ours, and hope that the connection will be elucidated in the near future.

1.6. We show that Conjecture 1.1 would follow from certain computations in the 

Soergel category, which we believe may be proved using the techniques developed by 

Elias and Hogancamp [25–27]. In the present paper, we develop the geometric machin-

ery necessary to prove such results. Specifically, we outline a strategy for constructing 

the functors ι∗, ι∗ with equation (1.10) in mind. The starting point for us is to reinterpret 

geometrically a concept introduced by Elias and Hogancamp under the name of categor-

ical diagonalization [26]. Suppose that C is a graded monoidal category with monoidal 

unit 1, and F is an object in the homotopy category Kb(C). Elias and Hogancamp call 

F diagonalizable if there exist grading shifts λ0, ..., λn and morphisms:

αi : λi · 1 → F, i = 0, . . . , n

satisfying certain conditions (see Definitions 7.9 and 7.10). Under these conditions, it is 

proved in [26] that there exist objects Pi ∈ K(C↑) (a certain completion, whose relation 

with the original category K(C) is analogous to the relation between the categories of 

left unbounded chain complexes and bounded chain complexes) such that tensoring IdPi

with αi yields an isomorphism:

λi · Pi
∼= F ⊗ Pi, i = 0, . . . , n (1.23)

It is natural to call the Pi eigenobjects of F and the λi the eigenvalues of F . The maps 

αi are called the eigenmaps for F , and they are a particular feature of the categorical 

setting. Under mild assumptions on C and F , we show the following:

Theorem 1.7. An object F ∈ C is diagonalizable in the sense of [26] if and only if there 

is a pair of adjoint functors:

K(C)
ι∗−�===�−
ι∗

D(Coh(P n
A)),

such that F = ι∗(O(1)) (here A = EndC(1)). If the category C is graded and the maps 

αi preserve the grading, then ι∗ and ι∗ can be lifted to the equivariant derived category:

K(C)
ι∗−�===�−
ι∗

D(CohT (P n
A)),
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where T is a torus acting on P n with weights prescribed by the eigenvalues of F .

Furthermore, the following result of Elias-Hogancamp provides one of the first proved 

facts about our conjectural connection between SBimn and FHilbdg
n (C).

Theorem 1.8 ([26,27]). The full twist FTn is diagonalizable in SBimn, and its eigenval-

ues agree with the equivariant weights of detTn at fixed points.

The flag Hilbert scheme is more complicated than a projective space, but it turns 

out to be presented by a tower of projective fibrations. More precisely, the fibers of the 

natural projection:

FHilbn(C) → FHilbn−1(C) × C, (In ⊂ ... ⊂ I0) �→ (In−1 ⊂ ... ⊂ I0) × supp(In−1/In)

are projective spaces. They are rather badly behaved, but we will show in Section 2.7

that the corresponding map on the level of our dg schemes:

πn : FHilbdg
n (C) → FHilbdg

n−1(C) × C

is the projectivization of a two-step complex of vector bundles. The strategy we propose 

is to use a relative version of Theorem 1.7 (developed in Section 4) in order to construct 

a commutative tower of functors:

...
...

D
(

CohC∗×C∗

(
FHilbdg

n (C)
))

K (SBimn)

D
(

CohC∗×C∗

(
FHilbdg

n−1(C) × C

))
K (SBimn−1 ⊗ C[xn])

...
...

π(n+1)∗ Trn+1

ι∗

πn∗

π∗
n+1

Trn

ι∗

In+1

ι∗

π∗
n

π(n−1)∗ Trn−1

ι∗

In

π∗
n−1

In−1

(1.24)

Here In : SBimn−1 ⊗ C[xn] → SBimn denotes the natural full embedding of categories, 

while Trn : SBimn → SBimn−1 ⊗ C[xn] is the partial trace map of [43] (see Subsection 

3.7 for details, as well as an overview of the construction of its derived version). We prove 

that the existence of the horizontal functors in (1.24) is equivalent to the computation of 

Trn(FT
⊗k
n ) for all integers k (see 3.14 below), together with certain compatibility condi-

tions that must be checked. Assuming these computations, we show how Conjecture 1.1

follows.
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1.7. Conjecture 1.1 implies very explicit facts about the existence of various mor-

phisms and extensions between the twists FTk in the Soergel category. The easiest 

of these conjectures involves the objects Lk := FTk ⊗ FT
−1
k−1 ∈ Kb(SBimn) for all 

k ∈ {1, ..., n}:

Conjecture 1.9. There exist objects Tn, ..., T1 ∈ Kb(SBimn) and morphisms Tn →
Tn−1 → ... → T1, which satisfy:

Lk
∼= [Tk → Tk−1] (1.25)

for all k ∈ {1, ..., n}. Furthermore, there exist two commuting morphisms:

X : qTk → Tk Y :
s2

q
Tk → Tk, [X, Y ] = 0

which are compatible with the isomorphisms (1.25). Moreover, X|Lk
is multiplication by 

the element xk ∈ R and Y |Lk
= 0.

Various matrix elements of products of X and Y can be used to construct morphisms 

between various Lk. See Conjecture 3.14 for more conjectures of similar kind.

1.8. An important role in the geometry of flag Hilbert schemes is played by torus 

fixed points:

FHilbn(C)C
∗×C

∗

= {IT }T is a standard Young tableau of size n

One can think of a standard Young tableau T as a sequence of nested Young diagrams, 

and the corresponding fixed point IT is a flag of monomial ideals corresponding to these 

diagrams.

While the flag Hilbert scheme is badly behaved, the dg scheme FHilbdg
n (C) is by 

definition a local complete intersection. As such, the skyscraper sheaves at the torus fixed 

points are quasi-idempotents in the derived category of coherent sheaves on FHilbdg
n (C):

OIT
⊗OIT

∼= OIT
⊗ ∧•

(
TanIT

(
FHilbdg

n (C)
))

where Tan denotes the tangent bundle (which makes sense for a local complete intersec-

tion as a complex of vector bundles). Inspired by the constructions of Elias–Hogancamp 

([26,27]), we make sense of the objects:

PT “ = ”

⎡
⎣ OIT

∧•TanIT

(
FHilbdg

n (C)
)

⎤
⎦ ∈ a certain completion of CohC∗×C∗

(
FHilbdg

n (C)
)
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and conjecture that the functor ι∗ sends this object to the categorified Jones–Wenzl 

projector [1,20,21,43]:

ι∗ (PT ) = PT (1.26)

These projectors are among the main actors of [27], where the authors construct them 

inductively as eigenobjects for the full twists FTn following the categorical diagonaliza-

tion procedure described in (1.23). We conjecture there is an affine covering of the flag 

Hilbert scheme:

FHilbn(C) =
⋃

T

FHilbT (C)

If we restrict the structure sheaf OFHilbdg
n (C) to these open pieces, we obtain dg algebras:

AT (C) = Γ
(

FHilbT (C),OFHilbdg
n (C)

)

We expect that these dg algebras encode the endomorphism algebras of the categorified 

Hecke algebra idempotent indexed by the standard Young tableau T , as in the following 

conjecture.

Conjecture 1.10. The endomorphism algebra of the categorified Jones-Wenzl projector 

PT is isomorphic as an algebra to:

End(PT ) � AT (C) ⊗
(
∧•T ∨

n | ˚FHilbT (C)

)
(1.27)

Our convention here is that the unique SYT associated to the partition (n) corresponds 

to the anti-symmetric projector. This is the natural choice in the context of the Hilbert 

scheme, but is the transpose of the standard representation theory convention used in 

e.g. [1,43].

Note that T ∨
n is a trivial rank n vector bundle on the affine chart ˚FHilbT (C), and so 

the exterior power that appears in (1.27) is free on n odd generators, and its equivariant 

weights match the inverse q, t–weights of the boxes in the Young tableau T . Following 

recent results of Abel and Hogancamp [1,43], we prove (1.27) in the two extremal cases, 

corresponding to the symmetric and anti–symmetric projectors:

Theorem 1.11. If T is the SYT associated to the partitions (n) or (1, . . . , 1) then the 

endomorphism algebra of the resulting projector is isomorphic to the right hand side of 

(1.27). Explicitly:

A(n)(C) ⊗
(
∧•T ∨

n | ˚FHilb(n)(C)

)
� C[x1, . . . , xn, yi,j ]i>j

yi,j(xi − xj) − (yi−1,j − yi,j+1)
⊗ ∧•(ξ1, . . . , ξn)

(1.28)
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where deg xi = q, deg yi,j = tqj−i and deg ξi = aq1−i, while:

A(1,...,1)(C) ⊗
(
∧•T ∨

n | ˚FHilb(1,...,1)(C)

)
� C[u1, . . . , un] ⊗ ∧•(ξ1, . . . , ξn) (1.29)

where deg ui = qt1−i and deg ξi = at1−i.

As further evidence for Conjecture 1.10, we prove that it holds at the decategorified 

level.

Theorem 1.12. For all standard Young tableaux T , the Euler characteristic of the algebra:

AT (C) ⊗
(
∧•T ∨

n |FHilbT (C)

)

equals (up to a monomial in q) the Markov trace of the Hecke idempotent pλ, where λ is 

the partition associated to T .

1.9. One can easily modify the above constructions to describe the reduced

HOMFLY-PT homology. Indeed, it is proven in [66] that the HOMFLY-PT homology of 

any braid is a free module over the homology of the unknot, which is isomorphic to a free 

algebra in one even and one odd variable. Let us explain how these variables arise from 

the geometry. First, define the reduced flag Hilbert scheme FHilbn(C) as the subscheme 

in FHilbn(C) cut out by the equation

Tr(X) = x1 + . . . + xn = 0.

It is not hard to see that there is an isomorphism:

r : FHilbn(C) → FHilbn(C) × C (1.30)

We will denote two components of this isomorphism by r1 and r2. As a result, the 

homology of any sheaf on FHilbn(C) is a free module over the polynomial ring in one 

(even) variable. To identify the odd variable, remark that Tn has a nowhere vanishing 

section given by the polynomial 1 ∈ C[x, y]. It is not hard to see that this section splits, 

so we may write:

Tn � O ⊕ T n =⇒ T ∨
n � O ⊕ T ∨

n =⇒ ∧•T ∨
n � ∧•(ξ) ⊗ ∧•T ∨

n

To sum up, we get the following corollary analogous to Corollary 1.4:

Corollary 1.13. Assuming Conjecture 1.1, the reduced HOMFLY-PT homology of any 

object σ ∈ Kb(SBimn) is:

HHHred(σ) ∼=
∫

FHilb
dg
n (C)

(r1 ◦ ι)∗(σ) ⊗ ∧•T ∨
n .



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 13

1.10. Finally, we give a conjectural geometric description of glN Khovanov-Rozansky 

homology [48,49] for all N . Recall that in [66] the third author constructed a spectral 

sequence from the HOMFLY-PT homology to the glN homology of any knot. For any 

pair of nonnegative integers N, M , there is an equivariant section:

sN,M ∈ Γ (FHilbn(C), Tn) , sN,M |In⊂...⊂I0
= xN yM ∈ C[x, y]

In
= Tn|In⊂...⊂I0

Conjecture 1.14. For all braids σ, the glN spectral sequence on the homology of σ is 

induced by the contraction of:

∧•T ∨
n on FHilbdg

n (C)

with the section sN,0, which induces a differential on the vector space (1.15).

Remark 1.15. A similar conjecture can be stated for the reduced glN homology. How-

ever, the map (1.30) does not commute with the differential, and hence the unreduced 

homology is no longer a free module over the homology of the unknot.

We are hopeful that the contraction with more general sN,M may correspond to an (as 

yet undefined) knot homology theory associated to the Lie superalgebra glN |M (see some 

conjectural properties in [33]). In particular, the differential induced by s1,1 = xy should 

give rise to a knot homology theory associated to gl1|1. Recent work of Ellis, Petkova and 

Vértesi [29] shows that the tangle Floer homology of [63] gives a sort of categorification of 

the gl1|1 Reshitikhin-Turaev invariant. In the spirit of the above conjecture, contraction 

with s1,1 may give rise to a differential on HHH whose homology is knot Floer homology, 

as conjectured in [23].

In an earlier joint work with A. Oblomkov and V. Shende [39], the first and the third 

authors gave a precise conjectural description of the stable glN homology of (n, ∞) torus 

knots, which is known ([16,17,43,69,70]) to be isomorphic to the glN homology of the 

categorified projector P(1,...,1).

Conjecture 1.16 ([39]). The spectral sequence from HOMFLY-PT homology (given by 

(1.29)) to the glN homology of P(1,...,1) degenerates after the first nontrivial differential 

dN , which is given by the equation:

dN

(
n∑

k=1

zk−1ξk

)
=

(
n∑

k=1

zk−1uk

)N

mod zn, dN (ui) = 0. (1.31)

This conjecture has been extensively verified against computer-generated data for 

N = 2 and 3 (see [36,38]). We prove that Conjecture 1.16 immediately follows from 

Conjecture 1.14.
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1.11. This paper is naturally divided into two parts. The first part (Sections 2, 3, 

4) presents the non-equivariant picture, which relates the global geometry of the flag 

Hilbert scheme with the Soergel category. Sections 5 and 6 present examples of many 

of our constructions for n = 2 and n = 3, respectively. The second part of the paper 

(Sections 7, 8, 9) is an equivariant refinement of the previous framework, which relates 

the local geometry of the flag Hilbert scheme with categorical idempotents in the Soergel 

category. More specifically:

• In Section 2, we define flag Hilbert schemes and the associated dg schemes, and we 

realize them as towers of projective bundles.

• In Section 3, we recall the necessary facts about the Hecke algebra and the Soergel 

category, and formulate the main conjectures.

• In Section 4, we develop a framework of monoidal categories over dg schemes, which 

encapsulates the existence of adjoint functors as in (1.9), with all the desired proper-

ties. We show what computations one needs to make in order to prove Conjecture 1.1.

• In Section 5, we present examples for n = 2.

• In Section 6, we present examples for n = 3.

• In Section 7, we show how the categorical setup of Section 4 can be enhanced to the 

equivariant setting. Inspired by the constructions of Elias–Hogancamp, we categorify 

the equivariant localization formula on projective space.

• In Section 8, we work out local equations for flag Hilbert schemes, and connect the 

structure sheaves of torus fixed points with the categorical projectors of [26,27].

• In Section 9, we discuss differentials and Conjecture 1.14.

• In Section 10, we collect certain foundational facts about dg categories and dg 

schemes.

1.12. Since the first version of this paper appeared on the arXiv, there were several 

major developments which were partially motivated by it. The Khovanov-Rozansky ho-

mology for (n, kn ± 1) torus knots were computed by Hogancamp in [45] and for general 

torus knots by Mellit in [50].

In [34], the first author and Hogancamp computed the homology of all positive powers 

of the full twist as an algebra. Following the ideas in Section 4.4 they constructed a func-

tor from the Soergel category to the derived category of the isospectral Hilbert scheme 

Xn. This is compatible with our Conjecture 1.1 via the constructions in Section 2.9.

In [35] the first author, Hogancamp, Mellit and Nakagane proved that the negative 

full twist is the Serre functor in the Soergel category and the negative Jucys-Murphy 

braid defines a relative Serre functor. This is compatible with, and motivated by Propo-

sition 2.12 in Section 2.8.

In [24] Elias proposed an explicit, but yet conjectural construction of the object Tn and 

its exterior powers. These correspond to “flattening” of certain objects in the Drinfeld 

center of the diagrammatic Hecke category associated with the affine symmetric group.
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In [16,64,67,68] Cautis, Queffelec-Rose-Sartori and Robert-Wagner defined new link 

homology theories which categorify gl0|n and gl1|1 Reshetikhin-Turaev invariants. It 

would be very interesting to compare their results with conjectures in Section 1.10.

Finally, in a series of papers [54–59] Oblomkov and Rozansky developed a new link 

homology theory using matrix factorizations on spaces closely related to flag Hilbert 

schemes. They conjecture that their theory agrees with Khovanov-Rozansky homology 

for all links, but this conjecture is presently open.
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2. The flag Hilbert scheme

2.1. Definition

Let us recall the usual Hilbert scheme of n points on C2:

Hilbn = {ideal I ⊂ C[x, y], dimC C[x, y]/I = n}

There is a tautological bundle of rank n on the Hilbert scheme given by:

Tn|I = C[x, y]/I

Similarly, one can define the flag Hilbert scheme FHilbn(C2) of n points on C2 [18,73]

as the moduli space of complete flags of ideals:

FHilbn(C2) = {In ⊂ ... ⊂ I1 ⊂ I0 = C[x, y], dimCIk−1/Ik = 1, ∀k} (2.1)

Clearly, FHilbn(C2) can be thought of as the closed subscheme of Hilbn×... ×Hilb1×Hilb0

cut out by the inclusions Ik ⊂ Ik−1 for all k. We will not pursue this description, and 

instead work with an alternative one given in the next Subsection. Meanwhile, let us 
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point out several general features of the flag Hilbert scheme (2.1). We may pull Tn back 

to FHilbn(C2), where we have a full flag of tautological bundles:

Tn Tn−1 ... T2 T1

FHilbn(C2)

of ranks n, ..., 1. For any k ∈ {1, ..., n}, the fibers of Tk over flags In ⊂ ... ⊂ I0 are precisely 

the quotients C[x, y]/Ik. We define the tautological line bundles as the successive kernels:

Lk = Ker (Tk � Tk−1) (2.2)

Moreover, there is a morphism:

ρ : FHilbn(C2) −→ C
2n = C

n × C
n (2.3)

(In ⊂ ... ⊂ I0) �→ (x1, . . . , xn, y1, . . . , yn)

where (xk, yk) = supp Ik−1/Ik. We may consider the various fibers of this map:

FHilbn(C) = ρ−1(Cn × {0, ..., 0}), FHilbn(point) = ρ−1({0, ..., 0} × {0, ..., 0})

These will be the moduli spaces of flags of sheaves set-theoretically supported on the line 

{y = 0} and at the point (0, 0), respectively. The vector bundles Tk and Lk are defined 

as before. As a rule, we will write:

FHilbn for any of FHilbn(C2), FHilbn(C) or FHilbn(point)

when we will make general statements that apply to all our flag Hilbert schemes.

Example 2.1. It is well-known that Hilb2 is the blow-up of the diagonal inside (C2 ×
C

2)/S2. It should be no surprise that:

FHilb2(C2) = BlΔ
(
C

2 × C
2
)

= Proj

(
C[x1, x2, y1, y2, z, w]

(x1 − x2)w − (y1 − y2)z

)
(2.4)

where the variables xi, yi sit in degree 0, while z, w sit in degree 1 with respect to the 

Proj. Setting y1 = y2 = 0, respectively x1 = x2 = y1 = y2 = 0, we obtain:

FHilb2(C) = P
1 × A

1 ∪ A
1 × A

1 = Proj

(
C[x1, x2, z, w]

(x1 − x2)w

)
(2.5)

FHilb2(point) = P
1 = Proj (C[z, w]) (2.6)
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2.2. The matrix presentation

Throughout this section, we fix the complex Lie groups:

G = GLn, B0 = invertible lower triangular n × n matrices

and the flag variety Fl = G/B0. We will also consider the Lie algebras:

g = n × n matrices, b0 = lower triangular n × n matrices

We will also write n0 ⊂ b0 for the nilpotent Lie algebra of strictly lower triangular 

matrices, and V for the n dimensional vector space on which all the above matrix groups 

and algebras act.

Proposition 2.2. (ADHM construction, [52]) The Hilbert scheme of n points is given by:

Hilbn = μ−1(0)cyc/G (2.7)

where the “moment map” is given by:

μ : g× g× V −→ g, μ(X, Y, v) = [X, Y ] (2.8)

and the superscript cyc stands for the open subset of cyclic triples (X, Y, v), i.e. those 

for which V is generated by the vectors {XaY bv}a,b≥0. Finally, the quotient by G is 

explicitly given by:

g · (X, Y, v) =
(
gXg−1, gY g−1, gv

)
∀g ∈ G

Remark 2.3. The reader accustomed to the construction of symplectic varieties via 

Hamiltonian reduction will recognize that two of the Lie algebras in (2.8) are usually 

replaced with their duals. Here we tacitly assume the identification of g with its dual 

given by the trace pairing.

Passing between the ideal description of the Hilbert scheme and the ADHM picture 

is easy:

I � {V = C[x, y]/I, X, Y = multiplication by x, y, and v = 1 mod I}
(X, Y, v) � I = {f ∈ C[x, y] such that f(X, Y ) · v = 0}

To mimic (2.7) for the flag Hilbert scheme, one needs to replace the vector space V by 

a full flag of vector spaces. Then the maps X, Y must preserve these vector spaces, and 

so are required to lie in the Borel subspace b0. In other words, we have:
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FHilbn(C2) = μ̄−1(0)cyc/B0 (2.9)

where:

μ̄ : b0 × b0 × V −→ n0, μ̄(X, Y, v) = [X, Y ]

However, using (2.9) as the definition of flag Hilbert schemes leads us into trouble, since 

there is no general reason why quotients modulo Borel subgroups are good. To remedy 

this problem, let us consider the following alternative definition of flag Hilbert schemes, 

built on the observation that one can let the Borel subgroup vary.

Definition 2.4. Consider the following space, inspired by the Grothendieck resolution:

z =
{

(X, Y, v, b) ∈ g× g× V × Fl, X, Y ∈ b
}

where we identify the flag variety with the set of Borel subalgebras of g. Consider the 

map:

ν : z −→ Adj
n
, (X, Y, v, b) �→ [X, Y ] (2.10)

where the target Adj
n

is the affine bundle over the flag variety with fibers given by the 

nilpotent radicals n. It is G–equivariant with respect to the adjoint action, hence the 

notation. Define:

FHilbn(C2) = ν−1(0)cyc/G (2.11)

where the G action is:

g · (X, Y, v, b) =
(
gXg−1, gY g−1, gv, Adg(b)

)
∀g ∈ G

and the superscript cyc still refers to the open subset of cyclic triples.

While mostly a matter of presentation, the definition (2.11) has several advantages. 

Firstly, note that the map ν : FHilbn(C2) → Hilbn is simply given by forgetting the 

flag b. Secondly, the set of quadruples (X, Y, v, b) which are cyclic is precisely the set of 

stable points with respect to the action of G on the trivial line bundle on z (endowed 

with the determinant character). Then geometric invariant theory implies that (2.11) is 

a geometric quotient.

2.3. DG schemes

Because the quotient in (2.7) is taken in the sense of GIT, the Hilbert scheme is 

a quasi-projective variety. But let us neglect its interesting structure as a topological 
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space, and describe its ring of functions locally. By definition, the locus of cyclic triples 

(g × g × V )cyc is an open subset of affine space, and the moment map (2.8) gives rise to 

a section of the trivial g bundle:

μ ∈ Γ
(
O(g×g×V )cyc ⊗ g

)

over (g ×g ×V )cyc. We may write down the Koszul complex corresponding to this section:

(∧•g, μ) :=

[
O(g×g×V )cyc ⊗ ∧dim Gg∨ μ∨

−→ ...
μ∨

−→ O(g×g×V )cyc ⊗ g∨ μ∨

−→ O(g×g×V )cyc

]

Since the Hilbert scheme is smooth, this complex is exact except at the rightmost co-

homology group, where it is isomorphic to Oμ−1(0)cyc . Moreover, since all the maps are 

G–equivariant, we may write locally:

OHilbn

q.i.s.∼=
(
∧•adj

g
, μ
)

=

[
∧dim Gadj∨

g

μ∨

−→ ...
μ∨

−→ O(g×g×V )cyc/G

]

where adj
g

denotes the vector bundle on (g × g × V )cyc/G, obtained by descending the 

trivial vector bundle g on g × g × V , endowed with the G–action by conjugation. One 

may write down the analogous Koszul complex for the map ν of (2.10), but observe that:

OFHilbn(C2) is not
q.i.s.∼= (∧•adj

n
, ν) :=

[
∧dim N adj∨

n

ν∨

−→ ...
ν∨

−→ O(g×g×V ×Fl)cyc/G

]

(2.12)

(recall that adj
n

denotes the vector bundle on (g × g × V × Fl)cyc/G, obtained by de-

scending the vector bundle Adj
n

on Fl, endowed with the G–action by conjugation). The 

fact that the Koszul complex (2.12) is not exact anymore boils down to the fact that 

FHilbn(C2) is not a local complete intersection, and so we choose to work instead with 

the dg scheme:

OFHilbdg
n (C2) := (∧•adj

n
, ν) (2.13)

Note that we think of the left hand side as a sheaf of dg algebras, given precisely by the 

complex in (2.12) supported on the smooth scheme (g ×g ×V ×Fl)cyc/G, which projects 

to the smooth scheme (g × g × V )cyc/G with fibers isomorphic to the flag variety. This 

will allow us to ignore the subtleties of the topology of dg schemes.

2.4. Explicit matrices

Although the definition of z and FHilbn(C2) is given by allowing the Borel subgroup to 

vary, to keep the presentation explicit we will henceforth fix it to be B = B0. Therefore, 

points of the flag Hilbert scheme will be triples (X, Y, v):
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X =

⎛
⎜⎜⎜⎝

x1 0 0 0

∗ x2 0 0

∗ ∗ ... 0

∗ ∗ ∗ xn

⎞
⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎝

y1 0 0 0

∗ y2 0 0

∗ ∗ ... 0

∗ ∗ ∗ yn

⎞
⎟⎟⎟⎠ , v =

⎛
⎜⎜⎜⎝

∗
∗
∗
∗

⎞
⎟⎟⎟⎠ , v0 =

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠

(2.14)

such that [X, Y ] = 0, and the vectors {XaY bv}a,b≥0 generate the space V . This latter 

condition implies that the first entry of v must be non-zero, so we may use the B = B0

action to fix v = v0 as in (2.14). Therefore, we will abuse notation and re-write (2.11)

as:

FHilbn(C2) =
{

(X, Y, v), X, Y lower triangular, [X, Y ] = 0, v cyclic
}

/B =

{
(X, Y, v0), X, Y lower triangular, [X, Y ] = 0, v0 cyclic

}
/Bv0

(2.15)

where Bv0
is the stabilizer of the vector v0 in B. In this language, the map:

FHilbn(C2)
ρ−→ C

2n

is given by taking the joint eigenvalues of the matrices X and Y . Therefore, we conclude 

that:

FHilbn(C) =
{

(X, Y, v) as in (2.15), Y strictly lower triangular
}

(2.16)

FHilbn(point) =
{

(X, Y, v) as in (2.15), X, Y strictly lower triangular
}

(2.17)

We may use the descriptions (2.15)–(2.17) to obtain the following estimates of the dimen-

sions of flag Hilbert schemes. (Here and going forward, dim refers to complex dimension.)

dim FHilbn(C2) ≥ dim (affine space of (X, Y, v)) − # (equations [X, Y ] = 0) − dim B

= n2 + 2n − n(n − 1)

2
− n(n + 1)

2
= 2n =: exp dim FHilbn(C2) (2.18)

The right hand side stands for “expected (or virtual) dimension”. Similarly, we have:

dim FHilbn(C) ≥ n =: exp dim FHilbn(C) (2.19)

dim FHilbn(point) ≥ n − 1 =: exp dim FHilbn(point) (2.20)

The reason why the expected dimension in (2.20) is n − 1 rather than 0 is that when 

X and Y are both strictly lower triangular matrices, the commutator [X, Y ] = 0 is not 

only strictly lower triangular, but has the first sub-diagonal equal to zero by default. 

