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projectors, generalizing earlier conjectures of the first and
third authors with Oblomkov and Shende.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. It has been slightly more than ten years since Khovanov and Rozansky defined a
triply-graded homology theory HHH categorifying the HOMFLY-PT polynomial [49]. We
have learned a lot about the structure of this invariant in the intervening time, but there
is much that remains mysterious. In [32], the first author conjectured a relation between
HHH of the (n,n + 1) torus knot and the g, t-Catalan numbers studied by Haiman and
Garsia [31,41]. A key feature of this conjecture is that it relates HHH(T (n,n+1)) to the
cohomology of a particular sheaf on the Hilbert scheme of n points in C2. This idea was
developed further in [39], and later in [37], which identified the sheaves which should
correspond to arbitrary torus knots T'(m,n). This paper grew out of our attempts to
understand whether HHH of any closed n-strand braid in the solid torus can be described
as the cohomology of some element of the derived category of coherent sheaves on the
Hilbert scheme.

We conjecture that this is indeed the case (Conjecture 1.1 below). More importantly,
we introduce a mechanism which we hope can be used to prove it. Two ideas play an im-
portant role in our construction. The first (already present in [37]) is that one should use
the flag Hilbert scheme rather than the usual Hilbert scheme. The second is the notion
of categorical diagonalization introduced by Elias and Hogancamp in [26]. In Theo-
rem 1.7, we give a geometric characterization of categorical diagonalization in terms of
the bounded derived category of sheaves on projective spaces. Using this formulation, we
show that Conjecture 1.1 would follow from some very specific facts about the Rouquier
complex of certain braids. Finally, as an application of our ideas, we describe how the
homology of colored Jones-Wenzl projectors is related to the local rings at fixed points
of the natural torus action on the flag Hilbert scheme.

1.2.  Recall the Hecke algebra H,, of type A,, whose objects can be perceived as
isotopy classes of braids on n strands modulo the relation:

(o) (78 =1

where o, denotes a single crossing between the k and (k4 1)-th strands. The product in
the Hecke algebra corresponds to stacking braids on top of each other, from which the
non-commutativity of H,, is manifest. Ocneanu [30,46] constructed a collection of linear
maps:
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X : E|Hn—>C(a,q) (1.1)
n=0

which is uniquely determined by the fact that V 0,0’ € H,, we have x(c0’) = x(c'0),
and:

L X(@)en) =x(0),  x(i(0)or) = x(0)-a  (12)

where i(0) € H, 1 is the braid obtained by adding a single free strand to the right of o.
Jones ([46], [30]) showed that the map (1.1) is an invariant of the closure 7 of the braid:

HOMFLY-PT(7) = (o) (1.3)

which in fact coincides with the well-known HOMFLY-PT knot invariant. The map x
factors through a maximal commutative subalgebra C,,:

Co &5 Hy, 255 C, by which we mean that  y : Hy, <> Cp =5 C(a,q)  (1.4)

for some linear map | that will be explained later. As a vector space, the commutative
algebra C), is spanned by the Jones-Wenzl projectors to irreducible subrepresentations of
the regular representation of H,. As such, dim C,, equals the number of standard Young
tableaux of size n, while dim H,, = n!. Alternatively, one can describe C,, in terms of the
twists:

FT) = (01---0x_1)F (1.5)

for all k € {1,...,n}. Note that FT; = 1, while FT,, is central in the braid group. The
fact that FTy,...,FT,, generate a maximal commutative algebra (precisely our C,,) is
well-known (e.g. [65,51]).

1.3.  The Hecke algebra admits a well-known categorification, namely the monoidal
category:

(SBim,,®gr) ~ Ko(SBim,)= H,

of certain bimodules over R = C|[z1, ..., ] called Soergel bimodules (see [72], [71]). This
category admits three gradings:

e The internal grading given by considering graded bimodules with respect to degz; =
1. We write ¢ for the variable that keeps track of this grading.

e The homological grading that arises from chain complexes in the homotopy category
K?(SBim,,). We write s for the variable that keeps track of this grading.
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« The Hochschild grading that appears when considering D®(SBim,, ), namely the clo-
sure of SBim,, in D®(R-mod-R). We write a for the corresponding variable.

Khovanov ([47]) used the above structure to construct the functor:

HHH : K®(SBim,,) — triply graded vector spaces (1.6)
such that:
> . .
the Poincaré polynomial of HHH(o) = Z ¢'s’a" - dim HHH(0); ;,k
i,4,k=0

only depends on & and specializes to (1.3) when we substitute s — —1 and a — —a. We
denote HHH? = @D, ; HHH(0); j,0 — colloquially this is referred to as the “bottom row”
of HHH.

One of the main goals of this paper is to construct a geometric version of the functor
(1.6), by categorifying the maximal commutative subalgebra C,, and the maps of (1.4).
The natural place to look is the category of coherent sheaves on an algebraic space.
In our case, the appropriate choice will be the flag Hilbert scheme FHilb, (C) which
parametrizes full flags of ideals:

I, C..CIlCl :C[x,y]

such that each successive inclusion has colength 1 and is supported on the line {y = 0}.
For every k € {1,...,n}, there is a tautological rank k vector bundle:

Tw on FHilb,(C), Telr,c..cricr, = Clo, y]/Ix (1.7)
which is naturally equivariant with respect to the action:
C* x C* ~ FHilb, (C) with equivariant parameters ¢ and ¢

that is induced by the standard action C* x C* ~ C x C. These parameters are related
to the gradings on the category of Soergel bimodules via:

s=—+/qt (1.8)

In Subsection 2.7 we will introduce a certain dg version of the flag Hilbert scheme, de-
noted by FHilb8(C), which is rigorously speaking a sheaf of dg algebras over FHilb,, (C).
We will use the notation K(C) = K~ (C) and D(C) = D~ (C) for the homotopy and the
derived category of bounded above complexes in a category C. Our main conjecture is
the following:
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Conjecture 1.1. There exists a pair of adjoint functors which preserve the q and t grad-
mngs:

K (SBim,) === D (Coh@*xc* (FHﬂbgg(C))) (1.9)

where 1* is monoidal and fully faithful. Furthermore, we have:

*
L

Lx

for all k € {1,...,n}. Moreover, the map HHH of (1.6) factors as:

HHH’ : K®(SBim,,) = D (Coh(c*x(c* (FHilbng(C)>) i> bigraded vector spaces
(1.11)
where [ refers to the derived push-forward map from FHilbI(C) to a point (i.e. the
functor which associates to a coherent sheaf on FHilbig((C) its equivariant sheaf coho-

mology).

Remark 1.2. We expect that ¢* sends bounded complexes to bounded. However, ¢, may
send bounded complexes to unbounded ones, see Conjecture 3.32 for concrete exam-
ples. Therefore we prefer to work with bounded from above, but potentially unbounded
complexes on both sides of (1.9).

Remark 1.3. Strictly speaking, the map [ in (1.11) factors through triply graded vector
spaces: D (Cohc+xc+ (p)) has two equivariant gradings and a homological grading. The
double grading on HHH is a linear combination of these three gradings.

To account for the a grading in (1.9) and (1.11), we conjecture that one can lift the
setup of Conjecture 1.1 to functors:

K(D"(SBim,)) === D (Cohc*xc* (TotFHilbig(C)'ﬁl[l])> (1.12)
which preserve the ¢,t and a gradings, defined by:
(o) = 1.(0) @ AT, (1.13)

where a keeps track of the exterior degree in the right hand side. Here Tot denotes the
total space of a (shifted) vector bundle, viewed as a dg scheme. The structure sheaf
of this dg algebra is given by the sheaf of dg algebras A®T,Y on FHilbng((C ), with zero
differential. See Remark 3.4 for more details on K (D®(SBim,,)). The equation (1.11)
upgrades to

HHH : K°(SBim,,) D (Coh(c*x(c* (TotFHﬂb%g(C)ﬁL[l])) i> 3-graded vector spaces
(1.14)
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As with (1.11), the map in (1.14) can be factors through quadruply graded vector
spaces. Since A*7,Y is a sheaf of algebras on FHilb%8(C), the category in the right hand
side of (1.12) has a natural monoidal structure, and we expect that 7* is monoidal.

1.4. Besides the fact that the category D(Cohc-xc+(FHilb%8(C))) and the functors
Ls, L* categorify (1.4), one of the main applications of Conjecture 1.1 is a geometric
incarnation of Khovanov’s Hochschild homology functor. Indeed, since SBim,, is a cate-
gorification of the Hecke algebra, to any braid o one may associate a homonymous object
o € K*(SBim,,) (see Section 3 for an overview). Therefore, we have:

HHH(o) = / B(o) @ A°T,’ where B(o) := t.(0) (1.15)

FHilbds(C)

is the sheaf on the dg scheme FHilb%8(C) that our construction associates to the braid
o. We tensor with A®7,Y as in Remark 1.3 in order to pick up the a grading on HHH(o)
(if we had not taken this tensor product, we would recover HHH(o)|,—0). While it is
difficult to describe at the moment the sheaves B(c) for arbitrary braids o, properties
(1.10) and the projection formula (4.5) imply that:

n

B <ﬁ FT;k) = Q) (det T,) ¥
k=1

k=1

Therefore, (1.15) immediately implies the following Corollary for all products of twists:

Corollary 1.4. For all (ay,...,a,) € Z", let us consider the twist braid o = [[, FT}*.
Assuming Conjecture 1.1, the HOMFLY-PT homology of the closure of o is given by:

n

HHH(0) = / R)(det T) 2% R AT, (1.16)

FHilbde (C) k=1

where the integral denotes the derived equivariant push-forward to a point.

When the a; are sufficiently positive, we expect that the higher cohomology of the
sheaf appearing in the right-hand side of (1.16) should vanish. If this is the case, the
right-hand side of (1.16) can be computed using the Thomason localization formula as
in [37] to give:

i=1 L=z 1<i<j<n J

nait..tan az"! Zi
i)~ (1 ST (e 1p <<Z_> (1.17)
T

where the sum goes over all standard tableaux T of size n, the variable z; denotes the
(g, t)—content of the box labeled 7 in each such tableau T, and:
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(1—-2)(1—qgtx)

@ = -

As in [37], several factors both in the numerator and the denominator of (1.17) vanish,
all such factors should be ignored.

We will explain how to obtain (1.17) in Section 8, when we discuss the equivariant
structure of the flag Hilbert scheme. In Section 3.14, we will explain how to amend
Corollary 1.4 to account for torus knot braids rather than pure braids. Once we will do
this, Corollary 1.4 gives a generalization of one of the main conjectures of [37] (which
dealt with the case when o is a torus knot braid).

1.5.  Since HHH(o) only depends on the closure &, formula (1.15) might suggest
that the coherent sheaf B(co) actually only depends on . While this cannot be strictly
speaking true (after all, B(c) lives on FHilb%8(C) where n is the number of strands of
the braid), we may consider the natural map from the flag Hilbert scheme to the usual
Hilbert scheme of n points on C?:

FHilb'¢(C) % Hilb,,
(I, C..Cly)—1I, (1.18)

The composition:
K*(SBim,) < D (Coh(c*xc* (FHﬂbgg(C))) Yy D (Cohcxc- (Hilby))
associates to a braid o a complex of sheaves:
F(o) =v.(B(o)) (1.19)

We may tensor this complex with A®7, as in Remark 1.3 if we also wish to encode the
a grading. This is the object we conjecture gives rise to the geometrization of (1.1).

Conjecture 1.5. The objects F (o) satisfy the following properties:
F(oo') = F(o'o) (1.20)
for all braids o and o' on n strands, and:
F(i(o)) = a(F(0)) (1.21)
where:
a: D (Cohg«xc+ (Hilb,)) — D (Cohg+wc+ (Hilby11)) (1.22)

denotes the simple correspondence of Nakajima and Grojnowski (as in Subsection 3.12).
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For any braid o, the Euler characteristic of F(o) at t = % coincides with x(o) of (1.1).

Remark 1.6. While the present paper was being written, Oblomkov and Rozansky [54]
independently gave an alternative construction of objects very similar to B(o) and F (o),
although in a very different presentation. Specifically, their construction associates to any
braid an object in the category of matrix factorizations, which descends to an object on
the commuting variety. The authors then show that the corresponding object is actually
supported on the Hilbert scheme. We strongly suspect that their objects coincide with
ours, and hope that the connection will be elucidated in the near future.

1.6.  We show that Conjecture 1.1 would follow from certain computations in the
Soergel category, which we believe may be proved using the techniques developed by
Elias and Hogancamp [25-27]. In the present paper, we develop the geometric machin-
ery necessary to prove such results. Specifically, we outline a strategy for constructing
the functors ¢*, 1, with equation (1.10) in mind. The starting point for us is to reinterpret
geometrically a concept introduced by Elias and Hogancamp under the name of categor-
ical diagonalization [26]. Suppose that C is a graded monoidal category with monoidal
unit 1, and F is an object in the homotopy category K°(C). Elias and Hogancamp call
I diagonalizable if there exist grading shifts Ag, ..., A,, and morphisms:

Oz7>\71*>F, iZO,...,Tl

satisfying certain conditions (see Definitions 7.9 and 7.10). Under these conditions, it is
proved in [26] that there exist objects P; € K(CT) (a certain completion, whose relation
with the original category K(C) is analogous to the relation between the categories of
left unbounded chain complexes and bounded chain complexes) such that tensoring Idp,
with «a; yields an isomorphism:

It is natural to call the P; eigenobjects of F' and the \; the eigenvalues of F'. The maps
«; are called the eigenmaps for F, and they are a particular feature of the categorical
setting. Under mild assumptions on C and F', we show the following;:

Theorem 1.7. An object F € C is diagonalizable in the sense of [26] if and only if there
is a pair of adjoint functors:

K (C) === D(Coh(P})),

such that F = 1*(O(1)) (here A = End¢(1)). If the category C is graded and the maps
«; preserve the grading, then t* and v, can be lifted to the equivariant derived category:

K(C) === D(Cohr(P})),
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where T is a torus acting on P™ with weights prescribed by the eigenvalues of F'.

Furthermore, the following result of Elias-Hogancamp provides one of the first proved
facts about our conjectural connection between SBim,, and FHilb3%(C).

Theorem 1.8 (/26,27]). The full twist F'T,, is diagonalizable in SBim,,, and its eigenval-
ues agree with the equivariant weights of det T, at fized points.

The flag Hilbert scheme is more complicated than a projective space, but it turns
out to be presented by a tower of projective fibrations. More precisely, the fibers of the
natural projection:

FHilb, (C) — FHilb,_1(C) x C, (I, C ... C Iy) = (In_1 C ... C Iy) x supp(In_1/I)

are projective spaces. They are rather badly behaved, but we will show in Section 2.7
that the corresponding map on the level of our dg schemes:

T, : FHilbY(C) — FHilb% (C) x C

is the projectivization of a two-step complex of vector bundles. The strategy we propose
is to use a relative version of Theorem 1.7 (developed in Section 4) in order to construct
a commutative tower of functors:

”Z+1/H7r("+1>* Ing1| | Troqa
D (Cohe- cc- (FHIlLE(C))) ———— K(SBim,)
Wﬂlﬂn* In| | Trn (1.24)

D (Cohc- xe- (FHIIbE , (C) x C)) = K (SBim,_; ® Cla])

W;,ITJ/WOL*])* In—1||Trp—1

Here I, : SBim,,_; ® C[z,] — SBim,, denotes the natural full embedding of categories,
while Tr,, : SBim,, — SBim,,_1 ® C[z,,] is the partial trace map of [43] (see Subsection
3.7 for details, as well as an overview of the construction of its derived version). We prove
that the existence of the horizontal functors in (1.24) is equivalent to the computation of
Tr,, (FT®*) for all integers k (see 3.14 below), together with certain compatibility condi-
tions that must be checked. Assuming these computations, we show how Conjecture 1.1
follows.
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1.7.  Conjecture 1.1 implies very explicit facts about the existence of various mor-
phisms and extensions between the twists FTy in the Soergel category. The easiest
of these conjectures involves the objects Ly := FT\ ® FT,;_l1 € K®(SBim,,) for all
kEed{l,..,n}k

Conjecture 1.9. There exist objects T,...,T1 € K°(SBim,) and morphisms T, —
Tn_1 — ... =Ty, which satisfy:

Ly = [Tk — kal] (125)

for all k € {1,...,n}. Furthermore, there exist two commuting morphisms:

2
X:qly »Tn Y:"Tp—Ti [X,Y]=0
q

which are compatible with the isomorphisms (1.25). Moreover, X|r, is multiplication by
the element x, € R and Y|, = 0.

Various matrix elements of products of X and Y can be used to construct morphisms
between various L. See Conjecture 3.14 for more conjectures of similar kind.

1.8. An important role in the geometry of flag Hilbert schemes is played by torus
fixed points:

. C*xC*
FHllbn(C) = {IT}T is a standard Young tableau of size n

One can think of a standard Young tableau T as a sequence of nested Young diagrams,
and the corresponding fixed point I is a flag of monomial ideals corresponding to these
diagrams.

While the flag Hilbert scheme is badly behaved, the dg scheme FHilb%8(C) is by
definition a local complete intersection. As such, the skyscraper sheaves at the torus fixed
points are quasi-idempotents in the derived category of coherent sheaves on FHilbig(C):

01, © 01, 2 O, @ A® (TanIT (FHilbgg(C)))

where Tan denotes the tangent bundle (which makes sense for a local complete intersec-
tion as a complex of vector bundles). Inspired by the constructions of Elias—Hogancamp
([26,27]), we make sense of the objects:

Pré="7 Or € a certain completion of Cohc*xc*(FHilbgg((C))

A*Tany, (FHﬂbfﬁ(@))
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and conjecture that the functor ¢* sends this object to the categorified Jones—Wenzl
projector [1,20,21,43]:

V* (Pr) = Pr (1.26)

These projectors are among the main actors of [27], where the authors construct them
inductively as eigenobjects for the full twists FT,, following the categorical diagonaliza-
tion procedure described in (1.23). We conjecture there is an affine covering of the flag
Hilbert scheme:

FHilb, (C) = | JFHilbr(C)
T
If we restrict the structure sheaf Oppjjpae(c) to these open pieces, we obtain dg algebras:

Ap(C) =T (FHﬂbT(C), OFHubgg(C))

We expect that these dg algebras encode the endomorphism algebras of the categorified
Hecke algebra idempotent indexed by the standard Young tableau 7', as in the following
conjecture.

Conjecture 1.10. The endomorphism algebra of the categorified Jones-Wenzl projector
Pr is isomorphic as an algebra to:

End(Pr) = A7(C) & (AT ey c) ) (1.27)

Our convention here is that the unique SYT associated to the partition (n) corresponds
to the anti-symmetric projector. This is the natural choice in the context of the Hilbert
scheme, but is the transpose of the standard representation theory convention used in

e.g. [1,43].

Note that 7, is a trivial rank n vector bundle on the affine chart Fﬁile(C), and so
the exterior power that appears in (1.27) is free on n odd generators, and its equivariant
weights match the inverse g, t—weights of the boxes in the Young tableau 7'. Following
recent results of Abel and Hogancamp [1,43], we prove (1.27) in the two extremal cases,
corresponding to the symmetric and anti-symmetric projectors:

Theorem 1.11. If T is the SYT associated to the partitions (n) or (1,...,1) then the
endomorphism algebra of the resulting projector is isomorphic to the right hand side of
(1.27). Explicitly:

Cla1y s Ty Yijlisg

o TV N ~ Y )y Ny J,] J °

A (C) ® </\ Tn |FHi1b(n)((C)) = @ — ) — Wiety — Yigrl) N (&1, 5 6n)
(1.28)
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1—1

where degx; = q, degy; ; = t¢? =" and deg & = aq'?, while:

A, (©) & (M Tl ) = Clun o un @ A%EL &) (1:29)

,,,,,

where degu; = qt' % and deg&; = at' 7.

As further evidence for Conjecture 1.10, we prove that it holds at the decategorified
level.

Theorem 1.12. For all standard Young tableaux T, the Fuler characteristic of the algebra:

Ar(C) @ (AT, [FHitbr(C))

equals (up to a monomial in q) the Markov trace of the Hecke idempotent py, where X is
the partition associated to T .

1.9. Onmne can easily modify the above constructions to describe the reduced
HOMFLY-PT homology. Indeed, it is proven in [66] that the HOMFLY-PT homology of
any braid is a free module over the homology of the unknot, which is isomorphic to a free
algebra in one even and one odd variable. Let us explain how these variables arise from
the geometry. First, define the reduced flag Hilbert scheme FHilb,,(C) as the subscheme
in FHilb,,(C) cut out by the equation

Tr(X)=21+...+x, =0.
It is not hard to see that there is an isomorphism:
r : FHilb,,(C) — FHilb, (C) x C (1.30)

We will denote two components of this isomorphism by r; and r3. As a result, the
homology of any sheaf on FHilb,, (C) is a free module over the polynomial ring in one
(even) variable. To identify the odd variable, remark that 7, has a nowhere vanishing
section given by the polynomial 1 € C[x,y]. It is not hard to see that this section splits,
SO we may write:

To200T, = T'=00T, = ANT/=AONT,
To sum up, we get the following corollary analogous to Corollary 1.4:

Corollary 1.13. Assuming Conjecture 1.1, the reduced HOMFLY-PT homology of any
object o € K*(SBim,,) is:
v

HHH™(5) 2 / (r100)x(0) ® A°T,,.

FHilb &(C)
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1.10.  Finally, we give a conjectural geometric description of gl Khovanov-Rozansky
homology [48,49] for all N. Recall that in [66] the third author constructed a spectral
sequence from the HOMFLY-PT homology to the gl homology of any knot. For any
pair of nonnegative integers N, M, there is an equivariant section:

Cla, y]

svr € T (FHilb, (C), 7o), swmln.c.crn =2 y" € =
n

= E‘InC.HCIU

Conjecture 1.14. For all braids o, the gly spectral sequence on the homology of & is
induced by the contraction of:

AT on FHilbd®(C)
with the section sy o, which induces a differential on the vector space (1.15).

Remark 1.15. A similar conjecture can be stated for the reduced gl homology. How-
ever, the map (1.30) does not commute with the differential, and hence the unreduced
homology is no longer a free module over the homology of the unknot.

We are hopeful that the contraction with more general sy ps may correspond to an (as
yet undefined) knot homology theory associated to the Lie superalgebra gl NIM (see some
conjectural properties in [33]). In particular, the differential induced by s1,1 = zy should
give rise to a knot homology theory associated to gl,|;. Recent work of Ellis, Petkova and
Vértesi [29] shows that the tangle Floer homology of [63] gives a sort of categorification of
the gly}; Reshitikhin-Turaev invariant. In the spirit of the above conjecture, contraction
with s; 1 may give rise to a differential on HHH whose homology is knot Floer homology,
as conjectured in [23].

In an earlier joint work with A. Oblomkov and V. Shende [39], the first and the third
authors gave a precise conjectural description of the stable gl homology of (n, co) torus
knots, which is known ([16,17,43,69,70]) to be isomorphic to the gl homology of the
categorified projector Py, .. 1)

Conjecture 1.16 (/39]). The spectral sequence from HOMFLY-PT homology (given by
(1.29)) to the gl homology of P
dn, which is given by the equation:

1) degenerates after the first nontrivial differential

.....

n n N
dn <Z zk1§k> = (Z zkluk> mod 2", dy(u;) =0. (1.31)
k=1 k=1

This conjecture has been extensively verified against computer-generated data for
N = 2 and 3 (see [36,38]). We prove that Conjecture 1.16 immediately follows from
Conjecture 1.14.
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1.11.  This paper is naturally divided into two parts. The first part (Sections 2, 3,
4) presents the non-equivariant picture, which relates the global geometry of the flag
Hilbert scheme with the Soergel category. Sections 5 and 6 present examples of many
of our constructions for n = 2 and n = 3, respectively. The second part of the paper
(Sections 7, 8, 9) is an equivariant refinement of the previous framework, which relates
the local geometry of the flag Hilbert scheme with categorical idempotents in the Soergel
category. More specifically:

e In Section 2, we define flag Hilbert schemes and the associated dg schemes, and we
realize them as towers of projective bundles.

e In Section 3, we recall the necessary facts about the Hecke algebra and the Soergel
category, and formulate the main conjectures.

e In Section 4, we develop a framework of monoidal categories over dg schemes, which
encapsulates the existence of adjoint functors as in (1.9), with all the desired proper-
ties. We show what computations one needs to make in order to prove Conjecture 1.1.

e In Section 5, we present examples for n = 2.

e In Section 6, we present examples for n = 3.

e In Section 7, we show how the categorical setup of Section 4 can be enhanced to the
equivariant setting. Inspired by the constructions of Elias-Hogancamp, we categorify
the equivariant localization formula on projective space.

e In Section 8, we work out local equations for flag Hilbert schemes, and connect the
structure sheaves of torus fixed points with the categorical projectors of [26,27].

e In Section 9, we discuss differentials and Conjecture 1.14.

e In Section 10, we collect certain foundational facts about dg categories and dg
schemes.

