


2. RELATED WORK

In this section we describe prior works closely related to the

our proposed method. Our method closely relates to recon-

struction using auto-encoders [3] and enhancement in the

compressed domain [1, 4, 5].

Auto-Encoders. Variations of auto-encoders are extensively

used in reconstruction tasks by compressing the input to a

latent representation and using the latent representation to

retrieve the input as close as possible [1, 3, 6]. However,

often the reconstructed images are blurry due to inherent

nature of Mean Square Error (MSE) loss to produce blurry

results. In the proposed approach we also include Structural

Similarity Index (SSIM) [7] loss to enhance the visual results.

Compressed Domain Enhancement. Some works have tried

to enhance the images in the compressed domain. In [4] a

method based on a contrast measure defined within the dis-

crete cosine transform (DCT) domain is proposed to enhance

the image. Authors in [1] propose a vector quantized varia-

tions auto-encoder for reconstruction of various media input.

We adopt their approach of vector quantization in our frame-

work. However, we exploit the input data correlation using

RNN for enhancement task as opposed to reconstruction in

[1] where ground truth data was available.

3. METHODOLOGY

We propose a Deep Quantized Latent Representation (DQLR)

framework for enhancing z−stack imaging in SAM of Ara-

bidopsis thaliana. We apply quantization in the latent space

of the noisy z−stack for enhanced reconstruction. In this sec-

tion, we first formulate the problem statement and then ex-

plain our proposed approach in details.

3.1. Problem Formulation

Given a z−stack Z = {z1, z2, · · · , zn}, with zi being the ith

slice in the stack from the top, we aim to reconstruct Ẑ =

{ẑ1, ẑ2, · · · , ẑn} such that ẑi is the visually enhanced slice

compared to zi, ∀i = 1, 2, · · · , n. Let there be a latent rep-

resentation of input noisy z−stack XZ = {x1, x2, · · · , xn}
where xi is the latent representation corresponding to the ith

slice zi. Since the slices in z−stack are correlated in the pixel

space, their latent representations should inherit the same

property in the latent space. Therefore, corresponding to each

latent representation XZ let there be a latent representation

YZ = {y1, y2, · · · , yn} such that all {yi} are correlated.

We propose to generate visually enhanced z−stack by

quantizing the latent representation of the noisy input stack.

Our hypothesis is that each correlated latent representation

yi of a slice in the z−stack consists of two components; the

quantized representation y
q
i and the noise representation ynoise

i

of yi, such that yi = y
q
i + ynoise

i . Hence, noise component

ynoise
i can be removed by applying quantization on the cor-

related latent codes leaving the representation y
q
i required to

generate the enhanced image ẑi ∀ i = 1, 2, · · · , n.

3.2. Proposed Approach

Our proposed framework is shown in Figure 2. It consists

of four components: the encoder network E, the recurrent

neural network R, the quantization module Q and the genera-

tor network G. The encoder network is used to extract latent

representation for each slice in the noisy input stack. The

recurrent neural network utilizes the latent representations to

generate correlated latent representations. These correlated

representations are quantized to reduce noise in the latent

space by the quantization module. Finally, the quantized rep-

resentations are used to generate an enhanced z−stack.

Input Latent Representation. We employ a convolutional

neural network as an encoder E which extracts the latent rep-

resentation for each slice in a given noisy z−stack such that

E(Z) = E({ z1, z2, · · · , zn}) = { x0, x1, · · · , xn} (1)

where xi is latent representation corresponding to slice zi. A

set of correlated representations is generated by the recurrent

neural network for the latent representations extracted from

the encoder E to incorporate the z-resolution dynamics of the

z−stack in the latent representations.

Recurrent Neural Network (RNN). The consecutive slices

in a z−stack capture 3D-structure of any cell in the plant.

Thus, there must be a correlation between the consecutive

slices. The latent representation XZ of the noisy input Z

should also be correlated in some space YZ. Thus, we em-

ploy a recurrent neural network Ri to transform the ith noisy

latent representation to the correlated latent representation as

RNN can capture dynamics of the sequence given by

yi+1 = Ri(yi, hi) (2)

where h0 is the hidden state sampled randomly from a Gaus-

sian distribution and hi = xi−1 ∀ i > 0. Here, we aim to

capture the z−resolution dynamics of the stack unlike tradi-

tional recurrent neural network where temporal dynamics of

the sequence is captured.

Deep Quantized Latent Representation. We propose that

a data driven quantization of the latent representation can

reduce the average noise in the stack and enhance it visually.

In order to quantize the latent representation, we employ vec-

tor quantization dictionary learning algorithm as proposed in

[1], represented as Qi in our framework.