Therefore, the first sub-diagonal entries are n − 1 equations that need not be placed on 

FHilbn(point).
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Example 2.5. If the inequalities in (2.18)–(2.20) were equalities, then we would conclude 

that flag Hilbert schemes were local complete intersections. However, this is not the 

case. We give an example of how the bound in (2.20) can fail, which we learned from Ian 

Grojnowski. Let n = 10, and consider the affine space of matrices X, Y which are lower 

triangular, and have zero blocks of sizes 1, 2, 3 and 4 on the diagonal:

X, Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.21)

The dimension of the affine space consisting of triples (X, Y, v) equals 35 + 35 + 10 = 80. 

Since the commutator [X, Y ] = 0 must have the 2 × 1, 3 × 2 and 4 × 3 blocks under the 

diagonal equal to zero by default, the number of equations we need to impose is only 

15. Taking into account the fact that the Borel subgroup has dimension 55, we conclude 

that:

dim FHilb10(point) ≥ 80 − 15 − 55 = 10 > 9 = exp dim FHilb10(point)

We may translate this example in terms of flags of ideals inside C[x, y]. Let d = 4, 

n =
(

d+1
2

)
, and m ⊂ C[x, y] be the maximal ideal of the origin, and let us consider the 

locus of flags:

L = {(I0 ⊃ I1 ⊃ . . . ⊃ In)} ⊂ FHilbn(point)

such that:

I(k+1
2 ) = mk, k = 0, . . . , d. (2.22)

By the defining property of the maximal ideal m, for each k ∈ {0, ..., d − 1} the flag of 

ideals:

mk ⊃ I(k+1
2 )+1

⊃ . . . I(k+2
2 )−1

⊃ mk+1

can be chosen as an arbitrary complete flag of vector subspaces in mk/mk+1 � C
k+1. 

Since the dimension of the corresponding flag variety is 
(

k+1
2

)
, we conclude that:



22 E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542

dim L =

d−1∑

k=0

(
k + 1

2

)
=

(
d + 1

3

)
� n − 1 = exp dim FHilbn(point)

as d becomes large (although the inequality is strict as soon as d ≥ 4). This construction 

also shows that the stratum L is non-empty, since there always exist flags of ideals with 

the property (2.22), something which was not immediately apparent from the matrix 

construction (2.21).

2.5. Projective tower construction

Let us consider the action:

C
∗ × C

∗ � FHilbn (2.23)

which scales the matrices X, Y independently. We denote the basic characters of this 

action by q and t, so the C∗ × C
∗ action is explicitly given by:

(z1, z2) · (X, Y ) = (q(z1)X, t(z2)Y ), ∀ (z1, z2) ∈ C
∗ × C

∗

In the matrix presentation, the tautological bundle Tn on FHilbn has fibers consisting 

simply of the vector spaces V on which the matrices X, Y act. The fact that flag Hilbert 

schemes are defined as B–quotients means that this vector bundle need not be trivial. 

Therefore, the matrices X, Y : V → V give rise to endomorphisms of the tautological 

bundle on the whole of FHilbn, which we will denote by the same letters:

qTn
X−→ Tn, tTn

Y−→ Tn

In the formulas above, one must twist the tautological bundle by the torus characters q, t

in order for the endomorphisms X, Y to be C∗×C
∗ equivariant. Since a point of the flag 

Hilbert scheme entails the choice of a fixed flag of V , there is a full flag of tautological 

vector bundles:

Tn � Tn−1 � ... � T1

on FHilbn. Flag Hilbert schemes are easier to work with than usual Hilbert schemes 

because they can be built inductively. Specifically, we have the maps:

FHilbn+1(∗)

FHilbn(∗) × ∗
π (In+1 ⊂ ... ⊂ I0) �→ (In ⊂ ... ⊂ I0) × (xn+1, yn+1) (2.24)

for any ∗ ∈ {C
2, C, point}. When ∗ = C we set yn+1 = 0 and when ∗ = point we further 

set xn+1 = yn+1 = 0. What makes (2.24) manageable is that it is a projective bundle, 
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so we conclude that flag Hilbert schemes are projective towers. Specifically, consider the 

complexes:

En(∗) =
[
qtTn−δ∗

point

Ψ−→ qTn ⊕ tTn ⊕O Φ−→ Tn

]

FHilbn(∗) × ∗

(2.25)

for any ∗ ∈ {C
2, C, point}, with the maps defined by:

Ψ(w) =
(
− (Y − yn+1)w, (X − xn+1)w, 0

)
(2.26)

Φ(w1, w2, f) = (X − xn+1)w1 + (Y − yn+1)w2 + fv (2.27)

The underlined middle term is in homological degree zero. Here, xn+1, yn+1 are the 

coordinates on the second factor of FHilbn(C2) × C
2, which are specialized to yn+1 = 0

(resp. xn+1 = yn+1 = 0) when ∗ = C (resp. ∗ = point). When ∗ = point, the leftmost 

bundle in the complex (2.25) is Tn−1. This implicitly uses the fact that the maps X, Y :

Tn → Tn become nilpotent, hence they factor through Tn � Tn−1. In the next Subsection, 

we will prove the following inductive description of flag Hilbert schemes ([53]):

Theorem 2.6. The maps π of (2.24) can be written as projectivizations:

FHilbn+1 = PFHilbn(∗)×∗

(
H0(En(∗))∨

)
:= ProjFHilbn(∗)×∗

(
S•
(
H0(En(∗))

))
, (2.28)

where S• denotes the symmetric algebra. This holds for each of the three variants 

∗ ∈ {C
2, C, point} of flag Hilbert schemes. The line bundle Ln+1 on the left hand side 

coincides with the tautological sheaf O(1) on the right.

Example 2.7. Example 2.1 shows that the space FHilb2 can be obtained as Proj of an 

explicit algebra. Let us obtain the same result using Theorem 2.6. Since T1 = O, we 

have:

E1(C2) =

[
qtO (−y1+y2,x1−x2,0)−−−−−−−−−−−−→ qO ⊕ tO ⊕O (x1−x2,y1−y2,1)−−−−−−−−−−−→ O

]
�

�
[
qtO (−y1+y2,x1−x2)−−−−−−−−−−−→ qO ⊕ tO

]
⇒ H0(E1(C2)) =

C[x1, x2, y1, y2]〈z, w〉
(x1 − x2)w − (y1 − y2)z

.

As above, the underlined terms are in homological degree zero, and z and w are the two 

basis vectors of qO ⊕ tO. Therefore

S•
(
H0(E1(C2))

)
=

C[x1, x2, y1, y2, z, w]

(x1 − x2)w − (y1 − y2)z
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precisely as in (2.4). If we set y1 = y2 = 0 in the above computation, we obtain the case 

∗ = C of (2.5). Finally, we have:

E1(point)=

[
qO ⊕ tO ⊕O (0,0,1)−−−−→ O

]
�
[
qO ⊕ tO

]
⇒ S•

(
H0(E1(point))

)
=C[z, w]

as expected from (2.6).

Example 2.8. Let us study Theorem 2.6 in the case when n = 2 and ∗ = point, in which 

case:

FHilb2(point) = P
1

with respect to which we have T1 = O and T2 = O ⊕ O(1). With this in mind, the 

complex (2.25) is explicitly given by:

E2(point) =
[
qtO Ψ−→ qO ⊕ tO ⊕O ⊕ qO(1) ⊕ tO(1)

Φ−→ O ⊕O(1)
]

and the maps are given by:

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

−z1

z0

⎞
⎟⎟⎟⎟⎟⎠

, Φ =

(
0 0 1 0 0

z0 z1 0 0 0

)

It is clear from the above that the map Φ is surjective, which is a general phenomenon 

that follows from the cyclicity of triples (X, Y, v). Therefore, we have:

E2(point)
q.i.s.∼=

[
qtO (0,−z1,z0)−−−−−−→ qtO(−1) ⊕ qO(1) ⊕ tO(1)

] q.i.s.∼=
[
qtO(−1) ⊕O(2)

]

Therefore, Theorem 2.6 implies that:

FHilb3(point) = PP 1

(O(1)

qt
⊕O(−2)

)
(2.29)

which is a Hirzebruch surface. It is also the resolution of the singular cubic cone, which 

is nothing but the subvariety of the Hilbert scheme consisting of ideals supported at the 

origin.

2.6. Proving Theorem 2.6

Without loss of generality, we will treat the case ∗ = C
2. We will proceed by induction 

by n, by studying the fibers of the map (2.24):
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FHilbn+1(C2)

FHilbn(C2) × C
2

π (2.30)

Recall that points of FHilbn(C2) are triples (X, Y, v) consisting of two commuting lower 

triangular matrices (for simplicity, we fix the flag of vector spaces), together with a cyclic 

vector. Over such a triple, fibers of π are completely determined by extending X, Y, v by 

a bottom row:

X̄ =

(
X 0

w1 xn+1

)
, Ȳ =

(
Y 0

w2 yn+1

)
, v̄ =

(
v

f

)

where w1, w2 ∈ T ∨
n and f ∈ O. The triple (w1, w2, f) must satisfy the following proper-

ties:

• The closed condition [X̄, Ȳ ] = 0 is equivalent to:

w1 · (Y − yn+1) = w2 · (X − xn+1) (2.31)

• (w1, w2, f) is only defined up to conjugation by:

V � C
∗ = Ker(Bn+1 � Bn) =

(
Id 0

w c

)
(w, c) ∈ V � C

∗

In other words, we do not consider the action of the group of n × n lower triangu-

lar matrices Bn because it has already been trivialized locally on FHilbn(C2). In 

formulas:

(w1, w2, f) ∼ (cw1 + w · (X − xn+1), cw2 + w · (Y − yn+1), cf + w · v) (2.32)

• Since we already know that (X, Y, v) is cyclic, the extra condition that (X̄, Ȳ , ̄v) be 

cyclic is equivalent to the fact that:

C
n+1 is generated by

{
v̄, Im (X̄ − xn+1), Im (Ȳ − yn+1)

}
(2.33)

This fails precisely when there exists a linear functional λ : C
n → C such that:

λ(v) = f, λ ((X − xn+1)w) = w1 · w, λ ((Y − yn+1)w) = w2 · w

for all w ∈ V . This is equivalent to (w1, w2, f) ∼ (0, 0, 0) with respect to (2.32).
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Proof of Theorem 2.6. The three bullets above establish the fact that the triple 

(w1, w2, f) that determines points in the fibers of FHilbn+1(C2) → FHilbn(C2) × C
2

is a non-zero element in:

H0

(T ∨
n

qt

Ψ∨

←− T ∨
n

q
⊕ T ∨

n

t
⊕O Φ∨

←− T ∨
n

)
(2.34)

modulo rescaling. Note that (2.34) is the dual of (2.25), which completes the proof. �

Remark 2.9. Note that the map Φ of (2.25) is surjective, according to the equivalent 

description (2.33) of a point being cyclic. This implies that:

Kn(∗) = Ker Φ (2.35)

is a vector bundle of rank n + 1, hence En(∗) is quasi-isomorphic to a complex:

En(∗)
q.i.s.∼=

[
qtTn−δ∗

point

Ψ−→ Kn(∗)
]

(2.36)

of vector bundles on FHilbn(∗) × ∗, which lie in degrees −1 and 0.

2.7. The dg scheme

We will now give an alternative definition of the dg scheme (2.13), and we leave it as 

an exercise to the interested reader to show that the two descriptions are equivalent (we 

will only use the definition in this Subsection for the remainder of this paper). The idea 

is to note that the map Ψ of the complex (2.36) fails to be generically injective, and this 

will lead to the flag Hilbert scheme misbehaving. To remedy this issue, we replace the 

middle cohomology sheaf H0(En) in (2.25) by the entire complex En (we tacitly suppress 

the symbol ∗ ∈ {C
2, C, point} since the construction applies equally well to all three 

choices).

Proposition 2.10. There exist dg schemes FHilbdg
n (∗) endowed with flags of objects:

Tn → Tn−1 → ... → T1 ∈ Db(Coh(FHilbdg
n (∗)))

together with maps qTn
X→ Tn, tTn

Y→ Tn that respect the above flag, and O v→ Tn such 

that:

FHilbdg
n+1(∗) = PFHilbdg

n (∗)×∗ (En(∗)∨) := ProjFHilbdg
n (∗)×∗ (S•(En(∗))) (2.37)

where En(∗) is defined by (2.25), and is quasi-isomorphic to the complex (2.36) (see 

Subsection 10.4 for the definition of the Proj construction of a two-step complex of vector 

bundles).
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Proof. We will construct FHilbdg
n (∗) as explicit dg subschemes inside certain smooth 

schemes, which are called “free flag Hilbert schemes” in [54]. Explicitly, we let:

FHilbfree
n (C2), FHilbfree

n (C), FHilbfree
n (point)

be defined just like in (2.15), (2.16), (2.17) (respectively), but without imposing the 

closed condition [X, Y ] = 0. By analogy with Theorem 2.6, one can prove that for all 

∗ ∈ {C
2, C, point}:

FHilbfree
n+1(∗) = PFHilbfree

n (∗)×∗(Kn(∗)∨)

where Kn is the vector bundle of (2.35). Let us write Ln+1 = O(1) for the dual tauto-

logical line bundle on the projectivization above, and π : FHilbfree
n+1(∗) → FHilbfree

n (∗) ×∗
for the natural projection map. Consider the tautological map which exists on any Proj:

Taut ∈ Hom(π∗Kn(∗),Ln+1)

and compose it with the natural map Tn[−1] 
i→ Kn(∗) that stems from the short exact 

sequence:

0 → Kn(∗) → qTn ⊕ tTn ⊕O Φ=(X,Y,v)−−−−−−−→ Tn → 0

The resulting extension of vector bundles is also a vector bundle:

i∗(Taut) =: Tn+1 ∈ Hom (π∗Tn[−1],Ln+1)

Composing the map i with Φ yields 0, hence:

(X, Y, v)∗ (Tn+1) ∈ Hom (π∗(qTn ⊕ tTn ⊕O)[−1],Ln+1)

equals 0 as well. This precisely gives rise to a splitting (the diagonal map below):

qTn+1 ⊕ tTn+1 ⊕O Tn+1

π∗(qTn ⊕ tTn ⊕O) π∗(Tn)
(X,Y,v)

(2.38)

and the dotted map is the desired extension of the arrows X, Y, v from Tn to Tn+1. 

This arrow is surjective (because Kn(∗) is a sub-bundle of the lower-right corner, and it 

surjects onto Ln+1 ⊂ Tn+1 by the definition of the projectivization) and so the kernel 

Kn+1(∗) of the dotted arrow is a vector bundle. Thus, we have accomplished the inductive 

construction of the vector bundles Tn and the maps X, Y, v between them, as well as the 

vector bundles Kn(∗). Let us construct dg subschemes:
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FHilbdg
n (∗) ↪→ FHilbfree

n (∗) (2.39)

which are inductively constructed by the requirement that:

FHilbdg
n+1(∗) PFHilbdg

n (∗)×∗(Kn(∗)∨) FHilbfree
n+1(∗)

FHilbdg
n (∗) × ∗ FHilbfree

n (∗) × ∗

(2.40)

where the dotted arrow is the dg subscheme cut out by the vanishing of the map:

γ : qtTn−δ∗
point

(−Y,X,0)−−−−−−→ Kn(∗) → Ln+1 (2.41)

Of course, for this to be well-defined, we must show that the endomorphisms X : qTn →
Tn, Y : tTn → Tn commute on the dg subschemes (2.39). We will also do this by 

induction, so assume it holds for n. Then (2.38) restricts to the following diagram on 

PFHilbdg
n (∗)×∗(Kn(∗)∨):

qtTn+1−δ∗
point

qTn+1 ⊕ tTn+1 ⊕O Tn+1

qtTn−δ∗
point

π∗(qTn ⊕ tTn ⊕O) π∗(Tn)

(−Y,X,0) (X,Y,v)

(−Y,X,0) (X,Y,v)

(2.42)

where the bottom row is exact. Therefore, the composition of the arrows on the top row:

qtTn+1−δ∗
point

→ qTn+1 ⊕ tTn+1 ⊕O → Ln+1

vanishes precisely when the map (2.41) vanishes. By the very definition of the dotted 

arrow in (2.40), the top row of diagram (2.42) is exact (in other words, [X, Y ] = 0) on 

FHilbdg
n+1(∗). �

Remark 2.11. As we have seen, the diagram (2.42) has exact rows on FHilbdg
n+1(∗) × ∗. 

Therefore, we may rewrite it as an equality in the derived category:

[
qtLn+1

(−y,x)−−−−→ qLn+1 ⊕ tLn+1
(x,y)−−−→ Ln+1

]
∼=
[
En+1 −→ π̃∗(En)

]
(2.43)

where we have underlined the 0–th terms of both complexes. In the above equation, we 

write x and y for the operators of multiplication by xn−xn+1 and yn−yn+1, respectively, 

and:

π̃∗(En) denotes π∗(En) with the variables (xn, xn+1) and (yn, yn+1) switched (2.44)
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2.8. Serre duality

As explained in Subsection 10.4 of the Appendix, we may embed the dg scheme 

FHilbdg
n+1 into an actual projective bundle:

FHilbdg
n+1(∗) P ((Ker Φ)∨)

FHilbdg
n (∗) × ∗

π
(2.45)

where we implicitly use the description (2.36) of the complex of vector bundles En. This 

allows us to compute the push-forward π∗ of sheaves by factoring them through the 

diagram (2.45).

Proposition 2.12. Let π : FHilbdg
n+1(C) → FHilbdg

n (C) × C be the projection. Then:

π∗(A)∨ ∼= π∗(A∨ ⊗ L−1
n+1) (2.46)

for any A ∈ Db(Coh(FHilbdg
n+1(C))). The functor π∗ is derived, and ∨ denotes the 

derived duality functor on the smooth dg scheme FHilbdg
n (C).

This is a direct application of Proposition 10.9 in the Appendix, together with the 

fact that the determinant of the complex En(C) of (2.25) is trivial. Applying formula 

(2.46) to A = O gives us the following formulas for all k ≥ 0:

π∗(L−1−k
n+1 ) = π∗(Lk

n+1)∨ = SkE∨
n concentrated in degree 0 (2.47)

Remark 2.13. The analogue of (2.46) when C is replaced by C2 holds exactly as stated. 

Meanwhile, when C is replaced by point we must replace formula (2.46) by the following 

equation:

π̃∗(A)∨ ∼= π̃∗

(
A∨ ⊗ qtLn

L2
n+1

)
[−1] (2.48)

where π̃ : FHilbdg
n+1(point) → FHilbdg

n (point) is the standard projection.

2.9. From the flag to the isospectral Hilbert scheme

It is useful to compare the construction of the flag Hilbert scheme to the isospectral 

Hilbert scheme Xn defined by Haiman [41]. Recall that Xn is defined as the reduced 

fiber product:
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Xn (C2)n

Hilbn(C2) Sn
C

2

π

The main theorem of [41] states that Xn is Gorenstein and Cohen-Macaulay with canon-

ical sheaf O(−1). In particular, the projection π : Xn → Hilbn(C2) is finite and flat, and 

one can define the Procesi bundle:

P := π∗OXn

This is a vector bundle on the Hilbert scheme of rank n!. We will also need nested 

isospectral Hilbert scheme Xn−1,n defined in [41] as the fibered product:

Xn−1,n Hilbn−1,n(C2)

Xn−1 Hilbn−1(C2)
πn−1

(2.49)

Theorem 2.14. The flag Hilbert scheme can be defined as the derived fiber product of the 

following diagram:

FHilbdg
n (C2)

FHilbdg
n−1(C2) × C

2 Xn−1,n

Xn−1 × C
2 Xn

h′ hn

hn−1 g

(2.50)

Proof. The nested Hilbert scheme Hilbn−1,n(C2) is smooth and can be presented as a 

projective bundle over Hilbn−1(C2) × C
2, in a similar way to Theorem 2.6 (see [28]). 

Since Xn−1 is flat over Hilbn−1(C2), we conclude by (2.49) that Xn−1,n is similarly a 

projective bundle over Xn−1 × C
2. Therefore, the square in (2.50) is derived Cartesian, 

just because the northeast-southwest arrows are both the projectivizations of the same 

two-step complex of vector bundles (which is pulled back from Hilbn(C2) × C
2). The 

morphism hn is defined as g ◦ h′. �

Theorem 2.14 immediately implies the following result:

Theorem 2.15. There is a well-defined morphism of dg schemes π ◦ hn : FHilbdg
n (C2) →

Hilbn(C2). Furthermore,

(π ◦ h)∗O = P. (2.51)
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Proof. The existence of hn follows from Theorem 2.14, as we define hn := g ◦ h′. To 

prove (2.51), let us show by induction in n that (hn)∗O = OXn
. The base case n = 1

is obvious, so let us assume the statement holds for n − 1. Then the Cartesian diagram 

(2.50) implies that (hn)∗O = g∗OXn−1,n
. Now by [41, Proof of Theorem 3.1] we have

g∗OXn−1,n
= OXn

.

Then (2.51) follows from (π ◦ h)∗O = π∗(hn)∗O = π∗OXn
= P. �

3. The Hecke algebra and Soergel category

3.1. The Hecke algebra

Recall that the Hecke algebra of type An has n − 1 generators:

Hn = C(q)〈σ1, ..., σn−1〉

modulo relations:

(
σi − q

1
2

)(
σi + q− 1

2

)
= 0 ∀ i ∈ {1, . . . , n − 1} (3.1)

σiσi+1σi = σi+1σiσi+1 ∀ i ∈ {1, . . . , n − 2} (3.2)

σiσj = σjσi ∀ |i − j| > 1. (3.3)

The algebra Hn is a q-deformation of the group algebra of the symmetric group C[Sn]. 

The irreducible representations Vλ of Hn at generic parameter q are labeled by parti-

tions of n, or, equivalently, by Young diagrams of size n. The multiplicity of Vλ in the 

regular representation is equal to its dimension, which is itself equal to the number of 

standard Young tableaux (henceforth abbreviated SYT) of shape λ. Therefore, the reg-

ular representation of Hn splits into a direct sum of irreducible representations labeled 

by standard tableaux. For each such tableau T , let PT denote the projector onto the 

irreducible summand in Hn labeled by T . By construction, these projectors have the 

following properties:

PT PT ′ = δT
T ′PT ,

∑

T

PT = 1. (3.4)

The projectors PT can be written very explicitly in terms of the generators σi, see [4,40]

for details. They satisfy the following branching rule:

i(PT ) =
∑

�

PT +�, (3.5)

where i : Hn → Hn+1 is the natural inclusion and the summation in the right hand side 

is over all possible SYT obtained from T by adding a single box labeled by n + 1.
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The renormalized Markov trace (also known as the Jones-Ocneanu trace [30,46])

χ : Hn → C(a, q)

satisfies the relations:

χ(σσ′) = χ(σ′σ), χ(i(σ)) = χ(σ) · 1 − a

q
1
2 − q− 1

2

, χ(i(σ)σn) = χ(σ). (3.6)

There is a natural pairing 〈·, ·〉 : Hn×Hn → C(a, q) given by 〈σ, τ〉 = χ(στ †), where σ† is 

the “Hermitian conjugate” of σ (this is the C-antilinear map determined by the relations 

q† = q−1, σ†
i = σ−1

i , and (στ)† = τ †σ†). With respect to this pairing, the adjoint of the 

inclusion i : Hn → Hn+1 is the partial Markov trace:

Tr : Hn+1 → Hn ⊗ C[a].

It follows easily from the definitions that for all σ ∈ Hn, we have χ(σ) = Trn(σ).

The Markov trace of a projector PT only depends on the underlying Young diagram 

λ of the SYT T , and is equal to the λ-colored HOMFLY-PT polynomial of the unknot. 

Specifically, we have the following result:

Proposition 3.1. (e.g. [3]) The Markov trace of PT equals:

Trn(PT ) =
∏

�∈λ

q
−c(�)

2 − aq
c(�)

2

q
h(�)

2 − q
−h(�)

2

,

where c(�) and h(�) respectively denote the content and the hook length of a square �

in λ.

3.2. The braid group

The Hecke algebra is a quotient of the group algebra of the braid group on n strands, 

which is defined by removing relation (3.1). Specifically, the braid group is generated by 

σ±1
1 , ..., σ±1

n−1 modulo relations (3.2) and (3.3). By definition, the full twist on n strands 

is the braid:

FTn = (σ1 · · ·σn−1)n.

The full twist is known to be central in the braid group, and hence its image is central 

in the Hecke algebra. If we interpret the generator σi as a single crossing between the 

strands i and i + 1, then the full twist corresponds to the pure braid where each strand 

wraps around all the other ones (see Fig. 1). We may also define the partial twists:

FT1, ..., FTn−1
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Fig. 1. The full twist FT4.

Fig. 2. The braid L4.

where FTk is the braid which consists of the full twist on the leftmost k strands, with 

the rightmost n − k strands simply vertical lines. We will also work with the generalized 

Jucys-Murphy elements (Fig. 2):

Lk = FT
−1
k−1 · FTk

which are easily seen to be given by the formula:

Lk = σk−1...σ2σ1σ1σ2...σk−1.

The name is due to the fact that their images in Hn deform the well-known Jucys-Murphy 

elements in C[Sn]:

Lk = 1 + (q
1
2 − q− 1

2 )

k−1∑

i=1

σk−1...σi+1σiσi+1...σk−1.

Either the braids {FTk}k=1,...,n or the braids {Lk}k=1,...,n generate a certain commuta-

tive subalgebra of the braid group, and hence also of the Hecke algebra, which we will 

denote by:

Cn ⊂ Hn.

It is well-known that the projectors PT lie in this subalgebra for all SYTx T .
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Proposition 3.2. (e.g. [4, Theorem 5.5]) The projectors are eigenvectors for twists with 

the following eigenvalues:

FTk · PT = qc(�1)+...+c(�k) · PT =⇒ (3.7)

=⇒ Lk · PT = qc(�k) · PT (3.8)

where �k denotes the box labeled by k in the standard Young tableau T .