1.12.  Since the first version of this paper appeared on the arXiv, there were several
major developments which were partially motivated by it. The Khovanov-Rozansky ho-
mology for (n,kn £ 1) torus knots were computed by Hogancamp in [45] and for general
torus knots by Mellit in [50].

In [34], the first author and Hogancamp computed the homology of all positive powers
of the full twist as an algebra. Following the ideas in Section 4.4 they constructed a func-
tor from the Soergel category to the derived category of the isospectral Hilbert scheme
X,,. This is compatible with our Conjecture 1.1 via the constructions in Section 2.9.

In [35] the first author, Hogancamp, Mellit and Nakagane proved that the negative
full twist is the Serre functor in the Soergel category and the negative Jucys-Murphy
braid defines a relative Serre functor. This is compatible with, and motivated by Propo-
sition 2.12 in Section 2.8.

In [24] Elias proposed an explicit, but yet conjectural construction of the object T;, and
its exterior powers. These correspond to “flattening” of certain objects in the Drinfeld
center of the diagrammatic Hecke category associated with the affine symmetric group.
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In [16,64,67,68] Cautis, Queffelec-Rose-Sartori and Robert-Wagner defined new link
homology theories which categorify gl and gly; Reshetikhin-Turaev invariants. It
would be very interesting to compare their results with conjectures in Section 1.10.

Finally, in a series of papers [54-59] Oblomkov and Rozansky developed a new link
homology theory using matrix factorizations on spaces closely related to flag Hilbert
schemes. They conjecture that their theory agrees with Khovanov-Rozansky homology
for all links, but this conjecture is presently open.
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2. The flag Hilbert scheme
2.1. Definition
Let us recall the usual Hilbert scheme of n points on C?:
Hilb,, = {ideal I C C|[z,y], dim¢c Clz,y]/I =n}
There is a tautological bundle of rank n on the Hilbert scheme given by:
Tnlr = Clz, y]/1

Similarly, one can define the flag Hilbert scheme FHilb,,(C?) of n points on C? [18,73]
as the moduli space of complete flags of ideals:

FHilb, (C?) = {I, C ... C I C Iy = C[z,y], dimcly_1/Ix = 1, Vk} (2.1)

Clearly, FHilb,,(C?) can be thought of as the closed subscheme of Hilb,, x ... x Hilby x Hilby
cut out by the inclusions I, C I_; for all k. We will not pursue this description, and
instead work with an alternative one given in the next Subsection. Meanwhile, let us
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point out several general features of the flag Hilbert scheme (2.1). We may pull 7, back
to FHilb,,(C?), where we have a full flag of tautological bundles:

FHilb,, (C2)

of ranks n, ..., 1. For any k € {1,...,n}, the fibers of Ty over flags I,, C ... C I are precisely
the quotients C |z, y]/I;. We define the tautological line bundles as the successive kernels:

Ly =Ker (Tr, = Tr—1) (2.2)
Moreover, there is a morphism:
p : FHilb, (C?) — C?" =C" x C" (2.3)
(I, C ... CI)) = (T4, T Yl e e e s Yn)
where (xp, yx) = supp Ix—1/I;. We may consider the various fibers of this map:
FHilb,,(C) = p~*(C" x {0, ...,0}), FHilb,, (point) = p~1({0, ..., 0} x {0, ...,0})

These will be the moduli spaces of flags of sheaves set-theoretically supported on the line
{y = 0} and at the point (0,0), respectively. The vector bundles 7} and Ly, are defined
as before. As a rule, we will write:

FHilb,, for any of FHilb, (C?), FHilb,, (C) or FHilb, (point)
when we will make general statements that apply to all our flag Hilbert schemes.

Example 2.1. It is well-known that Hilby is the blow-up of the diagonal inside (C2 x
C?)/Ss. It should be no surprise that:

(2.4)

Clzx , L, s ) 2, W
FHilby(C?) = Bla (C? x C?) = Proj ((m [_1362)1}@/_1 (ZZ -~ yj)Z)

where the variables x;,y; sit in degree 0, while z,w sit in degree 1 with respect to the
Proj. Setting y1 = y2 = 0, respectively x1 = 29 = y1 = y2 = 0, we obtain:

FHilby(C) = P* x A’ UA! x Al = Proj (M)

(1 — z2)w

FHilby (point) = P! = Proj (C [z, w]) (2.6)



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 17

2.2. The matrix presentation
Throughout this section, we fix the complex Lie groups:
G =GL,, By = invertible lower triangular n x n matrices
and the flag variety F1 = G/By. We will also consider the Lie algebras:
g = n X n matrices, by = lower triangular n x n matrices
We will also write ng C bg for the nilpotent Lie algebra of strictly lower triangular
matrices, and V for the n dimensional vector space on which all the above matrix groups
and algebras act.
Proposition 2.2. (ADHM construction, [52]) The Hilbert scheme of n points is given by:
Hilb,, = p~*(0)¥¢/G (2.7)
where the “moment map” is given by:
prgxgxV-—g  pXYv)=[XY] (2.8)
and the superscript cyc stands for the open subset of cyclic triples (X,Y,v), i.e. those
for which V is generated by the vectors {X“va}a’bzo. Finally, the quotient by G 1is
explicitly given by:
g-(X,Y,v) = (gXg ', 9Yg ',gv) VgeG
Remark 2.3. The reader accustomed to the construction of symplectic varieties via
Hamiltonian reduction will recognize that two of the Lie algebras in (2.8) are usually
replaced with their duals. Here we tacitly assume the identification of g with its dual

given by the trace pairing.

Passing between the ideal description of the Hilbert scheme and the ADHM picture
is easy:
I~ {V =Clz,y]/I, X,Y = multiplication by z,y, and v =1 mod I}
(X,Y,v)~ I ={f € C[x,y] such that f(X,Y) v =0}
To mimic (2.7) for the flag Hilbert scheme, one needs to replace the vector space V' by

a full flag of vector spaces. Then the maps X,Y must preserve these vector spaces, and
so are required to lie in the Borel subspace bg. In other words, we have:
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FHilb,,(C?) = i~ *(0)%°/By (2.9)
where:
by X by xV — ng, ﬂ(X,KU):[X,Y}

However, using (2.9) as the definition of flag Hilbert schemes leads us into trouble, since
there is no general reason why quotients modulo Borel subgroups are good. To remedy
this problem, let us consider the following alternative definition of flag Hilbert schemes,
built on the observation that one can let the Borel subgroup vary.

Definition 2.4. Consider the following space, inspired by the Grothendieck resolution:
5= {(X,Y,v,h) cgxgxVxFl X,Y € b}

where we identify the flag variety with the set of Borel subalgebras of g. Consider the
map:

viz— Adj,, (X,Y,0,b)— [X,Y] (2.10)

where the target Adj, is the affine bundle over the flag variety with fibers given by the
nilpotent radicals n. It is G—equivariant with respect to the adjoint action, hence the
notation. Define:

FHilb,, (C?) = v~ }(0)%¥¢/G (2.11)
where the G action is:
g-(X,Y,v,b) = (ngfl,ngfl,gv,Adg(b)) Vg € G
and the superscript cyc still refers to the open subset of cyclic triples.

While mostly a matter of presentation, the definition (2.11) has several advantages.
Firstly, note that the map v : FHilb, (C?) — Hilb,, is simply given by forgetting the
flag b. Secondly, the set of quadruples (X, Y, v, b) which are cyclic is precisely the set of
stable points with respect to the action of G on the trivial line bundle on 3 (endowed
with the determinant character). Then geometric invariant theory implies that (2.11) is
a geometric quotient.

2.3. DG schemes

Because the quotient in (2.7) is taken in the sense of GIT, the Hilbert scheme is
a quasi-projective variety. But let us neglect its interesting structure as a topological
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space, and describe its ring of functions locally. By definition, the locus of cyclic triples
(g x g x V)€ is an open subset of affine space, and the moment map (2.8) gives rise to
a section of the trivial g bundle:

1 € T (O(gxgxvyere @ @)

over (gx gx V)% We may write down the Koszul complex corresponding to this section:
. dimG v K w’ v o
(N°g, p) = O(gxng)cyc @AM EgY —— O(gxng)cyc ®g — O(gxng)cyc]

Since the Hilbert scheme is smooth, this complex is exact except at the rightmost co-
homology group, where it is isomorphic to O,-1(gyeve. Moreover, since all the maps are
G—equivariant, we may write locally:

q.i.s. . \% \
Omim, = (A*adjg, u) = [Adlmaadjgv T O(QXQXV)CW/G]

where adj,; denotes the vector bundle on (g X g x V)¥¢/G, obtained by descending the
trivial vector bundle g on g x g X V, endowed with the G—action by conjugation. One
may write down the analogous Koszul complex for the map v of (2.10), but observe that:

q.i.s. . . . v v
OFilb, (c2) is not = (A®adj,,v) := [/\dlmNade T O(EXQXVXFI)CYC/G]

(2.12)
(recall that adj, denotes the vector bundle on (g x g x V x F1)%¥¢/G, obtained by de-
scending the vector bundle Adj, on Fl, endowed with the G—action by conjugation). The
fact that the Koszul complex (2.12) is not exact anymore boils down to the fact that
FHilb,,(C?) is not a local complete intersection, and so we choose to work instead with
the dg scheme:

OFHilbgg(@) = (A*adj,, V) (2.13)

Note that we think of the left hand side as a sheaf of dg algebras, given precisely by the
complex in (2.12) supported on the smooth scheme (g x g x V' x F1)¥¢/G, which projects
to the smooth scheme (g x g x V)¥¢/G with fibers isomorphic to the flag variety. This
will allow us to ignore the subtleties of the topology of dg schemes.

2.4. Fxplicit matrices
Although the definition of 3 and FHilb,,(C?) is given by allowing the Borel subgroup to

vary, to keep the presentation explicit we will henceforth fix it to be B = By. Therefore,
points of the flag Hilbert scheme will be triples (X, Y, v):
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zy 0 0 O v1 0 0 O * 1
B *x 1o 0 O _ * yo 0 O o= 0
X = * % 0|’ Y= * % 0|’ U= x|’ vo = 0
* k% % T, * ok kY, * 0

(2.14)

such that [X,Y] = 0, and the vectors {X?Y v}, >0 generate the space V. This latter
condition implies that the first entry of v must be non-zero, so we may use the B = By
action to fix v = vy as in (2.14). Therefore, we will abuse notation and re-write (2.11)
as:

FHilb, (C?) = {(X7 Y,v), X,Y lower triangular, [X,Y] =0, v cyclic}/B =
{(X7 Y, v0), X,Y lower triangular, [X,Y] =0, v cyclic}/Bv0 (2.15)
where B,, is the stabilizer of the vector vy in B. In this language, the map:
FHilb, (C?) £ C?"

is given by taking the joint eigenvalues of the matrices X and Y. Therefore, we conclude
that:

FHilb, (C) = {(X, Y,v) asin (2.15), Y strictly lower triangular} (2.16)
FHilb,, (point) = {(X, Y,v) as in (2.15), X,Y strictly lower triangular} (2.17)

We may use the descriptions (2.15)—(2.17) to obtain the following estimates of the dimen-
sions of flag Hilbert schemes. (Here and going forward, dim refers to complex dimension.)

dim FHilb,,(C?) > dim (affine space of (X,Y,v)) — # (equations [X,Y] = 0) — dim B

1 1
—n?+2n— ”(”2 ) _ ”("; ) _ 9 = exp dim FHilb,(C?) (2.18)

The right hand side stands for “expected (or virtual) dimension”. Similarly, we have:

dim FHilb,,(C) > n =: exp dim FHilb, (C) (2.19)
dim FHilb,, (point) > n —1 =: exp dim FHilb,, (point) (2.20)

The reason why the expected dimension in (2.20) is n — 1 rather than 0 is that when
X and Y are both strictly lower triangular matrices, the commutator [X,Y] = 0 is not
only strictly lower triangular, but has the first sub-diagonal equal to zero by default.
Therefore, the first sub-diagonal entries are n — 1 equations that need not be placed on
FHilb,, (point).
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Example 2.5. If the inequalities in (2.18)—(2.20) were equalities, then we would conclude
that flag Hilbert schemes were local complete intersections. However, this is not the
case. We give an example of how the bound in (2.20) can fail, which we learned from Ian
Grojnowski. Let n = 10, and consider the affine space of matrices X,Y which are lower
triangular, and have zero blocks of sizes 1,2,3 and 4 on the diagonal:

(2.21)

* X X X X X X ¥ x O
* X X X X X ¥ O O O
* X X X X X X O O O
¥ X X ¥ O O O O O O
* K K K O OO O OO
¥ X X ¥ O O O O O O
O O OO O oo o oo
O O OO O oo o oo
O O OO O oo o oo
O O OO O oo o oo

The dimension of the affine space consisting of triples (X, Y, v) equals 35+ 35+ 10 = 80.
Since the commutator [X,Y] = 0 must have the 2 x 1, 3 x 2 and 4 x 3 blocks under the
diagonal equal to zero by default, the number of equations we need to impose is only
15. Taking into account the fact that the Borel subgroup has dimension 55, we conclude
that:

dim FHilb;o(point) > 80 — 15 — 55 = 10 > 9 = exp dim FHilb;o(point)

We may translate this example in terms of flags of ideals inside Clz,y]. Let d = 4,
n = (d;rl)7 and m C C[z,y] be the maximal ideal of the origin, and let us consider the
locus of flags:

L={(Iy>5hLh>...>1I,)} C FHilb,(point)
such that:
Iy = mf, k=0,...,d (2.22)
2

By the defining property of the maximal ideal m, for each k € {0,...,d — 1} the flag of
ideals:

k k+1
m DI(k;rl) D...I<k+2)_1 om

2

+1

can be chosen as an arbitrary complete flag of vector subspaces in m¥/m*+! ~ Ck+1,
Since the dimension of the corresponding flag variety is (k ;1), we conclude that:
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d—1

k41 d+1

dim L = Z ( * ) = ( T ) > n — 1 = exp dim FHilb, (point)
=\ 2 3

as d becomes large (although the inequality is strict as soon as d > 4). This construction
also shows that the stratum L is non-empty, since there always exist flags of ideals with
the property (2.22), something which was not immediately apparent from the matrix
construction (2.21).

2.5. Projective tower construction

Let us consider the action:
C* x C* ~ FHilb,, (2.23)

which scales the matrices X,Y independently. We denote the basic characters of this
action by ¢ and t, so the C* x C* action is explicitly given by:

(21,22) - (X,Y) = (¢(21) X, t(22)Y), V (z1,22) € C* x C*

In the matrix presentation, the tautological bundle 7, on FHilb,, has fibers consisting
simply of the vector spaces V on which the matrices X, Y act. The fact that flag Hilbert
schemes are defined as B—quotients means that this vector bundle need not be trivial.
Therefore, the matrices X,Y : V — V give rise to endomorphisms of the tautological
bundle on the whole of FHilb,,, which we will denote by the same letters:

0T -5 To,  1Th 5 Th

In the formulas above, one must twist the tautological bundle by the torus characters ¢, t
in order for the endomorphisms X, Y to be C* x C* equivariant. Since a point of the flag
Hilbert scheme entails the choice of a fixed flag of V', there is a full flag of tautological
vector bundles:

Tn > Tner > .. > T

on FHilb,,. Flag Hilbert schemes are easier to work with than usual Hilbert schemes
because they can be built inductively. Specifically, we have the maps:

l’“ (Ing1 C .. CIo) = (I, C oo CIo) X (Tns1s Ynt1) (2.24)
FHilb,, () x *

for any * € {C2,C, point}. When * = C we set y,,+1 = 0 and when x = point we further
set Tpt1 = Ynt1 = 0. What makes (2.24) manageable is that it is a projective bundle,
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so we conclude that flag Hilbert schemes are projective towers. Specifically, consider the
complexes:

En(¥) = [qt’n_(;*

point

L(ﬂ;@m@oﬂﬁ]

(2.25)
FHilb,, (x) x *
for any * € {C2, C, point}, with the maps defined by:
¥ (w) = ( = (Y = yns1)w, (X = zpy1)w, 0) (2.26)
Q(wr, w2, f) = (X — zpp1)wr + (Y = yYpy1)wa + fo (2.27)

The underlined middle term is in homological degree zero. Here, x,,41,ynt1 are the
coordinates on the second factor of FHilb, (C?) x C2, which are specialized to 3,11 = 0
(resp. Tp+1 = Yn+1 = 0) when x = C (resp. * = point). When x = point, the leftmost
bundle in the complex (2.25) is T,—1. This implicitly uses the fact that the maps X,V :
T — T, become nilpotent, hence they factor through 7,, — 7, _1. In the next Subsection,
we will prove the following inductive description of flag Hilbert schemes ([53]):

Theorem 2.6. The maps 7 of (2.24) can be written as projectivizations:
FHilb, 11 = Prai, (1) xx (H (En(%))") := Projpmin, (s xx (S° (H°(En(¥)))), (2.28)

where S® denotes the symmetric algebra. This holds for each of the three wvariants
* € {C?,C,point} of flag Hilbert schemes. The line bundle L, 1 on the left hand side
coincides with the tautological sheaf O(1) on the right.

Example 2.7. Example 2.1 shows that the space FHilbs can be obtained as Proj of an

explicit algebra. Let us obtain the same result using Theorem 2.6. Since 73 = O, we
have:

£(C?) = [qt(’) Lntrnzed, 0 910 @0 D22, of o

(C[3315332,y17y2]<z7w>
(1 —z2)w — (y1 — y2)2

~ [qt(’) Lntved o), q@@to} = H(£(C?) =

As above, the underlined terms are in homological degree zero, and z and w are the two
basis vectors of gO @ tO. Therefore

C[$17$2791792a37w]
(1 — z2)w — (y1 — Y2)2

S* (H(£(C?)) =
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precisely as in (2.4). If we set y; = yo = 0 in the above computation, we obtain the case
x = C of (2.5). Finally, we have:

&1 (point)= [qO D tO & O ACLDNGIES [Oato] = S*(H°(&(point))) =Clz, w]

as expected from (2.6).

Example 2.8. Let us study Theorem 2.6 in the case when n = 2 and * = point, in which
case:

FHilby (point) = P!

with respect to which we have 7; = O and T3 = O & O(1). With this in mind, the
complex (2.25) is explicitly given by:

E(point) = [gt0 5 O B0 @ O @ qO(1) & tO(1) 25 O @ 0(1)}

and the maps are given by:

0

0
o — 0 7 o 0 0 1 0 O
zZ0 <1 0 0

—21

20

It is clear from the above that the map @ is surjective, which is a general phenomenon
that follows from the cyclicity of triples (X, Y, v). Therefore, we have:

as (0,—21,20)

Ex(point) "= [gt0 =25, i0(—1) @ gO(1) @ 1) i [st0(-1) & 02)]

Therefore, Theorem 2.6 implies that:

1
FHilbz(point) = Pp1 <O(t) ® (9(2)> (2.29)
q
which is a Hirzebruch surface. It is also the resolution of the singular cubic cone, which
is nothing but the subvariety of the Hilbert scheme consisting of ideals supported at the
origin.

2.6. Proving Theorem 2.0

Without loss of generality, we will treat the case * = C2. We will proceed by induction
by n, by studying the fibers of the map (2.24):
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FHilb,, 1 (C?)
l,, (2.30)
FHilb,, (C?) x C2
Recall that points of FHilb,,(C?) are triples (X, Y, v) consisting of two commuting lower
triangular matrices (for simplicity, we fix the flag of vector spaces), together with a cyclic

vector. Over such a triple, fibers of m are completely determined by extending X,Y, v by
a bottom row:

5 X 0 ’ v _ Y 0 ’ 5= v
w1 Tn+1 w2 Yn+1 f

where w1, wy € 7, and f € O. The triple (wy, ws, f) must satisfy the following proper-
ties:

o The closed condition [X,Y] = 0 is equivalent to:
wy - (Y — yn-i-l) = Wy - (X — xn+1) (231)

o (wy,ws, f) is only defined up to conjugation by:

Id 0

V x C* =Ker(Bp+1 — By) = <
w c

) (w,c) e VxC*

In other words, we do not consider the action of the group of n x n lower triangu-
lar matrices B, because it has already been trivialized locally on FHilb,(C?). In
formulas:

(w1, wa, f) ~ (cwr +w - (X = @na),cwz +w- (Y —yna),cf +w-v)  (2.32)

+ Since we already know that (X,Y,v) is cyclic, the extra condition that (X,Y, ) be
cyclic is equivalent to the fact that:

C"™*! is generated by {E,Im (X —2pq1),Im (Y — ynH)} (2.33)
This fails precisely when there exists a linear functional A : C™ — C such that:
Aw)=f, MX —zpi1)w) =wy-w, A(Y = ypt1)w) = wa - w

for all w € V. This is equivalent to (wy,ws, f) ~ (0,0,0) with respect to (2.32).
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Proof of Theorem 2.6. The three bullets above establish the fact that the triple
(w1, ws, f) that determines points in the fibers of FHilb,,1(C?) — FHilb, (C?) x C2
is a non-zero element in:

o (B T T

et eo & 7;LV> (2.34)

modulo rescaling. Note that (2.34) is the dual of (2.25), which completes the proof. O

Remark 2.9. Note that the map ® of (2.25) is surjective, according to the equivalent
description (2.33) of a point being cyclic. This implies that:

K. (%) = Ker ® (2.35)
is a vector bundle of rank n + 1, hence &, (*) is quasi-isomorphic to a complex:

q.i.s

5n(*) g qt%—é*

point

2 K (%) (2.36)

of vector bundles on FHilb,, (*) x x, which lie in degrees —1 and 0.
2.7. The dg scheme

We will now give an alternative definition of the dg scheme (2.13), and we leave it as
an exercise to the interested reader to show that the two descriptions are equivalent (we
will only use the definition in this Subsection for the remainder of this paper). The idea
is to note that the map ¥ of the complex (2.36) fails to be generically injective, and this
will lead to the flag Hilbert scheme misbehaving. To remedy this issue, we replace the
middle cohomology sheaf H%(&,,) in (2.25) by the entire complex &, (we tacitly suppress
the symbol * € {C2, C,point} since the construction applies equally well to all three
choices).

Proposition 2.10. There exist dg schemes FHilbig(*) endowed with flags of objects:
T = Tno1 — ... » T1 € D*(Coh(FHilb%8(x)))

together with maps q7T, X Tr, tTh X T, that respect the above flag, and O > T,, such
that:

FHﬂbiiﬂ*) = Prilbds () x« (En(x)Y) = Projraias () x + (S*(&n(+))) (2.37)

where &, (%) is defined by (2.25), and is quasi-isomorphic to the complex (2.36) (see
Subsection 10./ for the definition of the Proj construction of a two-step complex of vector
bundles).
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Proof. We will construct FHilbig(*) as explicit dg subschemes inside certain smooth
schemes, which are called “free flag Hilbert schemes” in [54]. Explicitly, we let:

FHilb™®(C?), FHilb™°(C), FHilb™* (point)

be defined just like in (2.15), (2.16), (2.17) (respectively), but without imposing the
closed condition [X,Y] = 0. By analogy with Theorem 2.6, one can prove that for all
* € {C2,C, point}:

FHilbf{f’l (x) = PFHilbf{ee(*) o (Kn(%)Y)

where K,, is the vector bundle of (2.35). Let us write £,1; = O(1) for the dual tauto-
logical line bundle on the projectivization above, and 7 : FHilbgﬁr"l(*) — FHilb™® (%) x %
for the natural projection map. Consider the tautological map which exists on any Proj:

Taut € Hom (7" /IC,, (%), Lry1)

and compose it with the natural map 7,[—1] A K, (%) that stems from the short exact
sequence:

0= Kn(x) = qTn @tT, @0 22X 4
The resulting extension of vector bundles is also a vector bundle:
ix(Taut) =: Tpi1 € Hom (7" T, [—1], Lry1)
Composing the map ¢ with ® yields 0, hence:
(X,Y,0)« (Tny1) € Hom (77 (qTn @ 170 & O)[=1], L 41)

equals 0 as well. This precisely gives rise to a splitting (the diagonal map below):

qTn+1 ®tThe1 ® O > Tt

l / l (2.38)

7 (qTn & 1T, & 0) 28 (T,

and the dotted map is the desired extension of the arrows X,Y,v from T, to T,i1.
This arrow is surjective (because KC,,(*) is a sub-bundle of the lower-right corner, and it
surjects onto L,11 C T,41 by the definition of the projectivization) and so the kernel
K41 (%) of the dotted arrow is a vector bundle. Thus, we have accomplished the inductive
construction of the vector bundles 7, and the maps X, Y, v between them, as well as the
vector bundles IC,, (). Let us construct dg subschemes:
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FHilb% (%) < FHilbT® (x) (2.39)

which are inductively constructed by the requirement that:

FHﬂbingl( *) ’ PFHilb;{g(*)x*(’Cn(*)v) — FHllbf{ffl( *)

\ l l (2.40)

FHilb%® (%) x * ———— FHilbl"**(x) x *
where the dotted arrow is the dg subscheme cut out by the vanishing of the map:

Y2, jo (+) = Lo (2.41)

’y : qt7;l_5;oint
Of course, for this to be well-defined, we must show that the endomorphisms X : ¢7,, —
Tn, Y ¢ tT, — T, commute on the dg subschemes (2.39). We will also do this by
induction, so assume it holds for n. Then (2.38) restricts to the following diagram on

PFHﬂb?ﬁ(*) wx (Kn (%) Y):

Y,X,0 Y,
qtTnt1- 5pomt )Q%H & tTht1 6O Fre) Tn+1

| / | (2.42)

0T, m(qTo @ 1T, ® 0) 22 1 (T,)

point

where the bottom row is exact. Therefore, the composition of the arrows on the top row:

qtTny1—s55. = qTap1 ©tThp1 @O = Ly

point

vanishes precisely when the map (2.41) vanishes. By the very definition of the dotted

arrow in (2.40), the top row of diagram (2.42) is exact (in other words, [X,Y] = 0) on
d

FHilby% (). O

Remark 2.11. As we have seen, the diagram (2.42) has exact rows on FHilbffH(*) X .