Enhanced Stack Generation. We employ a generative

model G to transform the quantized representations into



Fig. 2: Architectural Overview of DQLR (for one slice of the stack). Encoder E encodes input image to xi. Recurrent Neural

Network (RNN) module generates correlated codes for reconstruction (yi) and prediction ({yi, yi+1, · · · , yi+n}). Quantizer

module Qi quantizes the latent codes and Generator G reconstructs/predicts the images.

an enhanced stack Ẑ. The quantized representations Y
q
Z

are used by the generator G to synthesize enhanced stack

Ẑ = {ẑ1, ẑ2, · · · , ẑn} such that ẑi is the visually enhanced

image of the slice zi in the noisy stack Z.

3.3. Optimization

Our optimization function consists of the Mean Squared Er-

ror (MSE) pixel reconstruction loss, the Structural Similarity

(SSIM) loss [7] and quantization loss as defined in [1].

Ltotal = Lmse + λsLssim + λqLquant (3)

We briefly describe the loss functions below. Define P as

the total number of non-overlapping patches in a given image,

N as total number of pixels in P , and α and β as the generated

and ground truth image, respectively.

Lmse(P ) =
1

N

∑

p∈P

‖α(p)− β(p)‖2

Lssim(P ) =
1

N

∑

p∈P

1− SSIM(p),

with, SSIM(p) =

(
2µαµβ + C1

µ2
α + µ2

β + C1

)(
2σασβ + C2

σ2
α + σ2

β + C2

)

where, µ(·) and σ(·) are computed with a Gaussian filter with

standard deviation σG, C1 < 1 and C2 < 1 are constants

introduced to handle division by zero issue, λs and λq weights

for SSIM and quantization loss, respectively. For Lquant, we

use the loss function as proposed in [1] on the correlated latent

space YZ and dictionary D = {d1, d2, · · · , dk}, where k =
128 is length of dictionary to learn for quantization.

4. EXPERIMENTATION AND RESULTS

Datasets. We used the publicly available Confocal Mem-

brane dataset [8] consisting of six plants. We train our model

using four plant stacks, and use one plant stack each for vali-

dation and testing.

Qualitative Results. Fig. 3 shows few examples of the recon-

structed slices from the z−stack using the our approach along

with the input slice. It can be observed that our proposed

method is able to generate sharper cell boundaries. Since we

learn the quantization dictionary using all the slices in var-

ious z−stacks, our method is able to generate cleaner im-

ages. We also compare our proposed approach with decon-

volution operation used to denoise microscopy images using

ImageJ [9]. Deconvolution is performed on 2D slices using

Gaussian Point Spread Function (PSF) with standard values.

It can be seen from Fig. 5 that our proposed approach recon-

structs visually enhanced slices compared to deconvolution

operation in ImageJ. A key reason that deconvolution doesn’t

work well is due to the selection of PSF which highly depends

on the capturing instrument. This demonstrates the advantage

of our approach with respect to existing algorithms. Note that

in Fig. 3, Fig. 4, and Fig. 5, input slice is shown inside and

the reconstructed slice using the proposed approach is shown

inside . Results are best viewed when zoomed-in.



Qualitative Ablation. To evaluate the impact of quantization

in the latent space, we perform an experiment without ap-

plying quantization keeping all other parameters same in the

proposed method. Fig. 4 qualitatively shows the contribution

on quantization in latent space. The image generated without

quantization is less sharp than with quantization. This is due

to inherent property of mean square loss to produce blurry re-

sults which dominates the reconstruction in absence of latent

representation quantization loss.

Fig. 3: Qualitative Results of Proposed Method. Origi-

nal image (left) and Reconstructed image (right) with cor-

responding zoomed parts are presented here. The proposed

method is able to generate sharper images from the given

blurry image slices.

Fig. 4: Reconstruction Results without Quantization. Re-

constructed image without quantization (left) and Recon-

structed image (right) with quantization with corresponding

zoomed parts are presented here. This demonstrates that the

quantization module in our proposed approach is effective in

deblurring the data.

Fig. 5: Comparison of Reconstructed Results with Im-

ageJ [9]. (a) Original Image, (b) Reconstructed using DQLR

(ours) and (c) Reconstructed using deconvolution by ImageJ.

5. CONCLUSION

Micro-imaging data collected for various bio-medical re-

search suffers from inherent blurriness and using this data for

further analysis is a challenging task. We present an approach

for enhanced reconstruction of microscopic sequential data by

leveraging the information from consecutive image slices and

using quantization of their latent representation to alleviate

blurriness. Our data driven approach demonstrates visually

superior results on a publicly available benchmark. The pro-

posed approach would be useful for bio-medical researchers

to enhance images where data is scarce and consequently,

avoid unwanted laborious efforts for re-imaging the data.
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