In fact, equations (3.5) and (3.7) allow one to inductively construct the elements 

PT , as follows: given PT for a standard Young tableau T of size n, all projectors PT +�

are eigenvectors for the full twist FTn+1 with different eigenvalues, and hence can be 

uniquely reconstructed as the projections of i(PT ) onto the corresponding eigenspaces. 

This is precisely the viewpoint that is categorified in [26,27], and which inspired Section 7

of the present paper.

3.3. Notations for categories

In this subsection, we would like to collect all homological algebra notations, defini-

tions and assumptions which will be frequently used below. Let C be an additive C-linear 

monoidal category with tensor product ⊗ and direct sum ⊕. The monoidal structure is 

not necessary symmetric. We will denote the unit object of C by 1C, or 1 if the category 

is clear from context. The endomorphism algebra End(1) is always commutative, and 

we assume that it is Noetherian. For any object A ∈ C, the morphism space Hom(1, A)

is a module over End(1), and we assume that it is finitely generated. We assume that 

all morphism spaces are positively graded. We denote by Kb(C) the homotopy category 

of bounded complexes of objects in C and by K−(C) the homotopy category of bounded 

above complexes. Unless stated otherwise, we will work with bounded above complexes 

and abbreviate K−(C) to K(C).

3.4. Soergel bimodules

The category of Soergel bimodules, which we will denote SBimn, is a categorification 

of the Hecke algebra. We will consider R = C[x1, ..., xn] and study graded R-bimodules, 

where deg xi = 1. We will write qM for the graded module M with the grading shifted 

by 1. Among the most important such R-bimodules are the elementary Bott-Samelson

bimodules:

Bi = q− 1
2 R ⊗Ri,i+1 R (3.9)

for any simple transposition si = (i, i + 1), where we write Ri,i+1 for those polynomials 

which are invariant under si. In other words, Ri,i+1 consists of polynomials which are 

symmetric in xi and xi+1, and therefore R has rank 2 over Ri,i+1. Therefore, Bi has 

rank 2 as an R-module.
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Definition 3.3. The category SBimn is the Karoubian envelope of the smallest full sub-

category of R–mod–R that contains the Bott-Samuelson modules Bi and is closed under 

⊗R and grading shifts. Objects of SBimn will be called Soergel bimodules.

The category SBimn is monoidal with respect to the operation of tensoring bimodules 

over R. Clearly, the unit object is 1 := R, viewed as a bimodule over itself. Note that 

SBimn is neither abelian, nor symmetric. Let:

Bi,i+1 = q−1R ⊗Ri,i+1,i+2 R

where Ri,i+1,i+2 denotes the set of polynomials which are symmetric in xi, xi+1, xi+2. 

Then one can check the following identities [47,72]:

B2
i � q

1
2 Bi ⊕ q− 1

2 Bi, BiBj � BjBj for |i − j| > 1, (3.10)

BiBi+1Bi � Bi ⊕ Bi,i+1 ⇒ BiBi+1Bi ⊕ Bi+1 � Bi+1BiBi+1 ⊕ Bi. (3.11)

It was shown in [72] that the split graded Grothendieck group of SBimn is generated by 

the classes of Bi and is isomorphic to Hn. Indeed, one can identify [Bi] = σi + q− 1
2 and 

show that (3.10)–(3.11) imply (3.1)–(3.3).

3.5. From Rouquier complexes to Khovanov-Rozansky homology

Since σi = [Bi] − q− 1
2 , it is clear that σi does not correspond to any Soergel bimod-

ule. However, Rouquier showed that σi can be realized in the homotopy category of 

complexes:

Kb(SBimn)

where we use the variable s to keep track of homological degree. Explicitly, objects in 

the homotopy category of complexes will be denoted by:

[
skMk → ... → sk′

Mk′

]

for some k ≤ k′ ∈ Z. The variable s may seem redundant when writing down chain 

complexes, but we keep track of it for two reasons: first of all, it will give rise to the 

equivariant parameter t of Section 2 via (1.8). Second of all, we think of the object:

[M → sM ′] ∈ Kb(SBimn)

as the cone of a morphism between the objects M and sM ′, and thus the power of 

s makes the homological degrees of our formulas manifest. Recall the Bott-Samuelson 

bimodules (3.9) and consider the Rouquier complexes:
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σi :=

[
Bi

1⊗1�→1−−−−−→ sR

q
1
2

]
, σ−1

i :=

[
q

1
2 R

s

1�→xi⊗1−1⊗xi+1−−−−−−−−−−−→ Bi

]
(3.12)

They satisfy the following equations [47,71] (which can be deduced from (3.10) and 

(3.11)):

σi ⊗ σ−1
i

∼= σ−1
i ⊗ σi

∼= 1,

σi ⊗ σj
∼= σj ⊗ σi for |i − j| > 1,

σi ⊗ σi+1 ⊗ σi
∼= σi+1 ⊗ σi ⊗ σi+1,

and hence categorify the braid group. To any braid σ = σα1
i1

· · ·σαr

ir
(where αi ∈ {−1, 1}) 

one can associate a complex of bimodules obtained by tensoring together the various 

complexes (3.12). We abuse notation and denote the resulting complex also by σ. Kho-

vanov [47] defined the HOMFLY-PT homology of a braid σ as:

HHH(σ) := RHomKb(SBimn)(1, σ). (3.13)

The right hand side is a triply graded vector space, endowed with the internal grading 

q, the homological grading s of the complexes (3.12) and their coproducts, and the 

Hochschild grading a given by taking the RHom. The appropriate derived category 

formalism can be found in [43]. With respect to these three gradings, Khovanov proved 

that (3.13) is a topological invariant of the closure of σ, after a certain renormalization.

Remark 3.4. As is customary in knot homology literature, we regard HHH and RHom as 

extensions of the additive functors HHH and RHom on the additive category SBimn to 

the homotopy category K(SBimn). In particular, HHH(M) = RHom(1, M) of a single 

Soergel bimodule M is a collection of vector spaces, one in each Hochschild degree. To 

compute HHH for a complex of Soergel bimodules, one needs to apply it termwise and get 

a collection of complexes, one in each Hochschild degree. Then one takes the homology 

of each complex separately.

The same construction can be described in a more abstract way as follows. Consider an 

additive category Db(SBimn) where the objects are the same as in SBimn but morphisms 

are given by RHom. Then HHH(σ) is the space of morphisms between 1 and σ regarded 

as objects in Kb(Db(SBimn)), the homotopy category of the derived category of SBimn.

3.6. Invertible objects and adjoints

Given a monoidal category C (the main example of which will be SBimn), we call an 

object F ∈ Kb(C) invertible if it comes endowed with isomorphisms:

F ⊗ F −1 ∼= F −1 ⊗ F ∼= 1 (3.14)
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We summarize several important properties of invertible objects (3.14) in arbitrary 

monoidal categories. The proofs are straightforward, and left as exercises to the in-

terested reader.

Proposition 3.5. For any invertible object F ∈ C and two arbitrary objects C, C ′ ∈ C, 

there exist canonical isomorphisms:

HomC(F ⊗ C, F ⊗ C ′) ∼= HomC(C, C ′) ∼= HomC(C ⊗ F, C ′ ⊗ F )

Corollary 3.6. Tensoring with an invertible object and with its inverse yield biadjoint 

functors, that is, we have canonical isomorphisms:

HomC(C, F ⊗ C ′) ∼= HomC(F −1 ⊗ C, C ′) HomC(C, C ′ ⊗ F ) ∼= HomC(C ⊗ F −1, C ′)

Corollary 3.7. For any invertible F ∈ C and any object C ∈ C, we have:

HomC(1, F ⊗ C) ∼= HomC(1, C ⊗ F )

As a consequence of Corollary 3.7, we have:

Corollary 3.8. Let σ, σ′ be any two braids. Then:

HHH(σσ′) = RHomKb(SBimn)(1, σ ⊗σ′) and HHH(σ′σ) = RHomKb(SBimn)(1, σ′ ⊗σ)

are isomorphic as R-modules, up to a twist by the permutation wσ corresponding to σ.

And as a consequence of Corollary 3.6, we have:

Corollary 3.9. The Rouquier complex σ for a braid σ is biadjoint to σ−1. For any A, A′ ∈
SBimn and any braid σ there are canonical isomorphisms:

RHomKb(SBimn)(A⊗σ, A′⊗σ) ∼= RHomKb(SBimn)(A, A′) ∼= RHomKb(SBimn)(σ⊗A, σ⊗A′).

Furthermore, we have:

Proposition 3.10. The Soergel bimodule Bi is self biadjoint, for all i.

3.7. The trace functor

We will henceforth write Rn = C[x1, ..., xn] to avoid confusion as to which number n

we are considering. For an extra variable xn+1, we consider the category:

SBimn[xn+1] (3.15)
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of Soergel bimodules which are equipped with an additional endomorphism denoted by 

xn+1 that commutes with the action of Rn. In other words, SBimn[xn+1] is the Karoubian 

envelope of the smallest full subcategory of Rn+1–mod–Rn+1 that contains the modules 

B1, . . . Bn−1 and is closed under ⊗Rn+1
and grading shifts. It is easy to see that the 

functors:

SBimn[xn+1] −�=�− SBimn

that forget the action of xn+1, respectively tensor with C[xn+1], are adjoint with respect 

to each other. We will now recall the functors I and Tr defined in [43], upgraded to the 

level of the category (3.15). At the level of additive categories, these functors are quite 

simple:

I : SBimn[xn+1] −→ SBimn+1

is the full embedding. Meanwhile:

Tr : SBimn+1 −→ SBimn[xn+1], M �→ Ker
(

M
xn+1⊗1−1⊗xn+1−−−−−−−−−−−→ M

)

As shown in [43], these functors can be upgraded to the homotopy categories:

Kb (SBimn[xn+1])
Tr−�===�−
I

Kb (SBimn+1)

where the trace functor now encodes the full operation of multiplication by xn+1 ⊗ 1 −
1 ⊗ xn+1, instead of simply the kernel:

Tr(M) =
[
M

xn+1⊗1−1⊗xn+1−−−−−−−−−−−→ M
]

.

Remark 3.11. When working in the upgraded category (3.15) rather than SBimn, one 

must be careful with Markov invariance, e.g. the statement [47] that for M ∈ SBimn one 

has:

Tr(M ⊗ σn) � sq−1/2M ∈ Kb(SBimn)

In the upgraded category, this equation becomes (see Fig. 3):

Tr(M ⊗ σn) �
[
M ⊗ C[xn+1]

xn⊗1−1⊗xn+1−−−−−−−−−−→ sq−1/2M ⊗ C[xn+1]
]

∈ Kb(SBimn[xn+1])

(3.16)

The proof is straightforward and we leave it to the reader. Remark that in the category 

Kb(SBimn) the complex (3.16) is quasi-isomorphic to M , but this is no longer true in 

Kb(SBimn[xn+1]).
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M � M xn⊗1−1⊗xn+1
−−−−−−−−−−→ M

Fig. 3. Markov move in SBimn[xn+1].

3.8. The main conjectures

For the remainder of this Section, we will write FHilbdg
n = FHilbdg

n (C) and En =

En(C), in the notation of Section 2. Recall the notations K(C) = K−(C) and D(C) =

D−(C). Our main Conjecture can be restated more precisely as follows:

Conjecture 1.1. There exists a pair of adjoint functors:

K(SBimn)
ι∗−�===�−
ι∗

D
(

CohC∗×C∗

(
FHilbdg

n

))
(3.17)

where ι∗ is monoidal and fully faithful. Moreover, we have:

ι∗(ι∗N1 ⊗ M ⊗ ι∗N2) ∼= N1 ⊗ ι∗(M) ⊗ N2 (3.18)

for all N1, N2 ∈ D
(

CohC∗×C∗

(
FHilbdg

n

))
and M ∈ K(SBimn). In addition:

ι∗1 = O and Lk = ι∗(Lk)
(3.18)
=⇒ (3.19)

(3.18)
=⇒ ι∗Lk = Lk ∀ k ∈ {1, ..., n}, (3.20)

where O is the structure sheaf of FHilbdg
n and Lk is the line bundle (2.2). Finally, the 

following diagrams of functors commute (we write ι = ι(n) to keep track of n):

K(SBimn+1) D
(

CohC∗×C∗

(
FHilbdg

n+1

))

K(SBimn[xn+1]) D
(

CohC∗×C∗

(
FHilbdg

n × C

))

ι(n+1)∗

Tr π∗

ι(n)∗

(3.21)
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K(SBimn+1) D
(

CohC∗×C∗

(
FHilbdg

n+1

))

K(SBimn[xn+1]) D
(

CohC∗×C∗

(
FHilbdg

n × C

))

ι∗
(n+1)

I

ι∗
(n)

π∗ (3.22)

where the map π : FHilbdg
n+1 → FHilbdg

n × C is the particular case of (2.24) for ∗ = C.

In broad strokes, the functor ι∗ is given by sending each object M ∈ K(SBimn) to:

ι∗M =
⊕

a1,...,an∈N

HomK(SBimn)

(
1, M

n⊗

k=1

Lak

k

)
(3.23)

which is naturally a module for the Nn–graded dg algebra:

A =
⊕

a1,...,an∈N

HomKb(SBimn)

(
1,

n⊗

k=1

Lak

k

)
(3.24)

This algebra is commutative and ι∗M gives rise to a coherent sheaf on (Spec A)/(C∗)n. 

Our conjecture entails the fact that this sheaf is actually supported on the n–fold iterated 

projectivization Proj A ↪→ (Spec A)/(C∗)n, and that in fact:

Proj A = FHilbdg
n (3.25)

To upgrade to the setting of Remark 1.3, we must replace the Hom spaces by RHom in 

(3.23) and (3.24). We expect that this can be dealt with as in the following conjecture.

Conjecture 3.12. Given the setup of Conjecture 1.1 we consider the object:

Tn = ι∗(Tn) ∈ Kb(SBimn)

Then we claim that for any object M ∈ K(SBimn), we have an isomorphism:

RHomK(SBimn)(1, M) ∼= HomK(SBimn) (1, M ⊗ ∧•T ∨
n ) (3.26)

which is functorial with respect to the action of the algebra (3.24) on both sides.

Remark 3.13. Let us clarify the meaning of exterior powers ∧•T ∨
n which appear in Con-

jecture 3.12. One can describe them in two different ways: first, we can simply declare 

∧
T ∨
n := ι∗(∧
T ∨

n ) for all �.

Second, we conjecture that Tn can be identified with an element of the Drinfeld center

of Kb(SBimn), which is a braided monoidal category. Therefore one gets a braid group 

action on T ⊗

n . Conjecture 3.12 implicitly assumes that the braiding on Tn is symmetric, 
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that is, the above braid group actions factors through the symmetric group S
. Since 

Kb(SBimn) is Karoubian, one can follow [22] and define ∧
T ∨
n as the image of the 

antisymmetric projector in the group algebra of S
.

Note that recent work of Bezrukavnikov and Tolmachov [11] strongly indicates that 

the braiding in the Drinfeld center of Kb(SBimn) is not symmetric in general.

Assuming Conjecture 3.12, one may ask if there is a sheaf on the flag Hilbert scheme 

which is defined by replacing Hom with RHom in (3.23). By (3.26) and (3.18), this sheaf 

would be:

ι∗ (M ⊗ ι∗ (∧•T ∨
n )) = ι∗M ⊗ ∧•T ∨

n

This sheaf should naturally be thought to live on TotFHilbdg
n

(Tn[1]) = SpecFHilbdg
n

(∧•T ∨
n ), 

as in Remark 1.3. As above, Tot denotes the total space of a (shifted) vector bundle 

regarded as a dg scheme. The entire picture presented in this subsection will be explained 

in more detail in Section 4, when we develop the formalism of categories over schemes 

in general.

Proof of Corollary 1.4. The fact that ι∗ is a monoidal functor, together with (3.19), 

imply that:

σ :=
n∏

k=1

FT
ak

k =
n∏

k=1

ι∗(det Tk)⊗ak = ι∗

(
⊗

k

(det Tk)⊗ak

)
.

Corollary 3.6 below implies that:

HHH(σ) := RHomK(SBimn)(1, σ) = RHomK(SBimn)(σ
−1, 1)

while (3.26) implies that:

HHH(σ) = HomK(SBimn)(σ
−1 ⊗ ∧•Tn, 1)

= HomK(SBimn)

[
ι∗

(
⊗

k

(det Tk)−ak ⊗ ∧•Tn

)
, 1

]

The adjunction of ι∗ and ι∗, together with the conjectured fact that ι∗1 = O, imply 

that:

HHH(σ) = RHomFHilbdg
n

(
⊗

k

(det Tk)−ak ⊗ ∧•Tn,O
)

Dualizing the RHom produces the desired result. �
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3.9. Proposition 2.10 describes flag Hilbert schemes as projective towers, which 

implies that:

En
∼= π∗(Ln+1) ∈ Db

(
CohC∗×C∗

(
FHilbdg

n × C

))

(this is simply the dg version of the statement that if π : PX(V) → X for a vector bundle 

V on an algebraic variety X, then SkV ∼= π∗(O(k)) for all k ≥ 0). Define the following 

object:

En := Tr(Ln+1) ∈ Kb(SBimn[xn+1]) (3.27)

Conjecture 1.1 implies that:

ι∗(En) = ι∗(Tr(Ln+1)) = π∗(ι∗(Ln+1)) = π∗(Ln+1) ∼= En. (3.28)

Conjecture 3.14. The following topological facts hold for all n ≥ 0.

(a) En is an explicit complex in terms of I(En−1) and Ln, as in (3.32) below.

(b) The following equation holds in Kb(SBimn[xn+1]):

SkEn
∼= Tr(Lk

n+1) ∀ k ≥ 0. (3.29)

(c) The Koszul complex

[
...

η−→ I(∧2En) ⊗ L−2
n+1

η−→ I(En) ⊗ L−1
n+1

η−→ R
]

(3.30)

is acyclic, where I(En) 
η→ Ln+1 denotes the adjoint map to (3.27).

Here the symmetric and exterior powers of En are understood in the sense of Re-

mark 3.13. The following result is proved in Section 4.7, and will show how to reduce 

our main Conjecture 1.1 to the topological computations of Conjecture 3.14 (a)–(c).

Theorem 3.15. Conjecture 3.14 implies Conjecture 1.1.

Remark 3.16. Consider the natural projection q : FHilbdg
n × C → FHilbdg

n . The corre-

sponding derived pushforward

q∗ : Db
(

CohC∗×C∗

(
FHilbdg

n × C

))
→ Db

(
CohC∗×C∗

(
FHilbdg

n

))

is not monoidal, and does not send SkEn to Sk(q∗(En)). However, using (2.25) one can 

write

En = [q∗F X−xn+1−−−−−→ q∗F ],
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where F is a certain explicit complex in Db
(

CohC∗×C∗

(
FHilbdg

n

))
with an endomor-

phism X. Using the projection formula and the equation q∗q∗(−) = − ⊗ C[xn+1], one 

can write q∗Sk(En) as an explicit complex built out of Schur functors of F . According 

to Conjecture 3.14, a similar complex should describe the image of Tr(Lk
n+1) under the 

forgetful functor SBimn[xn+1] → SBimn.

3.10. En as an explicit braid

The object En = Tr(Ln+1) ∈ Kb(SBimn[xn+1]) has a simple topological meaning, 

represented below (Fig. 4).

Fig. 4. The braid L4 and its partial trace E3.

The relation between the tangle En and the complex En is expected to categorify the 

classical formula for En (e.g. [51]) in the skein algebra. Specifically, skein relations are 

topological equalities between knots which only differ near a crossing (Fig. 5):

−q = (1 − q)

Fig. 5. Skein relation.

In Kb(SBimn) such equalities must be replaced with exact sequences. For example, 

consider the skein relation applied to the bottom right crossing of the braid Ln+1. If 

one closes the last strand in Fig. 6 and applies a Markov move, one gets the following 

formula in the Grothendieck group of SBimn (which is isomorphic to the Hecke algebra):

〈En〉 − 〈I(En−1)〉 = (1 − q)〈Ln〉 (3.31)

In the category Kb(SBimn[xn+1]), the above equality is lifted to an exact sequence:

[
En −→ ˜I(En−1)

]
∼=
[
qtLn

(0,xn−xn+1)−−−−−−−−→ qLn ⊕ tLn
(xn−xn+1,0)−−−−−−−−→ Ln

]
(3.32)

where t = s2/q and ˜I(En−1) refers to the same braid as I(En−1), but with the variables 

on the last two strands switched (compare with (2.43)). This is a crucial feature of the 

category SBimn[xn+1], where the variables xn and xn+1 play different roles. Also note 
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−q = (1 − q)

Fig. 6. Skein relation for Ln+1.

that (3.32) consists of 4 copies of Ln instead of the two of (3.31), due to the modified 

Markov move (3.16).

3.11. Geometric Markov invariance

In the category of Soergel bimodules, equation (3.16) governs the behavior of objects 

under Markov moves:

α � i(α), α � i(α) · σn, α � i(α) · σ−1
n (3.33)

where i is the operation of adding an extra strand to a braid α on n strands. We will now 

study how the complexes of sheaves B(α) = ι∗(α) ∈ D(CohC∗×C∗(FHilbdg
n (C)) behave 

under the same moves. Throughout this Subsection, we write FHilbdg
n = FHilbdg

n (C)

and:

π : FHilbdg
n+1 → FHilbdg

n × C

for the standard projection. The following Corollary is an easy consequence of Conjec-

ture 3.14, as we will show in Subsection 4.7.

Corollary 3.17. For any braid α on n strands, we have:

B(i(α)) = π∗(B(α)). (3.34)

To tackle the second and third Markov moves of (3.33), we consider the dg subscheme:

Zn ⊂ FHilbdg
n+1 (3.35)

OZn
:=

[
. . .

yn,n+1−−−−→ q2tLn

Ln+1

xn−xn+1−−−−−−→ qtLn

Ln+1

yn,n+1−−−−→ qO xn−xn+1−−−−−−→ O
]

,

where yn,n+1 denotes the last subdiagonal entry of the matrix Y of (2.14), regarded as 

an endomorphism tLn → Ln+1 on FHilbdg
n+1. The fact that OZn

is a complex follows 

from:

0 = [X, Y ]n,n+1 = xnyn,n+1 − yn,n+1xn+1
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Conjecture 3.18. For any braid α on n strands, we have:

B(i(α) · σn) = π∗(B(α)) ⊗OZn
. (3.36)

Corollary 3.19. Conjecture 3.18 implies that for any braid α on n strands:

B(i(α) · σ−1
n ) = π∗(B(α)) ⊗OZn

⊗ Ln

Ln+1
. (3.37)

Proof. Note the following the equation in the braid group:

Ln+1 = σn · Ln · σn ⇒ σ−1
n = L−1

n+1 · σn · Ln ⇒
i(α) · σ−1

n = i(α) · L−1
n+1 · σn · Ln = L−1

n+1 · i(α) · σn · Ln,

since Ln+1 commutes with the image of i. Applying B(−) to the above equation implies:

B(i(α) · σ−1
n ) = ι∗(i(α) ⊗ σ−1

n ) = ι∗(L−1
n+1 ⊗ i(α) ⊗ σn ⊗ Ln))

As in Conjecture 1.1, we have Lk = ι∗(Lk) for all k, and therefore (3.18) implies 

(3.37). �

Equations (3.34)–(3.37) are compatible with the stabilization invariance of HHH at 

the level of equivariant Euler characteristic.

Proposition 3.20. For any braid α on n strands, we have:

χ
(
B(i(α)) ⊗ ∧•T ∨

n+1

)
=

1 − a

1 − q
χ (B(α) ⊗ ∧•T ∨

n ) (3.38)

Assuming Conjecture 3.18, we further have:

χ
(
B(i(α) · σn) ⊗ ∧•T ∨

n+1

)
= χ (B(α) ⊗ ∧•T ∨

n ) (3.39)

χ
(
B(i(α) · σ−1

n ) ⊗ ∧•T ∨
n+1

)
=

a

qt
χ (B(α) ⊗ ∧•T ∨

n ) (3.40)

Proof. We replace the sheaves in (3.38)–(3.40) by their K–theory classes and write:

[Tn+1] = π∗ ([Tn]) + [Ln+1]

and:

[OZn
] = (1 − q)

(
1 − qt[Ln]

[Ln+1]

)−1

(3.41)

Since 
∫

is just pushforward to a point, it can be decomposed along the projection map 

π : FHilbdg
n+1 → FHilbdg

n × C. In other words, for all sheaves A one has:
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∫

FHilbdg
n+1

A =

∫

FHilbdg
n ×C

π∗A

We will apply this equality for the K–theory class:

[A] = [B(i(α))] · ∧•[T ∨
n+1] = π∗ ([B(α)] · ∧•[T ∨

n ]) ·
(

1 − a

[Ln+1]

)

where in the second equality we have used (3.34). Then we may prove (3.38) by noting 

that:

χ
(
[B(i(α))] · ∧•[T ∨

n+1]
)

= χ

(
π∗

[
π∗ ([B(α)] · ∧•[T ∨

n ]) ·
(

1 − a

[Ln+1]

)])
=

= χ

(
[B(α)] · ∧•[T ∨

n ] · π∗

(
1 − a

[Ln+1]

))
= (1 − a)χ ([B(α)] · ∧•[T ∨

n ]) (3.42)

(the additional factor of 1 − q in the right hand side of (3.38) comes from integrating 

over C). To establish the last equality in (3.42), we note that it holds at the categorified 

level:

π∗

(
OFHilbdg

n+1

)
= OFHilbdg

n ×C = π∗

(
OFHilbdg

n+1
⊗ L−1

n+1

)
(3.43)

where the first equality is a consequence of the fact that π is the projectivization of 

E∨
n , and the second equality follows from the first and (2.46) for A = O. Therefore, in 

K–theory, we have:

π∗

(
1 − a

[Ln+1]

)
= π∗(1) − aπ∗([L−1

n+1]) = 1 − a

in the K–theory of FHilbdg
n × C, thus proving the final equality in (3.42). Similarly, if 

we assume formula (3.36) (which would also imply (3.37), according to Corollary 3.19), 

then relations (3.39) and (3.40) follow from:

π∗(OZn
) =
[
qO xn−xn+1−−−−−−→ O

]
, π∗

(
OZn

⊗ 1

Ln+1

)
= 0 (3.44)

π∗

(
OZn

⊗ 1

L2
n+1

)
=

[
1

tLn

xn−xn+1−−−−−−→ 1

qtLn

]
[1] (3.45)

We will only prove these equalities at the level of K–theory, by using (3.41). Indeed, 

since the map π is PE∨
n , the push-forwards of the powers of Ln+1 = O(1) are encoded 

by:

π∗

(
δ

(Ln+1

z

))
= S∗

z∼∞[En] − S∗
z∼0[En] = (3.46)

=
∧∗

z∼∞[qtTn] ∧∗
z∼∞ [Tn]

(1 − z−1) ∧∗
z∼∞ [qTn] ∧∗

z∼∞ [tTn]
− ∧∗

z∼0[qtTn] ∧∗
z∼0 [Tn]

(1 − z−1) ∧∗
z∼0 [qTn] ∧∗

z∼0 [tTn]
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where the δ function is δ(z) =
∑∞

k=−∞ zk. In the right hand side, we write:

S∗
z [V] =

∞∑

k=0

(−z)−k · SkV, ∧∗
z[V] =

∞∑

k=0

(−z)−k · ∧kV

and the notations S∗
z∼0, ∧∗

z∼0 and S∗
z∼∞, ∧∗

z∼∞ refer to expanding the rational functions 

S∗
z , ∧∗

z in the domains z ∼ 0 and z ∼ ∞, respectively. Applying (3.41), we obtain:

π∗

(
[OZn

] · δ

(Ln+1

z

))
= π∗

⎛
⎝ 1 − q

1 − qt[Ln]
[Ln+1]

· δ

(Ln+1

z

)⎞
⎠

=
1 − q

1 − qt[Ln]
z

· π∗

(
δ

(Ln+1

z

))

and we can compute the right hand side using (3.46). To obtain (3.44) and (3.45), we 

must extract the coefficients of z0, z1, z2 in the right hand side of the above equality, 

and it is easy to see that one obtains 1 − q, 0 and q−1
qt[Ln] , respectively. �

3.12. Correspondences

Formula (3.34) can be expressed in terms of the complexes of sheaves:

F(σ) = ν∗(B(σ)) ∈ D(CohC∗×C∗(Hilbn))

of (1.19), where ν : FHilbdg
n → Hilbn is the map (1.18). Specifically, we have the spaces:

FHilbdg
n+1

FHilbdg
n Hilbn,n+1

Hilbn Hilbn+1

q
r

νn+1

νn
p1 p2

where Hilbn,n+1 = {I ∈ Hilbn, I ′ ∈ Hilbn+1, I ⊃ I ′ with quotient supported on {y =

0}} are the correspondences used by Nakajima and Grojnowski to describe the cohomol-

ogy groups of Hilbert schemes. At the categorified level, their construction gives rise to 

a functor:

Db(CohC∗×C∗(Hilbn))
α−→ Db(CohC∗×C∗(Hilbn+1)), α = p2∗p∗

1

To establish (1.21), note that F(i(σ)) equals:
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νn+1∗(B(i(σ))) = p2∗(r∗(B(i(σ)))) = p2∗(r∗(q∗(B(σ))))

= p2∗(p∗
1(νn∗(B(σ)))) = α(F(σ))

where the second equality follows from (3.34), and the third equality follows from the 

fact that the rhombus is cartesian. This latter fact may seem obvious at the level of 

closed points, but scheme-theoretically it only holds because we have replaced the badly 

behaved scheme FHilbn with the nicely behaved dg scheme FHilbdg
n .