Therefore, we may rewrite it as an equality in the derived category:

qt/:n_,_l ﬂ) q£n+1 ©® t£n+1 M} £n+1:| = |:En+1 — * (5n) (243)

where we have underlined the 0—th terms of both complexes. In the above equation, we
write x and y for the operators of multiplication by x,, —x,+1 and y,, —y,+1, respectively,
and:

7*(E,) denotes 7*(&,) with the variables (2, z,+1) and (Yn, Yn+1) switched (2.44)
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2.8. Serre duality

As explained in Subsection 10.4 of the Appendix, we may embed the dg scheme
FHllbn‘(j_1 into an actual projective bundle:

FHllbng+1 (x) —— P ((Ker @)V)
\ J (2.45)
FHilb"8 (%) x *

where we implicitly use the description (2.36) of the complex of vector bundles &,,. This
allows us to compute the push-forward m, of sheaves by factoring them through the
diagram (2.45).

Proposition 2.12. Let 7 : FHllbiil((C) — FHilb%(C) x C be the projection. Then:
T (A)Y 2 (A L) (2.46)

for any A € Db(Coh(FHllbffi_l(C))). The functor . is derived, and V denotes the
derived duality functor on the smooth dg scheme FHilb8(C).

This is a direct application of Proposition 10.9 in the Appendix, together with the
fact that the determinant of the complex &,(C) of (2.25) is trivial. Applying formula
(2.46) to A = O gives us the following formulas for all k£ > 0:

T (E;i;k) = (E,H_l) = skegY concentrated in degree 0 (2.47)
Remark 2.13. The analogue of (2.46) when C is replaced by C? holds exactly as stated.

Meanwhile, when C is replaced by point we must replace formula (2.46) by the following
equation:

£2

F(A)Y =7, (AV ® qiﬁ’;) [—1] (2.48)

where 7 : FHllbnil(point) — FHilb8(point) is the standard projection.

2.9. From the flag to the isospectral Hilbert scheme

It is useful to compare the construction of the flag Hilbert scheme to the isospectral
Hilbert scheme X,, defined by Haiman [41]. Recall that X,, is defined as the reduced
fiber product:
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X, — (C?)n

Iy |

Hilb,,(C2) —— S"C?

The main theorem of [41] states that X, is Gorenstein and Cohen-Macaulay with canon-
ical sheaf O(—1). In particular, the projection 7 : X,, — Hilb,,(C?) is finite and flat, and
one can define the Procesi bundle:

P :=m0x,

This is a vector bundle on the Hilbert scheme of rank n!. We will also need nested
isospectral Hilbert scheme X,,_1 ,, defined in [41] as the fibered product:

Xp—1n — Hilb,_1 ,(C?)

J l (2.49)

Tn—1

Xoo1 —=1 Hilb,_,(C?)

Theorem 2.14. The flag Hilbert scheme can be defined as the derived fiber product of the
following diagram:

FHilb'&(C?)

/ X)X
/

FHilb® | (C2?) x C2 (2.50)

x
X

n—1 X CQ Xn

n—1,n

Proof. The nested Hilbert scheme Hilb,,_; ,(C 2) is smooth and can be presented as a
projective bundle over Hilb,_1(C?) x C2, in a similar way to Theorem 2.6 (see [28]).
Since X,,_1 is flat over Hilb,,_1(C?), we conclude by (2.49) that X,,_1, is similarly a
projective bundle over X,, 1 x C2. Therefore, the square in (2.50) is derived Cartesian,
just because the northeast-southwest arrows are both the projectivizations of the same
two-step complex of vector bundles (which is pulled back from Hilb, (C?) x C?). The
morphism £, is defined as go h’. O

Theorem 2.14 immediately implies the following result:

Theorem 2.15. There is a well-defined morphism of dg schemes 7 o hy, : FHilb38(C?) —
Hilb,,(C?). Furthermore,

(1o h),O =P. (2.51)
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Proof. The existence of h,, follows from Theorem 2.14, as we define h,, := g o h’. To
prove (2.51), let us show by induction in n that (h,).O = Ox, . The base case n = 1
is obvious, so let us assume the statement holds for n — 1. Then the Cartesian diagram
(2.50) implies that (h,).O = g.Ox,_, .- Now by [41, Proof of Theorem 3.1] we have

9:0x, ,, = Ox,,.

Then (2.51) follows from (7o h).O = 7, (h,).O0 = 1.0x, =P. O
3. The Hecke algebra and Soergel category
8.1. The Hecke algebra

Recall that the Hecke algebra of type A,, has n — 1 generators:

H, = (C(Q)<017 E) Un—1>

modulo relations:

(Ui—q%) (Ui—l—qfé):o Vie{l,...,n—1} (3.1)
0i0i410; = 04100441 Vie {1, ce,n = 2} (32)
0i0; = 00 V|7;—j|>1.

The algebra H, is a g-deformation of the group algebra of the symmetric group C[S,].
The irreducible representations V) of H, at generic parameter q are labeled by parti-
tions of n, or, equivalently, by Young diagrams of size n. The multiplicity of V) in the
regular representation is equal to its dimension, which is itself equal to the number of
standard Young tableaux (henceforth abbreviated SYT) of shape A. Therefore, the reg-
ular representation of H,, splits into a direct sum of irreducible representations labeled
by standard tableaux. For each such tableau T, let Pr denote the projector onto the
irreducible summand in H,, labeled by T. By construction, these projectors have the
following properties:

PrPr =6p.Pr, Y Pr=1. (3.4)
T

The projectors Pr can be written very explicitly in terms of the generators o, see [4,40]
for details. They satisfy the following branching rule:

i(Pr) = Z Prino, (3.5)
O

where ¢ : H, — Hy11 is the natural inclusion and the summation in the right hand side
is over all possible SYT obtained from 7' by adding a single box labeled by n + 1.
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The renormalized Markov trace (also known as the Jones-Ocneanu trace [30,46])
X : Hy — C(a,q)

satisfies the relations:

) 1—a .
x(oo') =x(d'o),  x(i(0)) =x(0) ———,  x(i(o)on) = x(0). (3.6)
There is a natural pairing (-, -) : H,, x H,, — C(a, q) given by (o, 7) = x(co7), where o is
the “Hermitian conjugate” of o (this is the C-antilinear map determined by the relations
¢ =q1, O’;r = oi_l, and (o7)t = 7Tot). With respect to this pairing, the adjoint of the
inclusion ¢ : H,, — Hy41 is the partial Markov trace:

Tr: Hypp1 — H, @ Cla).

It follows easily from the definitions that for all o € H,,, we have x(o) = Tt" (o).

The Markov trace of a projector Pr only depends on the underlying Young diagram
A of the SYT T, and is equal to the A-colored HOMFLY-PT polynomial of the unknot.
Specifically, we have the following result:

Proposition 3.1. (e.g. [3]) The Markov trace of Pr equals:

q—cém aqc<5>

. B _

T (Pr) = H () —n@
2

Oex 49 2 —4¢q

where ¢(0) and h(O) respectively denote the content and the hook length of a square O
n A

3.2. The braid group

The Hecke algebra is a quotient of the group algebra of the braid group on n strands,
which is defined by removing relation (3.1). Specifically, the braid group is generated by
ot ...,0F! modulo relations (3.2) and (3.3). By definition, the full twist on n strands

is the braid:
FT, = (o1 0n,-1)"

The full twist is known to be central in the braid group, and hence its image is central
in the Hecke algebra. If we interpret the generator o; as a single crossing between the
strands ¢ and i + 1, then the full twist corresponds to the pure braid where each strand
wraps around all the other ones (see Fig. 1). We may also define the partial twists:

FT,,...FT,_,
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Fig. 1. The full twist FT4.
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Fig. 2. The braid Ly4.

where FT}, is the braid which consists of the full twist on the leftmost k£ strands, with
the rightmost n — k strands simply vertical lines. We will also work with the generalized
Jucys-Murphy elements (Fig. 2):

Ly =FT;' -FT}
which are easily seen to be given by the formula:
Lk =0Kk—-1..-02010102...0f_1-

The name is due to the fact that their images in H,, deform the well-known Jucys-Murphy
elements in C[S,,]:

k—1
1 _1
Ly :1+(q2 —q 2)Z0k71'~'0—i+10'i0i+1m0'k71~

i=1

Either the braids {FTj}x=1,.n or the braids {Lg}xr=1, ., generate a certain commuta-
tive subalgebra of the braid group, and hence also of the Hecke algebra, which we will
denote by:

C, C H,.

It is well-known that the projectors Pr lie in this subalgebra for all SYTx 7.
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Proposition 3.2. (e.g. [/, Theorem 5.5]) The projectors are eigenvectors for twists with
the following eigenvalues:

= Ly, Pr = ¢"%) . Pp

where L, denotes the box labeled by k in the standard Young tableau T .

In fact, equations (3.5) and (3.7) allow one to inductively construct the elements
Pr, as follows: given Pr for a standard Young tableau T of size n, all projectors Pr.n
are eigenvectors for the full twist FT, 1, with different eigenvalues, and hence can be
uniquely reconstructed as the projections of i(Pr) onto the corresponding eigenspaces.
This is precisely the viewpoint that is categorified in [26,27], and which inspired Section 7
of the present paper.

3.3. Notations for categories

In this subsection, we would like to collect all homological algebra notations, defini-
tions and assumptions which will be frequently used below. Let C be an additive C-linear
monoidal category with tensor product ® and direct sum @. The monoidal structure is
not necessary symmetric. We will denote the unit object of C by 1¢, or 1 if the category
is clear from context. The endomorphism algebra End(1) is always commutative, and
we assume that it is Noetherian. For any object A € C, the morphism space Hom(1, A)
is a module over End(1), and we assume that it is finitely generated. We assume that
all morphism spaces are positively graded. We denote by K°(C) the homotopy category
of bounded complexes of objects in C and by K~ (C) the homotopy category of bounded
above complexes. Unless stated otherwise, we will work with bounded above complexes
and abbreviate K~ (C) to K(C).

3.4. Soergel bimodules

The category of Soergel bimodules, which we will denote SBim,,, is a categorification
of the Hecke algebra. We will consider R = C[xy, ..., 2] and study graded R-bimodules,
where deg x; = 1. We will write gM for the graded module M with the grading shifted
by 1. Among the most important such R-bimodules are the elementary Bott-Samelson
bimodules:

B; = q_%R Rpii+1 R (39)

for any simple transposition s; = (4,7 + 1), where we write R>**! for those polynomials
which are invariant under s;. In other words, R***! consists of polynomials which are
symmetric in z; and x;;1, and therefore R has rank 2 over R“**!. Therefore, B; has
rank 2 as an R-module.
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Definition 3.3. The category SBim,, is the Karoubian envelope of the smallest full sub-
category of R—mod—R that contains the Bott-Samuelson modules B; and is closed under
®pg and grading shifts. Objects of SBim,, will be called Soergel bimodules.

The category SBim,, is monoidal with respect to the operation of tensoring bimodules
over R. Clearly, the unit object is 1 := R, viewed as a bimodule over itself. Note that
SBim,, is neither abelian, nor symmetric. Let:

Bi,i+1 = C]_IR Qpivi+1,i+2 R

where R“*t14+2 denotes the set of polynomials which are symmetric in x;, 21,7 2.
Then one can check the following identities [47,72]:

B}~ q*B;®q *B;, B;Bj~ B;B, for |i —j| > 1, (3.10)

BiBH—lBi >~ BZ D Bi,i-{-l = Ble+1Bz D Bi+1 >~ BZ‘+1B,'BZ‘+1 D Bz (311)

It was shown in [72] that the split graded Grothendieck group of SBim,, is generated by
the classes of B; and is isomorphic to H,,. Indeed, one can identify [B;] = o; + q*% and
show that (3.10)—(3.11) imply (3.1)—(3.3).

3.5. From Rouquier complexes to Khovanov-Rozansky homology

Since o; = [B;] — q_%7 it is clear that o; does not correspond to any Soergel bimod-
ule. However, Rouquier showed that o; can be realized in the homotopy category of
complexes:

K®(SBim,,)

where we use the variable s to keep track of homological degree. Explicitly, objects in
the homotopy category of complexes will be denoted by:

[SkMk — . Sk,Mk/}

for some k < k' € Z. The variable s may seem redundant when writing down chain
complexes, but we keep track of it for two reasons: first of all, it will give rise to the
equivariant parameter ¢ of Section 2 via (1.8). Second of all, we think of the object:

[M — sM'] € K*(SBim,,)

as the cone of a morphism between the objects M and sM’, and thus the power of
s makes the homological degrees of our formulas manifest. Recall the Bott-Samuelson
bimodules (3.9) and consider the Rouquier complexes:
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1
qz R 1—=z;Q1-1Qx; 41

B; (3.12)

1811, SR _
0i22[3i®—>—1:|, o7 li=

qz o

S

They satisfy the following equations [47,71] (which can be deduced from (3.10) and
(3.11)):

Ui®0;120;1®01‘21,
0i®0'j20'j®0'2’ for |Z—j|>1,

0iQ0i41®0; 2041 Q0 @041,

and hence categorify the braid group. To any braid o = 03! - -- 07" (where o; € {—1,1})
one can associate a complex of bimodules obtained by tensoring together the various
complexes (3.12). We abuse notation and denote the resulting complex also by o. Kho-

vanov [47] defined the HOMFLY-PT homology of a braid o as:
HHH(c) := RHom g (3Bim,,)(1,0)- (3.13)

The right hand side is a triply graded vector space, endowed with the internal grading
g, the homological grading s of the complexes (3.12) and their coproducts, and the
Hochschild grading a given by taking the RHom. The appropriate derived category
formalism can be found in [43]. With respect to these three gradings, Khovanov proved
that (3.13) is a topological invariant of the closure of o, after a certain renormalization.

Remark 3.4. As is customary in knot homology literature, we regard HHH and RHom as
extensions of the additive functors HHH and RHom on the additive category SBim,, to
the homotopy category K (SBim,,). In particular, HHH(M) = RHom(1, M) of a single
Soergel bimodule M is a collection of vector spaces, one in each Hochschild degree. To
compute HHH for a complex of Soergel bimodules, one needs to apply it termwise and get
a collection of complexes, one in each Hochschild degree. Then one takes the homology
of each complex separately.

The same construction can be described in a more abstract way as follows. Consider an
additive category D®(SBim,,) where the objects are the same as in SBim,, but morphisms
are given by RHom. Then HHH(o) is the space of morphisms between 1 and o regarded
as objects in K*(D®(SBim,,)), the homotopy category of the derived category of SBim,,.

3.6. Invertible objects and adjoints

Given a monoidal category C (the main example of which will be SBim,,), we call an
object F € K°(C) invertible if it comes endowed with isomorphisms:

FoF'lfFloF=1 (3.14)
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We summarize several important properties of invertible objects (3.14) in arbitrary
monoidal categories. The proofs are straightforward, and left as exercises to the in-
terested reader.

Proposition 3.5. For any invertible object F € C and two arbitrary objects C,C" € C,
there exist canonical isomorphisms:

Hom¢(F @ C, F ® C') 2 Home (C,C") 2 Home(C @ F,C"' @ F)

Corollary 3.6. Tensoring with an invertible object and with its inverse yield biadjoint
functors, that is, we have canonical isomorphisms:

Home(C, F ® C') =2 Home(F~ ' @ C,C") Home(C,C’' ® F) = Home(C ® F~1,C")
Corollary 3.7. For any invertible F € C and any object C € C, we have:
Home(1, F ® C') 2 Home(1,C ® F)

As a consequence of Corollary 3.7, we have:
Corollary 3.8. Let 0,0’ be any two braids. Then:
HHH(o0") = RHom gt (sBim,) (1,0 ®0') and HHH(o'c) = RHom g (sgim, (1,0’ ® o)
are isomorphic as R-modules, up to a twist by the permutation w, corresponding to o.

And as a consequence of Corollary 3.6, we have:

Corollary 3.9. The Rouquier complex o for a braid o is biadjoint to o~1. For any A, A’ €
SBim,, and any braid o there are canonical isomorphisms:

RHom g (sBim, ) (A®0, A'®0) = RHom g (sBim, ) (4, A') = RHom g (sgim,,) (0®A, 0@ A").
Furthermore, we have:

Proposition 3.10. The Soergel bimodule B; is self biadjoint, for all i.

3.7. The trace functor

We will henceforth write R,, = C[x1, ..., 2,] to avoid confusion as to which number n
we are considering. For an extra variable z,41, we consider the category:

SBimy, [+1] (3.15)
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of Soergel bimodules which are equipped with an additional endomorphism denoted by
Zp41 that commutes with the action of R,,. In other words, SBim,, [x,, 1] is the Karoubian
envelope of the smallest full subcategory of R, +1-mod—-R,, ;1 that contains the modules

By,...B,—1 and is closed under ®p and grading shifts. It is easy to see that the

n+1
functors:

SBim,, [z, 1] == SBim,,

that forget the action of 1, respectively tensor with C[x,1], are adjoint with respect
to each other. We will now recall the functors I and Tr defined in [43], upgraded to the
level of the category (3.15). At the level of additive categories, these functors are quite
simple:

I : SBimy,[zp4+1] — SBimp, 41

is the full embedding. Meanwhile:
. . Tn41®1-1QTn41
Tr : SBimy, 11 — SBimy[z,41], M — Ker (M _ M)
As shown in [43], these functors can be upgraded to the homotopy categories:
K" (SBimy[2,41]) z%z K (SBimy,4 1)

where the trace functor now encodes the full operation of multiplication by z,41 ® 1 —
1® xp41, instead of simply the kernel:

Tn41®1-1QTn41
%

Tr(M) = [M M.

Remark 3.11. When working in the upgraded category (3.15) rather than SBim,,, one
must be careful with Markov invariance, e.g. the statement [47] that for M € SBim,, one
has:

Tr(M ® ) ~ sq¢ /?M e K*(SBim,,)

In the upgraded category, this equation becomes (see Fig. 3):

T ®1—-1QTp 11
= T

T (M ® 0,) = [M ® Clni1] sqV2M @ C [xnﬂ]} € K*(SBimn[z,1])

(3.16)
The proof is straightforward and we leave it to the reader. Remark that in the category

K?°(SBim,,) the complex (3.16) is quasi-isomorphic to M, but this is no longer true in
Kb(SBim,, [7,,11])-
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M ~ M T, ®1—1Qwy 4 M
= =

Fig. 3. Markov move in SBim, [Z,+41].

3.8. The main conjectures
For the remainder of this Section, we will write FHilb%® = FHilb%(C) and &, =
&,(C), in the notation of Section 2. Recall the notations K(C) = K~ (C) and D(C) =
D~ (C). Our main Conjecture can be restated more precisely as follows:
Conjecture 1.1. There exists a pair of adjoint functors:
K(SBim,,) === D (Coh(c*xc* (FHﬂbgg)) (3.17)
where 1* is monoidal and fully faithful. Moreover, we have:
L*(L*Nl ®M®L*Ng) %N1®L*(M)®N2 (318)

for all Ny, Ny € D (Cohc*xc* (FHﬂbig)) and M € K(SBim,). In addition:

(3.18)

:1=0 and Li=1."(Ly) = (3.19)
G =Ly Vke{l..n) (3.20)

where O is the structure sheaf of FHIIbIE and Ly, is the line bundle (2.2). Finally, the
following diagrams of functors commute (we write L = v, to keep track of n):

K(SBimy 1) — 2 D (Cohc- xc- (FHiIb%, ))

T{ B (3.21)

K (SBimy [ 41]) ——— D (Cohc*xc* (FHﬂbﬁf x c))
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K(SBimy, ;1) <L("—+1) D (COhC*x(C* (FHﬂbfLil))

IT Tﬂ* (3.22)

K (SBimy 11]) — D (Cohc*x(c* (FHnbgg x c))

where the map T : FHilb?ﬁ_1 — FHilb"8 x C is the particular case of (2.24) for + = C.

In broad strokes, the functor ¢, is given by sending each object M € K(SBim,,) to:
n
wM= P Homgspim,) (1, M Lgk> (3.23)
ai,...,an €N k=1
which is naturally a module for the N"—graded dg algebra:
A= @ Home(SBimn) (1, ® sz> (324)
ai,...,an €N k=1

This algebra is commutative and ¢, M gives rise to a coherent sheaf on (Spec A)/(C*)™.
Our conjecture entails the fact that this sheaf is actually supported on the n—fold iterated
projectivization Proj A < (Spec A)/(C*)™, and that in fact:

Proj A = FHilbd® (3.25)

To upgrade to the setting of Remark 1.3, we must replace the Hom spaces by RHom in
(3.23) and (3.24). We expect that this can be dealt with as in the following conjecture.

Conjecture 3.12. Given the setup of Conjecture 1.1 we consider the object:
T, = *(T,,) € K°(SBim,,)
Then we claim that for any object M € K (SBim,,), we have an isomorphism:
RHom g (sBim,,) (1, M) = Hom g (sgim,,) (1, M ® AT (3.26)
which is functorial with respect to the action of the algebra (3.24) on both sides.

Remark 3.13. Let us clarify the meaning of exterior powers A*TY which appear in Con-
jecture 3.12. One can describe them in two different ways: first, we can simply declare
ANTY i= ¥ (A'T,Y) for all €.

Second, we conjecture that T}, can be identified with an element of the Drinfeld center
of K*(SBim,,), which is a braided monoidal category. Therefore one gets a braid group
action on T®*. Conjecture 3.12 implicitly assumes that the braiding on T}, is symmetric,
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that is, the above braid group actions factors through the symmetric group Sy. Since
K*(SBim,,) is Karoubian, one can follow [22] and define A’T)Y as the image of the
antisymmetric projector in the group algebra of S,.

Note that recent work of Bezrukavnikov and Tolmachov [11] strongly indicates that
the braiding in the Drinfeld center of K®(SBim,,) is not symmetric in general.

Assuming Conjecture 3.12, one may ask if there is a sheaf on the flag Hilbert scheme
which is defined by replacing Hom with RHom in (3.23). By (3.26) and (3.18), this sheaf
would be:

Lo (M@ (A°T)) = 1M @ AT,

This sheaf should naturally be thought to live on Totpppas (Tn[1]) = Specppypas (A°T,),
as in Remark 1.3. As above, Tot denotes the total space of a (shifted) vector bundle
regarded as a dg scheme. The entire picture presented in this subsection will be explained
in more detail in Section 4, when we develop the formalism of categories over schemes
in general.