3.13. Mirror braids

In this section, we will relate the operation of mirroring braids (i.e. replacing all σi’s in 

the braid word with σ−1
i ’s) with duality on the category of coherent sheaves on FHilbdg

n .

Proposition 3.21. For any F ∈ DbCoh(FHilbdg
n ) one has:

∫

FHilbdg
n

F ⊗ ∧•T ∨
n

∼=

⎡
⎢⎣
∫

FHilbdg
n

F∨ ⊗ ∧n−•T ∨
n

⎤
⎥⎦

∨

where the a-grading in the right hand side is reversed from i to n − i.

The Proposition above follows by iterating (2.46) n times, and recalling the fact that 

∧•Tn ⊗L−1
1 ...L−1

n = ∧•Tn ⊗ det(Tn)−1 ∼= ∧n−•T ∨
n . It is natural to conjecture, therefore, 

that mirroring the braid σ simply corresponds to dualizing the complex of sheaves B(σ)

on FHilbdg
n :

Conjecture 3.22. For any braid σ, we have:

B(σ∨) = B(σ)∨,

where β∨ denotes the mirror of β.

The following example shows that the computation of a dual sheaf can be nontrivial.

Example 3.23. As we will see in Section 5 (and also from Section 3.11), the braid σ1 ∈
SBim2 corresponds to the structure sheaf O on FHilb2(point) × C ⊂ FHilb2(C), while 

σ−1
1 ∈ SBim2 corresponds to O(−1) on FHilb2(point) × C. The fact that the objects

B(σ1) = OFHilb2(point)×C and B(σ−1
1 ) = OFHilb2(point)×C(−1)

are dual to each other follows from the fact that the exact sequence:
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OFHilb2(point)×C ←− OFHilb2(C)
x1−x2←−−−− OFHilb2(C)

w←− O(−1)FHilb2(point)×C

is self-dual.

3.14. Some remarks on support

We now explore what the endpoints of a braid σ say about the sheaf Bσ on FHilbdg
n . 

For any braid σ, let wσ ∈ Sn denote the underlying permutation.

Proposition 3.24. (e.g. [43, Proposition 2.16]) For any braid σ and for all i ∈ {1, ..., n}, 

the left action of xi on the complex σ ∈ Kb(SBimn) is homotopic to the right action of 

xwσ(i)
.

In short, we will say that the left action R � σ is homotopic to the right action 

σ �w(σ) R, twisted by the permutation wσ. As a consequence, we obtain the following 

result:

Corollary 3.25. The R–module RHomKb(SBimn)(1, σ) is supported on the subspace:

{
xi = xwσ(i), i = 1, . . . , n

}
⊂ C

n.

Our construction of Conjecture 1.1 is predicated on the expectation that:

HomKb(SBimn)(1, σ) = RΓ(FHilbdg
n ,B(σ))

and that moreover B(σ) can be reconstructed from the spaces HomKb(SBimn)(1, σ ·∏n
i=1 Lai

i ) for all sequences of large enough natural numbers (a1, ..., an). These Hom 

spaces in the category SBimn are very hard to compute, and all we can say at this stage 

is that Corollary 3.25 still applies to them. Therefore, we obtain the following:

Corollary 3.26. Assuming Conjecture 1.1, the complex B(σ) = ι∗(σ) is supported on the 

subvariety:

FHilbdg
w := ρ−1

({
xi = xwσ(i), i = 1, . . . , n

})
⊂ FHilbdg

n = FHilbdg
n (C)

where ρ : FHilbdg
n (C) → C

n is the map that records the eigenvalues (x1, ..., xn), akin to 

(2.3).

Corollary 3.27. Suppose that the closure of σ is connected (that is, a knot). Then B(σ)

is supported on

ρ−1 ({x1 = . . . = xn}) = FHilbn(point) × C.
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Remark 3.28. Following Section 1.9, one can prove that if the closure of σ is connected, 

then the sheaf B(σ) fibers trivially over C, i.e.:

B(σ) = B(σ) �OC

for some sheaf B(σ) ∈ DbCoh(FHilbn(point)). Since FHilbn(point) is projective, the 

cohomology of this sheaf is expected to be finite-dimensional. Moreover, our conjectures 

imply the fact that this cohomology matches the reduced Khovanov-Rozansky homology 

of σ.

In general, FHilbdg
w may be quite complicated. However, for certain permutations w =

wσ we can describe it explicitly. The baby case is when w = (j, j + 1) is a transposition.

Definition 3.29. Define the dg subscheme Zj ⊂ FHilbdg
n by the following equation:

OZj
:=

[
. . . −→

q2t2L2
j

L2
j+1

yj,j+1−−−−→ q2tLj

Lj+1

xj−xj+1−−−−−→ qtLj

Lj+1

yj,j+1−−−−→ qO xj−xj+1−−−−−→ O
]

. (3.47)

Here yj,j+1 : tLj → Lj+1 is the map of line bundles induced by the homonymous 

coefficient of the matrix Y in (2.14), and the fact that yj,j+1(xj −xj+1) = 0 follows from 

[X, Y ] = 0.

Remark 3.30. Formula (3.47) implies the following exact sequence:

[
qO xj−xj+1−−−−−→ O

]
∼=
[
OZj

Id−→ qtLj

Lj+1
⊗OZj

[2]

]
(3.48)

Our motivation for defining Zj is the fact that:

OFHilbdg
(j,j+1)

= OZj
(3.49)

for all j ∈ {1, ..., n − 1}. The following proposition follows directly by iterating (3.49).

Proposition 3.31. Suppose that w has cycle structure:

(1, ..., k1)(k1 + 1, ..., k2), ..., (kr + 1, ..., n)

for some sequence 0 < k1 < . . . < kr < n. Then the dg structure sheaf of FHilbdg
w has 

the following periodic resolution by locally free sheaves on FHilbdg
n :

OFHilbdg
w

∼=
⊗

j /∈{k1,...,kr}

[
. . . −→ q2tLj

Lj+1

xj−xj+1−−−−−→ qtLj

Lj+1

yj,j+1−−−−→ qO xj−xj+1−−−−−→ O
]

. (3.50)
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Conjecture 3.32. Suppose that α =
∏r

i=0(σki+1 · · ·σki+1−1) is a subword of the Coxeter 

word σ1 · · ·σn−1, for any sequence 0 < k1 < . . . < kr < n as in Proposition 3.31. Then:

B(α) = OFHilbdg
w

.

Example 3.33. For α = 1, the conjecture simply reads B(α) = OFHilbdg
n

, as prescribed by 

Conjecture 1.1. For α = σ1 · · ·σn−1, the conjecture reads B(α) = OFHilbdg
n (point)×C.

Conjecture 3.32 gives a full description of B(α) for all braids α on two strands (see 

Section 5 for the explicit construction in this case). Moreover, it completely describes 

B(α) for the braids α = 1, s1, s2, s1s2 on 3 strands, multiplied by arbitrary powers of 

the twists FT2, FT3. Building upon this, the following conjecture supersedes the main 

conjecture of [37], and it serves as one of the motivating examples of the present work:

Conjecture 3.34. For gcd(m, n) = 1, consider the torus braid αn,m = (σ1 · · ·σn−1)m. 

Then

B(αm,n) =

(
n⊗

i=1

L
⌊

im
n

⌋
−
⌊

(i−1)m

n

⌋

i

)
⊗OFHilbdg

n (point)×C (3.51)

See Sections 5 and 6 for detailed computations for two and three-strand torus braids.

Remark 3.35. It was proved in [37] that the equivariant Euler characteristic of the 

right hand side of (3.51) is equal to the “refined Chern-Simons invariant” defined by 

Aganagic-Shakirov [2] and Cherednik [19]. One can therefore consider Conjecture 3.34

as a categorification of the conjectures in [2,19] relating the Poincaré polynomial of 

Khovanov-Rozansky homology to these “refined invariants”.

4. Categories and schemes

4.1. Motivation: maps to projective space

We start by recalling certain classical constructions in algebraic geometry which will 

guide all subsequent generalizations. Let X be a projective algebraic variety and let L
be a line bundle (i.e. a rank one locally free sheaf) over X. One says that L is generated 

by global sections if the map of sheaves:

OX ⊗ Γ(X,L) → L

is surjective. If we choose a basis s0, ..., sn of the vector space Γ(X, L), this comes down 

to requiring that any local section of L is a linear combination of the sections s0, ..., sn. 

Moreover, the above datum gives rise to a map:
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X
ι→ P

n, x �→ [s0(x) : ... : sn(x)] (4.1)

Global generation implies the fact that the sections s0, ..., sn cannot all vanish simulta-

neously. Moreover, while si are sections of the line bundle L, their ratios are well-defined 

rational functions on X. To this end, we may define the open subset:

Xi = {si(x) �= 0} ⊂ X

where the ratios sj/si are well–defined. Hence the map (4.1) restricts to a map:

Xi → Ui = {zi �= 0} ⊂ P
n

If we let O(1) denote the Serre twisting sheaf on P n, then we have:

ι∗(O(k)) = L⊗k, ∀ k ∈ Z

The functor ι∗ is monoidal, and is the left adjoint of the direct image functor:

Coh(X)
ι∗−�===�−
ι∗

Coh(P n) (4.2)

In the remainder of this section, we present a generalization of this construction, where 

the role of the map ι : X → P
n is replaced by an abstract categorical setup inspired by 

(4.2).

Remark 4.1. By deriving the functors in question, we may write (4.2) at the level of 

derived categories. Then the sections can be thought of as complexes:

[
OX

si→ L
]
∈ Db(Coh(X))

which are supported on {X \ Xi} = {si = 0}. The product of these complexes:

n⊗

i=0

[
OX

si→ L
]

(4.3)

is therefore supported on the set where all si vanish simultaneously, which by assumption 

is the empty set. Therefore, (4.3) is quasi-isomorphic to 0, and hence it vanishes in 

Db(Coh(X)). Put differently, the vanishing of (4.3) is forced upon us by the vanishing 

of the Koszul complex:

n⊗

i=0

[
OP n

zi→ OP n(1)
] q.i.s.∼= 0 ∈ Db(Coh(P n))

and the fact that the derived version of the functor ι∗ in (4.2) is monoidal.
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Remark 4.2. Projective space can be defined more scheme-theoretically as:

P
n = Proj

(
∞⊕

k=0

Sk
C

n+1

)

Then the map (4.1) is given by the map Cn+1 → Γ(X, L) induced by the choice of the 

sections s0, ..., sn, and in fact global generation translates into:

X = Proj

(
∞⊕

k=0

Γ(X,L⊗k)

)
.

4.2. Categories over schemes

In this section, we will develop a general setup relating a category C with a scheme X, 

with the goal of reducing Conjecture 1.1 to Conjecture 3.14. Though we will not always 

say this explicitly, X should be thought of as a dg scheme.

Definition 4.3. A morphism from the category C to the scheme X, written as:

C ι−→ X

consists of a pair of functors:

K(C)
ι∗−�===�−
ι∗

D(Coh(X)) (4.4)

such that:

• ι∗ is a monoidal functor

• ι∗ is the right adjoint of ι∗

• the following projection formula holds:

ι∗(ι∗M1 ⊗ C ⊗ ι∗M2) = M1 ⊗ ι∗(C) ⊗ M2 (4.5)

for all M1, M2 ∈ D(Coh(X)) and C ∈ C.

The above definition is modeled on the situation when C = Coh(Y ) for a scheme Y , 

in which case the functors ι∗ and ι∗ play the roles of derived direct and inverse image 

functors associated to a map of schemes ι : Y → X.

Definition 4.4. We call the map C ι−→ X r.o.r.s. if:

ι∗1 = OX (4.6)
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The terminology is short for “resolution of rational singularities”, since (4.6) holds if X

has rational singularities, and C is the derived category of a resolution of singularities of 

X.

Proposition 4.5. Suppose that C ι−→ X is r.o.r.s. Then ι∗ is fully faithful, and moreover:

HomK(C)(1, ι∗M) = RΓ(X, M) (4.7)

for all M ∈ Coh(X).

Proof. The adjunction implies that:

HomK(C)(ι
∗M ′, ι∗M) = R HomX(M ′, ι∗ι∗M) = R HomX(M ′, M)

where the last equality follows from (4.5) and (4.6). When M ′ = OX we obtain precisely 

(4.7). �

Alternatively, we will say that C is a category over X. We will say that the category C is 

defined over a commutative ring A if there is a morphism from the C to the corresponding 

scheme SpecA.

4.3. The affine case

Let C be an additive monoidal category. Suppose we are given a Noetherian commu-

tative ring A and a ring homomorphism

A
f−→ EndC(1) (4.8)

satisfying

(#) HomC(1, C) is finitely generated over A

for any object C of C. Then there is a morphism:

C ι−→ Spec A. (4.9)

The functors

K(C)
ι∗−�===�−
ι∗

D(A–mod)

are defined as follows. There is a functor i∗ : C → A–mod given by:

i∗(C) = HomC(1, C). (4.10)



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 55

This extends in the obvious way to a functor i∗ : K(C) → K(A–mod), and ι∗ is defined 

to be the composition of i∗ with the natural inclusion K(A–mod) → D(A–mod).

In the other direction, let FA–mod be the category of finitely generated free A mod-

ules. Since A is Noetherian, every finitely generated A–module has a free resolution in 

FA–mod. If we have a morphism between two modules, this can be lifted to a morphism 

between their resolutions. Any two resolutions of a given module are homotopy equiv-

alent. Now any complex of finitely generated A-modules can be replaced by a complex 

built out of resolutions of its terms. This yields a functor D(A–mod) → K(FA–mod), 

so the inclusion K(FA–mod) → D(A–mod) is an equivalence of categories. We define 

ι∗ : K(FA–mod) → K(C) by setting ι∗(A) = 1 and ι∗(a) = f(a) for a ∈ A = Hom(A, A). 

This extends to K(FA–mod) in the obvious way. If M is an object of D(A–mod), we 

write ι∗(M) = M ⊗A 1.

Let us check that the functors ι∗ and ι∗ are adjoint, or equivalently, that

HomK(C)(M ⊗A 1, C) = HomD(A–mod)(M, HomC(1, C)) (4.11)

for all M ∈ D(A–mod) and C ∈ K(C). If C ∈ C, the right-hand side is by definition 

ExtA(M, HomC(1, C)). The statement that it is equal to the left-hand side reduces to the 

well known fact that to compute Ext of two modules, it is enough to take a free resolution 

of one of them. Properties (4.5) and (4.6) also follow directly from the definitions.

Example 4.6. Let Y be an algebraic variety, and C = Coh(Y ). The unit in Y is given by 

the structure sheaf OY , and indeed C is a category over Spec EndC(1) = Spec Γ(Y, OY ). 

This structure is precisely equivalent with the global section map:

ι : Y → Spec Γ(Y,OY )

More generally, a ring homomorphism A 
f→ Γ(Y, OY ) corresponds to a map Spec Γ(Y,

OY ) → Spec A, and one can use the composed map from Y to Spec A to define ι∗ and 

ι∗.

4.4. The projective case

In the previous Subsection, we showed that any category can be realized over the 

spectrum of the endomorphism ring of its unit. We may upgrade this construction if we 

are given an invertible object F ∈ K(C) as in (3.14).

Assumption 4.7. We assume that the graded algebra:

HomK(C)(1, F •) :=

∞⊕

k=0

HomK(C)(1, F k) (4.12)

is commutative.
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Since F is invertible, we have a family of maps

HomK(C)(1, F k) ⊗ F m � HomK(C)(F
m, F k+m) ⊗ F m → F k+m (4.13)

which defines the action of HomK(C)(1, F •) on 
⊕

m F m.

Remark 4.8. Recall that C was a graded category, so for every k the space HomK(C)(1, F k)

is graded. The algebra HomK(C)(1, F •) has an extra grading which equals k on 

HomK(C)(1, F k).

In this setting, there exists a tautological morphism:

C ι−→ (Spec R)/C
∗ (4.14)

for any Noetherian graded commutative C-algebra R and graded ring homomorphism:

R
f−→ HomK(C)(1, F •) (4.15)

The functors (4.4) are explicitly given by:

ι∗(C) = HomK(C) (1, F • ⊗ C) (4.16)

ι∗(M) =

(
M ⊗R

∞⊕

k=−∞

F k

)0

(4.17)

for all graded R-modules M and all C ∈ K(C). The Hom space in (4.16) is an R-

module via (4.15). The action of R on 
⊕∞

k=−∞ F k is defined by (4.13) via (4.15). It is 

straightforward to show that the analogue of (4.11) holds, and that the above datum 

makes C into a category over the stack (Spec R)/C
∗:

K(C)
ι∗−�===�−
ι∗

D(R–grmod) (4.18)

Note that one needs the analogue of condition (#) on the category C to ensure that 

the above functors are well-defined (in particular, that the right hand side of (4.16) is a 

finitely generated R-module). But given this, the map ι is r.o.r.s. if and only if the map 

f of (4.15) is an isomorphism.

Example 4.9. Let us consider the case where R = A[z0, ..., zn], for a ring A equipped 

with a homomorphism A → EndC(1). Then the datum of the homomorphism (4.15)

boils down to giving n + 1 morphisms:

zi �

{
1

αi−→ F
}

i=0,...,n
(4.19)
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This makes C into a category over the stack: C ι−→ A
n+1
A /C

∗. The natural question is 

when does ι factor through projective space:

C P
n
A

A
n+1
A /C

∗

ι′

ι

which amounts to factoring (4.18) through functors:

K(C)
ι′

∗−�===�−
ι′∗

D(Coh(P n
A)) (4.20)

It is clear that ι′∗ and ι′
∗ must be given by the same formulas as in (4.16)–(4.17), but 

one needs to impose a certain relation. Because the zero section of An+1
A /C

∗ is removed 

when defining projective space, the structure sheaf of the zero section becomes quasi-

isomorphic to 0. Since this structure sheaf can be expressed via the following Koszul 

complex:

[
... −→ O(−2)⊕(n+1

2 ) −→ O(−1)⊕(n+1
1 ) (z0,...,zn)−−−−−−→ O

]
=

n⊗

i=0

[
O(−1)

zi−→ O
]

we conclude that the functors (4.20) are well-defined only if:

[
1

α0−→ F
]
⊗ ... ⊗

[
1

αn−−→ F
] h.e.∼= 0 ∈ K(C). (4.21)

It is not hard to see that this condition is also sufficient, by invoking Beilinson’s 

description [9,10,14,61] of the derived category of projective space as equivalent to the 

homotopy category of complexes of finite direct sums of free A[x0, ..., xn]–modules with 

degree shifts ∈ {0, ..., n}.

Remark 4.10. If F = L is a line bundle in C = Coh(X), then αi are nothing but sections 

of L. By Remark 4.1, equation (4.21) is equivalent to the fact that αi generate L, and 

indeed this is a necessary and sufficient condition for the existence of X → P
n, as we 

saw in Subsection 4.1.

4.5. The relative case

The situation of Example 4.9 captures a very interesting problem, namely when can 

we factor a map from a category to a scheme through another scheme:

C Y

X

ι′

ι
π (4.22)
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More precisely, ι′ should satisfy the equations ι∗ = ι′ ∗ ◦ π∗ and ι∗ = π∗ ◦ ι′
∗ and all the 

functors should be derived from now on. The situation we will study in this paper is 

when:

Y = PV∨ := ProjX(S•V)

where V is a coherent sheaf on X of projective dimension 0 or 1. Let us first study the 

case of projective dimension zero, so assume that V is a vector bundle.

Proposition 4.11. Suppose that Y = PV∨ and that the map ι in (4.22) is constructed. 

The datum of the extension ι′ is equivalent to an invertible object F ∈ C together with 

an arrow:

ι∗V α−→ F (4.23)

in C. This gives C the structure of a category over Y if and only if:

[
...

α−→ ι∗
(
∧kV

)
⊗ F −k α−→ ...

] h.e.∼= 0 ∈ Kb(C) (4.24)

The map ι′ is r.o.r.s. if and only if ι satisfies:

SkV ∼= ι∗(F k) ∀ k ≥ 0 (4.25)

Proof. First we prove that the existence of ι′ is equivalent to (4.23) and (4.24). All 

notations O or O(k) will refer to invertible sheaves on PV∨. If ι′ exists and has all the 

expected properties, then set F = ι′∗(O(1)). In this case, the map (4.23) is simply ι′∗

applied to the tautological morphism:

π∗V −→ O(1)

on Y . The fact that the complex (4.24) is quasi-isomorphic to 0 follows by applying ι′∗

to the Koszul complex of Y .

Conversely, suppose that we are given a morphism (4.23) which satisfies (4.24), and 

let us construct the map ι′ that makes the diagram (4.22) commute. Note that (4.23)

gives us an arrow:

ι∗
(
V⊗k

)
−→ F k

for all k ≥ 0. Because F is invertible, this arrow factors through:

ι∗
(
SkV

)
−→ F k (4.26)
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for all k ≥ 0 (since F is invertible, so is F k, and hence has no nontrivial endomorphisms; 

this implies that the anti-symmetric projector is zero, hence SkF = F k). This allows us 

to define:

ι′∗(M) =

(
π∗(M)

⊗

S•V

∞⊕

k=−∞

F k

)0

A priori, this only determines the functor ι′∗ on the level of the homotopy category of 

coherent sheaves on PV∨. To check that it descends to a functor on the derived category, 

we must show that ι′∗ takes quasi-isomorphic complexes to isomorphic complexes. The 

fact that this statement is true for the Koszul complex is precisely the assumption (4.24). 

The fact that this is sufficient is due to Theorem 2.10 of [42] (see also [6]), which asserts 

that:

Db (Coh(PV∨)) ∼= homotopy category of

complexes of

(
rank V−1⊕

i=0

Ei(i)

)

E0,E1,...∈Db(Coh(X))

Finally, let us check that ι′ is r.o.r.s. if and only if (4.25) holds. The r.o.r.s. property 

of ι′ implies that ι′
∗1 ∼= O, from which the projection formula implies ι′

∗(F k) ∼= O(k). 

Applying π∗ to this relation implies precisely (4.25).

Remark 4.12. Strictly speaking, this holds as stated if V is a locally free sheaf. For more 

general V, the statement holds once the right hand side is replaced by its idempotent 

completion similarly to [62, Theorem 4].

As for the right adjoint functor, we set:

ι′
∗(C) = ι∗

(
∞⊕

k=−∞

F k ⊗ C

)

as a graded OX-module. To realize the right hand side as a sheaf on Y , we need to endow 

it with an action of S∗V, namely with an associative homomorphism of graded algebras:

S∗V ⊗OX
ι∗

(
∞⊕

k=−∞

F k ⊗ C

)
−→ ι∗

(
∞⊕

k=−∞

F k ⊗ C

)

The above morphism is obtained via adjunction and (4.26). �

4.6. Projective dimension one

For the setting of this paper, we will need a version of Proposition 4.11 when the 

vector bundle V is replaced by the quotient:
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0 −→ W ψ−→ V −→ Q −→ 0

where W is another vector bundle. More precisely, we are interested in the case when:

Y ↪→ PV∨

is the (derived) zero locus of the section:

s : π∗(W)
ψ−→ π∗(V) −→ O(1) (4.27)

where π is the map in the following diagram:

Y

C PV∨

X

jι′′

ι′

ι
π

(4.28)

To simplify the geometry, we make the following very important assumption:

the ideal of Y
j

↪→ PV∨ is generated by a regular sequence in Im s (4.29)

which entails that the embedding ψ cuts out Y as a complete intersection in PV∨. One 

could do without this assumption, but that would require one to replace Y with the 

dg scheme determined by the exterior power of the section s. In other words, we must 

require the following quasi-isomorphism in the derived category of PV∨:

OY
∼=
[
...

s−→ ∧kπ∗(W) ⊗O(−k)
s−→ ...

s−→ O
]

(4.30)

In order to construct the lift ι′′ in (4.28), we must first construct the arrow ι′, and for 

this we invoke Proposition 4.11. Then the following Proposition says precisely when the 

arrow ι′ thus defined factors through Y .

Proposition 4.13. Suppose that Y
j

↪→ PV∨ as in (4.28) and that the map ι is constructed. 

The datum of the extension ι′′ is equivalent to an invertible object F ∈ C together with 

an arrow:

ι∗Q β−→ F (4.31)

in C. This gives C the structure of a category over Y if and only if:

[
...

β−→ ι∗
(
∧kQ

)
⊗ F −k β−→ ...

] h.e.∼= 0 (4.32)
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The map ι′′ is r.o.r.s. if and only if ι∗ gives rise to an isomorphism:

SkQ ∼= ι∗(F k) ∀ k ≥ 0 (4.33)

Note that if we interpret Y as a dg scheme whose structure sheaf is the dg algebra 

in the right hand side of (4.30), we must replace Q in (4.31), (4.32), (4.33) with the 

two term complex [W → V]. Making sense of the symmetric and exterior powers of 

such a complex is rather straightforward homological algebra, which we relegate to the 

Appendix.

Proof. First we prove that the existence of ι′′ is equivalent to (4.31) and (4.32). As we 

have seen in Proposition 4.11, the existence of a monoidal functor:

ι′∗ : D(Coh(PV∨)) → K(C)

implies the datum of an invertible object F ∈ C (the image of O(1)) together with an 

arrow ι∗V → F in C (the image of the tautological morphism). The question is when 

does the functor ι′∗ factor through:

D(Coh(PV∨))
j∗

−→ D(Coh(Y ))

M �→ M ⊗OPV∨ OY =
[
...

s−→ ∧kπ∗(W) ⊗ M(−k)
s−→ ...

s−→ M
]

where in the last equality we have used the assumption (4.29). In particular, we have:

j∗

⎡
⎢⎢⎢⎣

π∗(W)

O(1)

s

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

...
s−→ ∧kπ∗(W) ⊗ π∗(W)(−k)

s−→ ...

...
s−→ ∧kπ∗(W) ⊗O(−k + 1)

s−→ ...

s

⎤
⎥⎥⎥⎥⎦

q.i.s.∼= j∗

⎡
⎢⎢⎢⎣

π∗(W)

O(1)

0

⎤
⎥⎥⎥⎦

This implies that the functor ι′′∗ must take the composition π∗(W) 
ψ
↪→ π∗(V) → O(1) to 

zero, and hence the map α of (4.23) must factor through a map β as in (4.31). Sending 

the Koszul complex of β though the functor j∗ gives rise to the Koszul complex of α, 

which must be sent to 0 by (4.24). Therefore, we conclude that the existence of the 

extension ι′′∗ requires (4.32).

Finally, let us prove that ι′′ is r.o.r.s. if and only if (4.33) holds. Recall that being 

r.o.r.s. is equivalent to ι′′
∗1 ∼= OY . The projection formula implies that ι′′

∗(F •) ∼= OY (k), 

and applying j∗ to this isomorphism yields:

ι′
∗(F •) ∼=

[
...

s−→ ∧kπ∗(W) ⊗O(• − k)
s−→ ...

]

Applying π∗ to the above isomorphism implies:
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ι∗(F •) ∼=
[
∧W ⊗ S V

]•
(4.34)

where the differential in the right hand side of (4.34) is given by the map ψ : W → V. As 

in Example 10.3, the right hand side is a resolution of S•Q, hence we obtain (4.33). �

4.7. Deducing Conjecture 1.1 from Conjecture 3.14

The categorical setup presented in this section allows one to deduce the main conjec-

ture from Conjecture 3.14 (a)–(c). We will proceed by induction on n, so let us assume 

that the functors (3.17) are well-defined for some fixed n. Our task is to construct func-

tors:

K(SBimn+1)
ιn+1∗−�=====�−
ι∗

n+1

D(Coh(FHilbdg
n+1))

given the functors:

K(SBimn)[xn+1]
ιn∗−�===�−
ι∗

n

D(Coh(FHilbdg
n × C))

obtained from the inductive hypothesis and tensoring with the extra variable xn+1. We 

define the composed functors:

ι∗ : K(SBimn+1)
Tr−�===�−
I

K(SBimn[xn+1])
ιn∗−�====�−
ιn

∗
D(Coh(FHilbdg

n × C)) : ι∗

According to Proposition 2.10, we have FHilbdg
n+1 = PE∨

n , where En is the complex on 

FHilbdg
n ×C from (2.25). Relation (2.36) states that this complex has projective dimension 

1, and we can therefore apply Proposition 4.13. To do so, we must exhibit an invertible 

object F ∈ K(SBimn+1) and a morphism:

ι∗En
β−→ F

in K(SBimn). We will choose F = Ln+1 and take the morphism β to be the adjoint of 

(3.29):

En = ι∗(Ln+1) = ιn∗ (Tr(Ln+1))

The full statement of (3.29) allows one to prove that Sk(En) = ι∗(Lk
n+1), which es-

tablishes the fact that SBimn+1 is r.o.r.s. over FHilbn+1 by (4.33). To complete the 

proof of Conjecture 1.1 one needs to also check that (4.32) holds, which is part (c) of 

Conjecture 3.14.
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5. Example: the case of two strands

5.1. The geometry of FHilb2

In this section, we will always write FHilb2 = FHilb2(C). In this section we construct 

explicitly the functors ι∗ and ι∗ between the category of sheaves on FHilb2 and the 

category of Soergel bimodules SBim2. We have the matrix presentation:

FHilb2 =

{
X =

(
x1 0

z x2

)
, Y =

(
0 0

w 0

)
, [X, Y ] = 0, v =

(
1

0

)
cyclic

}

conjugation by g =

(
1 0

0 c

)

Note that in the presentation above, we fixed the vector v (and this fixes the first column 

of the conjugating matrix) to eliminate some coordinates. Unwinding the above gives us:

FHilb2 =
{(x1, x2, z, w), (x1 − x2)w = 0, z, w not both zero}

(x1, x2, z, w) ∼ (x1, x2, cz, cw)
= Proj(A) (5.1)

where x1, x2, z, w have degrees 0, 0, 1, 1 in the graded algebra:

A =
C[x1, x2, z, w]

(x1 − x2)w
(5.2)

Recall the complex (2.25):

E1 =

[
qtO (0,x1−x2,0)−−−−−−−→ qO ⊕ tO ⊕O (x1−x2,0,1)T

−−−−−−−−→ O
]

(5.3)

on FHilb1(C) × C = C
2, from which it is clear the leftmost map is injective and the 

rightmost map is surjective on all fibers. Therefore, we have H0(E1) ∼= E1 and hence:

FHilb2
∼= FHilbdg

2

Moreover, letting z and w be coordinates on the first two summands of the middle space 

of (5.3), we observe that H0(E1) = (Oz ⊕ Ow)/(x1 − x2)w, which matches the algebra 

(5.2). The irreducible components of the flag Hilbert scheme (see Fig. 7) are:

FHilb2 = W1 ∪ W2 (5.4)

where:

W1 = {x1 �= x2} = {w = 0} = C
2 with coordinates (x1, x2) = Proj(A/wA) (5.5)
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•

•

I(2)

I(1,1)

W1

W2

Fig. 7. Flag Hilbert scheme of two points.

W2 = {x1 = x2} = C × P
1 with coordinates (x, [z : w]) = Proj(A/(x1 − x2)A) (5.6)

The intersection of these two irreducible components is:

W1 ∩ W2 = C × [1 : 0] = C × {I(2)}

while the other torus fixed point I(1,1) satisfies:

W1 /� I(1,1) ∈ W2, I(1,1) = (0, [0 : 1])

Note that W2 corresponds to Z1 in the notations of Section 3.14.

5.2. Cohomology of sheaves on FHilb2

On the projectivization (5.1), the line bundles of importance for us are L1
∼= O and 

L2
∼= O(1), where the latter denotes the Serre twisting sheaf. Note that:

T2
∼= O ⊕O(1) (5.7)

We will now compute the cohomology groups of certain line bundles on FHilb2. To 

simplify our computations by removing a factor of C, we will work with the reduced 

version of all the schemes and dg schemes in question (see Subsection 1.9). Specifically, 

this means:

FHilb2 = Proj(A) where A =
C[x, z, w]

xw
(5.8)

where we set x1 + x2 = 0 and x1 − x2 = x. The irreducible components of this variety 

are:

W 1 = C and W 2 = P
1 = FHilb2(point)

Note that T 2 = O(1). The following cohomology computations are well-known:
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Hi(W 1,O(k)) =
qk

1 − q
· δi,0

because W 1 = C, while:

Hi(W 2,O(k)) =

⎧
⎪⎪⎨
⎪⎪⎩

tk + tk−1q + . . . + tqk−1 + qk if i = 0 and k ≥ 0

(qt)−1(tk+2 + . . . + qk+2) if i = 1 and k ≤ −2

0 otherwise

because W 2 = P
1 with equivariant weights q and t. Consider the short exact sequence:

0 qOW 1

x OFHilb2
OW 2

0

which is induced by (5.4). Because the cohomology of sheaves on W 1 is concentrated in 

degree 0, we have the following equality of (q, t)–equivariant vector spaces:

Hi(FHilb2,O(k)) = qHi(W 1,O(k)) + Hi(W 2,O(k)) =

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tk + . . . + qk + qk+1

1−q if i = 0 and k ≥ 0
qk+1

1−q if i = 0 and k < 0

(qt)−1(tk+2 + . . . + qk+2) if i = 1 and k ≤ −2

0 otherwise

(5.9)

The analogous equalities for the non-reduced version FHilb2 are obtained by dividing 

the right hand sides of (5.9) by 1 − q.

5.3. Soergel bimodules for n = 2

The category of Soergel bimodules is generated by two objects: R = C[x1, x2] and 

B = R ⊗R(12) R. With our grading conventions, we have:

B2 = B ⊗R B ∼= q
1
2 B ⊕ q− 1

2 B (5.10)

In the reduced category, we can set x1 + x2 = 0 and x1 − x2 = x, and write R = C[x]

and:

B = R ⊗R
s R = C[x] ⊗C[x2] C[x].

This object also satisfies property (5.10), and moreover:

Hom(1, B) � Ext1(1, B) = R
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are rank 1 modules over R. In terms of grading, note that Ext1 differs from Hom by a 

shift by the equivariant weight a−1q−1, which is an incarnation of the wedge product in 

(1.13). Thus:

RHom•(1, B) = ∧•

(
ξ

qa

)
⊗ R (5.11)

for a formal variable ξ. The object in the Soergel category which corresponds to a single 

positive crossing σ is the following complex:

σ =

[
B

1⊗1�→1−−−−−→ sR

q
1
2

]

The powers of s mark homological degree, and so they are always consecutive integers 

in a complex. We mainly use them to pinpoint the 0–th term of a complex, and to 

compare with formulas from geometry. Similarly, the object in the Soergel category 

which corresponds to a single negative crossing σ−1 is:

σ−1 =

[
q

1
2 R

s

1�→x⊗1+1⊗x−−−−−−−−→ B

]

Let us write FT = FT2 for the image of the full twist in the reduced Soergel category, 

and note that FT = σ2. Therefore, formula (5.10) allows us to write:

FT =

[
q

1
2 B → sB

q
1
2

→ s2R

q

]

Recall that the connection between the parameters s and t is given by s2 = qt. The two 

maps that span the space Hom(1, FT) are described in the following diagram:

[
q

1
2 B s

q
1
2

B tR
]

qR tR

z w
(5.12)

where z = (1 �→ x ⊗ 1 + 1 ⊗ x) and w = Id. As we will see in more examples in the next 

Subsection, it is no coincidence that the only maps from R into non-negative powers of 

the full twist have integer q, t–weights: this is called the “parity miracle” by [25].

Proposition 5.1. We have the following relation in the category SBim2:

0
h.e.∼=
[
...

α1−→ qFT
−2 ⊕ qFT

−2 α2−→ FT
−2 ⊕ qFT

−1 α1−→ FT
−1 ⊕ FT

−1 (z,w)−−−→ 1

]
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where the maps α1 and α2 are given by:

α1 =

(
w 0

−z x

)
and α2 =

(
x 0

z w

)
(5.13)

Proof. Remark that this complex is filtered by complexes:

[
FT

−k−2 (w,−z)−−−−→ FT
−k−1 ⊕ FT

−k−1 (z,w)−−−→ FT
−k
]

=

= FT
−k−2 ⊗ Cone

[
1

w−→ FT

]
⊗ Cone

[
1

z−→ FT

]
, (5.14)

so it is sufficient to prove that Cone(z) ⊗ Cone(w) � Cone(w) ⊗ Cone(z) � 0 (indeed, 

this would imply that the complexes in the left hand side of (5.14) are contractible). 

Since:

Cone
[
1

w−→ FT

]
= [B −→ B],

and:

B ⊗ Cone(z) � B ⊗ [R → B → B → R] � [B → B ⊕ B → B ⊕ B → B] � 0,

we conclude that Cone(w) ⊗Cone(z) � 0. The case of Cone(z) ⊗Cone(w) is analogous. �

5.4. Proj construction

The purpose of this Subsection is to construct the functors:

D (CohC∗×C∗ (FHilb2))
ι∗

−�===�−
ι∗

K(SBim2) (5.15)

and prove Conjecture 1.1 for n = 2. To keep our notation simple, we will perform 

the computation for the reduced versions of the above categories. As was shown in 

Section 4.4 (assuming F = FT), in order to construct ι∗ one needs to prove the following 

isomorphism of graded algebras:

∞⊕

k=0

Hom
(

1, FT
k
)
∼=

∞⊕

k=0

Hom
(
FHilb2,O(k)

)
. (5.16)

(The reason why we need an isomorphism instead of just a homomorphism is the fact 

that we want a r.o.r.s. map.) To compute the left hand side of (5.16), recall from [47]

that we have the following identity in SBim2 for all k > 0:
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FT
k �

⎡
⎢⎢⎢⎣qk− 1

2 B → qk− 3
2 sB → · · · → s2k−3B

qk− 5
2

→ s2k−2B

qk− 3
2

→ s2k−1B

qk− 1
2

︸ ︷︷ ︸
2k

→ s2kR

qk

⎤
⎥⎥⎥⎦

where the maps alternate between x⊗1−1⊗x
2 and x⊗1+1⊗x

2 . Since s = −√
qt, we have:

Hom(1, FT
k
) �

⎡
⎣qkR

0→ qk−1t
1
2 R

x−→ · · · 0→ qtk− 3
2 R

x−→ qtk−1R
0→ tk− 1

2 R︸ ︷︷ ︸
2k

x−→ tkR

⎤
⎦

∼= zk
C[x]

k⊕

i=1

wizk−i C[x]

x
= A

k
(5.17)

One can think of z, w as formal variables of degrees q, t, but they actually correspond 

to the maps of (5.12) under the required isomorphism (5.16). This establishes (5.16) as 

an isomorphism of C[x]–modules. We claim that this isomorphism also preserves the 

algebra structures, and therefore the functor ι∗ is well-defined. By construction:

ι∗(FT
k
) = O(k)

for all k ≥ 0. As for the functor ι∗ of (5.15), we require:

ι∗(O(k)) := FT
k

and:

ι∗
(

qO z−→ O(1)
)

and ι∗
(

qO w−→ O(1)
)

= the maps (5.12)

However, note that this assignment simply defines a functor:

D(Coh
(
Spec A/C

∗
)
)

ι∗

−→ K(SBim2)

since A is the homogeneous coordinate ring of FHilb2. We wish to show that this functor 

factors through D(Coh(Proj A)). To do so, we must prove that the object:

0
q.i.s.∼= A0 =

A

(z, w)
on FHilb2

goes to−−−−→ ι∗(A0)
h.e.∼= 0 in SBim2 (5.18)

To compute the image of A0 under ι∗, we need to resolve this object in terms of free A

modules. The standard choice is the Koszul resolution, which is infinite because FHilb2

is singular:

0
q.i.s.∼=

[
...

α1−→ qA(−2) ⊕ qA(−2)
α2−→ A(−2) ⊕ qA(−1)

α1−→ A(−1) ⊕ A(−1)
(z,w)−−−→ A

]
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where the maps alternate between those of (5.13). Then (5.18) follows from Proposi-

tion 5.1.

Remark 5.2. By analogy with (5.17), we have:

Ext1(1, FT
k
) ∼=

⎡
⎣qk−1R

0→ qk−1t
1
2 R

x−→ · · · 0→ qtk− 3
2 R

x−→ tk−1R
0→ tk− 1

2 R︸ ︷︷ ︸
2k

1→ tkR

⎤
⎦ ∼=

∼= zk−1
C[x]

k−1⊕

i=1

wizk−1−i C[x]

x
= A

k−1
= Hom

(
1, FT

k−1
)

(5.19)

This is precisely the • = 1 case of (3.26) for M = FT
k

and T 2 = ι∗(T 2) = ι∗(O(1)) =

FT.

5.5. Sheaves for two-strand braids

To construct the sheaf ι∗(M) for any object M ∈ SBim2, one needs to consider the 

module Hom(1, M ⊗ FT
•
) over the graded algebra A = Hom(1, FT

•
). In the previous 

subsection, we have studied the case M = FT
k

for positive integers k, and we found 

that ι∗(M) = O(k). The computation for negative k is more interesting:

FT
−k∼=

⎡
⎣t−kR → q− 1

2 t
1
2 −kB → q− 1

2 t1−kB → q−1t
3
2 −kB → . . .→ q

1
2 −kt− 1

2 B → q
1
2 −kB︸ ︷︷ ︸

2k

⎤
⎦

for any k ≥ 0, where the maps alternate between x⊗1+1⊗x
2 and x⊗1−1⊗x

2 . Therefore, we 

have:

Hom(1, FT
−k

)∼=

⎡
⎣t−kR

1−→ t
1
2 −kR

0−→ t1−kR
x−→ q−1t

3
2 −kR

0−→ . . .
x−→ q1−kt− 1

2 R
0−→ q1−kR︸ ︷︷ ︸

2k

⎤
⎦

=⇒ Hom(1, FT
−k

) ∼= t
1
2 H1

(
FHilb2,O(−k)

)
(5.20)

according to (5.9). The case of general a follows by analogy with the previous subsection, 

so we conclude the following formula that extends (5.16) to negative integers:

RHom•
SBim2

(1, FT
−k

) ∼= RΓ
(
FHilb2,O(−k) ⊗ ∧•O(−1)

)
(5.21)

Remark 5.3. Let us observe the fact that the derived functors in the two sides of the 

above equation are very different. In the left hand side, we have the derived Hochschild 

homology functor, whose degree is measured by a. In the right hand side, we have derived 

direct image of sheaves, whose degree is measured by t
1
2 , and the a grading comes from 

∧•O(−1).
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To complete the discussion for n = 2, let us compute B(σ) := ι∗(σ) where σ denotes 

a single positive crossing. Together with the projection formula (4.5), this implies that:

B(σ2k+1) := ι∗(σ2k+1) = ι∗(σ ⊗ FT
k
) = ι∗(σ) ⊗O(k) = B(σ) ⊗O(k)

for all integers k. In fact, we have:

Hom(1, σ2k+1) ∼=

⎡
⎣qk+ 1

2 R
x−→ · · · 0−→ q2tk−1R

x−→ qtk− 1
2 R

0−→ qtkR︸ ︷︷ ︸
2k+1

x−→ tk+ 1
2 R

⎤
⎦

and therefore:

⊕

k≥0

Hom(1, σ ⊗ FT
k) =

⊕

k≥0

Hom(1, σ2k+1) = t1/2 C[x, z, w]

x

where recall that z and w are the maps of (5.12). We conclude that B(σ) is the structure 

sheaf of the subscheme {x = 0} ⊂ FHilb2, which is nothing but the irreducible component 

W2 = FHilb2(point) ∼= P
1 of (5.6). The periodic resolution (3.50) takes the form:

B(σ) ∼= OP1

q.i.s.∼=
[
...

w−→ q2tO(−1)
x→ qtO(−1)

w−→ qO(−1)
x→ O

]

where O denotes the structure sheaf of FHilb2. In the non-reduced category, one needs 

to replace x by x1 − x2 everywhere. Finally, let us compute ι∗(B), where recall that 

B = R ⊗Rs R. Since z ⊗ IdB is an isomorphism between B and FT2 ⊗ B, we have:

⊕

k≥0

Hom(1, B · FT
k) =

⊕

k≥0

zk Hom(1, B) = C[x1, x2, z].

Therefore ι∗(B) is the structure sheaf of the irreducible component W1 ⊂ FHilb2 cut 

out by the equation w = 0 (see (5.5)), which is isomorphic to C2 with coordinates x1

and x2.

6. Example: the case of three strands

6.1. The geometry of FHilb3

We will now study the variety FHilb3 = FHilb3(C) and formulate a precise conjecture 

about the sheaf ι∗(figure eight knot). Recall the matrix presentation:

FHilb3 =

⎧
⎪⎨
⎪⎩

X =

⎛
⎜⎝

x1 0 0

a x2 0

α1 α2 x3

⎞
⎟⎠ , Y =

⎛
⎜⎝

0 0 0

b 0 0

β1 β2 0

⎞
⎟⎠ , [X, Y ] = 0,
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v =

⎛
⎜⎝

1

0

0

⎞
⎟⎠ cyclic

⎫
⎪⎬
⎪⎭

/
conjugation by g =

⎛
⎜⎝

1 0 0

0 c 0

0 t d

⎞
⎟⎠ (6.1)

Note that in the presentation above, we fixed the vector v (and this fixes the first column 

of the conjugating matrix) to eliminate certain coordinates. Note that the map FHilb3 →
FHilb2 is given by only retaining the top 2 ×2 corners of the matrices in question. If one 

is given the eigenvalues x1, x2, x3 and the point [a : b] ∈ P
1, then the datum one needs 

to construct a point in FHilb3 is the vector:

(α1, α2, β1, β2) ∈ T ∨
2 ⊕ T ∨

2 (6.2)

To ensure that the equation [X, Y ] = 0 is satisfied, we need to ensure that:

(x1 − x3)β1 = α2b − β2a and (x2 − x3)β2 = 0

(note that the third equation (x1 − x2)b is already satisfied in FHilb2). Moreover, the 

fact that we quotient out by conjugation implies that we must identify:

(α1, α2, β1, β2) ∼ (α1 + ta, α2 + t(x2 − x3), β1 + tb, β2)

and (α1, α2, β1, β2) ∼ d(α1, α2, β1, β2)

for t ∈ C and d ∈ C
∗. Unwinding these facts, one sees that the datum (6.2) corresponds 

to a vector in H0(E∨
2 ), where E2 is the complex in (2.25) when ∗ = C. It is elementary to 

prove that E2 and E∨
2 are quasi-isomorphic to their zero-th cohomology, so we conclude 

that FHilb3 = FHilbdg
3 . The irreducible components of the flag Hilbert scheme FHilb3

are:

FHilb3(C) = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5

where W1, . . . , W5 are determined by which eigenvalues x1, x2, x3 are equal to each other:

W1 = {x1 �= x2 �= x3 �= x2}, W2 = {x1 = x2 = x3}
W3 = {x1 = x2 �= x3}, W4 = {x3 = x1 �= x2}, W5 = {x2 = x3 �= x1}

Note that W2 ∪ W3 = Z1 and W2 ∪ W5 = Z2 in the notations of Section 3.14.

On W1, because the eigenvalues are generically distinct, the commutation relation 

[X, Y ] = 0 forces Y = 0. Then the cyclicity of the vector v implies a, α �= 0, and so 

conjugation by g allows one to set a = α = 1 and e = 0. We conclude that:

W1 = C
3 (6.3)

As for W2, note that one can always subtract a scalar matrix from X without changing 

any of the other properties of (6.1). By (2.29), we see that:
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W2 = FHilb2(point) × C = PP 1

(O(1)

qt
⊕O(−2)

)
× C (6.4)

6.2. Torus braids

In this section, we compare our conjectures to the ones of [39,60] for three-strand 

torus braids. The remainder of this Section provides explicit computations that follow 

from Conjectures 1.1 and 3.32.

Proposition 6.1. The sheaves on FHilb3 associated to torus braids on 3 strands are:

ι∗(σ1σ2)k = ι∗(σ2σ1)k =

⎧
⎪⎪⎨
⎪⎪⎩

Lm
2 Lm

3 k = 3m,

Lm
2 Lm

3 ⊗OW2
k = 3m + 1,

Lm+1
2 Lm

3 ⊗OW2
k = 3m + 2.

(6.5)

Here m (and hence k) is allowed to be either positive or negative.

Proof. Clearly, (σ1σ2)3 = (σ2σ1)3 = FT3 = ι∗(L2L3), so in virtue of the projection 

formula (3.18) it is sufficient to consider the cases k = 0, 1, 2. For k = 0, Conjecture 1.1

states that ι∗(1) = OFHilb3
, which is precisely the content of (6.5). For k = 1, Conjec-

ture 3.32 implies ι∗(σ1σ2) = OW2
. Furthermore, for all a, b ∈ N one has:

Hom(1, σ2σ1La
2Lb

3) = Hom(1, σ1σ2La
2Lb

3), (6.6)

since σ1 commutes with both L2 and L3, and Hom(1, σσ′) = Hom(1, σ′σ). By virtue of 

the definition (3.23) of the sheaves associated to the braids σ1σ2 and σ2σ1, formula (6.6)

implies that ι∗(σ2σ1) = ι∗(σ1σ2). The case k = 2 of (6.5) follows analogously, because:

(σ1σ2)2 = L2σ2σ1, (σ2σ1)2 = σ1σ2L2. �

To compute the Khovanov-Rozansky homology of torus braids, one needs to compute 

the homology of the resulting line bundles either on FHilb3 (if the closure of a torus 

braid is a 3-component link), or on W2 = FHilb3(point) × C (if the closure of a torus 

braid is a knot). For simplicity, we will consider only the latter case:

Proposition 6.2. The following equations hold:

Hi(FHilb3(point),La
2Lb

3) =

=

⎧
⎪⎪⎨
⎪⎪⎩

Hi(P 1,O(a) ⊗ Sb(O(2) ⊕ qtO(−1)) if b ≥ 0,

0 if b = −1,

Hi+1
(

P
1, O(a−1)

qt ⊗ S−b−2
(
O(−2) ⊕ O(1)

qt

))
if b ≤ −2.

(6.7)
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Proof. Let π : FHilb3(point) → FHilb2(point) = P
1 be the natural projection. By (6.4)

we have FHilb3(point) = Proj
(
S∗

P 1(O(2) ⊕ qtO(−1))
)
. The following properties hold:

Riπ∗

(
Lb

3

)
=

⎧
⎪⎪⎨
⎪⎪⎩

Sb(O(2) ⊕ qtO(−1)) if i = 0 and b ≥ 0,
O(−1)

qt ⊗ S−b−2
(
O(−2) ⊕ O(1)

qt

)
if i = 1 and b ≤ −2,

0 otherwise

Indeed, the second formula follows from the first and Serre duality. This completes the 

proof. �

Corollary 6.3. Putting together (6.5), (6.7) and the well-known formula for the cohomol-

ogy of line bundles on P 1, we have the following formulas for all m ≥ 0.