Proof of Corollary 1.4. The fact that +* is a monoidal functor, together with (3.19),
imply that:

k=1 k

0= ﬁ FT}" = ﬁ 1 (det Tp,)®% = 1* (@(detﬁ)@lk) .
k=1

Corollary 3.6 below implies that:
HHH(0) := RHom g (sBim,)(1,0) = RHom g (sBim,,) (0", 1)
while (3.26) implies that:

HHH(0) = Homg (sim,) (0" ® A*T},, 1)

= HomK(SBimn) |f4< <®(det ﬁ)_ak & /\‘7;;,) ,1]

k

The adjunction of ¢* and ¢4, together with the conjectured fact that ¢,1 = O, imply
that:

HHH(U) = R‘HomFHilb%g <®<det E)_ak ® /\.7;“ O)
k

Dualizing the RHom produces the desired result. O
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8.9. Proposition 2.10 describes flag Hilbert schemes as projective towers, which
implies that:

1

En 2 (Lnsr) € D (Cohc*xc* (FHﬂbgg X C))

(this is simply the dg version of the statement that if 7 : Px (V) — X for a vector bundle
V on an algebraic variety X, then S*¥V 2 7, (O(k)) for all k > 0). Define the following
object:

Ep :=Tr(Lpy1) € K°(SBimy,[2,41]) (3.27)
Conjecture 1.1 implies that:
be(En) = te(Tr(Lng1)) = T (te (Lng1)) = 7 (Lnga) = En. (3.28)

Conjecture 3.14. The following topological facts hold for all n > 0.

(a) B, is an explicit complex in terms of I(E,—1) and Ly, as in (3.32) below.
(b) The following equation holds in K°(SBim,,[,1]):

SKE, = Tr(LE, ) Y k>0. (3.29)
(¢c) The Koszul complex
n 2 -2 1 n
[ I I(AE,) @ L2 -5 I(B)) @ Lyt -1 R} (3.30)
is acyclic, where I(E,) - Lyy1 denotes the adjoint map to (3.27).

Here the symmetric and exterior powers of E, are understood in the sense of Re-
mark 3.13. The following result is proved in Section 4.7, and will show how to reduce
our main Conjecture 1.1 to the topological computations of Conjecture 3.14 (a)—(c).

Theorem 3.15. Conjecture 3.1/ implies Conjecture 1.1.

Remark 3.16. Consider the natural projection ¢ : FHilb% x C — FHilb%8, The corre-
sponding derived pushforward

g.: D" (Cohc*xc* (FHﬂbgg X <c)) — Db (Cohc*xc* (FHﬂb?f))
is not monoidal, and does not send S*&, to S*(q.(&,)). However, using (2.25) one can

write

X—zpy1

En="F q Fl,
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where F is a certain explicit complex in D® (Coh(c*x(c* (FHilbgg>) with an endomor-
phism X. Using the projection formula and the equation ¢.¢*(—) = — ® Clx,41], one
can write ¢,S%(&,) as an explicit complex built out of Schur functors of F. According
to Conjecture 3.14, a similar complex should describe the image of Tr(£% ;) under the
forgetful functor SBimy, [x,11] — SBim,,.

3.10. E, as an explicit braid

The object B, = Tr(L,y1) € K°(SBim,[r,11]) has a simple topological meaning,
represented below (Fig. 4).

W N
Fig. 4. The braid L, and its partial trace Es.

The relation between the tangle E,, and the complex &, is expected to categorify the
classical formula for E, (e.g. [51]) in the skein algebra. Specifically, skein relations are
topological equalities between knots which only differ near a crossing (Fig. 5):

X e ]

Fig. 5. Skein relation.

In K*(SBim,,) such equalities must be replaced with exact sequences. For example,
consider the skein relation applied to the bottom right crossing of the braid L, ;. If
one closes the last strand in Fig. 6 and applies a Markov move, one gets the following
formula in the Grothendieck group of SBim,, (which is isomorphic to the Hecke algebra):

(En) = (I(Ep-1)) = (1 = q){Ln) (3.31)

In the category K°(SBim,,[z,1]), the above equality is lifted to an exact sequence:

E, — I(En_l)} ~ gt 2En i)y op L, L, (3.32)

P [ (0,2 —Tny1) (Tn—2n1,0)
b,

—_~—

where t = s?/q and I(E,,_1) refers to the same braid as I(E,_1), but with the variables
on the last two strands switched (compare with (2.43)). This is a crucial feature of the
category SBim,,[x,+1], where the variables z,, and x,11 play different roles. Also note
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Fig. 6. Skein relation for L, 41.

that (3.32) consists of 4 copies of L,, instead of the two of (3.31), due to the modified
Markov move (3.16).

3.11. Geometric Markov invariance

In the category of Soergel bimodules, equation (3.16) governs the behavior of objects
under Markov moves:

a~i(a), a~i(a) - op, a~i(a)- ot (3.33)

where 7 is the operation of adding an extra strand to a braid a on n strands. We will now
study how the complexes of sheaves B(a) = t.(a) € D(Cohc-yc-(FHilb%8(C)) behave
under the same moves. Throughout this Subsection, we write FHilb%® = FHilb'&(C)
and:

7 : FHilb{& | — FHilb% x C

for the standard projection. The following Corollary is an easy consequence of Conjec-
ture 3.14, as we will show in Subsection 4.7.

Corollary 3.17. For any braid o on n strands, we have:
B(i(a)) = 7 (B()). (3.34)
To tackle the second and third Markov moves of (3.33), we consider the dg subscheme:

Z, C FHilb% | (3.35)

Yn,n41 qztﬁn T —Tn41 qtﬁn Yn,nt1 Ty —Tn41
OZ" = ... q@ O s
£n+1 £n+l

where y,, 41 denotes the last subdiagonal entry of the matrix Y of (2.14), regarded as
an endomorphism t£,, — L£,,+1 on FHilbz‘cj_l. The fact that Oz, is a complex follows

from:

0= [X’ Y}n,n-l-l = TnYnn+1l — Ynn+1Tn+1



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 45

Conjecture 3.18. For any braid o on n strands, we have:
Bi(a) - 0,) = 7" (B(a)) @ Oz, (3.36)

Corollary 3.19. Conjecture 3.18 implies that for any braid o on n strands:

En (3.37)

B(i(a) . a;l) — W*(B(O&)) ® 0z, ® Lot

Proof. Note the following the equation in the braid group:

-1 -1
Lyyi=o0n-Ly-on=0, =L -0n - Ln=

i(a)-opt =i(a) Lty 0n-Ly=Ly,1,i(a) on- Ln,

since L, 11 commutes with the image of i. Applying B(—) to the above equation implies:
Bi(e) - 0,") = tuli() ® 0,) = 1Ly @ i() @ 00 ® L))

As in Conjecture 1.1, we have Ly = ¢*(Ly) for all k, and therefore (3.18) implies
(3.37). O

Equations (3.34)—(3.37) are compatible with the stabilization invariance of HHH at
the level of equivariant Euler characteristic.

Proposition 3.20. For any braid o on n strands, we have:

1—a

X (Bli()) @ A*Toy1) = 17— R (B(a) @ A*T,)) (3.38)

Assuming Conjecture 3.18, we further have:
Y (Bi(0) - 0,) © AT) = X (Bla) ® ATY) (3.39)
X (Bli(0) o) @ A T) = o (Bla) & A°TY) (3.40)

Proof. We replace the sheaves in (3.38)—-(3.40) by their K—theory classes and write:

[Tota) = 7 ([Ta)) + [Ln1]

and:

Oz = =) (1- FEL) (341

Since [ is just pushforward to a point, it can be decomposed along the projection map

T FHilbi%H — FHilb®8 x C. In other words, for all sheaves A one has:
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/ A= / T A
FHubjil FHilbde xC

We will apply this equality for the K—theory class:

[A] = [B(i())] - A*[Tosa] = 7 (1B(@)] - A°[T,]) - (1 - ﬁ>

where in the second equality we have used (3.34). Then we may prove (3.38) by noting
that:

(B ATl = (7 [ (B0 w7 (1 52 )]) =
= (B A (1)) = Q- T )

(the additional factor of 1 — ¢ in the right hand side of (3.38) comes from integrating
over C). To establish the last equality in (3.42), we note that it holds at the categorified
level:

T (OFHilbiil) = OFrnilbgexc = T« (OFHﬂbgil ® E;il) (3.43)

where the first equality is a consequence of the fact that m is the projectivization of
&Y, and the second equality follows from the first and (2.46) for A = O. Therefore, in
K-theory, we have:

- (1 S > =m()—am(L ) =1-a
[£n+1]

in the K-theory of FHilb%8 x C, thus proving the final equality in (3.42). Similarly, if

we assume formula (3.36) (which would also imply (3.37), according to Corollary 3.19),

then relations (3.39) and (3.40) follow from:

7(0z,) = [qo InT ot O] , T (Ozn ® - +1> =0 (3.44)
1 1 wn-z 1

) =|— - N 3.45

( 7 ® £3L+1) [tﬁn qtﬁn} [ ] ( )

We will only prove these equalities at the level of K—theory, by using (3.41). Indeed,
since the map 7 is P&, the push-forwards of the powers of £,,11 = O(1) are encoded
by:

s <5 (%)) S5 [En] = S5 _o[En] = (3.46)

_ z~oo[th] Z~oo [7;1] z~0[th] 20 [T]
A=) A [qTa] Ao [ET0] (1= 271) Al [aTn] Aoy [E75]
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where the ¢ function is §(z) = > - 2%, In the right hand side, we write:

k=—oc0

S:Vl= i(—Z)"‘“ SRV, AV = i(_z)—k ARV
k=0 k=0

*
zZr~vo0)

and the notations S%_, AL, and S N oo Tefer to expanding the rational functions

S¥, A% in the domains z ~ 0 and z ~ oo, respectively. Applying (3.41), we obtain:

Lo\ 1—q Lyt
T ([Ozn] X <T>) = | 1 @l '5( 2

(L]

__tma (5L
1_qt[£n] * yA

and we can compute the right hand side using (3.46). To obtain (3.44) and (3.45), we
1

must extract the coefficients of 20, 2!, 22 in the right hand side of the above equality,

and it is easy to see that one obtains 1 — ¢, 0 and q‘tl[;ﬁln], respectively. O
8.12. Correspondences
Formula (3.34) can be expressed in terms of the complexes of sheaves:
F(o) =v.(B(o)) € D(Cohcxxc+(Hilby,))

of (1.19), where v : FHilb% — Hilb,, is the map (1.18). Specifically, we have the spaces:

.11.d
FHilb
q
" Vn+41
FHilbd® Hilb,, 41
Hilb,, Hilby, 41

where Hilb,, ,41 = {I € Hilb,,I’ € Hilb,41,I D I’ with quotient supported on {y =
0}} are the correspondences used by Nakajima and Grojnowski to describe the cohomol-
ogy groups of Hilbert schemes. At the categorified level, their construction gives rise to
a functor:

Db(Cohc-xc- (Hilb,)) == D’(Cohgc-xc+(Hilb, 1)), O = paup}

To establish (1.21), note that F(i(co)) equals:



48 E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542
Vnt1+(B(i(0))) = p2«(r+(B(i(0)))) = pa:(r+(¢" (B(0))))
= P2« (P1 (n (B(0)))) = a(F ()

where the second equality follows from (3.34), and the third equality follows from the
fact that the rhombus is cartesian. This latter fact may seem obvious at the level of
closed points, but scheme-theoretically it only holds because we have replaced the badly
behaved scheme FHilb,, with the nicely behaved dg scheme FHilbig.

3.13. Mirror braids

In this section, we will relate the operation of mirroring braids (i.e. replacing all ¢;’s in
the braid word with o; 1’5) with duality on the category of coherent sheaves on FHilbig .

Proposition 3.21. For any F € D*Coh(FHilb'8) one has:

\

/ J—_~® /\07:;/ o / f\/ ® /\nfonv
FHilbds FHilbds
where the a-grading in the right hand side is reversed from i ton — 1.
The Proposition above follows by iterating (2.46) n times, and recalling the fact that
ATn@ Ly Lt = AT, @det(T,)~! =2 AP~*T,Y. Tt is natural to conjecture, therefore,
that mirroring the braid o simply corresponds to dualizing the complex of sheaves B(o)

on FHilbfLg :

Conjecture 3.22. For any braid o, we have:

where 8V denotes the mirror of 3.
The following example shows that the computation of a dual sheaf can be nontrivial.
Example 3.23. As we will see in Section 5 (and also from Section 3.11), the braid o €

SBimg corresponds to the structure sheaf @ on FHilbs(point) x C C FHilby(C), while
o7t € SBimy corresponds to O(—1) on FHilby(point) x C. The fact that the objects

B(o1) = OFHilbg(point)xC and B(Ufl) = OFHile(point)xC(_l)

are dual to each other follows from the fact that the exact sequence:



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 49

Xr1—T2 w
OFHilby (point)xC <= OFHilby(C) < OFHilby(C) O(_l)FHilbg(point)xC

is self-dual.
3.14. Some remarks on support

We now explore what the endpoints of a braid ¢ say about the sheaf B, on FHilbflg.
For any braid o, let w, € S, denote the underlying permutation.

Proposition 3.24. (e.g. [/3, Proposition 2.16]) For any braid o and for all i € {1,...,n},
the left action of x; on the complex o € K®(SBim,,) is homotopic to the right action of

T, -

In short, we will say that the left action R ~ o is homotopic to the right action
0 (o) R, twisted by the permutation w,. As a consequence, we obtain the following
result:
Corollary 3.25. The R-module RHom g+ (sgim, )(1,0) is supported on the subspace:

{.’Ei = T, (4) 1=1,... ,n} cCcn.
Our construction of Conjecture 1.1 is predicated on the expectation that:
Hom gt (sBim,) (1, 0) = RT(FHilb%®, B(c))

and that moreover B(c) can be reconstructed from the spaces Homgs(sgim,)(1,0 -
[T, LY") for all sequences of large enough natural numbers (a1, ...,a,). These Hom
spaces in the category SBim,, are very hard to compute, and all we can say at this stage

is that Corollary 3.25 still applies to them. Therefore, we obtain the following:

Corollary 3.26. Assuming Conjecture 1.1, the complex B(c) = t.(c) is supported on the
subvariety:

FHilb® == p~* ({&i = Tu, (i), i = 1,...,n}) C FHilb%® = FHilb3*(C)

where p : FHilb3E(C) — C™ is the map that records the eigenvalues (1, ...,y ), akin to
(2.3).

Corollary 3.27. Suppose that the closure of o is connected (that is, a knot). Then B(o)
s supported on

p ' ({xy =...=x,}) = FHilb,(point) x C.
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Remark 3.28. Following Section 1.9, one can prove that if the closure of ¢ is connected,
then the sheaf B(c) fibers trivially over C, i.e.:

B(o) = B(o) K O¢
for some sheaf B(c) € D'Coh(FHilb, (point)). Since FHilb,, (point) is projective, the
cohomology of this sheaf is expected to be finite-dimensional. Moreover, our conjectures
imply the fact that this cohomology matches the reduced Khovanov-Rozansky homology
of 0.

In general, FHilbig may be quite complicated. However, for certain permutations w =
w, we can describe it explicitly. The baby case is when w = (j,j 4 1) is a transposition.

Definition 3.29. Define the dg subscheme Z; C FHilbflLg by the following equation:

2,2 p2 9
Oz, = |...— 2 Zﬁj wigtr, Ty ormesn, G5 wan, 6wzt g (3 47)
Lin Lin Ljn

Here y; 41 : t£; — Lj41 is the map of line bundles induced by the homonymous
coefficient of the matrix Y in (2.14), and the fact that y; j+1(x; —xj+1) = 0 follows from
[X,Y]=0.

Remark 3.30. Formula (3.47) implies the following exact sequence:

. gtL;

[qo i, o] ~ (0, 14 ® 0y [2] (3.48)
J £]+1 J
Our motivation for defining Z; is the fact that:
OFHilbdg = OZ]. (349)

(7,3+1)

for all j € {1,...,n — 1}. The following proposition follows directly by iterating (3.49).
Proposition 3.31. Suppose that w has cycle structure:
(1, ceey kl)(k'l + 17 ceey ]€2), ceey (kr + 17 ,n)

for some sequence 0 < k1 < ... < k, < n. Then the dg structure sheaf of FHilbi,g has
the following periodic resolution by locally free sheaves on FHilb‘,iLg :

2Ly wimwia QL vis —
OFHilbdg = ® |: Lo— 4 j Ti—%i+r QULj Y4 L]O J—Tj41 ol (350)
U gl k) Lj+1 Li
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Conjecture 3.32. Suppose that o = [];_o (0%, 41" 0k ) is a subword of the Coxeter

ir1—1
word 01 -+ op_1, for any sequence 0 < k1 < ... < k. < n as in Proposition 3.51. Then:

B(a) = Orilbas-

Example 3.33. For o = 1, the conjecture simply reads B(a) = Opppas, as prescribed by
Conjecture 1.1. For « = 07 - - - 0,1, the conjecture reads B(«) = OFmilbde (point) xC -

Conjecture 3.32 gives a full description of B(«a) for all braids o on two strands (see
Section 5 for the explicit construction in this case). Moreover, it completely describes
B(a) for the braids o = 1,81, 82, 8152 on 3 strands, multiplied by arbitrary powers of
the twists FT9, FT3. Building upon this, the following conjecture supersedes the main
conjecture of [37], and it serves as one of the motivating examples of the present work:

Conjecture 3.34. For ged(m,n) = 1, consider the torus braid o m = (01 op_1)™.
Then

(i—1)m

B(tm,n) = <® EZLTJ{ " J) ® OpHilbds (point) xC (3.51)
i=1

See Sections 5 and 6 for detailed computations for two and three-strand torus braids.

Remark 3.35. It was proved in [37] that the equivariant Euler characteristic of the
right hand side of (3.51) is equal to the “refined Chern-Simons invariant” defined by
Aganagic-Shakirov [2] and Cherednik [19]. One can therefore consider Conjecture 3.34
as a categorification of the conjectures in [2,19] relating the Poincaré polynomial of
Khovanov-Rozansky homology to these “refined invariants”.

4. Categories and schemes
4.1. Motivation: maps to projective space

We start by recalling certain classical constructions in algebraic geometry which will
guide all subsequent generalizations. Let X be a projective algebraic variety and let £
be a line bundle (i.e. a rank one locally free sheaf) over X. One says that L is generated
by global sections if the map of sheaves:

OxeT'(X,L)—= L
is surjective. If we choose a basis s, ..., s, of the vector space I'(X, £), this comes down

to requiring that any local section of L is a linear combination of the sections sg, ..., Sy
Moreover, the above datum gives rise to a map:
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X 5P, x> [so(x) @ .t sp(2)] (4.1)

Global generation implies the fact that the sections s, ..., s, cannot all vanish simulta-
neously. Moreover, while s; are sections of the line bundle £, their ratios are well-defined
rational functions on X. To this end, we may define the open subset:

X;={si(z) 20} Cc X
where the ratios s;/s; are well-defined. Hence the map (4.1) restricts to a map:
X, = U ={z#0}CP"
If we let O(1) denote the Serre twisting sheaf on P™, then we have:
F(O(k) =L%% VikeZ
The functor +* is monoidal, and is the left adjoint of the direct image functor:
Coh(X) z: Coh(P™) (4.2)

In the remainder of this section, we present a generalization of this construction, where
the role of the map ¢ : X — P" is replaced by an abstract categorical setup inspired by

Remark 4.1. By deriving the functors in question, we may write (4.2) at the level of
derived categories. Then the sections can be thought of as complexes:

[OX it .c} e D(Coh(X))

which are supported on {X \ X;} = {s; = 0}. The product of these complexes:

n

0% [OX LI .c} (4.3)

i=0

is therefore supported on the set where all s; vanish simultaneously, which by assumption
is the empty set. Therefore, (4.3) is quasi-isomorphic to 0, and hence it vanishes in
D’(Coh(X)). Put differently, the vanishing of (4.3) is forced upon us by the vanishing
of the Koszul complex:

n

q.i.s

(050 2 0pu(1)] =70 € D¥(Coh(P™))

=0

and the fact that the derived version of the functor ¢* in (4.2) is monoidal.
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Remark 4.2. Projective space can be defined more scheme-theoretically as:

P™ = Proj (@ Sk(C”'H)

k=0

Then the map (4.1) is given by the map C"*! — I'(X, £) induced by the choice of the
sections s, ..., Sn, and in fact global generation translates into:

X = Proj <é (X, £®k)> .

k=0

4.2. Categories over schemes

In this section, we will develop a general setup relating a category C with a scheme X,
with the goal of reducing Conjecture 1.1 to Conjecture 3.14. Though we will not always
say this explicitly, X should be thought of as a dg scheme.

Definition 4.3. A morphism from the category C to the scheme X, written as:
C——>X
consists of a pair of functors:
K (C) == D(Coh(X)) (4.4)
such that:
e * is a monoidal functor
e 1, is the right adjoint of +*
¢ the following projection formula holds:
(M1 @ C @ " My) = M1 ® 1.(C) @ Ms (4.5)
for all My, My € D(Coh(X)) and C € C.

The above definition is modeled on the situation when C = Coh(Y") for a scheme Y,
in which case the functors ¢, and ¢* play the roles of derived direct and inverse image
functors associated to a map of schemes ¢ : Y — X.

Definition 4.4. We call the map C — X r.o.r.s. if:

1= 0y (4.6)
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The terminology is short for “resolution of rational singularities”, since (4.6) holds if X

has rational singularities, and C is the derived category of a resolution of singularities of

X.

Proposition 4.5. Suppose that C — X is r.o.r.s. Then o* is fully faithful, and moreover:
Hompg (¢y(1,0"M) = RI'(X, M) (4.7)

for all M € Coh(X).

Proof. The adjunction implies that:

Hom g (cy(¢*M',1* M) = RHomx (M, 1,.* M) = RHomx (M', M)

where the last equality follows from (4.5) and (4.6). When M’ = Ox we obtain precisely
(4.7). O

Alternatively, we will say that C is a category over X. We will say that the category C is
defined over a commutative ring A if there is a morphism from the C to the corresponding
scheme SpecA.

4.3. The affine case

Let C be an additive monoidal category. Suppose we are given a Noetherian commu-
tative ring A and a ring homomorphism

A L5 Ende(1) (4.8)

satisfying
(#) Home(1,C) is finitely generated over A

for any object C' of C. Then there is a morphism:

C - Spec A. (4.9)
The functors

K(C) z:z D(A-mod)

are defined as follows. There is a functor i, : C — A-mod given by:

i+(C) = Home(1,C). (4.10)
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This extends in the obvious way to a functor i, : K(C) — K(A-mod), and ¢, is defined
to be the composition of 4, with the natural inclusion K(A-mod) — D(A-mod).

In the other direction, let FFA—mod be the category of finitely generated free A mod-
ules. Since A is Noetherian, every finitely generated A-module has a free resolution in
FA-mod. If we have a morphism between two modules, this can be lifted to a morphism
between their resolutions. Any two resolutions of a given module are homotopy equiv-
alent. Now any complex of finitely generated A-modules can be replaced by a complex
built out of resolutions of its terms. This yields a functor D(A-mod) — K(FA-mod),
so the inclusion K(FA-mod) — D(A-mod) is an equivalence of categories. We define
¥+ K(FA-mod) — K(C) by setting t*(A) = 1 and ¢*(a) = f(a) for a € A = Hom(4, A).
This extends to K(F A-mod) in the obvious way. If M is an object of D(A-mod), we
write t* (M) = M ®4 1.

Let us check that the functors * and ¢, are adjoint, or equivalently, that

HomK(c)(M ®A 1,0) = HomD(Afmod)(M7 Homc(l,C’)) (4.11)

for all M € D(A-mod) and C € K(C). If C' € C, the right-hand side is by definition
Exta(M,Home(1,C)). The statement that it is equal to the left-hand side reduces to the
well known fact that to compute Ext of two modules, it is enough to take a free resolution
of one of them. Properties (4.5) and (4.6) also follow directly from the definitions.

Example 4.6. Let Y be an algebraic variety, and C = Coh(Y"). The unit in Y is given by
the structure sheaf Oy, and indeed C is a category over Spec End¢(1) = Spec T'(Y, Oy).
This structure is precisely equivalent with the global section map:

t:Y — Spec I'(Y, Oy)

More generally, a ring homomorphism A EN I'(Y,Oy) corresponds to a map Spec I'(Y,

Oy) — Spec A, and one can use the composed map from Y to Spec A to define ¢, and

Lk,

4.4. The projective case

In the previous Subsection, we showed that any category can be realized over the
spectrum of the endomorphism ring of its unit. We may upgrade this construction if we
are given an invertible object F' € K(C) as in (3.14).