HHH
(
(σ1σ2)3m+1

)
= H∗(FHilb3(point),Lm

2 Lm
3 ) = (6.8)

= H0

(
P

1,

m⊕

i=0

(qt)iO(3m − 3i)

)
=

m∑

i=0

3m−3i∑

j=0

qi+jt3m−2i−j

HHH
(
(σ1σ2)3m+2

)
= H∗(FHilb3(point),Lm+1

2 Lm
3 ) = (6.9)

= H0

(
P

1,

m⊕

i=0

(qt)iO(3m − 3i + 1)

)
=

m∑

i=0

3m−3i+1∑

j=0

qi+jt3m−2i−j+1

This agrees with the a = 0 part of the Khovanov-Rozansky homology of (3, 3m + 1)

and of (3, 3m + 2) torus knots, conjectured in [39, Section 5.2]. To recover the full a

dependence, we need to twist the right hand sides of (6.8) and (6.9) by the exterior 

power:

∧•T ∨
3 = ∧•(L3“ ⊕ ”L2 ⊕O)∨

where the symbol “⊕” refers to the fact that T3 is a non-trivial extension of L2 ⊕O by 

L3. Note that all of our computations can be easily extended to “twisted torus knots” 

in the sense of [15], which are presented by the braids (σ1σ2)k ⊗ ι∗(La
2). We leave the 

corresponding computation to the interested reader.

6.3. The longest word

Let us describe the sheaf for the positive lift σ1σ2σ1 of the longest word in S3. Remark 

that the following equation holds for all a and b:

Hom(1, σ1σ2σ1La
2Lb

3) = Hom(1, σ2σ1σ1La
2Lb

3), (6.10)

since σ1 commutes both with L2 and L3 and Hom(1, σσ′) = Hom(1, σ′σ). By Corol-

lary 3.8, these C[x1, x2, x3]–modules are isomorphic up to a twist by a permutation 
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(1 2). In particular, the left hand side of (6.10) is supported on {x1 = x3}, while the 

right hand side is supported on {x2 = x3}. Furthermore,

ι∗(σ2σ1σ1) = L2 ⊗ ι∗(σ2) = L2 ⊗OFHilb(2∼3).

Note that in the notations of Section 6, FHilb(2 ∼ 3) = W2 ∪ W5. There is a natural 

involution j12 on FHilb3 which exchanges x1 and x2 in W1, acts trivially on W2 and W3

and permutes W4 and W5. We arrive at the following conjecture:

Conjecture 6.4. One has ι∗(σ1σ2σ1) = j∗
12(L2 ⊗OW2∪W5

).

6.4. The figure eight knot

In this section we describe a sheaf for the braid β = σ1σ−1
2 σ1σ−1

2 representing the 

figure eight knot. There is a skein exact sequence relating β with the following objects 

in K(SBim3):

σ1σ2σ1σ−1
2 = σ2σ1, σ1σ1σ−1

2 = L2σ−1
2 .

More precisely, there is an exact sequence:

0 ←− σ2σ1 ←− Cone
[
L2σ−1

2
x1−x2←−−−− L2σ−1

2

]
←− β ←− 0. (6.11)

Proposition 6.5. The following identity holds:

ι∗ Cone
[
σ−1

2
x1−x2←−−−− σ−1

2

]
�
[
L2L−1

3 ⊕ qtL−1
3

]
W2

.

Proof. By (3.50) one has:

OFHilb(1∼2) � [OFHilb3(C)
x1−x2←−−−− qOFHilb3(C)

y21←−− qtL−1
2 |FHilb(1∼2)]

(note that this is also a skein exact sequence for σ−1
1 , 1, σ1) and

ι∗(σ−1
2 ) = L2L−1

3 ⊗OFHilb(2∼3).

Since OFHilb(2∼3) ⊗OFHilb(1∼2) = OW2
, one has an exact sequence:

0 ← L2L−1
3 |W2

←− ι∗ Cone
[
σ−1

2
x1−x2←−−−− σ−1

2

]
←− qtL−1

3 |W2
←− 0.

It remains to notice that

ExtW2
(L2L−1

3 ,L−1
3 ) = H∗(W2, L−1

2 ) = H∗(P 1,O(−1)) = 0. �
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Proposition 6.6. Consider the braid β = σ1σ−1
2 σ1σ−1

2 representing the figure eight knot. 

Then, assuming Conjecture 1.1 and 3.32, one has

ι∗(β) = OP 1 ⊕ qtL2L−1
3 .

Proof. By (6.11) and Proposition 6.5 one has:

0 ←− OW2

α←−
[
L2

2L−1
3 ⊕ qtL2L−1

3

]
W2

←− qt(ι∗β) ←− 0.

Let us compute the map α. Remark that:

HomW2
(L2L−1

3 ,O) = H0(W2,L−1
2 L3) = H0(P 1,O(1) ⊕ qtO(−2)),

HomW2
(L2

2L−1
3 ,O) = H0(W2,L−2

2 L3) = H0(P 1,O ⊕ qtO(−3)).

Therefore α is the unique degree 1 map L2
2L−1

3 → O and vanishes on L2L−1
3 , so

ι∗β � L2L−1
3 ⊕ q−1t−1 Cone[O α←− L2

2L−1
3 ] � OP 1 ⊕ L2L−1

3 . �

Using this result, we can compute the reduced homology of β ·FT
a
2FT

b
3 by computing 

the homology of each summand individually. Since FHilb3(point) is a blowup of the 

punctual Hilbert scheme of 3 points, and P 1 is the exceptional divisor, the tautological 

bundle is trivial on P1: T 3 ⊗ OP 1 � (q + t)OP 1 . Similarly, ι∗FT3 ⊗ OP 1 � qtOP 1 . We 

get the following equation:

∫

FHilb3(point)

OP 1 ⊗ ι∗FT
a
2FT

b
3 ⊗ ∧•T ∨

3 = (1 + aq−1)(1 + at−1)(qt)b

∫

P 1

O(a). (6.12)

Equations (6.12) and (6.7) can be used to compute the homology of β · La
2Lb

3 for all 

a and b. In particular:

H∗(FHilb3(point),L2L−1
3 ) = H∗(FHilb3(point),L−1

3 ) = 0,

H∗(FHilb3(point),L−2
3 ) = H∗+1(P 1,O(−1)) = 0,

H∗(FHilb3(point),L2L−2
3 ) = H∗+1(P 1,O) = C[1],

so
∫

FHilb3(point)

L2L−1
3 ⊗ ∧•T ∨

3 = aC[1],

and

HHH(β) = (1 + aq−1)(1 + at−1) + a
√

qt.

One can compare this with [23, Table 5.7].
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7. Categorical idempotents and equivariant localization

7.1. Graded completion

Given a monoidal category C, we will consider two types of its “semi-infinite comple-

tions”. The first type is the homotopy category K−(C) of bounded above complexes of 

objects in C (which is well-known to also be a monoidal category). The other type is the 

category of certain infinite sums of objects in C, as in the following definition.

Definition 7.1. Assume that C is graded, and the grading shift is denoted by A �→ A(1). 

We define its graded completion C↑ as follows. The objects are given by countable direct 

sums:

Ob(C↑) =

{
N⊕

i=−∞

Ai(i) for some N ∈ Z

}

and the morphisms φ : ⊕Ai(i) → ⊕Bj(j) are collections of arrows {φij : Ai(i) → Bj(j)}
for all i, j, such that for each i there are only finitely many j such that φij �= 0.

One can check that C↑ and K−(C↑) inherit the tensor product from C. Note that 

K−(C↑) is endowed with both the grading (1) and the homological degree [1].

Note that the category C may have multiple gradings, and the notion of completion 

depends on a specific choice of grading among these. For example, if C is graded by 

Z
r, this accounts to choosing a one-dimensional direction in Zr. To clarify homological 

algebra over C↑, we present some examples.

Example 7.2. Let C be the category of graded finitely generated C[x]-modules. Consider 

the following two-term complex in K−(C↑):

C[x] C[x]

C[x](−1) C[x](−1)

C[x](−2) C[x](−2)

.

.

.
.
.
.

1

x

1

x

1

x

Fig. 8. Example of an infinite complex of C[x]-modules.

We can introduce an auxiliary variable y of degree (−1) and rewrite the complex as 

following:
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C[x, y]
1+xy−−−→ C[x, y].

At first glance, one could think that since all horizontal arrows in Fig. 8 are isomorphisms, 

the complex is contractible. However, this is not the case, since a homotopy would be:

C[x, y]
H←− C[x, y] such that H(1 + xy) = (1 + xy)H = 1

A natural choice for H would be:

H(x, y) =
1

1 + xy
= 1 − xy + x2y2 − x3y3 + . . . ,

but this is not a valid morphism in C↑ since there would be non-zero arrows from the 

top-most copy of C[x] to all infinitely many copies below it.

Remark 7.3. One can check that the homology of the complex in Fig. 8 is isomorphic to 

C[x, y]/(1 + xy) = C[x, x−1].

7.2. Categories over equivariant schemes

We will now enhance the setup of Section 4 to schemes endowed with a torus action 

T � X.

Definition 7.4. A T–equivariant category C is one in which the Hom spaces are represen-

tations of T . If the category is monoidal, we require the tensor product to preserve the 

T action.

Equivalently, C is T -equivariant if it embeds in a category graded by the weight lattice 

of T . If λ is a character of T and F is an object of C, we write λ · F or λF to denote F

with grading shifted by λ.

Definition 7.5. Given a T–equivariant category C, we will say that a map ι : C → X is 

T–equivariant if the defining functors:

K(C)
ι∗−�===�−
ι∗

D(CohT (X))

preserve the action of T on all Hom spaces.

Example 7.6. Suppose that X = Spec A with A being a T–graded ring. Recall from 

Subsection 4.3 that realizing C as a category over X amounts to giving a ring homomor-

phism:

A
f−→ EndC(1)

It is easy to see that C → X is T–equivariant if and only if f is T–equivariant.
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Example 7.7. Going one step further, suppose A is a T–graded ring. Define:

X = P
n
A

where the n + 1 coordinate directions of the projective spaces have T–equivariant char-

acters λ0, ..., λn. As in Example 4.9, the map C ι−→ X is the same datum as a ring 

homomorphism:

A
f−→ EndC(1)

together with an object F ∈ K(C) and n + 1 arrows:

[
λ0 · 1

α0−→ F
]

, ...,
[
λn · 1

αn−→ F
]

whose tensor product is homotopic to 0. Then ι is T–equivariant if the homomorphism 

f is T–equivariant, and moreover the arrows αi, i ∈ {0, ..., n} are all homogeneous with 

respect to the structure of T–modules of the vector spaces HomK(C)(λi · 1, F ).

Example 7.8. Finally, let us treat the relative case of Subsection 4.5. Suppose we have a 

T–equivariant map: C ι−→ X and we wish to upgrade it to a T–equivariant map:

C ι′

−→ PV∨

where V is a T–equivariant vector bundle on X. As we saw in Subsection 4.5, the existence 

of the map ι′ is equivalent to the choice of an object F ∈ C together with an arrow:

ι∗V α−→ F

in C, whose Koszul complex is quasi-isomorphic to 0. It is easy to see that the map ι′ is 

T–equivariant if and only if the map α is T–equivariant. The same picture applies when 

V is replaced by a coherent sheaf Q of homological dimension 1, as in Subsection 4.6.

7.3. Categorical diagonalization

In [26], Elias and Hogancamp developed a theory of categorical diagonalization, which 

we will now recall. Assume we are given an equivariant monoidal category T � C, which 

can be taken to be triangulated or dg.

Definition 7.9. ([26]) Fix an object F ∈ K(C). An arrow:

λ · 1
α−→ F (7.1)

is called an eigenmap of F , and the grading shift λ ∈ T ∨ is called an eigenvalue of F .
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Definition 7.10. ([26]) An object F ∈ K(C) is called diagonalizable if it has a collection 

of eigenvalues λ0, ..., λn ∈ T ∨ and eigenmaps:

{
λi · 1

αi→ F
}

i∈{0,...,n}

such that ⊗n
i=0Cone(αi) � 0.

The intuition behind the above terminology comes about by considering the 

Grothendieck group [C], which is an algebra because the category C is monoidal. Mul-

tiplication by the class of the object [F ] induces an operator on [C], and the datum of 

Definition 7.10 amounts to:

n∏

i=0

([F ] − λi) = 0 (7.2)

In other words, the condition that the product of the cones of the eigenmaps is 0 amounts 

to requiring the operator ∗ � ∗ ·[F ] to solve its characteristic polynomial. In Lemma 7.11, 

we establish the fact that categorical diagonalization is universally represented by the 

category:

D = D(CohT (P n
A))

where A is any commutative ring and T � P
n
A acts via:

t · [z0 : ... : zn] �→
[

z0

λ0(t)
: ... :

zn

λn(t)

]
(7.3)

where λ0, ..., λn ∈ T ∨. An immediate generalization of Example 4.9 yields the following:

Lemma 7.11. The datum of a diagonalizable object F ∈ C as in Definition 7.10 is equiv-

alent to the existence of a T–equivariant map:

ι : C → P
n
A

such that F = ι∗ (O(1)), where A = EndC(1).

7.4. Eigenobjects

In Definition 7.9 we have recalled the categorical version of eigenvalues. In [26], the 

authors complete the picture by categorifying eigenvectors:
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Definition 7.12. If for some P ∈ C the arrow:

α ⊗ IdP : λ · P
∼=−→ F ⊗ P (7.4)

is an isomorphism, then we call P an eigenobject for the datum of Definition 7.9.

In the decategorified world, the eigenvectors of the operator of multiplication by [F ]

of (7.2) can be computed explicitly, essentially by the Lagrange interpolation formula:

[Pi] :=
∏

0≤j �=i≤n

λj − [F ]

λj − λi
(7.5)

The reason why we divide by λj −λi is to ensure that the elements [Pi] are idempotents. 

However, this comes at the cost of enlarging the algebra to account for such denominators. 

One of the main constructions in [26] is to categorify formula (7.5) in a way which keeps 

track of the eigenmaps.

The main difficulty, which we will shortly address, is how to lift the denominators of 

(7.5) from the Grothendieck group to the category C. The idea spelled out in [26] is that 

in (7.5) one should expand:

λj − [F ]

λj − λi
=

(
1 − [F ]

λj

)(
1 +

λi

λj
+

λ2
i

λ2
j

+ ...

)

if j < i and:

λj − [F ]

λj − λi
=

(
[F ]

λi
− λj

λi

)(
1 +

λj

λi
+

λ2
j

λ2
i

+ ...

)

if j > i. To understand the above as an expansion of geometric series, we assume that 

there exists a distinguished subtorus C∗ ⊂ T which we will be called homological, such 

that:

λ0|C∗ > ... > λn|C∗ (7.6)

To categorify these geometric series, [26] replace the category C by its graded completion

C↑, as in Section 7.1.

Theorem 7.13. ([26]) Let F be a diagonalizable object, with eigenmaps αi and eigenvalues 

λi satisfying (7.6). Then there exists a collection of eigenobjects Pi as in (7.4), explicitly 

given by:
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Pi =
⊗

0≤j<i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
F
λj

λi

λj
· 1

λi

λj
· F

λj

...
λ2

i

λ2
j

· F
λj

αj

αj

αi

αj

αi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗

i<j≤n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λj

λi

F
λi

λ2
j

λ2
i

λj

λi
· F

λi

...
λ2

j

λ2
i

· F
λi

αj

αi

αj

αi

αj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.7)

The objects should be added ⊕ along columns, with differentials according to the arrows. 

The collection {P0, ..., Pn} yields a semi-orthogonal decomposition of K(C↑):

1 ∼=
[
P0 ⊕ ... ⊕ Pn, a certain differential

]
(7.8)

and HomK(C↑)(Pi, Pj) = 0 if i > j. Furthermore, Pi ⊗Pj � 0 for i �= j and Pi ⊗Pi � Pi.

The main application of [26] is when C = SBimn is replaced by K(C↑) = K(SBimn), 

and the homological C
∗ action is by homological degree of chain complexes. We may 

generalize this particular case to the following setup.

7.5. The geometric realization over a fixed base

As we saw in Lemma 7.11, any categorical diagonalization in a category C comes from 

a T–equivariant map:

C → P
n
A i.e. K(C)

ι∗−�===�−
ι∗

D

where D = D(CohT (P n
A)), and the action T � P

n
A is given in (7.3). The above functors 

extend to functors on the homological completions:

K(C↑)
ι∗−�===�−
ι∗

D↑

which are given by the same formulas, but allow infinite direct sums of objects in de-

creasing homological degree. Therefore, we have:

Pi = ι∗(Pi)

where Pi ∈ D↑ are given by formula (7.7) with F replaced by O(1) and αi replaced by 

multiplication with the homogeneous coordinate zi:
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Pi =
⊗

0≤j<i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O(1)
λj

λi

λj
· O λi

λj
· O(1)

λj

...
λ2

i

λ2
j

· O(1)
λj

zj

zj

zi

zj

zi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗

i<j≤n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λj

λi
· O O(1)

λi

λ2
j

λ2
i

· O λj

λi
· O(1)

λi

...
λ2

j

λ2
i

· O(1)
λi

zj

zi

zj

zi

zj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.9)

The rows in the above diagram make up for the expansion of the geometric series (λj −
λi)

−1. Meanwhile, observe that the top row is precisely;

top row of Pi =
⊗

j<i

[
O zj−→ O(1)λ−1

j

]⊗

j>i

[
λjλ−1

i

zj−→ O(1)λ−1
i

]

q.i.s.∼= Opi

∏

j<i

λi

λj
(7.10)

Here, Opi
is the structure sheaf of the torus invariant subscheme pi = [0 : ... : 0 : 1 : 0 :

... : 0] ∈ P
n
A, which is a closed point if and only if A is a field. The quasi-isomorphism in 

(7.10) is the standard one between the structure sheaf of pi and its Koszul complex. We 

conclude that the full idempotent (7.9) is a way to make sense of the denominators in 

the object:

Pi =
Opi∏

0≤j �=i≤n

(
1 − λj

λi

) ∈ D↑ (7.11)

Recall from (7.8) that P0, ..., Pn give a decomposition of the unit object in D↑. This 

statement categorifies the fact that:

[O] =

n∑

i=0

[Pi] =

n∑

i=0

[Opi
]

∏
0≤j �=i≤n

(
1 − λj

λi

)

in the algebraic K–theory ring of P n
A. The above is nothing but the Thomason equiv-

ariant localization formula, which is a very interesting result even in K–theory. At the 

categorical level, it is made even more interesting by the presence of the various differ-

entials that appear in (7.8), which give rise to a semi-orthogonal decomposition of the 

category D↑.

The denominator of (7.11) equals the Poincaré series for the equivariant local ring 

of P n
A at pi. This is not a coincidence, and the relation between the two objects can be 

made more precise.
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Proposition 7.14. Consider the locally closed subset Si = {z0 = . . . = zi−1 = 0, zi �= 0} ⊂
P

n
A. Then Pi is quasi-isomorphic to the pushforward of S•(ν∨

Si
), where νSi

is the normal 

bundle to Si.

Remark 7.15. The ordering of coordinates in the definition of Si agrees with the ordering 

of eigenvalues of O(1) (that is, the weights of the torus action) on P n. It is easy to see 

that the strata Si agree with the cells in the Białynicki-Birula decomposition [12,13]

of P n with respect to this torus action. Similar decompositions of equivariant derived 

categories with respect to Białynicki-Birula strata were studied in [42], and we plan to 

study the relation between the categorical diagonalization framework and [42] in the 

future work.

Proof. To simplify the notations, we will consider the case n = 1 and omit all the 

grading shifts (which can be easily reconstructed since all maps are homogeneous). The 

construction (7.9) yields two different infinite complexes built from the sections z0, z1 :

O → O(1). The first has a form:

P0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O(1)

O O(1)

... O(1)

z1

z0

z1

z0

z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
O ⊗ C[y]

z1+yz0−−−−−→ O(1) ⊗ C[y]
]

.

Here y is a formal variable corresponding to the shift of the complex down by one unit. 

It can be made less formal by considering the projection π : P
n × A

1 → P
n, so that

P0 = p∗

[
O z1+yz0−−−−−→ O(1)

]
= p∗O{z1+yz0=0}.

The projection p identifies the closed subset {z1 + yz0 = 0} ⊂ P
n × A

1 with the open 

subset S0 = {z0 �= 0} ⊂ P
n, so P0 = OS0

. The second complex is more interesting. It 

has the form:

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O(1)

O O(1)

... O(1)

z0

z0

z1

z0

z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
O z0−→ P0

]
=
[
O z0−→ OS0

]
.
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It is supported on S1 = P
1 \ S0 = {z0 = 0} where the stalk of O is isomorphic to 

C[ z0

z1
] and the stalk of OS0

is isomorphic to C[ z0

z1
, z1

z0
], so the quotient is isomorphic to 

z1

z0
· C[ z1

z0
]. �

Remark 7.16. Note that

P∨
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O(−1)

O O(−1)

... O(−1)

z0

z1

z0

z1

z0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can use similar arguments to formally match this complex with O{z1 �=0} ⊗O(−1) =

O{z1 �=0}. However, P∨
1 does not belong to the category D↑ since the gradings of its 

summands are unbounded.

Corollary 7.17. The endomorphism ring of Pi is isomorphic to the local ring of P n
A at a 

fixed point pi.

Proof. We follow the proof of Proposition 7.14. Indeed, End(P0) = H0(S0, OS0
) = C[ z1

z0
]. 

On the other hand,

End(P1) = End

[
C

[
z0

z1

]
→ C

[
z1

z0
,

z0

z1

]]
= C

[
z0

z1

]
.

One could also argue that

End(P1) = End(P∨
1 ) = End(O{z1 �=0}) = C

[
z0

z1

]
.

The proof for general n is analogous. �

Remark 7.18. Proposition 7.14 shows that the endomorphism rings of the projectors can 

be interpreted as the rings of functions on certain open charts. This point of view will 

be important in the next section where we define some open charts on the flag Hilbert 

scheme and compute the rings of functions on them (up to a certain completion). By 

Conjecture 1.1 and the preceding discussion these rings match the homology of the 

categorified Jones-Wenzl projectors.

Remark 7.19. The equivariant localization formula makes sense when D = D(CohT (X))

for any local complete intersection X acted on by a torus T :
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[OX ] =
∑

p∈XT

[Op]

∧•
(
Tan∨

p X
) (7.12)

As we have seen, when X = P
n the above setup encodes categorical diagonalization as 

in Definition 7.10 and 7.12. It would be very interesting to determine which problems in 

“categorical linear algebra” are encoded by formula (7.12) for more general schemes X.

7.6. The relative case

For the remainder of this Section, we will generalize the objects (7.9) from P
n
A to 

projective bundles PV∨ on an arbitrary base scheme X, as in Example 7.8. We assume 

that both X and V are acted on by a torus T , and that we have a decomposition:

OX
∼=
[
⊕

x∈XT

Px, a certain differential

]
∈ D↑(CohT (X)) (7.13)

where the indexing set goes over the fixed points of X. We assume that:

• the decomposition (7.13) is semi-orthogonal, in the sense that Hom(Px, Py) = 0

whenever x > y with respect to some total order of the fixed points;

• the vector bundle V is trivialized “near” x, i.e. Px ⊗V ∼= λx
0 · Px ⊕ ... ⊕λx

n · Px, where 

n + 1 = rank V and λx
0 , ..., λx

n ∈ T ∨ are the characters in the fiber V|x.

Then we can upgrade the decomposition (7.13) to the projective bundle PV∨.

Proposition 7.20. Under the assumptions above, there exist objects Px
i for all i ∈

{0, ..., n} and x ∈ XT , such that we have a semi-orthogonal decomposition:

OPV∨
∼=
[

0≤i≤n⊕

x∈XT

Pi
x, a certain differential

]
∈ D↑(CohT (PV∨)) (7.14)

whenever the homological subtorus C∗ ⊂ T acts with distinct weights in the fibers V|x
for all x ∈ XT . We have Hom(Pi

x, Pj
y) = 0 if x > y or if x = y and i < j.

Proof. Let π : PV∨ → X denote the standard projection. We define Pi
x by formula (7.9), 

with O replaced by π∗(Px) and the sections λi · O → O(1) replaced by the maps:

λx
i · π∗(Px) → π∗(Px) ⊗O(1)

induced by the assumption in the second bullet (immediately before the statement of 

the Proposition). By analogy with Theorem 7.13, one constructs morphisms between the 

Pi
x’s for fixed x, such that we have an isomorphism:
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π∗(Px) ∼=

⎡
⎣
⊕

0≤i≤n

Pi
x, a certain differential

⎤
⎦

Plugging the right-hand side of the expression above into π∗(equation (7.13)) yields 

(7.14). �

8. Local charts and fixed points of FHilbn

8.1. Affine charts for Hilbert schemes

Recall the action of C
∗ × C

∗ on Hilbert schemes given by rescaling the X and Y

matrices. The fixed points of this action on the Hilbert scheme are well-known. They are 

given by monomial ideals, which are indexed by partitions of n:

HilbC
∗×C

∗

n = {Iλ}λ�n, Iλ = (xλ1 , xλ2y, ...) ⊂ C[x, y]

Haiman described a set of affine charts on the Hilbert scheme, each of which is C∗ ×C
∗

invariant and contains a single fixed point:

Hilbn =
⋃

λ�n

Hilbλ (8.1)

where:

Hilbλ =
{

I such that {xayb}(a,b)∈λ is a basis of C[x, y]/I
}

(8.2)

Here and throughout this paper, we identify a partition with its Young diagram, which is 

the set of 1 ×1 boxes in the first quadrant of the plane with coordinates (a, b) ∈ N0×N0, 

a < λb+1:

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1)

(0,2)

For example, the Young diagram above corresponds to the partition λ = (4, 3, 1). It 

would be very nice to have a clear description of the algebra of functions on each affine 

chart (8.1), but this is not at all easy. On general grounds, since the Hilbert scheme is 

smooth of dimension 2n, there exist generators:
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{f1, ..., f2n} ∈ mλ/m2
λ

where mλ ∈ C[Hilbλ] denotes the maximal ideal of the fixed point Iλ. To relate the affine 

charts to the sections of O(1), we will use the following statement:

Proposition 8.1. ([41]) Consider the space C[x1, . . . , xn, y1, . . . , yn] with the diago-

nal action of Sn. Let A be the subset of antisymmetric polynomials in it. Then 

H0(Hilbn(C2, O(1))) � A.