Assumption 4.7. We assume that the graded algebra:

Homp ¢y (1, F*) := @D Hom (¢ (1, F¥) (4.12)
k=0

is commutative.
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Since F' is invertible, we have a family of maps
Homy(c)(1, F*) ® F™ ~ Homc)(F™, F**™) @ F™ — Frtm (4.13)
which defines the action of Homg ¢ (1, F*) on ,, F™.
Remark 4.8. Recall that C was a graded category, so for every k the space Hom g (¢ (1, FFk)
is graded. The algebra Hompgcy(1, F'®) has an extra grading which equals £ on
Homg (¢ (1, Fk).
In this setting, there exists a tautological morphism:
C - (Spec R)/C* (4.14)
for any Noetherian graded commutative C-algebra R and graded ring homomorphism:
R L5 Homy () (1, F*) (4.15)

The functors (4.4) are explicitly given by:

L*(C) = HOHlK(C) (1,F. ® O) (416)
o 0
(M) = (M ®r P F’“) (4.17)
k=—o00

for all graded R-modules M and all C € K(C). The Hom space in (4.16) is an R-
module via (4.15). The action of R on ;- F* is defined by (4.13) via (4.15). It is
straightforward to show that the analogue of (4.11) holds, and that the above datum
makes C into a category over the stack (Spec R)/C*:

K(C) i@ D(R-grmod) (4.18)

Note that one needs the analogue of condition (#) on the category C to ensure that
the above functors are well-defined (in particular, that the right hand side of (4.16) is a
finitely generated R-module). But given this, the map ¢ is r.o.r.s. if and only if the map
f of (4.15) is an isomorphism.

Example 4.9. Let us consider the case where R = Alz, ..., z,], for a ring A equipped

with a homomorphism A — End¢(1). Then the datum of the homomorphism (4.15)
boils down to giving n + 1 morphisms:

% o~ {1%1?} (4.19)
1=0,...,n
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This makes C into a category over the stack: C AZ‘H /C*. The natural question is
when does ¢ factor through projective space:

’

¢ \‘f Pz
AR /Cr
which amounts to factoring (4.18) through functors:

K(C) z:z D(Coh(P})) (4.20)

It is clear that +/* and ¢, must be given by the same formulas as in (4.16)—(4.17), but
one needs to impose a certain relation. Because the zero section of At /C* is removed
when defining projective space, the structure sheaf of the zero section becomes quasi-
isomorphic to 0. Since this structure sheaf can be expressed via the following Koszul
complex:

[ 02208 s oo Lo, o ® o-1) % 0)
we conclude that the functors (4.20) are well-defined only if:

[1 LN F] ®..® [1 LN F} 0 € K(C). (4.21)

It is not hard to see that this condition is also sufficient, by invoking Beilinson’s
description [9,10,14,61] of the derived category of projective space as equivalent to the
homotopy category of complexes of finite direct sums of free A[zy, ..., z,]-modules with
degree shifts € {0, ...,n}.

Remark 4.10. If F = £ is a line bundle in C = Coh(X), then «; are nothing but sections
of £. By Remark 4.1, equation (4.21) is equivalent to the fact that «; generate £, and
indeed this is a necessary and sufficient condition for the existence of X — P", as we
saw in Subsection 4.1.

4.5. The relative case

The situation of Example 4.9 captures a very interesting problem, namely when can
we factor a map from a category to a scheme through another scheme:

c Yy
\ lﬂ (4.22)
X
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More precisely, ¢’ should satisfy the equations t* = /* o 7* and 1, = 7, o ¢, and all the
functors should be derived from now on. The situation we will study in this paper is
when:

Y = PVY := Projy(S*V)

where V is a coherent sheaf on X of projective dimension 0 or 1. Let us first study the
case of projective dimension zero, so assume that V is a vector bundle.

Proposition 4.11. Suppose that Y = PVV and that the map v in (4.22) is constructed.
The datum of the extension ' is equivalent to an invertible object F € C together with
an arrow:

V-5 (4.23)

in C. This gives C the structure of a category over Y if and only if:

h.e.
[ St (M) @ PR - } 20 e K'C) (4.24)
The map ¢’ is r.0.1.5. if and only if v satisfies:
SFY = (FF)Y  VE>0 (4.25)

Proof. First we prove that the existence of ¢/ is equivalent to (4.23) and (4.24). All
notations @ or O(k) will refer to invertible sheaves on PVV. If // exists and has all the
expected properties, then set F = //*(O(1)). In this case, the map (4.23) is simply +/*
applied to the tautological morphism:

YV — O(1)
on Y. The fact that the complex (4.24) is quasi-isomorphic to 0 follows by applying +/*
to the Koszul complex of Y.
Conversely, suppose that we are given a morphism (4.23) which satisfies (4.24), and

let us construct the map ¢ that makes the diagram (4.22) commute. Note that (4.23)

gives us an arrow:
o (V®k) N Flc
for all k£ > 0. Because F is invertible, this arrow factors through:

s (SFY) — FF (4.26)
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for all k > 0 (since F is invertible, so is F'*, and hence has no nontrivial endomorphisms;
this implies that the anti-symmetric projector is zero, hence S¥F = F¥). This allows us
to define:

0o 0
(M) = <7r*(M)® &y Fk>

SV k=—o0

A priori, this only determines the functor «/* on the level of the homotopy category of
coherent sheaves on PVV. To check that it descends to a functor on the derived category,
we must show that /" takes quasi-isomorphic complexes to isomorphic complexes. The
fact that this statement is true for the Koszul complex is precisely the assumption (4.24).
The fact that this is sufficient is due to Theorem 2.10 of [42] (see also [6]), which asserts
that:

D (Coh(PVV)) 2 homotopy category of

rank V—1

complexes of< EB &(z))
=0 £0,E1,...€D?(Coh(X))

Finally, let us check that ¢/ is r.o.r.s. if and only if (4.25) holds. The r.o.r.s. property
of «/ implies that /.1 = O, from which the projection formula implies ¢/, (F*) = O(k).
Applying 7, to this relation implies precisely (4.25).

Remark 4.12. Strictly speaking, this holds as stated if V is a locally free sheaf. For more
general V, the statement holds once the right hand side is replaced by its idempotent
completion similarly to [62, Theorem 4].

As for the right adjoint functor, we set:
40 = ( o Fk®c>
k=—oc0

as a graded Ox-module. To realize the right hand side as a sheaf on Y, we need to endow
it with an action of S*V, namely with an associative homomorphism of graded algebras:

S*V @0y L(é F’“®C> —>L<é F’“@(J)

k=—o00 k=—o00

The above morphism is obtained via adjunction and (4.26). O
4.6. Projective dimension one

For the setting of this paper, we will need a version of Proposition 4.11 when the
vector bundle V is replaced by the quotient:
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0—W-5Y-—50-—0
where W is another vector bundle. More precisely, we are interested in the case when:
Y — PYY

is the (derived) zero locus of the section:

s W) -5 75 (V) — O(1) (4.27)

where 7 is the map in the following diagram:

C s N ]PV\/ (428)
X
To simplify the geometry, we make the following very important assumption:

the ideal of Y <% PV is generated by a regular sequence in Im s (4.29)

which entails that the embedding v cuts out Y as a complete intersection in PVV. One
could do without this assumption, but that would require one to replace Y with the
dg scheme determined by the exterior power of the section s. In other words, we must
require the following quasi-isomorphism in the derived category of PVV:

Oy = [ .. =5 AFT (W) @ O(—k) - ... - o] (4.30)
In order to construct the lift +” in (4.28), we must first construct the arrow ¢/, and for

this we invoke Proposition 4.11. Then the following Proposition says precisely when the
arrow ¢/ thus defined factors through Y.

Proposition 4.13. Suppose that'Y L PV asin (4.28) and that the map v is constructed.

The datum of the extension (" is equivalent to an invertible object F € C together with
an arrow:

o R (4.31)

in C. This gives C the structure of a category over'Y if and only if:

e (e rt ] = (4.32)
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The map (" is r.o.r.s. if and only if 1. gives rise to an isomorphism:
SkQ = (FFy VYk>0 (4.33)

Note that if we interpret Y as a dg scheme whose structure sheaf is the dg algebra
in the right hand side of (4.30), we must replace Q in (4.31), (4.32), (4.33) with the
two term complex [W — V]. Making sense of the symmetric and exterior powers of
such a complex is rather straightforward homological algebra, which we relegate to the
Appendix.

Proof. First we prove that the existence of " is equivalent to (4.31) and (4.32). As we
have seen in Proposition 4.11, the existence of a monoidal functor:

/" D(Coh(PVY)) — K(C)
implies the datum of an invertible object F' € C (the image of O(1)) together with an

arrow (*) — F in C (the image of the tautological morphism). The question is when
does the functor /" factor through:

D(Coh(PVY)) -5 D(Coh(Y))
M = M ®0,,, Oy = |... = ANFT* (W) @ M(=k) = .. > M}

where in the last equality we have used the assumption (4.29). In particular, we have:

(W) o = AFTEON) @ T (W) (—K) 5 i, (W)
J s = ls = 0
o) e = NPT W) @ O(=k + 1) = .. o(1)

*

This implies that the functor . must take the composition 7* (W) &y e (V) = 0(1) to
zero, and hence the map « of (4.23) must factor through a map S as in (4.31). Sending
the Koszul complex of 8 though the functor j* gives rise to the Koszul complex of «,
which must be sent to 0 by (4.24). Therefore, we conclude that the existence of the
extension (/" requires (4.32).

Finally, let us prove that ¢” is r.o.r.s. if and only if (4.33) holds. Recall that being
r.o.r.s. is equivalent to ¢/1 = Oy . The projection formula implies that ¢)(F*) = Oy (k),
and applying j. to this isomorphism yields:

S

L(F®) 2. S AP OV) @ O(e — k) 5 ..

Applying 7, to the above isomorphism implies:
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L]
L (F®) = [A W® S v} (4.34)

where the differential in the right hand side of (4.34) is given by the map ¥ : W — V. As
in Example 10.3, the right hand side is a resolution of S®Q, hence we obtain (4.33). O

4.7. Deducing Conjecture 1.1 from Conjecture 3.1/

The categorical setup presented in this section allows one to deduce the main conjec-
ture from Conjecture 3.14 (a)—(c). We will proceed by induction on n, so let us assume
that the functors (3.17) are well-defined for some fixed n. Our task is to construct func-
tors:

K(SBim,, 1) ==== D(Coh(FHilb}% ,))

bnt1

given the functors:
K (SBim,,)[#,41] === D(Coh(FHilb%® x C))

obtained from the inductive hypothesis and tensoring with the extra variable z, 1. We
define the composed functors:

e + K(SBimpy1) z%t K (SBimy[z,41]) === D(Coh(FHilb3¢ x C)) : ¢*

According to Proposition 2.10, we have ]F‘Hilbflﬁ_1 = P&y,

FHilb%8 x C from (2.25). Relation (2.36) states that this complex has projective dimension
1, and we can therefore apply Proposition 4.13. To do so, we must exhibit an invertible

where &, is the complex on

object F' € K(SBim,+1) and a morphism:
E, Ny

in K(SBim,,). We will choose F' = L, and take the morphism S to be the adjoint of
(3.29):

En = L*(Ln+1) = lpx (Tr(LnJrl))

The full statement of (3.29) allows one to prove that S*(€,) = t.(L%, ), which es-
tablishes the fact that SBim,; is r.o.r.s. over FHilb, 11 by (4.33). To complete the
proof of Conjecture 1.1 one needs to also check that (4.32) holds, which is part (c) of
Conjecture 3.14.
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5. Example: the case of two strands
5.1. The geometry of FHilby
In this section, we will always write FHilby = FHilbo(C). In this section we construct

explicitly the functors ¢* and ¢, between the category of sheaves on FHilbs and the
category of Soergel bimodules SBimsy. We have the matrix presentation:

{X:(Il 0),1/:(0 O),[X,Y]:O,v:<1> cyclic}
z  To w 0 0
FHilb, =

1
conjugation by g = ( 0)
c

0

Note that in the presentation above, we fixed the vector v (and this fixes the first column
of the conjugating matrix) to eliminate some coordinates. Unwinding the above gives us:

{(z1,x2,z,w), (1 —z2)w =0, z,w not both zero}

FHilby = = Proj(A) (5.1)

(1,2, z,w) ~ (x1, T2, C2, CW)
where x1,x3, 2z, w have degrees 0,0, 1,1 in the graded algebra:

Clz1, z2, 2, w]

A= (5.2)

(1 — z2)w
Recall the complex (2.25):

T
0,z1—x2, x1—2,0,1)

& = |qto ! 9 0atos0 ! O (5.3)

on FHilb; (C) x C = C2, from which it is clear the leftmost map is injective and the
rightmost map is surjective on all fibers. Therefore, we have H°(&;) = £ and hence:

FHilb, = FHilbd®
Moreover, letting z and w be coordinates on the first two summands of the middle space
of (5.3), we observe that H°(&1) = (Oz ® Ow)/(x1 — x2)w, which matches the algebra
(5.2). The irreducible components of the flag Hilbert scheme (see Fig. 7) are:

FHilb, = Wy U W, (5.4)

where:

Wy = {x; # 29} = {w = 0} = C? with coordinates (1, x2) = Proj(A/wA) (5.5)
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Iy

W

W,
I(2) !

Fig. 7. Flag Hilbert scheme of two points.
Wy = {x; = 29} = C x P! with coordinates (=, [z : w]) = Proj(A/(x1 — x2)A)  (5.6)
The intersection of these two irreducible components is:
WinWy=C x[1:0]=C x {5}
while the other torus fixed point (1 ) satisfies:
Wi 2 L1y € We, Iiy = (0,[0:1])
Note that W5 corresponds to Z; in the notations of Section 3.14.

5.2. Cohomology of sheaves on FHilbs

On the projectivization (5.1), the line bundles of importance for us are £; = O and
Lo =2 O(1), where the latter denotes the Serre twisting sheaf. Note that:

20 01) (5.7)

We will now compute the cohomology groups of certain line bundles on FHilbs. To
simplify our computations by removing a factor of C, we will work with the reduced
version of all the schemes and dg schemes in question (see Subsection 1.9). Specifically,
this means:

Clz, z,w]

FHilby = Proj(A) where A = (5.8)

TWw

where we set 1 + zo = 0 and x7; — xo = z. The irreducible components of this variety
are:

Wl =C and WQ = ]Pl = FHlle (pOlIlt)

Note that To = O(1). The following cohomology computations are well-known:
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H' (W1, 0(k)) = -4 ~di0

because W = C, while:

th4th-lg+. . . +tg" T+¢* ifi=0andk>0
H' (W2, 0(k)) = ¢ (qt) "L (tF12 + ...+ ¢F+2) ifi=1and k< -2

0 otherwise

because Wy = P! with equivariant weights ¢ and . Consider the short exact sequence:

x

0 —— qOy, O, Ow, —0

2

which is induced by (5.4). Because the cohomology of sheaves on W is concentrated in
degree 0, we have the following equality of (g, t)—equivariant vector spaces:

HY (FHilby, O(k)) = qH' (W1, O(k)) + H' (W5, O(k)) =

£ g ifi=0and k>0

_ — if i=0and k<0 59)
()L ("2 + ... +¢*2) ifi=1land k< —2
0 otherwise

The analogous equalities for the non-reduced version FHilby are obtained by dividing
the right hand sides of (5.9) by 1 — q.

5.8. Soergel bimodules for n = 2

The category of Soergel bimodules is generated by two objects: R = Clzy, 23] and
B = R®pa2 R. With our grading conventions, we have:

B2=B@rB~q:B®q B (5.10)

In the reduced category, we can set x1 + x2 = 0 and x1 — 29 = 2, and write R = C|[z]
and:

B= E@ES R= Clz] ®C[z2] Clz].

This object also satisfies property (5.10), and moreover:

Hom(1,B) ~Ext'(1,B) = R
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are rank 1 modules over R. In terms of grading, note that Ext' differs from Hom by a

1

shift by the equivariant weight a~'¢~!, which is an incarnation of the wedge product in

(1.13). Thus:

Riom®(1, ) — A® <£> 9 R (5.11)

qa
for a formal variable €. The object in the Soergel category which corresponds to a single

positive crossing o is the following complex:

— R
o— {B 1®1—1 871 }

qz2
The powers of s mark homological degree, and so they are always consecutive integers
in a complex. We mainly use them to pinpoint the O-th term of a complex, and to
compare with formulas from geometry. Similarly, the object in the Soergel category

which corresponds to a single negative crossing o~ ! is:

=

R 1501110 —

g B
S

Let us write FT = FT, for the image of the full twist in the reduced Soergel category,
and note that FT = ¢2. Therefore, formula (5.10) allows us to write:

— — sB ’R
FT = [qéB—>s—l—>s—]
qz q

Recall that the connection between the parameters s and ¢ is given by s? = gt. The two
maps that span the space Hom(1, FT) are described in the following diagram:

B —— 5B —— (R
- ! - (5.12)

z w

Wl

qR tR
where z = (1 » z®1+1®x) and w = Id. As we will see in more examples in the next
Subsection, it is no coincidence that the only maps from R into non-negative powers of

the full twist have integer ¢, t—weights: this is called the “parity miracle” by [25].

Proposition 5.1. We have the following relation in the category SBims:

b 2 ay 2 1 o 1 1 (zw)

02 |.. 2% FT @ ¢FT ~ 4 FT @ ¢FT ' °LFT 'oFT 1
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where the maps oy and ag are given by:

a1<w 0) and a2<x 0) (5.13)
-z z w

Proof. Remark that this complex is filtered by complexes:

ﬁ_k_Q (w,—2) ﬁ_k_l@ﬁ_k_l (z,w) ﬁ—k:| _

=FT " ? Cone [1 LN ﬁ} ® Cone [1 EN ﬁ} . (5.14)
so it is sufficient to prove that Cone(z) ® Cone(w) ~ Cone(w) ® Cone(z) ~ 0 (indeed,

this would imply that the complexes in the left hand side of (5.14) are contractible).
Since:

and:

B®Cone(2) B [R—+B—+B— R ~B—~B®B—-B®B— B]~0,
we conclude that Cone(w)®Cone(z) ~ 0. The case of Cone(z)®Cone(w) is analogous. O
5.4. Proj construction

The purpose of this Subsection is to construct the functors:

D (Cohe-xc- (FHilby)) === K (SBims,) (5.15)
and prove Conjecture 1.1 for n = 2. To keep our notation simple, we will perform

the computation for the reduced versions of the above categories. As was shown in
Section 4.4 (assuming F' = FT), in order to construct ¢, one needs to prove the following
isomorphism of graded algebras:

éHom (1ﬁ’“) o é Hom (FHilby, O(k)) . (5.16)

k=0 k=0

(The reason why we need an isomorphism instead of just a homomorphism is the fact
that we want a r.o.r.s. map.) To compute the left hand side of (5.16), recall from [47]
that we have the following identity in SBimy for all £ > 0:
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82k—3B 82k—ZB 82k—1B SQkR

-k — —
FT ~ |¢* *B—>¢" %sB— - — P e e -
qtT 2 qrT 2 qrT 2 q
2k
where the maps alternate between I‘X’l;l@r and I®1;1®“". Since s = —+/qt, we have:
=k k5 0 k—1,1%5 = 0 k—33 = k—15 0 Lk—1% = kD
Hom(1,FT )~ |[¢"R—¢" " "{?R— - 5 qt" 2R = qt" " R—=t""2R = t"R
2k
kL] () gyt h—i ClEl _ b
>z (C[x]@wzz t——=A (5.17)
x
i=1

One can think of z, w as formal variables of degrees ¢, t, but they actually correspond
to the maps of (5.12) under the required isomorphism (5.16). This establishes (5.16) as
an isomorphism of C[z]-modules. We claim that this isomorphism also preserves the
algebra structures, and therefore the functor ¢, is well-defined. By construction:

L(FT) = O(k)

for all k£ > 0. As for the functor ¢* of (5.15), we require:

and:
o (qO = (9(1)) and (" (qO = (9(1)) = the maps (5.12)
However, note that this assignment simply defines a functor:
D(Coh (Spec A/C*)) = K (SBimy)

since A is the homogeneous coordinate ring of FHilb,. We wish to show that this functor
factors through D(Coh(Proj A)). To do so, we must prove that the object:

q.1.8

0 - A

] on FHilbsy 1*(Ag) = 0 in SBimy (5.18)

Z,w

To compute the image of Ay under *, we need to resolve this object in terms of free A
modules. The standard choice is the Koszul resolution, which is infinite because FHilby
is singular:

0“2 | O GA(—2) @ qA(-2) 22 A(—2) @ gA(-1) 5 A(-1) @ A(—1) =2,
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where the maps alternate between those of (5.13). Then (5.18) follows from Proposi-
tion 5.1.

Remark 5.2. By analogy with (5.17), we have:

12

Ext!(LFT) 2 | RY ¢3RS . S v 3R 5 'R S 3R L 'R
2k

k—1
> F=1C[a] @wizkflﬂ'% = 4" = Hom (1,ﬁ’“*1) (5.19)

) T
i=1

This is precisely the ¢ =1 case of (3.26) for M = FT" and Tp = o* (T2) = *(0O(1)) =
FT.

5.5. Sheaves for two-strand braids

To construct the sheaf ¢, (M) for any object M € SBims, one needs to consider the
module Hom(1, M @ FT") over the graded algebra A = Hom(1,FT"). In the previous
subsection, we have studied the case M = ﬁk for positive integers k, and we found
that ¢, (M) = O(k). The computation for negative k is more interesting:

— Lk — — — — — —
FT = |t "R q 32 "B ¢ ' "B g Wi "B .. 5 ¢* "B " "B

2k

for any k& > 0, where the maps alternate between ‘”®1'2"1®x and $®151®”. Therefore, we

have:
Hom(l,ﬁ_k)% t R LR SRR L qilt%*kﬁ 2.5 qlfkt*%E LN ¢ "R
2k
—  Hom(1,FT ") =t>H* (FHilby, O(—F)) (5.20)

according to (5.9). The case of general a follows by analogy with the previous subsection,
so we conclude the following formula that extends (5.16) to negative integers:

RHom3p,, (1, FT ") = RI (FHilby, O(—k) ® A*O(-1)) (5.21)

Remark 5.3. Let us observe the fact that the derived functors in the two sides of the
above equation are very different. In the left hand side, we have the derived Hochschild
homology functor, whose degree is measured by a. In the right hand side, we have derived
direct image of sheaves, whose degree is measured by t%, and the a grading comes from

A*O(-1).
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To complete the discussion for n = 2, let us compute B(o) := t.(0) where o denotes
a single positive crossing. Together with the projection formula (4.5), this implies that:

B(o® ) = 1, (6% = 1. (0 ®ﬁk) = 1.(0) ® O(k) = B(o) @ O(k)
for all integers k. In fact, we have:

Hom(1,02 ) = |F2R 5 ... & 2R S th 2R S "R & t++3R

2k+1

and therefore:

@Hom(l,g @ FTF) = @Hom(LoQk“) = tl/QM

k>0 k>0

x
where recall that z and w are the maps of (5.12). We conclude that B(o) is the structure

sheaf of the subscheme {# = 0} C FHilby, which is nothing but the irreducible component
Wy = FHilby(point) & P! of (5.6). The periodic resolution (3.50) takes the form:

Blo)=0p, = [ % *tO(—1) 5 qtO(-1) =5 qO(-1) & o}

where O denotes the structure sheaf of FHilbs. In the non-reduced category, one needs
to replace x by z1 — x2 everywhere. Finally, let us compute ¢,(B), where recall that
B = R®pgs R. Since z ® Idp is an isomorphism between B and FTs ® B, we have:

@Hom(l,B -FTF) = @zk Hom(1, B) = Clzy, x9, 2].
k>0 k>0

Therefore ¢, (B) is the structure sheaf of the irreducible component W; C FHilby cut
out by the equation w = 0 (see (5.5)), which is isomorphic to C? with coordinates 1
and xs.

6. Example: the case of three strands
6.1. The geometry of FHilbg

We will now study the variety FHilbs = FHilbs(C) and formulate a precise conjecture
about the sheaf ¢, (figure eight knot). Recall the matrix presentation:

21 0 0 0 0 0
FHilb3;={X=|a 2, 0|, Y=[1b 0 o], [xY]=0,

a1 Qg I3 ﬂl 52 0
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(6.1)

+ 0O O
QL O O

1
v=1 0| cyclic /conjugation byg=|0
0 0

Note that in the presentation above, we fixed the vector v (and this fixes the first column
of the conjugating matrix) to eliminate certain coordinates. Note that the map FHilby —
FHilbs is given by only retaining the top 2 x 2 corners of the matrices in question. If one
is given the eigenvalues 1,2, 23 and the point [a : b] € P!, then the datum one needs
to construct a point in FHilbg is the vector:

(ahOZQ,Bl,,BQ) S 7-2\/ @7—2\/ (62)
To ensure that the equation [X,Y] = 0 is satisfied, we need to ensure that:
(1 —23)B1 = azb— fea and (z2—23)B2 =0

(note that the third equation (x1 — x2)b is already satisfied in FHilby). Moreover, the
fact that we quotient out by conjugation implies that we must identify:

(a1, a9, B1, B2) ~ (a1 + ta, ag + t(xe — x3), B1 + tb, 2)
and (a1, a2, B1,B2) ~ d(og, az, 1, 52)

for t € C and d € C*. Unwinding these facts, one sees that the datum (6.2) corresponds
to a vector in H°(EY), where &, is the complex in (2.25) when x = C. It is elementary to
prove that & and &) are quasi-isomorphic to their zero-th cohomology, so we conclude
that FHilbg = FHilbgg. The irreducible components of the flag Hilbert scheme FHilbg
are:

FHilbs(C) = Wy UWa U W5 U W, U Ws

where Wy, ..., Wy are determined by which eigenvalues z1, z2, 3 are equal to each other:

Wi = {z1 # 22 # 13 # 12}, Wy = {1 = 22 = 23}
W3 = {.731 = T2 7é 323}, W4 = {l‘3 =T #l‘g}, W5 = {CCQ = I3 75331}
Note that Wy U W3 = Z7 and Wy U W5 = Z5 in the notations of Section 3.14.
On W7, because the eigenvalues are generically distinct, the commutation relation

[X,Y] = 0 forces Y = 0. Then the cyclicity of the vector v implies a,« # 0, and so
conjugation by g allows one to set a = a« = 1 and e = 0. We conclude that:

W, =C? (6.3)

As for Wy, note that one can always subtract a scalar matrix from X without changing
any of the other properties of (6.1). By (2.29), we see that:
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o)

6.2. Torus braids

In this section, we compare our conjectures to the ones of [39,60] for three-strand
torus braids. The remainder of this Section provides explicit computations that follow
from Conjectures 1.1 and 3.32.

Proposition 6.1. The sheaves on FHilbs associated to torus braids on 3 strands are:

Lo Ly k= 3m,
L(0102)F = 1, (0201)F = LPLT @ Ow, k=3m+1, (6.5)
LI © Ow, k=3m+2.

Here m (and hence k) is allowed to be either positive or negative.

Proof. Clearly, (0102)% = (0201)® = FT3 = 1*(L2L3), so in virtue of the projection
formula (3.18) it is sufficient to consider the cases k = 0,1,2. For k = 0, Conjecture 1.1
states that ¢.(1) = Opmim,, which is precisely the content of (6.5). For k = 1, Conjec-
ture 3.32 implies ¢4 (0102) = Owy,. Furthermore, for all a,b € N one has:

Hom(1, 0901 LS LS) = Hom(1, 010, L3LY), (6.6)

since o1 commutes with both Ly and Lz, and Hom(1, 00’) = Hom(1,¢'c). By virtue of
the definition (3.23) of the sheaves associated to the braids o102 and o907, formula (6.6)
implies that ¢ (0201) = tx(0102). The case k = 2 of (6.5) follows analogously, because:

(0102)* = Loosoy, (0201) = 0102Ls. O

To compute the Khovanov-Rozansky homology of torus braids, one needs to compute
the homology of the resulting line bundles either on FHilbs (if the closure of a torus
braid is a 3-component link), or on W5 = FHilbs(point) x C (if the closure of a torus
braid is a knot). For simplicity, we will consider only the latter case:

Proposition 6.2. The following equations hold:

H'(FHilbs(point), £5L}) =

Hi(P1,0(a) ® $*(O(2) @ gtO(—1)) ifb>0,
—{o ifb=—1, (6.7)
Hit! (P, 242 @ 502 (0(-2) & 2D)) ifb < 2.

qt
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Proof. Let 7 : FHilbz(point) — FHilbs(point) = P! be the natural projection. By (6.4)
we have FHilbs(point) = Proj (Sp.(O(2) ® qtO(—1))). The following properties hold:

S (O2) @ qtO(—1)) ifi=0and b >0,
R (£4) = XN 05702 (0(-2)0 S8) ifi=1andb< -2,
0 otherwise

Indeed, the second formula follows from the first and Serre duality. This completes the
proof. O

Corollary 6.3. Putting together (6.5), (6.7) and the well-known formula for the cohomol-
ogy of line bundles on P*, we have the following formulas for all m > 0.

HHH ((010)*™ ") = H*(FHilbs(point), L3 £3") = (6.8)
m m 3m—3:
=H° (Pl,@(qt)iO(i}m _ 3z)> _ Z Z qi+jt3mf2i7j
1=0 i=0 ;=0
HHH ((0102)*""?) = H*(FHilbs(point), L5 L") = (6.9)
m ) m 3m—3i+1 o o
= HO° (Pl’ @(qt)lo(Sm —3i+ 1)) _ Z Z q2+jt3m—21,—]+1
1=0 i=0  j=0

This agrees with the a = 0 part of the Khovanov-Rozansky homology of (3,3m + 1)
and of (3,3m + 2) torus knots, conjectured in [39, Section 5.2]. To recover the full a
dependence, we need to twist the right hand sides of (6.8) and (6.9) by the exterior
power:

/\07—3\/ — /\0(5344 EB 77[:2 @ O)V

where the symbol “@” refers to the fact that 73 is a non-trivial extension of Lo & O by
L3. Note that all of our computations can be easily extended to “twisted torus knots”
in the sense of [15], which are presented by the braids (c102)* ® *(L£$). We leave the
corresponding computation to the interested reader.

6.3. The longest word

Let us describe the sheaf for the positive lift 010207 of the longest word in S3. Remark
that the following equation holds for all a and b:

HOIH(l,UlUQUngLg) = HOHl(].,O’QO'lO'ngLg), (610)

since o1 commutes both with Ly and Ls and Hom(1,00’) = Hom(1,0'c). By Corol-
lary 3.8, these C[x1, 2, z3]-modules are isomorphic up to a twist by a permutation
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(1 2). In particular, the left hand side of (6.10) is supported on {27 = x3}, while the
right hand side is supported on {z5 = z3}. Furthermore,

tx(020101) = Lo @ 1(02) = L2 @ Ornilb(2~3)-
Note that in the notations of Section 6, FHilb(2 ~ 3) = Wy U Wj. There is a natural
involution ji12 on FHilbg which exchanges 1 and x5 in W7, acts trivially on W5 and Wy
and permutes Wy and W5. We arrive at the following conjecture:
Conjecture 6.4. One has t.(c10201) = j75(L2 @ Ow,uws)-
6.4. The figure eight knot
In this section we describe a sheaf for the braid 8 = o105 10102_ 1 representing the

figure eight knot. There is a skein exact sequence relating § with the following objects
in K(SBim3):

010201051 = 09071, 0101051 = LQO’{I.
More precisely, there is an exact sequence:
0 < 0901 < Cone |:L20'2_1 iR Lgag_l} «— B+ 0. (6.11)
Proposition 6.5. The following identity holds:
1« Cone [02_1 s 02_1} ~ [LoLyt @ qtly ]y,
Proof. By (3.50) one has:
OFrnilb(1~2) 2 [OFHilbs () = qOFHilb (C) < qtL3 " Fmilb(1~2)]
(note that this is also a skein exact sequence for o;*,1,07) and
L(05") = L2£5" @ Ormit(2~a)-
Since Opniib(2~3) @ Ornilb(1~2) = Ow,, one has an exact sequence:
0+ LoL3 |, < 1. Cone [051 ST 051} —qtLyw, « 0.
It remains to notice that

Extw, (LoL3 ", L31) = H*(Wo, Ly ') = H*(PH,O(-1)) =0. O
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Proposition 6.6. Consider the braid § = 0105101051 representing the figure eight knot.
Then, assuming Conjecture 1.1 and 3.32, one has

L*(,B) = O]Pl S qtﬁgﬁgl.
Proof. By (6.11) and Proposition 6.5 one has:

0 Ow, < [L3L5" @ qtlaLsh] . + qt(tB) + 0.

Wa
Let us compute the map a. Remark that:
Homyy, (L2£5"1,0) = H'(Wa, L' L3) = HO(P', O(1) @ qtO(-2)),
Homy, (£3£5",0) = HO(Ws, £5°L3) = H (P!, 0 @ qtO(-3)).
Therefore « is the unique degree 1 map £3£5 ! — O and vanishes on LoLg ! so
LB Lol @ q ! Cone[O <& L3L51] ~ Opr @ LoL3Y. O

Using this result, we can compute the reduced homology of - FTSFTg by computing
the homology of each summand individually. Since FHilbz(point) is a blowup of the
punctual Hilbert scheme of 3 points, and P! is the exceptional divisor, the tautological
bundle is trivial on Py: 73 ® Op1 ~ (g + t)Op1. Similarly, 1, FT3 ® Op1 ~ qtOp:. We
get the following equation:

Op: @ LFTIFT, @ ATy = (1+aq )1+ at*l)(qt)b/(’)(a). (6.12)
FHilbs (point) Pt

Equations (6.12) and (6.7) can be used to compute the homology of 3 - L§L} for all
a and b. In particular:

H*(FHilbs(point), £2L5 ') = H*(FHilbz(point), £L3') = 0,
H*(FHilbs(point), £3?) = H*TY(P', O(-1)) =0,
H*(FHilbs(point), £L,£5?) = H*T(P1, 0) = C[1],

SO

L2L5' @ ATy = aCll],

FHilbs (point)

and
HHH(B) = (1 + ag Y)(1 +at™ ) + av/qt.

One can compare this with [23, Table 5.7].
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7. Categorical idempotents and equivariant localization
7.1. Graded completion

Given a monoidal category C, we will consider two types of its “semi-infinite comple-
tions”™. The first type is the homotopy category K~ (C) of bounded above complexes of
objects in C (which is well-known to also be a monoidal category). The other type is the
category of certain infinite sums of objects in C, as in the following definition.

Definition 7.1. Assume that C is graded, and the grading shift is denoted by A — A(1).
We define its graded completion CT as follows. The objects are given by countable direct
sums:

N
Ob(C) = { @ A; (i) for some N € Z}

1=—00

and the morphisms ¢ : ©A;(i) — ®B;(j) are collections of arrows {¢;; : A;(i1) = B;(j)}
for all 7, j, such that for each ¢ there are only finitely many j such that ¢;; # 0.

One can check that CT and K~ (C") inherit the tensor product from C. Note that
K~ (C") is endowed with both the grading (1) and the homological degree [1].

Note that the category C may have multiple gradings, and the notion of completion
depends on a specific choice of grading among these. For example, if C is graded by
Z", this accounts to choosing a one-dimensional direction in Z". To clarify homological
algebra over CT, we present some examples.

Example 7.2. Let C be the category of graded finitely generated C[z]-modules. Consider
the following two-term complex in K~ (CT):

Clz] —2—— CJz]

x

Cle)(—1) —— Clz](-1)

T~

Clz](~2) —— Clz](-2)

\ z

Fig. 8. Example of an infinite complex of C[z]-modules.

We can introduce an auxiliary variable y of degree (—1) and rewrite the complex as
following:
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Clz,y] 2% Cla,y).

At first glance, one could think that since all horizontal arrows in Fig. 8 are isomorphisms,
the complex is contractible. However, this is not the case, since a homotopy would be:

Clz,y] il Clz,y] such that H(1+zy) = (1 +ay)H =1
A natural choice for H would be:

H(z,y) = =1—ay+a2y? 23>+ ...,

1+2y

but this is not a valid morphism in C' since there would be non-zero arrows from the
top-most copy of C[x] to all infinitely many copies below it.

Remark 7.3. One can check that the homology of the complex in Fig. 8 is isomorphic to
Clz,y)/(1 +ay) = Clz,z71].

7.2. Categories over equivariant schemes

We will now enhance the setup of Section 4 to schemes endowed with a torus action
T~ X.

Definition 7.4. A T—equivariant category C is one in which the Hom spaces are represen-
tations of T If the category is monoidal, we require the tensor product to preserve the
T action.

Equivalently, C is T-equivariant if it embeds in a category graded by the weight lattice
of T. If X\ is a character of T" and F' is an object of C, we write A - F' or AF' to denote F’
with grading shifted by .

Definition 7.5. Given a T—equivariant category C, we will say that a map ¢ : C — X is
T—equivariant if the defining functors:

K (C) === D(Cohr(X))
preserve the action of 7" on all Hom spaces.

Example 7.6. Suppose that X = Spec A with A being a T—graded ring. Recall from
Subsection 4.3 that realizing C as a category over X amounts to giving a ring homomor-
phism:

AL Ende(1)

It is easy to see that C — X is T—equivariant if and only if f is T—equivariant.
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Example 7.7. Going one step further, suppose A is a T—graded ring. Define:
X =P}

where the n + 1 coordinate directions of the projective spaces have T—equivariant char-
acters Ao, ..., \n. As in Example 4.9, the map C — X is the same datum as a ring
homomorphism:

A L5 Ende(1)
together with an object F' € K(C) and n + 1 arrows:
{A0-1ﬂ>F},..., {An-1ﬂ>F

whose tensor product is homotopic to 0. Then ¢ is T—equivariant if the homomorphism
f is T—equivariant, and moreover the arrows a;,i € {0, ...,n} are all homogeneous with
respect to the structure of T-modules of the vector spaces Hom g c)(A; - 1, F).

Example 7.8. Finally, let us treat the relative case of Subsection 4.5. Suppose we have a
T-equivariant map: C — X and we wish to upgrade it to a T—equivariant map:

c - Py

where V is a T—equivariant vector bundle on X . As we saw in Subsection 4.5, the existence
of the map ¢’ is equivalent to the choice of an object F € C together with an arrow:

V-5 F

in C, whose Koszul complex is quasi-isomorphic to 0. It is easy to see that the map ¢/ is
T—equivariant if and only if the map « is T—equivariant. The same picture applies when
V is replaced by a coherent sheaf Q of homological dimension 1, as in Subsection 4.6.
7.8. Categorical diagonalization

In [26], Elias and Hogancamp developed a theory of categorical diagonalization, which
we will now recall. Assume we are given an equivariant monoidal category T' ~ C, which
can be taken to be triangulated or dg.
Definition 7.9. ([26]) Fix an object F' € K(C). An arrow:

A1-5%F (7.1)

is called an eigenmap of F, and the grading shift A € T is called an eigenvalue of F.
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Definition 7.10. ([26]) An object F' € K(C) is called diagonalizable if it has a collection
of eigenvalues Ag, ..., A, € TV and eigenmaps:

{/\i-1ﬁ$F}

i€{0,...,n}
such that ®7_,Cone(a;) ~ 0.

The intuition behind the above terminology comes about by considering the
Grothendieck group [C], which is an algebra because the category C is monoidal. Mul-

tiplication by the class of the object [F] induces an operator on [C], and the datum of
Definition 7.10 amounts to:

T1(F -2 =0 (7.2)

In other words, the condition that the product of the cones of the eigenmaps is 0 amounts
to requiring the operator x ~ *-[F] to solve its characteristic polynomial. In Lemma 7.11,
we establish the fact that categorical diagonalization is universally represented by the
category:

D = D(Cohr(P}))

where A is any commutative ring and T ~ P} acts via:

t-z0: . zn] T?t):m:ﬁ?t) (7.3)

where Ag, ..., \, € TV. An immediate generalization of Example 4.9 yields the following:

Lemma 7.11. The datum of a diagonalizable object F' € C as in Definition 7.10 is equiv-
alent to the existence of a T —equivariant map:

t:C—= Py
such that F' = * (O(1)), where A = End¢(1).
7.4. Figenobjects

In Definition 7.9 we have recalled the categorical version of eigenvalues. In [26], the
authors complete the picture by categorifying eigenvectors:
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Definition 7.12. If for some P € C the arrow:
a®ldp:A\-P-F®P (7.4)
is an isomorphism, then we call P an eigenobject for the datum of Definition 7.9.

In the decategorified world, the eigenvectors of the operator of multiplication by [F]]
of (7.2) can be computed explicitly, essentially by the Lagrange interpolation formula:

| %[AF] (7.5)
0<j#i<n
The reason why we divide by A; — \; is to ensure that the elements [P;] are idempotents.
However, this comes at the cost of enlarging the algebra to account for such denominators.
One of the main constructions in [26] is to categorify formula (7.5) in a way which keeps
track of the eigenmaps.

The main difficulty, which we will shortly address, is how to lift the denominators of
(7.5) from the Grothendieck group to the category C. The idea spelled out in [26] is that
in (7.5) one should expand:

A~ [F] [F] Ai A
Aj—A,»_< y 1+Aj+A?+...

if j <4 and:

Aj — [F] F] N NN
et iy 5 S C 1 1Y PRV A
N — M (Ai U e

if 7 > 4. To understand the above as an expansion of geometric series, we assume that
there exists a distinguished subtorus C* C T which we will be called homological, such
that:

Molce > o > Anle- (7.6)

To categorify these geometric series, [26] replace the category C by its graded completion
C', as in Section 7.1.

Theorem 7.13. (/26]) Let F' be a diagonalizable object, with eigenmaps «; and eigenvalues
A; satisfying (7.6). Then there exists a collection of eigenobjects P; as in (7.4), explicitly
given by:
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% F Aj %, F
4>. _— —_— P
1 X; Ni i
s Y N F A aj X, F
P=@ X1 | @ | ¥ ek (r.1)
0<j<i 1<j<n oy
e} ¢
g A? F o A2
ATR i P
Ay — F £
L . K T

The objects should be added @ along columns, with differentials according to the arrows.
The collection { Py, ..., P,} yields a semi-orthogonal decomposition of K(C"):

1= [Po @ ...® P,, a certain differential (7.8)
and Hom ety (P;, Pj) = 0 if i > j. Furthermore, P; @ P; ~ 0 fori # j and P;® P; ~ P;.

The main application of [26] is when C = SBim,, is replaced by K(C') = K(SBim,,),
and the homological C* action is by homological degree of chain complexes. We may
generalize this particular case to the following setup.

7.5. The geometric realization over a fized base

As we saw in Lemma 7.11, any categorical diagonalization in a category C comes from
a T—equivariant map:

C—P; ie K ==D

L*

where D = D(Cohp(P%)), and the action T' ~ P} is given in (7.3). The above functors
extend to functors on the homological completions:

K(CT) L::z i

which are given by the same formulas, but allow infinite direct sums of objects in de-
creasing homological degree. Therefore, we have:

where P; € DT are given by formula (7.7) with F replaced by O(1) and «a; replaced by
multiplication with the homogeneous coordinate z;:
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Zj o(1) Aj Zj o(1)
o Xj Ai o Ai
. 2
= i, 5oon, 00) ® A %N, 00)
Pi= X0 Ry %0 3. 80 (7.9)
0<5<1 i<j<n
Zj A 0() zj A2 o(1)

The rows in the above diagram make up for the expansion of the geometric series (A; —
Ai)~1. Meanwhile, observe that the top row is precisely;

top row of P; = ® [(9 =, (9(1))\;1} ® [)\j)\;1 =, oA !
Jj<i i>i
q.i.s. by
>~ 0, || (7.10)
LA
1<
Here, O, is the structure sheaf of the torus invariant subscheme p; =[0:...:0:1:0:

... 1 0] € P}, which is a closed point if and only if A is a field. The quasi-isomorphism in
(7.10) is the standard one between the structure sheaf of p; and its Koszul complex. We
conclude that the full idempotent (7.9) is a way to make sense of the denominators in
the object:

_ Opi
- -
[o<jricn (1= 5

P; eD' (7.11)

Recall from (7.8) that Py, ..., P, give a decomposition of the unit object in DT. This
statement categorifies the fact that:

- - [Op,]
CEYIEDY -
i=0 i=0 [lo<jicn (1 TZ)
in the algebraic K-theory ring of P}. The above is nothing but the Thomason equiv-
ariant localization formula, which is a very interesting result even in K—theory. At the
categorical level, it is made even more interesting by the presence of the various differ-
entials that appear in (7.8), which give rise to a semi-orthogonal decomposition of the
category DT.
The denominator of (7.11) equals the Poincaré series for the equivariant local ring
of P} at p;. This is not a coincidence, and the relation between the two objects can be
made more precise.
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Proposition 7.14. Consider the locally closed subset S; = {zp=...=2;_1 =0,2; #0} C
P%. Then P; is quasi-isomorphic to the pushforward of S.(Vgi), where vg, is the normal
bundle to S;.

Remark 7.15. The ordering of coordinates in the definition of S; agrees with the ordering
of eigenvalues of O(1) (that is, the weights of the torus action) on P™. It is easy to see
that the strata S; agree with the cells in the Bialynicki-Birula decomposition [12,13]
of P™ with respect to this torus action. Similar decompositions of equivariant derived
categories with respect to Bialynicki-Birula strata were studied in [42], and we plan to
study the relation between the categorical diagonalization framework and [42] in the
future work.

Proof. To simplify the notations, we will consider the case n = 1 and omit all the
grading shifts (which can be easily reconstructed since all maps are homogeneous). The
construction (7.9) yields two different infinite complexes built from the sections zg, 21 :
O — O(1). The first has a form:

0 2 00)
N

Py = \ = [0 Cly 222 o) @ Cly]] -

Here y is a formal variable corresponding to the shift of the complex down by one unit.
It can be made less formal by considering the projection 7 : P x Al — P™, so that

z1t+yz
Po =p« |O S 0(1)} = p*O{Zl'HJZo:O}'

The projection p identifies the closed subset {21 + yzo = 0} C P™ x A! with the open
subset Sy = {29 # 0} C P™, so Py = Og,. The second complex is more interesting. It
has the form:

0 2 0()

0 =5 0()

Z1

P, :[ Z—%%}:[Oz—%o%]
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It is supported on S; = P!\ Sy = {2 = 0} where the stalk of O is isomorphic to
C[2] and the stalk of Og, is isomorphic to C[22, Z], so the quotient is isomorphic to

a.clz). o

20

Remark 7.16. Note that

One can use similar arguments to formally match this complex with Oy, .0y ® O(—1) =
Oy:, 20y However, Py does not belong to the category D' since the gradings of its
summands are unbounded.

Corollary 7.17. The endomorphism ring of P; is isomorphic to the local ring of P} at a
fixed point p;.

Proof. We follow the proof of Proposition 7.14. Indeed, End(Py) = H°(Sy, Os,) = C[Z].
On the other hand,

End(Py) = Bnd [@ H N [__H —c H |

21 20 <1 21

One could also argue that

End(Py) = End(PY) = End(Oy., ) = C [Z_O] .

21

The proof for general n is analogous. 0O

Remark 7.18. Proposition 7.14 shows that the endomorphism rings of the projectors can
be interpreted as the rings of functions on certain open charts. This point of view will
be important in the next section where we define some open charts on the flag Hilbert
scheme and compute the rings of functions on them (up to a certain completion). By
Conjecture 1.1 and the preceding discussion these rings match the homology of the
categorified Jones-Wenzl projectors.

Remark 7.19. The equivariant localization formula makes sense when D = D(Cohr (X))
for any local complete intersection X acted on by a torus 7"
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(O]
Ox] = § 7.12
(O] pExT N® (Tanzv,X) ( )

As we have seen, when X = P™ the above setup encodes categorical diagonalization as
in Definition 7.10 and 7.12. It would be very interesting to determine which problems in
“categorical linear algebra” are encoded by formula (7.12) for more general schemes X.

7.6. The relative case

For the remainder of this Section, we will generalize the objects (7.9) from P} to
projective bundles PV on an arbitrary base scheme X, as in Example 7.8. We assume
that both X and V are acted on by a torus 7', and that we have a decomposition:

Ox = @ P, a certain differential| € DT(Cohz (X)) (7.13)
zeXT

where the indexing set goes over the fixed points of X. We assume that:

« the decomposition (7.13) is semi-orthogonal, in the sense that Hom(P,,P,) = 0
whenever x > y with respect to some total order of the fixed points;

o the vector bundle V is trivialized “near” z, i.e. P, @V ZA§ - P, D ... ® AL - P,, where
n+1=rank V and A}, ..., A% € TV are the characters in the fiber V|,.

Then we can upgrade the decomposition (7.13) to the projective bundle PVV.

Proposition 7.20. Under the assumptions above, there exist objects PP for all i €
{0,...,n} and x € X1, such that we have a semi-orthogonal decomposition:

0<i<n
Opyv & @ Pi. a certain differential| € DT(Cohp(PVY)) (7.14)
zeXT

whenever the homological subtorus C* C T acts with distinct weights in the fibers V|,
for allz € XT'. We have Hom(P.,P]) =0 if x >y orif x =y and i < j.