Given a Young diagram λ, one could construct a section of O(1) as an element in A:

sλ = det
(
xa

i yb
i

)
(a,b)∈λ

.

By definition, Hilbλ = {sλ �= 0}, hence the sections sλ do not vanish simultaneously 

on Hilbn(C2). Therefore O(1) is generated by the sections sλ which correspond to the 

eigenmaps in the sense of Definitions 7.9 and 7.10.

8.2. Affine charts for flag Hilbert schemes

The situation is somewhat better in the case of flag Hilbert schemes FHilbn(∗) for 

any ∗ ∈ {C
2, C, point}, where one has affine coverings:

FHilbn(∗) =
⋃

T �n

FHilbT (∗) (8.3)

indexed by standard Young tableaux T of size n. Recall that a standard Young tableau 

is a numbering of the boxes of a Young diagram of size n with the numbers 1, ..., n such 

that the numbers increase as we go up and right in the diagram. A covering (8.3) is 

called good if all the charts are C∗ ×C
∗ equivariant and they respect passage from n +1

to n:

FHilbn+1(∗) =
⋃

T ′�n+1 FHilbT ′(∗)

FHilbn(∗) × ∗ =
⋃

T �n FHilbT (∗) × ∗

where the chart corresponding to any T ′ maps to the chart corresponding to T =

T ′\�n+1. Here, �n+1 denotes the box labeled n + 1 in T , which must necessarily be 

an outer corner of T and an inner corner of T ′. Restricting the sheaf of dg algebras 

C[FHilbdg
n (∗)] to the affine charts (8.3) gives rise to dg algebras:

AT (∗) = C

[
FHilbdg

T (∗)
]

(8.4)
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Conjecture 8.2. There exists a good covering whose coordinate rings (8.4) satisfy:

AT ∪�(∗) =
AT (∗)[∗, f�1

, f�2
, ...]

(r�1
, r�2

, ...)
(8.5)

where �1, �2, ... denote the inner corners of T different from �, and �1, �2, ... denote 

the outer corners of T (except for the outer corner labeled n in the case ∗ = point). The 

generators denoted by ∗ stand for the affine coordinates {xn+1, yn+1}, {xn+1}, ∅ when 

∗ = C
2, C, point.

The quotient in the right-hand side of (8.5) should be taken in a dg sense, i.e. “the 

Koszul complex of the polynomial functions r� on the affine space over AT (∗) with 

coordinates ∗, f�′”. We do not know how to define the generators f�′ and the relations 

r�, but we know how to predict their characters with respect to the C∗ × C
∗ action. 

Specifically, for a box � = (a, b) in a Young diagram, we define its weight as:

z� = qatb (8.6)

When � is the box labeled by i in a Young tableau T , we will write z� = zi for brevity. 

Then we expect that the generators and relations of (8.5) have equivariant weights:

weight f�′ =
z�′

z�
, weight r� =

z�
z�

(8.7)

where � is the corner that is being added in (8.5), and �′ (respectively �) runs over the 

inner corners of T different from � (respectively the outer corners of T ). In the remainder 

of this Section, we will establish a weaker version of Conjecture 8.2, by constructing affine 

C
∗ × C

∗ invariant open sets that contain the fixed points IT ∈ FHilbn(∗), and prove 

that the isomorphism (8.5) holds in the local ring at IT .

8.3. Defining the charts

FHilbn will henceforth refer to either of FHilbn(∗) for ∗ ∈ {C
2, C, point}. For any 

point (X, Y, v) ∈ FHilbn and standard Young tableau T , consider the following algorithm 

to construct a basis e1 = v, e2, ..., en of Cn. Suppose e1, ..., ek−1 have been constructed 

and the k-th box looks as in the following picture:

i

i
′

k
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Define the vector ek ∈ Ker(Cn
� C

k−1) by the following formula if i > i′:

Xei = ek +
k−1∑

j=i

xj
i ej (8.8)

where xj
i are coefficients, and by the following formula if i < i′:

Y ei′ = ek +

k−1∑

j=i′

yj
i′ej (8.9)

where yj
i′ are coefficients.

Definition 8.3. We define the open chart ˚FHilbT as the set of triples (X, Y, v) such that 

the above process terminates after having constructed en, in a way such that e1, ..., ek

form a basis of the quotient Cn
� C

k for all k.

In either (8.8) or (8.9), it is clear that the vector ek is unique, since the coefficients xj
i

or yj
i are uniquely determined by the fact that ek vanishes in the quotient Cn

� C
k−1. 

The fact that such an ek exists at each step, and that the resulting collection of vectors 

forms a basis, are open conditions, and therefore:

˚FHilbT ⊂ FHilbn

thus defined is an open subscheme. It is also an affine subscheme, simply because the 

basis e1, ..., en is unique. For any 1 ≤ i ≤ j ≤ n, the expression:

xj
i (resp. yj

i ) = the coefficient of ej in Xei (resp. Y ei)

is a function on the chart ˚FHilbT , although some of these functions are zero due to 

conditions (8.8)–(8.9). The torus weights of these functions are

deg xj
i =

qzi

zj
, deg yj

i =
tzi

zj
(8.10)

where zi is the weight (8.6) of the box labeled by i. Alternatively, one could define ˚FHilbT

as the affine space of matrices X, Y of the form prescribed by (8.8) and (8.9) in a fixed 

basis. It is also clear that the locus ˚FHilbT is C∗ × C
∗ invariant and that the only fixed 

point it contains is:

IT =

{
C

n =

n⊕

i=1

C · ei with X · ei = ei→, Y · ei = ei↑, v = e1

}
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In the formula above, for any box i ∈ T we write i → and i ↑ for the boxes immediately 

right and above i, respectively. If there is no box to the right or up of i, we set ei→ or 

ei↑ equal to 0. The fact that the open sets of Definition 8.3 cover the whole of FHilbn

follows from the principle:

any open torus invariant property which holds (8.11)

near the fixed points of FHilbn holds everywhere

This is because the set of points which do not enjoy said property is closed, torus invari-

ant and contains no fixed points: any such set must be empty. One must be careful here, 

because the argument is a priori only true for projective varieties, such as FHilbn(point). 

However, it also applies to FHilbn(C) and FHilbn(C2) because the torus C∗ × C
∗ con-

tracts the affine directions C and C2 to the origin.

8.4. The special coefficients

Note that the coefficients xi
i and yi

i in (8.8) and (8.9) are precisely the eigenvalues of 

the matrices (X, Y, v) ∈ FHilbn. If we are in the case ∗ = C or ∗ = point, then we must 

set yi
i = 0 or xi

i = yi
i = 0 in (8.8) and (8.9), respectively.

Definition 8.4. The special coefficients will be those functions on FHilbT of the form:

• xj
i which appear in (8.8) if the number i is bigger than the number to its south-

east

• yj
i which appear in (8.9) if the number i is bigger than the number to its north-

west

• {xi
i, y

i
i}1≤i≤n if ∗ = C

2, or {xi
i}1≤i≤n if ∗ = C

When defining the special coefficients, we allow the situation in Subsection 8.3 when 

k is an inner corner, with the caveat that in this case we set ek = 0 in either (8.8) or 

(8.9).

Note that the number of special coefficients corresponding to a standard Young 

tableau T is:

n−1∑

i=1

[# (of inner corners of the Young diagram consisting of boxes 1, ..., i) − 1]

(8.12)

plus the number of xi
i or yi

i (this number is 2n for ∗ = C
2, n for ∗ = C and 0 for 

∗ = point). Conjecture 8.2 would suggest that the special coefficients generate the dg 

ring of functions AT subject to a number of relations equal to:
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n−1∑

i=1

[
# (of outer corners of the Young diagram consisting of the boxes 1, ..., i) − δpt

∗

]

(8.13)

However, this is not true, because this would entail that all coefficients xj
i and yj

i could 

be written as polynomials in the special coefficients. We partially salvage this in the next 

Subsection, when we will show that the previous sentence holds if we replace the word 

“polynomials” by “rational functions”.

Example 8.5. When T = (n) and ∗ = C, only relations (8.8) come into play:

Xei = ei+1 + xiei

However, by the last sentence of Definition 8.4, we must also consider the decomposition:

Y e1 =

n∑

j=2

yj
1ej

and the special coefficients are {xi, y
j
1}1≤i≤n

2≤j≤n. There are 2n − 1 such coefficients, as 

expected from (8.12). The non-special coefficients are the yj
i with i > 1, but they can 

be inferred from the special ones via the commutation relation [X, Y ] = 0, which in the 

case at hand reads:

yj
i (xj − xi) = yj

i+1 − yj−1
i (8.14)

for all i < j. Note that (8.14) is precisely equivalent to the equations in (1.28). We make 

the convention that yj
i = 0 for j ≤ i. After solving for yj

i in terms of {xi, y
j
1}, we obtain 

the following recursive formulas for any δ > 0:

yi+δ
i = y1+δ

1 +
i−1∑

s=1

yi−s+δ+1
i−s (xi−s+δ+1 − xi−s)

The relation above also holds when i + δ = n + 1, in which case the left hand side is 0. 

We therefore obtain a relation among the special coefficients {xi, y
j
1} for all δ > 0. There 

are n − 1 such relations, as expected from (8.13).

Example 8.6. When T = (1, ..., 1) and ∗ = C, only relations (8.9) come into play:

Y ei = ei+1

However, by Definition 8.4, we must also consider the decomposition:

Xe1 =
n∑

j=1

xj
1ej
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and the special coefficients are {xj
1}1≤j≤n. The commutation relation [X, Y ] = 0 implies 

that:

xj−1
i = xj

i+1 ∀i < j

and therefore we conclude that xj
i = uj−i+1 for some variables u1, ..., un. Compare with 

(1.29).

8.5. Explicit local coordinates

In this section, we will use the special coefficients to describe the neighborhood of the 

fixed point IT for any standard Young tableau T :

FHilbT,loc := (FHilbn)localized at T =
(

˚FHilbT

)

localized at T
(8.15)

and the dg local ring AT,loc = C[FHilbdg
T,loc]. The maximal ideal:

mT ⊂ AT,loc

consists of those functions which vanish at the fixed point IT , and in particular con-

tains all the special coefficients. The following Proposition proves a weaker version of 

Conjecture 8.2, where the isomorphism (8.5) is only proved in the localization around 

IT .

Proposition 8.7. For any standard Young tableau T ! n, the complex En of (2.25) is:

En|FHilbT,loc

q.i.s.∼=

⎡
⎣

� outer⊕

corner of T

O · e�
ψ−→

� inner⊕

corner of T

O · f�

⎤
⎦ (8.16)

with the sum over � in homological degree 0. Theorem 2.6 describes the map π :

FHilbn+1 → FHilbn as the projectivization of H0(En). Locally, this map takes the form:

π−1 (FHilbT,loc) =

� inner⋃

corner of T

FHilbT ∪�,loc

where FHilbT ∪�,loc ⊂ PH0
(
E∨

n |FHilbT,loc

)
is the affine chart {f� = 1}. We conclude 

(8.5), where the generators are f�′ for inner corners �′ �= � and the relations are 

r� = ψ(e�).

Proof. From each box in T , draw two lines of unit length, one going up and one to the 

right:
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1

3

4

2

5

6

8

7

The lines are of two types: thick or dotted, and black or red.1 The color of a line is 

determined by whether the top/right endpoint of the line lies in a box in T or outside of 

T . The shape of a line is determined by the following rule: If i > i′ where i′ is the label 

of the box to the southeast (respectively northwest) of i, then we make the horizontal 

(respectively vertical) line starting at i thick; otherwise the line is dotted All the boxes 

on the bottom or on the left of the Young diagram are thought to have label 0 for the 

purpose of this rule, and all the boxes above and to the right of the diagram are thought 

to have label ∞. By definition:

En =
[
qtTn

Ψ−→ qTn ⊕ tTn ⊕O Φ−→ Tn

]
(8.17)

When we restrict the complex to the affine chart ˚FHilbT , we observe that the tautological 

bundles are already trivialized by the basis e1, ..., en of Definition 8.3:

Tn| ˚FHilbT
= O · e1 ⊕ ... ⊕O · en

Therefore, the middle term of (8.17) has a basis which we will denote by e1, ..., en, e′
1, ...,

e′
n, 1. We claim that the projection that forgets some of these basis vectors induces an 

isomorphism:

Ker Φ| ˚FHilbT

∼=
red or dotted horizontal⊕

lines from any box i

O · ei

red or dotted vertical⊕

lines from any box i

O · e′
i (8.18)

In other words, we claim that if one specifies rescaled basis vectors ciei and die
′
i corre-

sponding to those edges which are red or dotted, then there exist unique rescaled basis 

vectors γiei and δie
′
i corresponding to the black thick edges, and a scalar f , such that:

1 For interpretation of the references to colour please refer to the web version of this article.
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(X − xn+1)

(
∑

i red or dotted

ciei +
∑

i black thick

γiei

)
+

+(Y − yn+1)

(
∑

i red or dotted

diei +
∑

i black thick

δiei

)
+

+fe1 = 0 (8.19)

Indeed, any box k has a unique black thick line going to the left or down. Assume without 

loss of generality that the black thick line from k leads one step left to the box i. Then 

(8.8) implies that equating the coefficient of ek in the left hand side of (8.19) to 0 yields 

the equation:

γi ∈
∑

j

(cj ·mT + γj ·mT + dj ·mT + δj ·mT )

This system of equations (in the variables γj , δj) can be solved in the localization 

AT,loc, since its determinant is in 1 + mT . Therefore, we conclude that in the local 

chart FHilbT,loc, we have:

En|FHilbT,loc

q.i.s.∼=

⎡
⎣

n⊕

k=1

O · ek
Ψ−→

red or dotted horizontal⊕

lines from any box i

O · ei

red or dotted vertical⊕

lines from any box i

O · e′
i

⎤
⎦

(8.20)

The coefficient of a certain basis vector ei (respectively e′
i) in Ψ(ek) is the coefficient of 

this basis vector in −(Y −yn+1)ek (respectively (X−xn+1)ek), and the latter can be read 

off from (8.8)–(8.9). The Proposition will be proved once we show that projecting the first 

(respectively second) term in the complex (8.20) to the subset of factors corresponding 

to the outer (respectively inner) corners induces a quasi-isomorphism. In other words, 

the e� in (8.16) are simply ek when k is the label of an outer corner, while the f� in 

(8.16) are equal to either e�← = ei or e′
�↓ = e′

i′ , depending on whether the number i to 

the left of the inner corner � is bigger or smaller than the number i′ below �:

En|FHilbT,loc

q.i.s.∼=
[

� outer⊕

corner of T

O · e�
Ψ−→

� inner⊕

corner of T

O · (e�← or e′
�↓)

]
(8.21)

In plain English, we need to prove that if k is not the label of an outer corner of T , then 

factoring the codomain of (8.20) by the vector Ψ(ek) allows us to solve for one of the 

ej , e′
j which are not of the form e�← or e′

�↓ for some inner corner �. Let us recall that:

Ψ(ek) = −
red or dotted horizontal∑

line starting at j

(yj
k − δj

kyn+1)ej +
red or dotted vertical∑

lines starting at j′

(xj′

k − δj′

k xn+1)e′
j′

(8.22)
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and assume without loss of generality that the k–th box is as in the picture below, so 

j′ > j (the situation where there is no box either above or to the right of k is analogous):

k

j

j′

i

Since yj
k = xj′

k = yi
j′ ∈ 1 + mT , we conclude that (8.22) lies in ej + mT , as we needed to 

prove. �

Remark 8.8. By a more detailed analysis of torus invariant functions that one needs to 

invert in the above proof, one can actually describe an open subscheme of ˚FHilbT given by 

the non-vanishing of these functions. The resulting open subschemes also form a cover of 

FHilbn because of the principle (8.11). The coordinate rings of these subschemes satisfy 

(8.5), however, it is not clear if the resulting cover is good.

8.6. Examples

In this Subsection, we use the local geometry of the flag Hilbert scheme to describe 

the homology of categorified projectors on two and three strands. Conjecture 8.2 holds 

for n ∈ {1, 2}, and in fact, the examples below give the explicit affine charts:

Example 8.9. In our notation, the S2 projector corresponds to the Young tableau T =

(1, 1), whose boxes have weights z1 = 1, z2 = t. The X, Y matrices are given by:

X =

(
u1 0
u2 u1

)
, Y =

(
0 0
1 0

)
.

We have deg(u1) = q and deg(u2) = q/t, due to (8.10). Therefore, the Poincaré series 

equals:

P (AT ) =
1

(1 − q)(1 − q/t)
.

Example 8.10. In our notation, the Λ2 projector corresponds to the Young tableau T =

(2), whose boxes have weights z1 = 1, z2 = q. The X, Y matrices are given by:

X =

(
x1 0
1 x2

)
, Y =

(
0 0

y21 0

)
,

and the commutation relation forces (x1 − x2)y21 = 0. We have deg(x1) = deg(x2) = q

and deg(y21) = t/q, due to (8.10). Therefore, the Poincaré series equals
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P (AT ) =
1 − t

(1 − q)2(1 − t/q)
=

1

(1 − q)2
+

t/q

(1 − q)(1 − t/q)
.

The denominator (1 −q)2(1 −t/q) arises from the functions x1, x2, y21, and the numerator 

1 − t arises from the commutation relation.

Example 8.11. In our notation, the S3 projector corresponds to the Young tableau T =

(1, 1, 1), whose boxes have weights z1 = 1, z2 = t, z3 = t2. The X, Y matrices are given 

by:

X =

(
u1 0 0
u2 u1 0
u3 u2 u1

)
, Y =

(
0 0 0
1 0 0
0 1 0

)
. (8.23)

We have deg(u1) = q, deg(u2) = q/t, deg u3 = q/t2, so the Poincaré series equals:

P (AT ) =
1

(1 − q)(1 − q/t)(1 − q/t2)
.

Example 8.12. In our notation, the Λ3 projector corresponds to the Young tableau T =

(3), whose boxes have weights z1 = 1, z2 = q, z3 = q2. The X, Y matrices are given by:

X =

(
x1 0 0
1 x2 0
0 1 x3

)
, Y =

(
0 0 0

y21 0 0
y31 y32 0

)
, (8.24)

and the commutation relation forces (x1 − x2)y21 = (x2 − x3)y32 = 0 and:

y21 − y32 = (x1 − x3)y31.

Note that one can eliminate y32 using the last equation. One has deg(x1) = deg(x2) =

deg(x3) = q, deg(y21) = deg(y32) = t/q, deg(y31) = t/q2, so the Poincaré series equals:

P (AT ) =
(1 − t)2

(1 − q)3(1 − t/q)(1 − t2/q)
.

The denominator comes from the functions x1, x2, x3, y21, y31, and the numerator comes 

from the equations (except from the one that we used to eliminate y32).

Example 8.13. For the hook-shaped projector with (z1, z2, z3) = (1, t, q), we have

X =

(
x1 0 0
x21 x2 0
1 x32 x3

)
, Y =

(
0 0 0
1 0 0
0 y32 0

)
,

with commutation relations (x1 − x2) = 0 (so x1 = x2),



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 97

x32 = x21y32, (x2 − x3)y32 = 0.

We can eliminate x2 and x32, and (8.10) gives us deg(x1) = deg(x3) = q, deg(x21) = q/t, 

deg(y32) = t2/q, so the Poincaré series equals:

P (AT ) =
(1 − t2)

(1 − q)2(1 − q/t)(1 − t2/q)
.

For the other hook-shaped projector we have (z1, z2, z3) = (1, q, t), so

X =

(
x1 0 0
1 x2 0
0 x32 x3

)
, Y =

(
0 0 0

y21 0 0
1 y32 0

)
,

with commutation relations (x1 − x2)y21 = (x2 − x3)y32 = 0 and:

x1 − x3 + y32 = x32y21.

In this case, formula (8.10) gives us deg(x1) = deg(x2) = deg(x3) = q, deg(x32) = q2/t, 

deg(y21) = t/q, deg(y32) = q, so the Poincaré series equals:

P (AT ) =
(1 − t)(1 − q2)

(1 − q)3(1 − t/q)(1 − q2/t)
.

8.7. Poincaré series

First we recall some generalities on graded algebras and Poincaré series. Let A
be a Z

2–graded super-commutative dg algebra freely generated by elements of de-

grees (e1, e′
1), . . . (er, e′

r), tensored by the Koszul complex of relations of degrees 

(f1, f ′
1), . . . , (fs, f ′

s). We define the formal Poincaré series of A as the rational function:

P (A) :=

∏s
i=1(1 − qfitf ′

i )∏r
i=1(1 − qeite′

i)
.

We say that A is well-graded if the degrees of all generators are contained in a cone, 

that is, there is a linear function � : Z
2 → Z such that �(ei, e

′
i) > 0 for all i = 1, . . . , r. 

If A is well-graded then all homogeneous components of A are finite-dimensional, the 

component of degree (0, 0) is one-dimensional. In this case, it is well-known that P (A)

(as a power-series expanded in qatb for �(a, b) ≥ 0) matches with the usual Poincaré 

series of A, i.e. the generating function for the dimensions of homogeneous components 

of A.

Moreover, we define the formal Poincaré series of any localization of A (with respect 

to any multiplicative system consisting of degree 0 elements) to be the same as that of 

A itself.
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In general, we do not expect AT to be well-graded. However, one can check that AT

is well-graded (that is, the degrees of special coefficients are contained in a cone) if T is a 

row-reading (or column-reading tableau) for an arbitrary Young diagram. In particular, 

this holds when T is a row or a column.

Proposition 8.14. For any standard Young tableau of size n, the formal Poincaré series 

of the graded algebras AT,loc(∗) of Subsection 8.5 are given by the following formulas:

P (AT,loc(C2)) = (1 − q)−n(1 − t)−n
n∏

i=1

1

1 − z−1
i

∏

1≤i<j≤n

ζ

(
zi

zj

)
(8.25)

P (AT,loc(C)) = (1 − q)−n
n∏

i=1

1

1 − z−1
i

∏

1≤i<j≤n

ζ

(
zi

zj

)
(8.26)

P (AT,loc(point)) =
n∏

i=1

1

1 − z−1
i

n∏

i=2

1

1 − qtzi/zi+1

∏

1≤i<j≤n

ζ

(
zi

zj

)
(8.27)

where:

ζ(x) =
(1 − x)(1 − qtx)

(1 − qx)(1 − tx)

and zi denotes the weight of the ith box in the standard Young tableau T . In the right 

hand side all vanishing factors (both in the numerator and in the denominator) should 

be ignored.

Proof. Formula (8.25) can be obtained by iterating the following identity, which holds 

for any standard Young tableau T of size n and an inner corner � ∈ T :

P (AT ∪�,loc(C2))

P (AT,loc(C2))
=

(1 − 1)

(1 − q)(1 − t)(1 − z−1
�

)

n∏

i=1

ζ

(
zi

z�

)
(8.28)

The factor 1 − 1 in the numerator must be canceled against a single factor 1 − 1 in the 

denominator of the product of ζ’s, in order for the right-hand side of (8.28) to make 

sense. Since T is a Young tableau, it is easy to prove the following elementary identity:

1

1 − y−1

n∏

i=1

ζ

(
zi

y

)
=

∏
�outer corner of T (1 − z�/y)∏
�inner corner of T (1 − z�/y)

for any variable y. Therefore, the identity (8.28) is equivalent to:

P (AT ∪�,loc(C2))

P (AT,loc(C2))
=

1

(1 − q)(1 − t)
·
∏

�outer corner of T (1 − z�/z�)
∏� �=�

�inner corner of T (1 − z�/z�)
(8.29)
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The above formula follows from (8.5) and (8.7), which were shown to hold at the level 

of local rings around IT in Proposition 8.7 (the factors in the denominator correspond 

to the generators and the factors in the numerator correspond to the relations of the 

affine dg scheme FHilbdg
T ∪�,loc over the affine dg scheme FHilbdg

T,loc, see (8.16)). Formulas 

(8.26) and (8.27) are analogous exercises, which we leave to the interested reader. �

Corollary 8.15. If AT (∗) is well-graded, then the Poincare series of AT (∗) is given by 

the same equations (8.25), (8.26), (8.27).

If we pass to the decategorified setting by substituting t = q−1, the following Corollary 

shows that the Poincaré series depends only on the underlying Young diagram of T :

Corollary 8.16. If λ is the underlying Young diagram of T , we have:

P (AT,loc(C))
∣∣∣
t=q−1

=
1∏

�∈λ(1 − qh(�))
, (8.30)

where h(�) denotes the hook-length of the box �, i.e. one more than the number of boxes 

lying above or to the right of � in the Young diagram λ.

Proof. Let τ(x) = 1−x
1−xq . It is easy to see that:

ζ(x)|t=q−1 = qτ(x)τ(x−1)

hence (8.26) implies that:

P (AT,loc(C))
∣∣∣
t=q−1

= (1 − q)−nq(n

2)
n∏

i=1

1

1 − z−1
i

∏

1≤i�=j≤n

τ

(
zi

zj

)
(8.31)

Since the right-hand side of the expression above is symmetric in the weights z1, ..., zn, it 

only depends on the underlying Young diagram λ of T , and not on the specific labeling 

of the boxes. Therefore, we may label these weights as:

(z1, . . . , zn) = (1, q, . . . , qλ1−1, q−1, q−2, . . . , qλ2−2, . . .).

With the labeling above, given any i–th box on the vertical boundary of λ and any j–th 

box on the horizontal boundary such that i < j, we let � denote the unique box in the 

same row as the former box and the same column as the latter box. Then it is elementary 

to see that:

1 − qzi

zj
= 1 − qh(�)

A straightforward telescopic cancellation implies that:
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∏

1≤i�=j≤n

τ

(
zi

zj

)
=

(1 − q)nq−(n

2)∏
j>1(1 − z−1

i )
∏

�∈λ(1 − qh(�))
,

hence (8.31) implies (8.30). �

8.8. The extremal projectors

Let us give an explicit construction of the charts FHilbT (C) = ˚FHilbT (C) in the case 

when T is either the symmetric or antisymmetric projector.

Proposition 8.17. Formula (8.5) holds for T = (1n).

Proof. The subscheme:

FHilb(1n)(C) = {(X, Y, v), Y cyclic}/B ⊂ FHilbn(C)

is an affine variety because we can eliminate the B–action by fixing the basis 

{v, Y v, ..., Y n−1v}. With this in mind, FHilb(1n)(C) is simply the affine space of matrices 

of the form (8.23), hence:

FHilb(1n)(C) ∼= C
n ⇒ A(1n)(C) = C[u1, ..., un]

with ui having weight qt1−i. In (8.5), the relation r�1
has the same weight as the coor-

dinate ∗ = C, namely q, so they can both be eliminated. Meanwhile, the generator f�1

has weight qt−n, which is verified by the obvious fact that A1n+1(C) = A1n(C)[un+1]. 