Proof. Let 7 : PVY — X denote the standard projection. We define P: by formula (7.9),
with O replaced by 7*(P,) and the sections A; - O — O(1) replaced by the maps:

AT (Py) = 7 (Pe) © O(1)
induced by the assumption in the second bullet (immediately before the statement of

the Proposition). By analogy with Theorem 7.13, one constructs morphisms between the
Pi’s for fixed x, such that we have an isomorphism:
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7 (Py) = @ P;, a certain differential
0<i<n

Plugging the right-hand side of the expression above into 7*(equation (7.13)) yields
(7.14). O

8. Local charts and fixed points of FHilb,,
8.1. Affine charts for Hilbert schemes
Recall the action of C* x C* on Hilbert schemes given by rescaling the X and Y

matrices. The fixed points of this action on the Hilbert scheme are well-known. They are
given by monomial ideals, which are indexed by partitions of n:

Hﬂbg*xc* = {[)\})\I—na IA = ((ﬂ)\l,ZL'Azy, ) - (C[l’,y}

Haiman described a set of affine charts on the Hilbert scheme, each of which is C* x C*
invariant and contains a single fixed point:

Hilb,, = | J Hilb, (8.1)
AFn
where:
Hilby = {I such that {x“yb}(ayb)e)\ is a basis of (C[amy}/[} (8.2)

Here and throughout this paper, we identify a partition with its Young diagram, which is
the set of 1 x 1 boxes in the first quadrant of the plane with coordinates (a,b) € Ny x Ny,
a < Ab+1:

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0) (3,0

For example, the Young diagram above corresponds to the partition A = (4,3,1). It
would be very nice to have a clear description of the algebra of functions on each affine
chart (8.1), but this is not at all easy. On general grounds, since the Hilbert scheme is
smooth of dimension 2n, there exist generators:



E. Gorsky et al. / Advances in Mathematics 378 (2021) 107542 87

{flv"wan} S m)\/mi

where m, € C[Hilb,] denotes the maximal ideal of the fixed point I. To relate the affine
charts to the sections of O(1), we will use the following statement:

Proposition 8.1. ([41]) Consider the space Clx1,...,%n,Y1,...,Yn] with the diago-
nal action of S,. Let A be the subset of antisymmetric polynomials in it. Then
HP(Hilb™(C2,0(1))) ~ A.

Given a Young diagram A, one could construct a section of O(1) as an element in A:

a,b
sy =det (xl yi)(a’b)e)\ .
By definition, Hilby = {sx # 0}, hence the sections s, do not vanish simultaneously
on Hilb™(C?). Therefore O(1) is generated by the sections s which correspond to the
eigenmaps in the sense of Definitions 7.9 and 7.10.

8.2. Affine charts for flag Hilbert schemes

The situation is somewhat better in the case of flag Hilbert schemes FHilb,, (%) for
any * € {C?,C, point}, where one has affine coverings:

FHilb, (+) = | J FHilbz () (8.3)
THn

indexed by standard Young tableaux T of size n. Recall that a standard Young tableau
is a numbering of the boxes of a Young diagram of size n with the numbers 1, ...,n such
that the numbers increase as we go up and right in the diagram. A covering (8.3) is
called good if all the charts are C* x C* equivariant and they respect passage from n+ 1
to n:

FHilbn+1(*) = UT'Fn—&-l FHﬂbT/(*)

v

FHilb,, (*) x =* = Uz, FHilbp (%) x *

where the chart corresponding to any 7’ maps to the chart corresponding to T =
T'\O,,+1. Here, 0,1 denotes the box labeled n + 1 in T, which must necessarily be
an outer corner of T and an inner corner of T”. Restricting the sheaf of dg algebras
C[FHilb8 ()] to the affine charts (8.3) gives rise to dg algebras:

Ap(x) = C {FHilb(}g(*)} (8.4)
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Conjecture 8.2. There exists a good covering whose coordinate rings (8.4) satisfy:

AT(*)[*7 fD1 y fijz’ ]
(rm,, "m,;---)

Arun(*) = (8.5)

where Uy, 0o, ... denote the inner corners of T different from O, and By, W5, ... denote
the outer corners of T (except for the outer corner labeled n in the case x = point). The
generators denoted by * stand for the affine coordinates {Tni1,Yns1}, {Tnr1}, O when
x = C2,C, point.

The quotient in the right-hand side of (8.5) should be taken in a dg sense, i.e. “the
Koszul complex of the polynomial functions rg on the affine space over Ap(x) with
coordinates *, f:”. We do not know how to define the generators fr and the relations
rm, but we know how to predict their characters with respect to the C* x C* action.
Specifically, for a box O = (a,b) in a Young diagram, we define its weight as:

20 = qt° (8.6)

When B is the box labeled by 7 in a Young tableau T', we will write z@g = z; for brevity.
Then we expect that the generators and relations of (8.5) have equivariant weights:
K

weight o = @, weight rg = — (8.7)
20 20

where [0 is the corner that is being added in (8.5), and [0’ (respectively W) runs over the
inner corners of T' different from [J (respectively the outer corners of T'). In the remainder
of this Section, we will establish a weaker version of Conjecture 8.2, by constructing affine
C* x C* invariant open sets that contain the fixed points It € FHilb, (x), and prove
that the isomorphism (8.5) holds in the local ring at Ir.

8.8. Defining the charts

FHilb,, will henceforth refer to either of FHilb,, (x) for x € {C2,C, point}. For any
point (X,Y,v) € FHilb,, and standard Young tableau T, consider the following algorithm
to construct a basis e; = v, ea, ..., e, of C™. Suppose e1,...,e,_1 have been constructed
and the k-th box looks as in the following picture:

? k
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Define the vector e;, € Ker(C™ — C*~1) by the following formula if i > #':

k—1
Xe; =e + ngej (8-8)
j=i

J

where z;] are coefficients, and by the following formula if ¢ < 4’

k-1
Ye, =er+ Z yf,ej (8.9)

j=i'
where yJ, are coefficients.

Definition 8.3. We define the open chart FHilbr as the set of triples (X,Y,v) such that
the above process terminates after having constructed e,, in a way such that eq, ..., eg
form a basis of the quotient C™ — C* for all k.

In either (8.8) or (8.9), it is clear that the vector ey, is unique, since the coefficients 27
or yf are uniquely determined by the fact that ej vanishes in the quotient C™ — C*~1.
The fact that such an e exists at each step, and that the resulting collection of vectors
forms a basis, are open conditions, and therefore:

FHilby c FHilb,,

thus defined is an open subscheme. It is also an affine subscheme, simply because the
basis eq, ..., e, is unique. For any 1 < i < j < n, the expression:
x (vesp. y!) = the coefficient of e; in Xe; (resp. Ye;)

is a function on the chart FILfile7 although some of these functions are zero due to
conditions (8.8)—(8.9). The torus weights of these functions are

j i itz
degz] = %’ degy] = zi (8.10)
J J

where 2; is the weight (8.6) of the box labeled by i. Alternatively, one could define FHilbr
as the affine space of matrices X,Y of the form prescribed by (8.8) and (8.9) in a fixed
basis. It is also clear that the locus FHilby is C* x C* invariant and that the only fixed
point it contains is:

=1

T{C”@C& Wlth X~eiei_>,Y~e¢eiT,vel}
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In the formula above, for any box i € T' we write ¢ — and ¢ 1 for the boxes immediately
right and above i, respectively. If there is no box to the right or up of i, we set e;_, or
e; equal to 0. The fact that the open sets of Definition 8.3 cover the whole of FHilb,,
follows from the principle:

any open torus invariant property which holds (8.11)

near the fixed points of FHilb,, holds everywhere

This is because the set of points which do not enjoy said property is closed, torus invari-
ant and contains no fixed points: any such set must be empty. One must be careful here,
because the argument is a priori only true for projective varieties, such as FHilb,, (point).
However, it also applies to FHilb,,(C) and FHilb,,(C?) because the torus C* x C* con-
tracts the affine directions C and C? to the origin.

8.4. The special coefficients

Note that the coefficients ! and y! in (8.8) and (8.9) are precisely the eigenvalues of
the matrices (X,Y,v) € FHilb,,. If we are in the case * = C or * = point, then we must
set y! =0 or z¢ = y! =0 in (8.8) and (8.9), respectively.

Definition 8.4. The special coefficients will be those functions on FHilby of the form:

o xf which appear in (8.8) if the number 4 is bigger than the number to its south-
east

o y! which appear in (8.9) if the number i is bigger than the number to its north-
west

o {2} yih<icn if x = C? or {zihcicn if x=C

When defining the special coefficients, we allow the situation in Subsection 8.3 when
k is an inner corner, with the caveat that in this case we set e = 0 in either (8.8) or
(8.9).

Note that the number of special coefficients corresponding to a standard Young
tableau T is:

n—1
Z [# (of inner corners of the Young diagram consisting of boxes 1, ...,4) — 1]
i=1
(8.12)
plus the number of z! or y! (this number is 2n for x = C?, n for * = C and 0 for
* = point). Conjecture 8.2 would suggest that the special coefficients generate the dg
ring of functions Ar subject to a number of relations equal to:
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n—1

Z [# (of outer corners of the Young diagram consisting of the boxes 1, ...,4) — 6£’t]

i=1

(8.13)

However, this is not true, because this would entail that all coefficients xf and yf could
be written as polynomials in the special coefficients. We partially salvage this in the next
Subsection, when we will show that the previous sentence holds if we replace the word
“polynomials” by “rational functions”.

Example 8.5. When 7' = (n) and * = C, only relations (8.8) come into play:
Xei = €i+1 +xe;

However, by the last sentence of Definition 8.4, we must also consider the decomposition:

n
_ J
Ye, = E Yi€j
=2

: . j1<i< .
and the special coefficients are {mi,y{}zgégz. There are 2n — 1 such coefficients, as

expected from (8.12). The non-special coefficients are the yf with ¢ > 1, but they can
be inferred from the special ones via the commutation relation [X,Y] = 0, which in the
case at hand reads:

yl (g —ai) =yl —yl (8.14)
for all i < j. Note that (8.14) is precisely equivalent to the equations in (1.28). We make

the convention that y/ = 0 for j < 4. After solving for y/ in terms of {z;, 4]}, we obtain
the following recursive formulas for any § > 0:

+5 1+5 E +6+1
l + yz . xz—s+6+l - xi—s)

The relation above also holds when i + 6 = n + 1, in which case the left hand side is 0.
We therefore obtain a relation among the special coefficients {x;,y] } for all § > 0. There
are n — 1 such relations, as expected from (8.13).

Example 8.6. When 7' = (1, ...,1) and x = C, only relations (8.9) come into play:

Ye, = e;iq1

However, by Definition 8.4, we must also consider the decomposition:

n
Xep = g zie;
=1
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and the special coefficients are {27 }1<j<,. The commutation relation [X,Y] = 0 implies
that:

x5 :xgﬂ Vi <j

and therefore we conclude that xf = u;_;4+1 for some variables u1, ..., u,. Compare with
(1.29).

8.5. Explicit local coordinates

In this section, we will use the special coefficients to describe the neighborhood of the
fixed point Ip for any standard Young tableau T

FHilbyjoc = (FHiby)euiyeq ot 7 = (FHilbr) (8.15)

localized at T
and the dg local ring A7 1oc = C[FHilb$%_ ]. The maximal ideal:
mr C -ATJOC

consists of those functions which vanish at the fixed point Ir, and in particular con-
tains all the special coefficients. The following Proposition proves a weaker version of
Conjecture 8.2, where the isomorphism (8.5) is only proved in the localization around
Ir.

Proposition 8.7. For any standard Young tableau T+ n, the complex &, of (2.25) is:

qis. B outer " O inner
EnlFHiby 0o = @ O ecm— @ O-fo (8.16)
corner of T corner of T

with the sum over O in homological degree 0. Theorem 2.6 describes the map m :
FHilb,, .1 — FHilb,, as the projectivization of H°(E,). Locally, this map takes the form:

O inner

7T_1 (FHﬂbTﬁloc) = U FHﬂbTUI:I,loc

corner of T

where FHilbrom e © PHO (EY |pHilbr .. ) 45 the affine chart {fo = 1}. We conclude
(8.5), where the generators are foy for inner corners O # O and the relations are

e = (em)-

Proof. From each box in 7', draw two lines of unit length, one going up and one to the
right:
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1 I__

1 2 6 7

The lines are of two types: thick or dotted, and black or red.! The color of a line is
determined by whether the top/right endpoint of the line lies in a box in T or outside of
T. The shape of a line is determined by the following rule: If 4 > ' where i’ is the label
of the box to the southeast (respectively northwest) of i, then we make the horizontal
(respectively vertical) line starting at ¢ thick; otherwise the line is dotted All the boxes
on the bottom or on the left of the Young diagram are thought to have label 0 for the
purpose of this rule, and all the boxes above and to the right of the diagram are thought
to have label co. By definition:

&= |atTy 5 qT 01T, 00 - T, (8.17)

When we restrict the complex to the affine chart Fﬁile, we observe that the tautological
bundles are already trivialized by the basis e, ..., e, of Definition 8.3:

7;L|FH°ﬂbT =0-e18..00-¢,

Therefore, the middle term of (8.17) has a basis which we will denote by ey, ..., en, €], ...,
el, 1. We claim that the projection that forgets some of these basis vectors induces an

isomorphism:
red or dotted horizontal red or dotted vertical
o e el
Ker @|pyiy,. = @ O e @ O ¢ (8.18)
lines from any box 4 lines from any box 4

In other words, we claim that if one specifies rescaled basis vectors ¢;e; and d;e} corre-
sponding to those edges which are red or dotted, then there exist unique rescaled basis
vectors v;e; and d;e; corresponding to the black thick edges, and a scalar f, such that:

! For interpretation of the references to colour please refer to the web version of this article.
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(X — SL’n+1) ( Z cie; + Z 'Yiei> +

i red or dotted i black thick
+(Y = Ynt1) ( Z die; + Z 5i€i> +
7 red or dotted % black thick
+fer =0 (8.19)

Indeed, any box k has a unique black thick line going to the left or down. Assume without
loss of generality that the black thick line from £ leads one step left to the box i. Then
(8.8) implies that equating the coefficient of ey in the left hand side of (8.19) to 0 yields
the equation:

%-EZ(cj~mT+7j-mT+dj-mT+5j-mT)
J

This system of equations (in the variables ~;,d;) can be solved in the localization
AT 1oc, since its determinant is in 1 + myp. Therefore, we conclude that in the local
chart FHilb7 1oc, we have:

qis n red or dotted horizontal red or dotted vertical

s, o ,

Enlptir,. = |[PO-er — P O - e b O-e
k=1 lines from any box i lines from any box i

(8.20)
The coefficient of a certain basis vector e; (respectively e}) in ¥(ey) is the coefficient of
this basis vector in —(Y —y,,11)ex (respectively (X —x,41)ex), and the latter can be read
off from (8.8)—(8.9). The Proposition will be proved once we show that projecting the first
(respectively second) term in the complex (8.20) to the subset of factors corresponding
to the outer (respectively inner) corners induces a quasi-isomorphism. In other words,
the em in (8.16) are simply e, when k is the label of an outer corner, while the fg in
(8.16) are equal to either eq,. = e; or G/DL = ¢}, depending on whether the number i to
the left of the inner corner [J is bigger or smaller than the number i’ below [J:

qis B outer O inner
~ v /
En|FHilbr 0o = @ O -emq — @ O - (ege or ef)) (8.21)
corner of T' corner of T

In plain English, we need to prove that if k is not the label of an outer corner of T', then
factoring the codomain of (8.20) by the vector ¥(ey) allows us to solve for one of the
€j, e} which are not of the form ep. or ef . for some inner corner OJ. Let us recall that:

red or dotted horizontal red or dotted vertical
. . -/ -/
— J J J J /
V(ex) = — E (Yr — 0rYn+1)ej + E (z7, — 0 Tngr1)ey
line starting at j lines starting at j’

(8.22)
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and assume without loss of generality that the k—th box is as in the picture below, so
j' > j (the situation where there is no box either above or to the right of k is analogous):

k 5

Since yi = mg = y;Q € 1+ my, we conclude that (8.22) lies in e; + myp, as we needed to
prove. 0O

Remark 8.8. By a more detailed analysis of torus invariant functions that one needs to
invert in the above proof, one can actually describe an open subscheme of Fﬁile given by
the non-vanishing of these functions. The resulting open subschemes also form a cover of
FHilb,, because of the principle (8.11). The coordinate rings of these subschemes satisfy
(8.5), however, it is not clear if the resulting cover is good.

8.6. FExamples

In this Subsection, we use the local geometry of the flag Hilbert scheme to describe
the homology of categorified projectors on two and three strands. Conjecture 8.2 holds
for n € {1,2}, and in fact, the examples below give the explicit affine charts:

Example 8.9. In our notation, the S? projector corresponds to the Young tableau T' =
(1,1), whose boxes have weights z; = 1, zo = t. The X, Y matrices are given by:

(w0 (0 0
=) r=(00)
We have deg(u1) = ¢q and deg(uz) = ¢/t, due to (8.10). Therefore, the Poincaré series

equals:

1
(1-q)(1—q/t)

Example 8.10. In our notation, the A% projector corresponds to the Young tableau T =

P(Ar) =

(2), whose boxes have weights z; = 1, 20 = ¢. The X, Y matrices are given by:

(a1 0 (0 0
= n) =G o)

and the commutation relation forces (1 — x2)y21 = 0. We have deg(z1) = deg(z2) = ¢
and deg(y21) = t/q, due to (8.10). Therefore, the Poincaré series equals
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- 1_+t 1 t/q
P = a0~ G-0? T T—00-v0)

The denominator (1—¢q)?(1—t/q) arises from the functions 1, z2, 21, and the numerator
1 — t arises from the commutation relation.

Example 8.11. In our notation, the S projector corresponds to the Young tableau T =
(1,1,1), whose boxes have weights z; = 1, 2o = t, z3 = t2. The X,Y matrices are given

by:
up 0 0 0 0 O
X = U2 U1 0 ,Y = 1 0 0]). (823)
Uz Uz Up 01 0

We have deg(u;) = ¢, deg(us) = q/t, degus = ¢/t?, so the Poincaré series equals:

1

PN = e ga—ama—ae)

Example 8.12. In our notation, the A% projector corresponds to the Young tableau T =
(3), whose boxes have weights z; = 1, 20 = ¢, 23 = ¢%. The X, Y matrices are given by:

1 O 0 0 0 0
X=(1 2 0).v={yn 0 0], (8.24)
0 1 x4 Y31 Ys2 O

and the commutation relation forces (z1 — x2)y21 = (2 — 3)ys2 = 0 and:

Y21 — Y32 = (351 - 583)3/31-

Note that one can eliminate ys2 using the last equation. One has deg(x;) = deg(z2) =
deg(z3) = q, deg(y21) = deg(yz2) = t/q, deg(ys1) = t/q?, so the Poincaré series equals:

(1-1)?
(1—q)(1—t/q)(1 —t2/q)

The denominator comes from the functions x1, s, 3, ¥21, y31, and the numerator comes

P(Ar) =

from the equations (except from the one that we used to eliminate ys2).

Example 8.13. For the hook-shaped projector with (21, 22, 2z3) = (1,¢, ¢), we have

T 0 0 0O 0 O
X = T21 T2 0 ,Y = 1 0 0 s
1 23 z3 0 w32 O

with commutation relations (z1 — z2) = 0 (s0 1 = x2),
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Z32 = Ta1Y32, (T2 — x3)ys2 = 0.

We can eliminate 25 and 232, and (8.10) gives us deg(x1) = deg(z3) = ¢, deg(x21) = ¢/t,
deg(ys32) = t?/q, so the Poincaré series equals:

(1-1¢%)
(1—q)?(L—q/t)1-t/q)

P(Ar) =

For the other hook-shaped projector we have (z1, 23, 23) = (1, ¢, 1), so

zgz 0 0 0 0 0
X = 1 o) 0 ,Y = | Y21 0 0 y
0 x32 x3 1 ys32 O

with commutation relations (z1 — x2)y21 = (2 — 23)ys2 = 0 and:

T1 — T3+ Y32 = T32Y21-

In this case, formula (8.10) gives us deg(z1) = deg(z2) = deg(z3) = ¢, deg(z32) = ¢*/t,
deg(y21) = t/q, deg(ys2) = g, so the Poincaré series equals:

1-t)(1—q%
1= —t/q)(1—¢*/t)

P(Ar) =

8.7. Poincaré series

First we recall some generalities on graded algebras and Poincaré series. Let A
be a ZZ2-graded super-commutative dg algebra freely generated by elements of de-
grees (e1,€}),...(er,el.), tensored by the Koszul complex of relations of degrees
(f1, f1)s -y (fs, fh). We define the formal Poincaré series of A as the rational function:

[, (1 - gfith)
[Tizy (1 = geit%)
We say that A is well-graded if the degrees of all generators are contained in a cone,

that is, there is a linear function ¢ : Z? — Z such that £(e;,e;) > 0 for all i = 1,...,7.
If A is well-graded then all homogeneous components of A are finite-dimensional, the

P(A) =

component of degree (0,0) is one-dimensional. In this case, it is well-known that P(A)
(as a power-series expanded in ¢*t® for ¢(a,b) > 0) matches with the usual Poincaré
series of A, i.e. the generating function for the dimensions of homogeneous components
of A.

Moreover, we define the formal Poincaré series of any localization of A (with respect
to any multiplicative system consisting of degree 0 elements) to be the same as that of
A itself.
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In general, we do not expect Ap to be well-graded. However, one can check that Ap
is well-graded (that is, the degrees of special coefficients are contained in a cone) if T"is a
row-reading (or column-reading tableau) for an arbitrary Young diagram. In particular,
this holds when T is a row or a column.

Proposition 8.14. For any standard Young tableau of size n, the formal Poincaré series
of the graded algebras Arp1oc(%) of Subsection 8.5 are given by the following formulas:

PlAriac(€) = (1 -9 (1 - [[—— ] <(—) (8.25)

i=1 Fi1<i<i<n J

—— II ¢ (Z) (8.26)

Zj

i=1 1<z<j<n
n n Zi
N o) 2
P(Ar 10c(point) Hl 1H1—qtzz/zi+1 H C( > (8.27)
=1 1<i<j<n
where:
1—2)(1 —qtx
() = (I —a)( )

(1= q2)(1  ta)

and z; denotes the weight of the ith box in the standard Young tableau T. In the right
hand side all vanishing factors (both in the numerator and in the denominator) should
be ignored.

Proof. Formula (8.25) can be obtained by iterating the following identity, which holds
for any standard Young tableau T of size n and an inner corner O € T"

P(Arum10c(C?) (1-1) -
PUr @) (=a0 0= LL° (%) (828)

The factor 1 — 1 in the numerator must be canceled against a single factor 1 — 1 in the
denominator of the product of (’s, in order for the right-hand side of (8.28) to make
sense. Since 7' is a Young tableau, it is easy to prove the following elementary identity:

1;_1 ﬁ C (ﬁ) _ H.Outer corner of T(l B Z./y)

H.inner corner of T(l - Z./y)

for any variable y. Therefore, the identity (8.28) is equivalent to:

P(ATUDJOC(CQ)) f— 1 . H.outer corner Of T(1 - Z./ZD) (8.29)
P(A710c(C2)) Q-q)-t) [[gre o r(1—zm/20)
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The above formula follows from (8.5) and (8.7), which were shown to hold at the level
of local rings around I in Proposition 8.7 (the factors in the denominator correspond
to the generators and the factors in the numerator correspond to the relations of the
affine dg scheme FHlleuD loc
(8.26) and (8.27) are analogous exercises, which we leave to the interested reader. 0O

over the affine dg scheme FHlle loc> S€e (8.16)). Formulas

Corollary 8.15. If Ar(x) is well-graded, then the Poincare series of Ar(x) is given by
the same equations (8.25), (8.26), (8.27).

If we pass to the decategorified setting by substituting ¢t = ¢!, the following Corollary
shows that the Poincaré series depends only on the underlying Young diagram of T

Corollary 8.16. If A\ is the underlying Young diagram of T', we have:

1
=0 [lpea(1—¢"D)’

P(Ar10c(C)) (8.30)

where h(O) denotes the hook-length of the box O, i.e. one more than the number of bozes
lying above or to the right of O in the Young diagram .

Proof. Let 7(z) = 11:1(1

(@)i=g-1 = qr(@)7(z7")

hence (8.26) implies that:

—ng & Zi

P(A7 10¢(C)) s T (1—q) H — H T (Z> (8.31)
i=1 ¢ lgz;éj <n

Since the right-hand side of the expression above is symmetric in the weights z1, ..., z,, it

only depends on the underlying Young diagram A of T', and not on the specific labeling

of the boxes. Therefore, we may label these weights as:

(Z]_, o 'azn) = (17(]7 e 7(1)\1_1’(1_17@_27 e 7(1)\2_2’ i )

With the labeling above, given any i—th box on the vertical boundary of A and any j—th
box on the horizontal boundary such that ¢ < j, we let O denote the unique box in the
same row as the former box and the same column as the latter box. Then it is elementary
to see that:

11— p®
Zj

A straightforward telescopic cancellation implies that:
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I - (i) e O,

1<idj<n N7 [oea(t=¢"®) 7

hence (8.31) implies (8.30). O
8.8. The extremal projectors

Let us give an explicit construction of the charts FHilby(C) = FHilby(C) in the case
when T is either the symmetric or antisymmetric projector.

Proposition 8.17. Formula (8.5) holds for T = (1™).
Proof. The subscheme:
FHilb(1n)(C) = {(X,Y,v), Yeyclic}/B C FHilb,(C)

is an affine variety because we can eliminate the B-action by fixing the basis
{v,Yv,..., Y"1y} With this in mind, FHilb(;»y(C) is simply the affine space of matrices
of the form (8.23), hence:

FHﬂb(ln)((C) 2C" = .A(ln)((C) = Clug, ..., Up]

with w; having weight ¢t'~%. In (8.5), the relation rm, has the same weight as the coor-
dinate * = C, namely ¢, so they can both be eliminated. Meanwhile, the generator fm,
has weight ¢t~™, which is verified by the obvious fact that Ajn+1(C) = Ayn (C)[tny1].
We conclude that:

1
[T, (1 —qt'=)

Proposition 8.18. Formula (8.5) holds for T = (n).

P(A1n(C)) =

Proof. The subscheme:
FHilb(n)((C) ={(X,Y,v), Xcyclic}/B C FHilb,(C)

is an affine variety because we can eliminate the B—action by fixing the basis {v, (X —
zild)v, ..., (X = 2,_11d)...(X — z1Id)v}. With this in mind, FHilb,(C) is simply the
affine space consisting of the coefficients of commuting matrices of the form (8.24).
Therefore, we have:

: Cler, ..y T, Yijln>isj>1
FHilb,,(C) = Spec A, (C) where A (C) = ==
o (©) (©) o (C) Yij (T — 25) = (Yi-1,j — Yi,j+1)
(8.32)
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with x; having weight ¢ and y;; having weight tg’~%. In (8.5), the relation rm, has weight
t and the generator fm, has weight tq~". Therefore, we expect A(,11)(C) to have two
generators (of weights ¢ and tg~") and one relation (of weight ) over A(,)(C). From
(8.32), we see that:

A ((C)[xn—i-layn—&-l,la ) yn+1,n]
A (€) = o L
Yn+1,j(Tnt1 = T5) = (Ynj = Yn+1,5+1)

We can use the relations in the denominator to express the variables y,41,2, ..., Yn+1,n i
terms of the other ones, so we may simplify the equality above to:

_ A(”)<C)[mn+1ayn+1,1]

yn+1,n($n+1 - mn)

A(n—i—l) ((C>

where ¥Yp41,, is defined inductively by the system of equations yn4+1,; = ¥Yn,j—1 +
Yn+1,j—1(Tnt1—2;-1). In the display above, the generators x,,4+1 and y,+1,1 have weights

g and t¢~", while the relation has weight ¢, as expected. From (8.32), we conclude that:
(1—t)nt
P(Aq(C)) = —

(I—g" L= A —tigt)

To compute the full endomorphism ring of the projector Pr, we need to tensor with
A*T,’. When we restrict to the affine chart FHilby C FHilb,, the vector space C™ is en-
dowed with a preferred basis e, ..., e,, which more abstractly means that the tautological
bundle is trivialized:

Tolrriby 20 -e1® ... 00 - ¢,

The basis vectors are indexed by boxes [J in the Young diagram of T, and the torus
C* x C* acts on the basis vector eH by the character zg = ¢% for any box O = (a,b).
Hence:

AT [priby = A (&L, 6n)

where the equivariant weights of the symbols { are given by 25 b = ¢g=9¢~% In particular,
Conjecture 1.10 implies that End(Pr) should be the tensor product of the homology in
Hochschild degree zero with an exterior algebra. The theorems stated in the introduction
can be easily deduced from the results above.

Proof of Theorem 1.11. Propositions 8.17 and 8.18, together with the paragraph above,
show that the expressions on the right-hand side of equations (1.28) and (1.29) agree
with:

Ar(C) ® (A'Tnv\FﬁubT(C))
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for T € {(1™), (n)}. On the other hand, these expressions agree with the known homology
of the symmetric projector (computed by Hogancamp in [43]) and the antisymmetric
projector (computed by Abel and Hogancamp in [1]). O

Proof of Theorem 1.12. From Corollary 8.16, we see that:

o 1—agt@
P (AT,loc((C) ® (/\ ﬁlV|FHi1bT,1oc(C))) = H 1_7(;{(5)
O=(a,b)eX q

This right-hand side is a well-known formula for the A-colored HOMFLY-PT polynomial
of the unknot [3] (up to a monomial in ¢, compare with Proposition 3.1), which is by
definition the Markov trace of the Jones-Wenzl projector p) € H,. O

9. Differentials and gl homology
9.1. Spectral sequence for gl homology

By [66], for each N there exists a spectral sequence starting at the HOMFLY-PT
homology and converging to sly homology of a given knot. More precisely, for a given
braid ¢ one can construct a complex of Soergel bimodules as described in Subsection 3.5.
The Hochschild homology of this complex coincides with the HOMFLY-PT homology of
the closure of o. Given a polynomial p € C[x], we can construct an additional differential
d_ which acts on Soergel bimodules, as we now describe.

Recall that the simple Soergel bimodule can be written as B; = R ®ps,i+1 R. Denote
u; =x; ® 1,v; =1®x; for all j, and

Cluy .y Un, U1,y .oy U]
(wi + tip1 — v — vigr, w5 — v, & {i,i4+1})

Uijiv1:=

then

B; = |Uiit1 Uiiv1] -

Given a polynomial p € Clz], consider the difference
Wiit1 == p(wi) + p(uit1) — p(vi) — p(vit1)
= p(us) + p(uiy1) — p(vs) — p(us + wipr — vi) € Uy g1
Remark that W; ;41 is divisible by (v; —u;)(v; — ui41): indeed, W; ;41 vanishes if v; = u;

Or V; = Uj41- Let Diji+1 = Wi7i+1/(vi7ui)(v¢—ui+1). We use Piji+1 to define an additional
differential (denoted by d_ in [66]) which acts backwards:
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(vi—u;)(vi—wiy1)

Bl(p) = Ui7i+1 Ui,i+1 . (91)

d—::Pi,q,+1

Note that the total complex (Bl(p ), d4 +d_) is not a chain complex but a matrix factor-
ization with potential W; ;4.

It is proved in [66] that this additional differential d_ can be naturally extended to
Bott-Samuelson bimodules (tensor products of B;), and to Rouquier complexes. One can
also prove [7] that d_ can be correctly defined on general Soergel bimodules as well. For
p'(z) = x, this differential is usually denoted by dy, and the homology of the total
differential is isomorphic to gl Khovanov-Rozansky homology [48]. The desired spectral
sequence is then induced by dy on HHH(o).

In the present section, we wish to present a more geometric viewpoint of this construc-
tion. Given N, we define the so-called sly dg category (SBim,,dy), where the objects
are Soergel bimodules equipped with the “internal differential” d . This is a subcategory
of the category of matrix factorizations with potential V. There is a monoidal functor:

K*(SBim,,) — (K"(SBim,,),dy)
which is given by endowing complexes of Soergel bimodules with the differential dy .
9.2. Sections and schemes
On the geometric side, we have a remarkable family of dg schemes closely related to

FHilb'¢ = FHilb8(C). Namely, let s be an arbitrary section of the tautological bundle
Tr. It defines a contraction map:

ds : AT, — NI (9.2)
Recall the construction (1.13):
7o) = 1a(0) & AT

which is naturally a sheaf of dg modules on TotFHﬂb%gﬁL[l]. If we endow the exterior
power with the differential (9.2), we obtain:

(te(0), ds)
which is naturally a sheaf of dg modules on the dg scheme:
Totppiwas (Tn[1], 8) := the sheaf of dg algebras (A*T,Y,d,) on FHilbs,
To construct sections s of the tautological bundle 7, recall that its fibers are given by:

%IIHC.“CC[x,y] = (C[x7y]/l’ﬂ
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Therefore every polynomial f € C[z,y| defines a section sy € I'(FHilby,, 7y,) for all n,
and these sections are all compatible with each other:

Tn—1 — Tx
\ TSf
Sf
OrHilb,,

The morphism FHilb,, — FHilb,,_; x C therefore induces a map:

-
Totpmimas(Tnll], 5) — TOtFHilbiilxc(n—l[l]a 57)

and so one has a commutative diagram of maps of dg schemes:

f
TOtFHilbggn[l] TOtFHilbig,l ><(C7;7'*1 [1]

I I

iy
TOtFHﬂbgg (Tn(1],57) —— TOtFHﬂbi{GC(ﬁz—l[l]aSf)

where the vertical maps are simply induced by the map of dg algebras A*T)Y —
(A*T.',ds). Note that the dg scheme Totpppas(Tn[1], s7) is C* x C* equivariant if and
only if f is an equivariant section of 7. It is not hard to see that the only such equivariant
sections are f(x,y) = zVNy™ for some (N, M) € Ny x Ny. We denote the corresponding
section by syis-

Remark 9.1. In [39, Section 7], the differentials were parametrized by copies of the defin-
ing representation of S, in the rational Cherednik algebra, which can be considered as
a noncommutative deformation of Clzy,...,Zn,y1,...,yn]. One can check that such a
copy naturally corresponds to a section of 7y, in particular, f € C[x,y] corresponds to
the subspace Span(f (i, ¥i))1<i<n-

9.8. The commutative tower

We conjecture that the differential dy in the Soergel category is closely related to the
section f = 2 of the tautological bundle on the flag Hilbert scheme. More precisely, we
propose the following:

Conjecture 9.2. There is a map v : (SBim,,, dy) — (Totpuapas(c) Tn[l], sn) in the sense
of Definition 4.5. The corresponding functors fit into the commutative diagram:
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3% )
Totpipas Tn[1] —— SBim,

|

L

N
Totppipas (Tn[1], sn) <T> (SBim,,, dy)

Furthermore, there is a tower of commuting squares connected with wn,Tr, I akin to
(1.24).

Remark 9.3. We expect that the general differential on SBim,, corresponding to the
polynomial p(z) in the right hand side, corresponds to replacing sy by sp(,) in the left
hand side.

The conjecture is true for n = 1. Indeed, FHilb, = FHilbclig =C, so:
IN
Totgge (1] sx) = 52 ( Clal 5 Clal) = Spee Cll/(a™),

The Soergel category SBim; has a unique C[z] bimodule, namely 1 = C[x,y]/(z — y),
and the corresponding object in the dg category (SBimi,dy) is given by:

(W(x)-W(y))/(z—y)
1=|Clzx, Cle,
oy S 1]
where W(z) = % One can eliminate y and rewrite the above

1= [(C[x] W@zt [x]]

from where it is clear that the categories Tot gy (Tn[1], sn) and (SBimy, dy) are equiv-
alent.

9.4. Differentials in affine charts

Recall the affine charts FHilby C FHilb,, defined in Subsection 8.3. In each of these,
the vector space C™ is endowed with a preferred basis ey, ..., e,,, which more abstractly
means that the tautological bundle is trivialized:

Tolrrin, =0 -1 & ...80 ¢,

The basis vectors are indexed by boxes [J in the Young diagram of 7', and the torus
C* x C* acts on the basis vector e by the character zg = ¢%® for any box [ = (a,b).
We conclude that:

AT [rmibr = AL, -, 6n)
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where the equivariant weights of the symbols o are given by 25 b= ¢=%~". Recall from
Subsection 9.2 that to any polynomial f € C[xz,y], we may associate a section of the
tautological bundle given by:

srlx, vy = fF(X,Y)v € Talx,vw) (9.4)

We may dualize the above section to obtain sy : 7,Y — O, and in local coordinates this
takes the form:

sp(&) = [f(X,Y)vli = (X, Y)a (9.5)

The local rings of the dg scheme Totpy;as(7n[1], s5) are then given by the Koszul com-
plex associated with the first column of the matrix f(X,Y).

Lemma 9.4. Suppose that f = xNyM and the diagram of T contains the box with coor-
dinates (N, M). Then the dg algebra Appunae(T,',sy) is contractible in the local chart
FHilbr.

Proof. Suppose that O = (N,M) in T. Using (8.8)—(8.9), one can prove that
(XNYM)(v) € eq+myg, where my is the maximal ideal in the local ring Ay = C[FHilby].
Therefore, s;(§g) = 1 is invertible in (9.5), and this implies that the Koszul complex of
s¢ is contractible. O

Corollary 9.5. Suppose that the diagram of T has more than N columns. Then the ho-
mology of the categorified projector Pr with respect to dy vanishes.

Remark 9.6. In [7, Theorem 4] it is proved that (B,,,dy) = 0, if the Robinson-Shensted
tableau of w has more than N columns. One can prove that Soergel bimodules B,, with
this property generate a tensor subcategory of SBim,, and all categorified projectors
Pr belong to this subcategory, provided that 7" has more than N columns. Therefore
(Pr,dyn) = 0 in agreement with Corollary 9.5.

For T = (1,...,1), the differential corresponding to "V can be written very explicitly.

Proposition 9.7. In the chart Fﬁilb(l 1) the differential dy is given by the equation

dy(é + 26+ . 42" 1) = (ug + zug + ... + 2" Mu,)Y mod 2", (9.6)
where uy, ..., u, are local coordinates and z is a formal parameter.

Proof. Indeed, in the chart Fﬁilb(l’_”,l) one has X = u; + Buy + ... + B" 'u,, where
B is the n x n Jordan block. Clearly, B" = 0 and the first column of X* contains first
n coefficients of the polynomial (uy + zug + ... + z"‘lun)N. O
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As a corollary, we get the following result.

Proposition 9.8. Assuming Conjecture 9.2, the sl homology of the n-th symmetric cat-
egorified Jones-Wenzl projector is isomorphic to the Koszul homology of the differential
(9.6).

This description of dy indeed agrees with the ones in [36,38,39], and the homology
is quite involved. Indeed, its Poincaré series for n — oo deforms the character of the
(2,2N + 1) minimal model for the Virasoro algebra. Extensive computer experiments
[36,38] support this conjecture for N = 2 and N = 3. See also [44] for recent developments
for N = 2.

The homology of all projectors on two and three strands with respect to dy were
described in [36]. One can check that they agree with the general framework of this

paper.
10. Appendix

10.1. Dg algebras

A vector space V will be called dg (short for “differential graded”) if it comes endowed
with a grading:

vz@vi

nezZ

and a differential d : V* — V**+1 such that d? = 0. A vector v € V is called homogeneous
if v € V' for some integer i. If this is the case, then we will write degv = 1.

Definition 10.1. A dg algebra A® is a dg vector space concentrated in non-positive degrees
(A™ =0 for n > 0), which is endowed with a multiplication that preserves the grading:

AV AT C AT Y jeN,
and the differential via the graded Leibniz rule:
d(a-d') = (da)-a' + (=1)%% - (da’) Va,d € A (10.1)
We impose the usual axioms on the dg algebra A®, such as associativity and unit 1 € A°.
All the dg algebras in this paper will be commutative, in the sense that:
a-d = (—1)dega)dega)y/ g o/ e A® (10.2)

We will write H%(A) for the 0-th cohomology of A®, which is a usual commutative
algebra. All the dg algebras studied in this paper will be finitely generated over H°(A).
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Definition 10.2. A dg module M*® for a dg algebra A® is a dg vector space M*® with a
map:

A* @ M* — M*

which is associative, preserves the grading, and satisfies the graded Leibniz rule (i.e.
(10.1) with a’ replaced by m). Note that all the cohomologies H*(M*®) are modules for
HO(A®).

When the grading will not be particularly crucial, we may simplify notation by writing
A= A® and M = M*. We will only studied the derived category A—modules:

A-Mod = {dg modules M A} /quasi-isomorphism

When the dg algebra A is finitely generated over H°(A), we will call an object of A-Mod
finitely presented if all its cohomologies have this property over H°(A). Then we write:

A-mod C A-Mod

for the full subcategory of finitely presented modules. The category of dg modules behaves
much like that of usual modules, but with certain particular features. First of all is the
existence of the grading shift:

Me[1] = M**!

Given two A-modules M and M’, one can define the space of degree preserving homo-
morphisms between them as Hom 4 (M, M”). But it is more naturally to consider instead:

Hom? (M, M) = 5 Hom (M, M'[n]) (10.3)
neZ

which is actually a dg vector space with respect to:
d(fy=dof—(—1)"fod vV f:M— M'[n]

The spaces (10.3) make A-Mod and A-mod into dg categories, which just means a
category whose Hom spaces are dg vector spaces. We may inquire about the ordinary
categories:

H°(A-Mod) and  HY(A-mod) (10.4)

whose Hom spaces are, by definition, the 0—th cohomologies of (10.3). Because the zero—
cycles of (10.3) are degree and differential preserving maps f : M — M’, while the
zero-boundaries are homotopies between such maps, we conclude that (10.4) is nothing
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but the homotopy category of A—modules. So the dg category A-mod supersedes the
homotopy category.

10.2. Symmetric and exterior algebras

There will be two main examples of dg algebras, both associated to a vector space V.
The first is the symmetric algebra:

SV = sv (10.5)
d=0

concentrated in degree 0 and with trivial differential, and the exterior algebra:

AV =PtV (10.6)
d=0
situated in degrees ..., —2,—1,0 and with trivial differential. By definition, the spaces

(10.5) and (10.6) are quotients of the tensor algebra of V' by the relations v @ v’ Fv' @v.
Therefore, they are both particular cases of the symmetric algebra of a dg vector space:

SV = <® Ve®..® V') / (’U Qv — (_1)(degv)(degv/)v/ ® ’U) (10.7)
n=0
which inherits the differential from V*:
E
dv1 ®@ ... @ vg) = Z(_l)degvﬁ"'wegvi_l U Q.. QU1 @dA(V;) Q@ Ui41 R ... @ U
i=1
By the very definition, (10.7) is a commutative dg algebra, which is concentrated in non-
positive degrees as long as the original dg vector space V'* is. In particular, when the dg
vector space is concentrated in degree 0 (respectively -1), we obtain (10.5) (respectively
(10.6).
Example 10.3. A particularly important case of the construction (10.7) is when:
Ve = [M N N}
is concentrated in degrees —1 and 0. Then we have:

SV = [...AMM@SNLSM@L@N&SN

in degrees ..., —2, —1,0, with differential given by:
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k
ds(mi A ... A\myp @n) = (—1)F1 Zml Ao Amg_y Amigr A Amg @ s(mg)n
i=0

(10.8)
for all my,...,mp € M and n € SN.

More generally, suppose that A is a dg algebra and M is a dg module for A. Define:
SaM*® = SM'/(am@m’ —m® am')

which will also be a dg module for A. The formalism above, as well as Example 10.3,
apply. We refer to [5] for more context on symmetric algebras.

10.3. Affine dg schemes

Dg schemes can be defined as spectra of dg algebras with respect to the étale topol-
ogy, as detailed in [8]. We will not need the full theory, and instead follow the original
definition of Kontsevich.

Definition 10.4. If X is an scheme with structure sheaf Ox, an affine dg scheme supported
on X is a sheaf A of dg algebras, concentrated in non-positive degrees, such that Ox =

HO(A).

We will write Spec A for the affine dg scheme associated to A, to match this situa-
tion with that of usual schemes. Philosophically, the approach of Definition 10.4 can be
summarized by saying that we ignore topological subtleties of dg schemes, and simply
endow them with the topology coming from Ox. The natural definition of quasi-coherent
sheaves is:

QCoh(Spec A) = A-Mod
{77 € QCoh(X) endowed with a dg module structure for A}

quasi—isomorphism

All of the dg schemes in this paper will be of finite type, meaning that A is finitely
generated over Ox = HC(A). Since this is the case, it is natural to define coherent-
sheaves as the full subcategory:

A-mod = Coh(Spec A) C QCoh(Spec A)

consisting of dg modules whose cohomology groups are coherent sheaves over Ox =

HO(A).
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Example 10.5. Suppose that A = Sx [N 5 Ox] is the Koszul complex associated to a
coherent sheaf A" and a co-section s. Explicitly, we have:

A= [...im?/\/iu\/&ox]

The structure sheaf Ox situated in degree 0, as in Example 10.3, upgraded to the
situation of modules. If the co-section s is regular, then it is well-known that the Koszul
complex is acyclic, and the dg algebra A becomes isomorphic to the usual commutative
algebra Ox /s. In this case, the dg scheme is simply the subscheme of X cut out by the
section s.

However, in general it may be that the section s is not regular (for example, s could
be 0). In this case, the dg algebra A = A®*A has 0 differential but non-trivial grading.
Explicitly:

A-mod
{graded coherent Ox ~ P*® together with N’ @ P* A Pe=1 such that Ao \ = 0}

N quasi—isomorphism
In particular, if N = (’)g’?” is a free module, the choice of the datum A corresponds to n
commuting degree —1 endomorphisms of P.

Example 10.6. In general, the affine dg schemes we will encounter will combine the pre-
vious example with the case of polynomial rings over ordinary algebras. Specifically, we
will have:

A= 8x[M = N = [-~-£>/\2M®SXN£>M®S)(N£>SXN

where M % N is a map of coherent sheaves of X. The differential d, is given by (10.8),
and the grading has A’M ® SN sitting in degree —i. But note that there is an extra
grading on the algebra A, given by placing A’M ® S/N in degree i + j. We will write
this as:

A =P A = P AMeIN
4,5 >0 1,720

Since the x = i 4+ j grading is preserved by the differential d, it descends to a grading
on the cohomology groups. For example, when the morphism s is regular (i.e. when the
Koszul complex A is acyclic in negative degrees), the e grading collapses, and the x
grading matches the usual polynomial grading on the symmetric power S% (N /M).

10.4. Projective dg bundles

We do not wish to define projective dg schemes in complete generality, but instead
focus on projectivizations of dg vector bundles V* on a space X.
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Definition 10.7. A projective dg bundle is defined through its category of coherent
sheaves:

. . graded S%V* dg modules
CobPros 857 = (55507 =0 :

Let us make two remarks: first of all, an object in Coh(Proj SxV*) has two gradings.
The first comes from the power * of the symmetric power, and the second comes from
the dg grading on V*. Secondly, the difference between a projectivization and the affine
cone Spec SxV* is the same as in the classical case: there is, in the derived category
of the former, an additional quasi-isomorphism between the structure sheaf of the zero
section and the zero module.

Example 10.8. As in Example 10.8, let us study the case when V* = [M -2 N is a two
step complex of vector bundles, concentrated in degrees —1 and 0. In this case, we have
a map:

Proj Sx[M - N] —— Proj Sx\'
& l’r (10.9)
X

where the map 7 is an actual projective bundle since N is a vector bundle on X. The
symbol < emulates closed embeddings of schemes, because we tautologically have:

Coh (Proj Sx[M — /\q) S (10.10)
&~ {coherent sheaves on Proj Sx AN endowed with a dg action of
/\.[7'('*./\/1(—1) 5 Oproj S’XN]}

With this in mind, we think of Proj Sx[M —= N] as the dg subscheme of Proj SxN
cut out by the cosection s of the vector bundle 7* M (—1).

Our main Example 10.8 should be interpreted as a dg version of the familiar notion
of projective bundles Proj SxV — X, where V is a rank n locally free sheaf of X. In
this case, recall the following formulas:

. (O(k)) = SkV concentrated in degree 0
T.(O(=k)) = S¥7"VY @ A'PYY  concentrated in degree n — 1

for all k € N, where 7, denotes the derived pull-back. The second equality follows from
the first one, together with relative Serre duality:
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R*m.(A) = R (AY @ A™PY(—n))Y (10.11)
for all A € D?(Coh(Proj SxV)). We now prove a similar formula in the dg setting

Proposition 10.9. In the notation of Example 10.8, suppose rank M = m and rank N =
n. Then:

(10.12)

top _ 4
R.’frfg(A) — Rc—n—i—m—i—lﬂ_fg <Av ® A N( n)))

AP M (—m
for all A € D*(Coh(Proj Sx[M - NY))

Proof. Implicitly in equation (10.10), one has the equation:
R*7%8(A) = R*r, (A ® A TEM(—1) > 0])

where O = Opyoj syn- Applying (10.11) to the right hand side, we obtain

\

R*nd%(A) = R*"Hir, (AV ®A* [T M(=1) 5 O] o AtOPNV(—n))

v
It is easy to see that A® [W*M(—l) 5 (9} = Nt [W*M(—l) 5 (9} ® AP MY (m),
hence:
_ s ARPA (=) \
o __dg _ pe—n+m+1 \% . * o NN
BnfA) =~ ™ <A @At [ M(-1) 5 0] © /\tOPM(—m)>

top \%
which equals R*—n+m-+17ds (Av ® %E:fn))) by another application of (10.10). O
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