We conclude that:

P (A(1n)(C)) =
1∏n

i=1 (1 − qt1−i)
. �

Proposition 8.18. Formula (8.5) holds for T = (n).

Proof. The subscheme:

FHilb(n)(C) = {(X, Y, v), Xcyclic}/B ⊂ FHilbn(C)

is an affine variety because we can eliminate the B–action by fixing the basis {v, (X −
x1Id)v, ..., (X − xn−1Id)...(X − x1Id)v}. With this in mind, FHilb(n)(C) is simply the 

affine space consisting of the coefficients of commuting matrices of the form (8.24). 

Therefore, we have:

FHilb(n)(C) = Spec A(n)(C) where A(n)(C) =
C[x1, . . . , xn, yij ]n≥i>j≥1

yi,j(xi − xj) − (yi−1,j − yi,j+1)
(8.32)
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with xi having weight q and yij having weight tqj−i. In (8.5), the relation r�1
has weight 

t and the generator f�1
has weight tq−n. Therefore, we expect A(n+1)(C) to have two 

generators (of weights q and tq−n) and one relation (of weight t) over A(n)(C). From 

(8.32), we see that:

A(n+1)(C) =
A(n)(C)[xn+1, yn+1,1, ..., yn+1,n]

yn+1,j(xn+1 − xj) − (yn,j − yn+1,j+1)

We can use the relations in the denominator to express the variables yn+1,2, ..., yn+1,n in 

terms of the other ones, so we may simplify the equality above to:

A(n+1)(C) =
A(n)(C)[xn+1, yn+1,1]

yn+1,n(xn+1 − xn)

where yn+1,n is defined inductively by the system of equations yn+1,j = yn,j−1 +

yn+1,j−1(xn+1−xj−1). In the display above, the generators xn+1 and yn+1,1 have weights 

q and tq−n, while the relation has weight t, as expected. From (8.32), we conclude that:

P (A(n)(C)) =
(1 − t)n−1

(1 − q)n
∏n−1

i=1 (1 − tiq−1)
�

To compute the full endomorphism ring of the projector PT , we need to tensor with 

∧•T ∨
n . When we restrict to the affine chart FHilbT ⊂ FHilbn the vector space Cn is en-

dowed with a preferred basis e1, ..., en, which more abstractly means that the tautological 

bundle is trivialized:

Tn|FHilbT
∼= O · e1 ⊕ ... ⊕O · en

The basis vectors are indexed by boxes � in the Young diagram of T , and the torus 

C
∗ × C

∗ acts on the basis vector e� by the character z� = qatb for any box � = (a, b). 

Hence:

∧•T ∨
n |FHilbT

∼= ∧•(ξ1, . . . , ξn)

where the equivariant weights of the symbols ξ� are given by z−1
�

= q−at−b. In particular, 

Conjecture 1.10 implies that End(PT ) should be the tensor product of the homology in 

Hochschild degree zero with an exterior algebra. The theorems stated in the introduction 

can be easily deduced from the results above.

Proof of Theorem 1.11. Propositions 8.17 and 8.18, together with the paragraph above, 

show that the expressions on the right-hand side of equations (1.28) and (1.29) agree 

with:

AT (C) ⊗
(
∧•T ∨

n | ˚FHilbT (C)

)
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for T ∈ {(1n), (n)}. On the other hand, these expressions agree with the known homology 

of the symmetric projector (computed by Hogancamp in [43]) and the antisymmetric 

projector (computed by Abel and Hogancamp in [1]). �

Proof of Theorem 1.12. From Corollary 8.16, we see that:

P
(
AT,loc(C) ⊗

(
∧•T ∨

n |FHilbT,loc(C)

))
=

∏

�=(a,b)∈λ

1 − aqb−a

1 − qh(�)

This right-hand side is a well-known formula for the λ-colored HOMFLY-PT polynomial 

of the unknot [3] (up to a monomial in q, compare with Proposition 3.1), which is by 

definition the Markov trace of the Jones-Wenzl projector pλ ∈ Hn. �

9. Differentials and glN homology

9.1. Spectral sequence for glN homology

By [66], for each N there exists a spectral sequence starting at the HOMFLY-PT 

homology and converging to slN homology of a given knot. More precisely, for a given 

braid σ one can construct a complex of Soergel bimodules as described in Subsection 3.5. 

The Hochschild homology of this complex coincides with the HOMFLY-PT homology of 

the closure of σ. Given a polynomial p ∈ C[x], we can construct an additional differential 

d− which acts on Soergel bimodules, as we now describe.

Recall that the simple Soergel bimodule can be written as Bi = R ⊗Ri,i+1 R. Denote 

uj = xj ⊗ 1, vj = 1 ⊗ xj for all j, and

Ui,i+1 :=
C[u1, . . . , un, v1, . . . , vn]

(ui + ui+1 − vi − vi+1, uj − vj , j /∈ {i, i + 1})
,

then

Bi
∼=
[
Ui,i+1

(vi−ui)(vi−ui+1)−−−−−−−−−−−→ Ui,i+1

]
.

Given a polynomial p ∈ C[x], consider the difference

Wi,i+1 := p(ui) + p(ui+1) − p(vi) − p(vi+1)

= p(ui) + p(ui+1) − p(vi) − p(ui + ui+1 − vi) ∈ Ui,i+1.

Remark that Wi,i+1 is divisible by (vi −ui)(vi −ui+1): indeed, Wi,i+1 vanishes if vi = ui

or vi = ui+1. Let pi,i+1 = Wi,i+1/(vi−ui)(vi−ui+1). We use pi,i+1 to define an additional 

differential (denoted by d− in [66]) which acts backwards:
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B
(p)
i :=

[
Ui,i+1

(vi−ui)(vi−ui+1)−�=============�−
d−:=pi,i+1

Ui,i+1

]
. (9.1)

Note that the total complex (B
(p)
i , d+ + d−) is not a chain complex but a matrix factor-

ization with potential Wi,i+1.

It is proved in [66] that this additional differential d− can be naturally extended to 

Bott-Samuelson bimodules (tensor products of Bi), and to Rouquier complexes. One can 

also prove [7] that d− can be correctly defined on general Soergel bimodules as well. For 

p′(x) = xN , this differential is usually denoted by dN , and the homology of the total 

differential is isomorphic to glN Khovanov-Rozansky homology [48]. The desired spectral 

sequence is then induced by dN on HHH(σ).

In the present section, we wish to present a more geometric viewpoint of this construc-

tion. Given N , we define the so-called slN dg category (SBimn, dN ), where the objects 

are Soergel bimodules equipped with the “internal differential” dN . This is a subcategory 

of the category of matrix factorizations with potential xN . There is a monoidal functor:

Kb(SBimn) →
(
Kb(SBimn), dN

)

which is given by endowing complexes of Soergel bimodules with the differential dN .

9.2. Sections and schemes

On the geometric side, we have a remarkable family of dg schemes closely related to 

FHilbdg
n = FHilbdg

n (C). Namely, let s be an arbitrary section of the tautological bundle 

Tn. It defines a contraction map:

ds : ∧•T ∨
n → ∧•−1T ∨

n (9.2)

Recall the construction (1.13):

ι̃∗(σ) = ι∗(σ) ⊗ ∧•T ∨
n

which is naturally a sheaf of dg modules on TotFHilbdg
n
Tn[1]. If we endow the exterior 

power with the differential (9.2), we obtain:

(ι̃∗(σ), ds)

which is naturally a sheaf of dg modules on the dg scheme:

TotFHilbdg
n

(Tn[1], s) := the sheaf of dg algebras (∧•T ∨
n , ds) on FHilbdg

n .

To construct sections s of the tautological bundle Tn, recall that its fibers are given by:

Tn|In⊂...⊂C[x,y] = C[x, y]/In.
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Therefore every polynomial f ∈ C[x, y] defines a section sf ∈ Γ(FHilbn, Tn) for all n, 

and these sections are all compatible with each other:

Tn−1 Tn

OFHilbn

sf

sf

The morphism FHilbn
π−→ FHilbn−1 × C therefore induces a map:

TotFHilbdg
n

(Tn[1], sf )
πf−→ TotFHilbdg

n−1×C
(Tn−1[1], sf )

and so one has a commutative diagram of maps of dg schemes:

TotFHilbdg
n
Tn[1] TotFHilbdg

n−1×C
Tn−1[1]

TotFHilbdg
n

(Tn[1], sf ) TotFHilbdg
n−1×C

(Tn−1[1], sf )

πf

πf

where the vertical maps are simply induced by the map of dg algebras ∧•T ∨
n →

(∧•T ∨
n , ds). Note that the dg scheme TotFHilbdg

n
(Tn[1], sf ) is C∗ × C

∗ equivariant if and 

only if f is an equivariant section of Tn. It is not hard to see that the only such equivariant 

sections are f(x, y) = xN yM for some (N, M) ∈ N0 × N0. We denote the corresponding 

section by sN |M .

Remark 9.1. In [39, Section 7], the differentials were parametrized by copies of the defin-

ing representation of Sn in the rational Cherednik algebra, which can be considered as 

a noncommutative deformation of C[x1, . . . , xn, y1, . . . , yn]. One can check that such a 

copy naturally corresponds to a section of Tn, in particular, f ∈ C[x, y] corresponds to 

the subspace Span(f(xi, yi))1≤i≤n.

9.3. The commutative tower

We conjecture that the differential dN in the Soergel category is closely related to the 

section f = xN of the tautological bundle on the flag Hilbert scheme. More precisely, we 

propose the following:

Conjecture 9.2. There is a map ιN : (SBimn, dN ) → (TotFHilbdg
n (C)Tn[1], sN ) in the sense 

of Definition 4.3. The corresponding functors fit into the commutative diagram:
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TotFHilbdg
n
Tn[1] SBimn

TotFHilbdg
n

(Tn[1], sN ) (SBimn, dN )

ι∗
N

ιN∗

ι∗
N

ιN∗

(9.3)

Furthermore, there is a tower of commuting squares connected with πN , Tr, I akin to 

(1.24).

Remark 9.3. We expect that the general differential on SBimn corresponding to the 

polynomial p(x) in the right hand side, corresponds to replacing sN by sp(x) in the left 

hand side.

The conjecture is true for n = 1. Indeed, FHilb1 = FHilbdg
1 = C, so:

TotFHilbdg
1

(Tn[1], sN ) = S•
C[x]

(
C[x]

xN

−→ C[x]

)
∼= Spec C[x]/(xN ).

The Soergel category SBim1 has a unique C[x] bimodule, namely 1 = C[x, y]/(x − y), 

and the corresponding object in the dg category (SBim1, dN ) is given by:

1 =

[
C[x, y]

(W (x)−W (y))/(x−y)−�===============�−
x−y

C[x, y]

]

where W (x) = xN+1

N+1 . One can eliminate y and rewrite the above

1 =

[
C[x]

W ′(x)=xN

−−−−−−−→ C[x]

]

from where it is clear that the categories TotFHilbdg
1

(Tn[1], sN ) and (SBim1, dN ) are equiv-

alent.

9.4. Differentials in affine charts

Recall the affine charts FHilbT ⊂ FHilbn defined in Subsection 8.3. In each of these, 

the vector space Cn is endowed with a preferred basis e1, ..., en, which more abstractly 

means that the tautological bundle is trivialized:

Tn|FHilbT
∼= O · e1 ⊕ ... ⊕O · en

The basis vectors are indexed by boxes � in the Young diagram of T , and the torus 

C
∗ × C

∗ acts on the basis vector e� by the character z� = qatb for any box � = (a, b). 

We conclude that:

∧•T ∨
n |FHilbT

∼= ∧(ξ1, . . . , ξn)
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where the equivariant weights of the symbols ξ� are given by z−1
�

= q−at−b. Recall from 

Subsection 9.2 that to any polynomial f ∈ C[x, y], we may associate a section of the 

tautological bundle given by:

sf |(X,Y,v) = f(X, Y )v ∈ Tn|(X,Y,v) (9.4)

We may dualize the above section to obtain sf : T ∨
n → O, and in local coordinates this 

takes the form:

sf (ξi) = [f(X, Y )v]i = f(X, Y )i1 (9.5)

The local rings of the dg scheme TotFHilbdg
n

(Tn[1], sf ) are then given by the Koszul com-

plex associated with the first column of the matrix f(X, Y ).

Lemma 9.4. Suppose that f = xN yM and the diagram of T contains the box with coor-

dinates (N, M). Then the dg algebra ∧FHilbdg
n

(T ∨
n , sf ) is contractible in the local chart 

˚FHilbT .

Proof. Suppose that � = (N, M) in T . Using (8.8)–(8.9), one can prove that 

(XN Y M )(v) ∈ e�+mT , where mT is the maximal ideal in the local ring ÅT = C[ ˚FHilbT ]. 

Therefore, sf (ξ�) = 1 is invertible in (9.5), and this implies that the Koszul complex of 

sf is contractible. �

Corollary 9.5. Suppose that the diagram of T has more than N columns. Then the ho-

mology of the categorified projector PT with respect to dN vanishes.

Remark 9.6. In [7, Theorem 4] it is proved that (Bw, dN ) ∼= 0, if the Robinson-Shensted 

tableau of w has more than N columns. One can prove that Soergel bimodules Bw with 

this property generate a tensor subcategory of SBimn, and all categorified projectors 

PT belong to this subcategory, provided that T has more than N columns. Therefore 

(PT , dN ) ∼= 0 in agreement with Corollary 9.5.

For T = (1, . . . , 1), the differential corresponding to xN can be written very explicitly.

Proposition 9.7. In the chart ˚FHilb(1,...,1) the differential dN is given by the equation

dN (ξ1 + zξ2 + . . . + zn−1ξn−1) = (u1 + zu2 + . . . + zn−1un)N mod zn, (9.6)

where u1, . . . , un are local coordinates and z is a formal parameter.

Proof. Indeed, in the chart ˚FHilb(1,...,1) one has X = u1 + Bu2 + . . . + Bn−1un, where 

B is the n × n Jordan block. Clearly, Bn = 0 and the first column of XN contains first 

n coefficients of the polynomial (u1 + zu2 + . . . + zn−1un)N . �



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 107

As a corollary, we get the following result.

Proposition 9.8. Assuming Conjecture 9.2, the slN homology of the n-th symmetric cat-

egorified Jones-Wenzl projector is isomorphic to the Koszul homology of the differential 

(9.6).

This description of dN indeed agrees with the ones in [36,38,39], and the homology 

is quite involved. Indeed, its Poincaré series for n → ∞ deforms the character of the 

(2, 2N + 1) minimal model for the Virasoro algebra. Extensive computer experiments 

[36,38] support this conjecture for N = 2 and N = 3. See also [44] for recent developments 

for N = 2.

The homology of all projectors on two and three strands with respect to dN were 

described in [36]. One can check that they agree with the general framework of this 

paper.

10. Appendix

10.1. Dg algebras

A vector space V will be called dg (short for “differential graded”) if it comes endowed 

with a grading:

V =
⊕

n∈Z

V i

and a differential d : V • → V •+1 such that d2 = 0. A vector v ∈ V is called homogeneous 

if v ∈ V i for some integer i. If this is the case, then we will write deg v = i.

Definition 10.1. A dg algebra A• is a dg vector space concentrated in non-positive degrees 

(An = 0 for n > 0), which is endowed with a multiplication that preserves the grading:

Ai · Aj ⊂ Ai+j ∀ i, j ∈ N0

and the differential via the graded Leibniz rule:

d(a · a′) = (da) · a′ + (−1)deg aa · (da′) ∀ a, a′ ∈ A (10.1)

We impose the usual axioms on the dg algebra A•, such as associativity and unit 1 ∈ A0.

All the dg algebras in this paper will be commutative, in the sense that:

a · a′ = (−1)(deg a)(deg a′)a′ · a ∀ a, a′ ∈ A• (10.2)

We will write H0(A) for the 0–th cohomology of A•, which is a usual commutative 

algebra. All the dg algebras studied in this paper will be finitely generated over H0(A).
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Definition 10.2. A dg module M• for a dg algebra A• is a dg vector space M• with a 

map:

A• ⊗ M• −→ M•

which is associative, preserves the grading, and satisfies the graded Leibniz rule (i.e. 

(10.1) with a′ replaced by m). Note that all the cohomologies Hi(M•) are modules for 

H0(A•).

When the grading will not be particularly crucial, we may simplify notation by writing 

A = A• and M = M•. We will only studied the derived category A–modules:

A–Mod =
{

dg modules M � A
}

/quasi–isomorphism

When the dg algebra A is finitely generated over H0(A), we will call an object of A–Mod

finitely presented if all its cohomologies have this property over H0(A). Then we write:

A–mod ⊂ A–Mod

for the full subcategory of finitely presented modules. The category of dg modules behaves 

much like that of usual modules, but with certain particular features. First of all is the 

existence of the grading shift:

M•[1] = M•+1

Given two A–modules M and M ′, one can define the space of degree preserving homo-

morphisms between them as HomA(M, M ′). But it is more naturally to consider instead:

Hom•
A(M, M ′) =

⊕

n∈Z

HomA(M, M ′[n]) (10.3)

which is actually a dg vector space with respect to:

d(f) = d ◦ f − (−1)nf ◦ d ∀ f : M → M ′[n]

The spaces (10.3) make A–Mod and A–mod into dg categories, which just means a 

category whose Hom spaces are dg vector spaces. We may inquire about the ordinary 

categories:

H0(A–Mod) and H0(A–mod) (10.4)

whose Hom spaces are, by definition, the 0–th cohomologies of (10.3). Because the zero–

cycles of (10.3) are degree and differential preserving maps f : M → M ′, while the 

zero–boundaries are homotopies between such maps, we conclude that (10.4) is nothing 
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but the homotopy category of A–modules. So the dg category A–mod supersedes the 

homotopy category.

10.2. Symmetric and exterior algebras

There will be two main examples of dg algebras, both associated to a vector space V . 

The first is the symmetric algebra:

SV =
∞⊕

d=0

SdV (10.5)

concentrated in degree 0 and with trivial differential, and the exterior algebra:

∧V =

∞⊕

d=0

∧dV (10.6)

situated in degrees ..., −2, −1, 0 and with trivial differential. By definition, the spaces 

(10.5) and (10.6) are quotients of the tensor algebra of V by the relations v⊗ v′ ∓ v′ ⊗ v. 

Therefore, they are both particular cases of the symmetric algebra of a dg vector space:

SV • :=

(
∞⊕

n=0

V • ⊗ ... ⊗ V •

)/(
v ⊗ v′ − (−1)(deg v)(deg v′)v′ ⊗ v

)
(10.7)

which inherits the differential from V •:

d(v1 ⊗ ... ⊗ vk) =

k∑

i=1

(−1)deg v1+...+deg vi−1 · v1 ⊗ ... ⊗ vi−1 ⊗ d(vi) ⊗ vi+1 ⊗ ... ⊗ vk

By the very definition, (10.7) is a commutative dg algebra, which is concentrated in non-

positive degrees as long as the original dg vector space V • is. In particular, when the dg 

vector space is concentrated in degree 0 (respectively -1), we obtain (10.5) (respectively 

(10.6).

Example 10.3. A particularly important case of the construction (10.7) is when:

V • =
[
M

s−→ N
]

is concentrated in degrees −1 and 0. Then we have:

SV • =
[
...

ds−→ ∧2M ⊗ SN
ds−→ M ⊗ SN

ds−→ SN
]

in degrees ..., −2, −1, 0, with differential given by:



110 E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542

ds(m1 ∧ ... ∧ mk ⊗ n) = (−1)k−1
k∑

i=0

m1 ∧ ... ∧ mi−1 ∧ mi+1 ∧ ... ∧ mk ⊗ s(mi)n

(10.8)

for all m1, ..., mk ∈ M and n ∈ SN .

More generally, suppose that A is a dg algebra and M is a dg module for A. Define:

SAM• = SM•
/

(am ⊗ m′ − m ⊗ am′)

which will also be a dg module for A. The formalism above, as well as Example 10.3, 

apply. We refer to [5] for more context on symmetric algebras.

10.3. Affine dg schemes

Dg schemes can be defined as spectra of dg algebras with respect to the étale topol-

ogy, as detailed in [8]. We will not need the full theory, and instead follow the original 

definition of Kontsevich.

Definition 10.4. If X is an scheme with structure sheaf OX , an affine dg scheme supported 

on X is a sheaf A of dg algebras, concentrated in non-positive degrees, such that OX =

H0(A).

We will write Spec A for the affine dg scheme associated to A, to match this situa-

tion with that of usual schemes. Philosophically, the approach of Definition 10.4 can be 

summarized by saying that we ignore topological subtleties of dg schemes, and simply 

endow them with the topology coming from OX . The natural definition of quasi-coherent 

sheaves is:

QCoh(Spec A) = A–Mod

=

{
P ∈ QCoh(X) endowed with a dg module structure for A

}

quasi–isomorphism

All of the dg schemes in this paper will be of finite type, meaning that A is finitely 

generated over OX = H0(A). Since this is the case, it is natural to define coherent-

sheaves as the full subcategory:

A–mod = Coh(Spec A) ⊂ QCoh(Spec A)

consisting of dg modules whose cohomology groups are coherent sheaves over OX =

H0(A).
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Example 10.5. Suppose that A = SX [N s→ OX ] is the Koszul complex associated to a 

coherent sheaf N and a co-section s. Explicitly, we have:

A =
[
...

ds−→ ∧2N ds−→ N ds−→ OX

]

The structure sheaf OX situated in degree 0, as in Example 10.3, upgraded to the 

situation of modules. If the co-section s is regular, then it is well-known that the Koszul 

complex is acyclic, and the dg algebra A becomes isomorphic to the usual commutative 

algebra OX/s. In this case, the dg scheme is simply the subscheme of X cut out by the 

section s.

However, in general it may be that the section s is not regular (for example, s could 

be 0). In this case, the dg algebra A = ∧•N has 0 differential but non-trivial grading. 

Explicitly:

A–mod

=

{
graded coherent OX � P• together with N ⊗P• λ→ P•−1 such that λ ◦ λ = 0

}

quasi–isomorphism

In particular, if N ∼= O⊕n
X is a free module, the choice of the datum λ corresponds to n

commuting degree −1 endomorphisms of P.

Example 10.6. In general, the affine dg schemes we will encounter will combine the pre-

vious example with the case of polynomial rings over ordinary algebras. Specifically, we 

will have:

A = SX [M s−→ N ] =
[
...

ds−→ ∧2M⊗ SXN ds−→ M⊗ SXN ds−→ SXN
]

where M 
s→ N is a map of coherent sheaves of X. The differential ds is given by (10.8), 

and the grading has ∧iM ⊗ SN sitting in degree −i. But note that there is an extra 

grading on the algebra A, given by placing ∧iM ⊗ SjN in degree i + j. We will write 

this as:

A•,∗ =
⊕

i,j≥0

A−i,i+j =
⊕

i,j≥0

∧iM⊗ SjN

Since the ∗ = i + j grading is preserved by the differential ds, it descends to a grading 

on the cohomology groups. For example, when the morphism s is regular (i.e. when the 

Koszul complex A is acyclic in negative degrees), the • grading collapses, and the ∗
grading matches the usual polynomial grading on the symmetric power S∗

X(N/M).

10.4. Projective dg bundles

We do not wish to define projective dg schemes in complete generality, but instead 

focus on projectivizations of dg vector bundles V• on a space X.
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Definition 10.7. A projective dg bundle is defined through its category of coherent 

sheaves:

Coh(Proj SXV•) =
{graded S∗

XV• dg modules}
(S∗V•/S∗>0V•) ∼= 0

Let us make two remarks: first of all, an object in Coh(Proj SXV•) has two gradings. 

The first comes from the power ∗ of the symmetric power, and the second comes from 

the dg grading on V•. Secondly, the difference between a projectivization and the affine 

cone Spec SXV• is the same as in the classical case: there is, in the derived category 

of the former, an additional quasi-isomorphism between the structure sheaf of the zero 

section and the zero module.

Example 10.8. As in Example 10.8, let us study the case when V• = [M 
s−→ N ] is a two 

step complex of vector bundles, concentrated in degrees −1 and 0. In this case, we have 

a map:

Proj SX [M s−→ N ] Proj SXN

X

πdg
π

(10.9)

where the map π is an actual projective bundle since N is a vector bundle on X. The 

symbol ↪→ emulates closed embeddings of schemes, because we tautologically have:

Coh
(

Proj SX [M s−→ N ]
)
∼= (10.10)

∼=
{

coherent sheaves on Proj SXN endowed with a dg action of

∧•[π∗M(−1)
s→ OProj SX N ]

}

With this in mind, we think of Proj SX [M 
s−→ N ] as the dg subscheme of Proj SXN

cut out by the cosection s of the vector bundle π∗M(−1).

Our main Example 10.8 should be interpreted as a dg version of the familiar notion 

of projective bundles Proj SXV π−→ X, where V is a rank n locally free sheaf of X. In 

this case, recall the following formulas:

π∗(O(k)) = SkV concentrated in degree 0

π∗(O(−k)) = Sk−nV∨ ⊗ ∧topV∨ concentrated in degree n − 1

for all k ∈ N, where π∗ denotes the derived pull-back. The second equality follows from 

the first one, together with relative Serre duality:
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R•π∗(A) = R•−n+1π∗(A∨ ⊗ ∧topV(−n))∨ (10.11)

for all A ∈ Db(Coh(Proj SXV)). We now prove a similar formula in the dg setting

Proposition 10.9. In the notation of Example 10.8, suppose rank M = m and rank N =

n. Then:

R•πdg
∗ (A) = R•−n+m+1πdg

∗

(
A∨ ⊗ ∧topN (−n)

∧topM(−m)

)∨

(10.12)

for all A ∈ Db(Coh(Proj SX [M 
s−→ N ]))

Proof. Implicitly in equation (10.10), one has the equation:

R•πdg
∗ (A) = R•π∗

(
A⊗ ∧•[π∗M(−1)

s→ O]
)

where O = OProj SX N . Applying (10.11) to the right hand side, we obtain

R•πdg
∗ (A) = R•−n+1π∗

(
A∨ ⊗ ∧•

[
π∗M(−1)

s→ O
]∨

⊗ ∧topN∨(−n)

)∨

It is easy to see that ∧•
[
π∗M(−1)

s→ O
]∨

= ∧•+m
[
π∗M(−1)

s→ O
]
⊗ ∧topM∨(m), 

hence:

R•πdg
∗ (A) = R•−n+m+1π∗

(
A∨ ⊗ ∧•

[
π∗M(−1)

s→ O
]
⊗ ∧topN (−n)

∧topM(−m)

)∨

which equals R•−n+m+1πdg
∗

(
A∨ ⊗ ∧topN (−n)

∧topM(−m)

)∨

by another application of (10.10). �
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